Effect to the High Flux Isotope Reactor by the nearby heavy load drop

PDF Version Also Available for Download.

Description

In this calculation, GE-2000 cask of 25,000 lbs is assumed to drop from a height of 20-ft above the bottom of the High Flux Isotope Reactor (HFIR) pool slab with end velocity of 430 in/sec at the loading station. The consequences of the dynamic impact to the bottom slab of the pool and to the nearby HFIR reactor vessel are analyzed by applying ABAQUS computer code. The results show that both HFIR vessel structure and its supporting legs are subjected to elastic disturbances only and will not be damaged. The bottom slab of the pool will be damaged. The plastic ... continued below

Physical Description

7 p.

Creation Information

Chang, S.J. June 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

  • Chang, S.J. Oak Ridge National Lab., TN (United States). Research Reactors Div.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In this calculation, GE-2000 cask of 25,000 lbs is assumed to drop from a height of 20-ft above the bottom of the High Flux Isotope Reactor (HFIR) pool slab with end velocity of 430 in/sec at the loading station. The consequences of the dynamic impact to the bottom slab of the pool and to the nearby HFIR reactor vessel are analyzed by applying ABAQUS computer code. The results show that both HFIR vessel structure and its supporting legs are subjected to elastic disturbances only and will not be damaged. The bottom slab of the pool will be damaged. The plastic strain that will cause failure to the concrete slab at the point of impact extends a distance approximately half of the slab thickness of 36 inches. The plastic strain of failure for concrete is assumed to be 0.45%. The velocity response spectrum at the concrete slab next to HFIR vessel as a result of the impact is also obtained. The maximum spectral velocity is approximately 10 in/sec. It is approximately equal to the maximum magnitude of the Oak Ridge velocity spectrum formulated recently with 0.26g peak ground acceleration and 5% damping. However, the peak ground acceleration that is associated with the impact generated response spectrum curve can be as much as 20g. The high frequency acceleration waves are generated in impact problems. It is concluded that the damage caused by heavy load drop at loading station is controlled by the slab damage. The damage of slab will not be severe enough to cause the leakage of pool water.

Physical Description

7 p.

Notes

INIS; OSTI as DE96010672

Source

  • American Society of Mechanical Engineers (ASME) pressure vessels and piping conference, Montreal (Canada), 21-26 Jul 1996

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96010672
  • Report No.: CONF-960706--21
  • Grant Number: AC05-96OR22464
  • DOI: 10.2172/244667 | External Link
  • Office of Scientific & Technical Information Report Number: 244667
  • Archival Resource Key: ark:/67531/metadc666332

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Jan. 19, 2016, 12:59 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Chang, S.J. Effect to the High Flux Isotope Reactor by the nearby heavy load drop, report, June 1, 1996; Tennessee. (digital.library.unt.edu/ark:/67531/metadc666332/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.