Alternate fluid to improve energy efficiency of supercritical water oxidation process

PDF Version Also Available for Download.

Description

This report discusses the replacement of water by carbon dioxide in both the quench stream and the supercritical water oxidation (SCWO) reactor feed in order to reduce the energy utilization in the process. FLUENT was used to generate the input requirements and ASPEN PLUS was used to model the SCWO process. Simulations were made for normal MODAR operating conditions (baseline case) and two other cases replacing water by carbon dioxide. The basis for and assumptions used in the simulation are given. Economic evaluations were made and costs were compared with the baseline case and a case with 60% replacement of ... continued below

Physical Description

38 p.

Creation Information

Oh, C.H. March 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This report discusses the replacement of water by carbon dioxide in both the quench stream and the supercritical water oxidation (SCWO) reactor feed in order to reduce the energy utilization in the process. FLUENT was used to generate the input requirements and ASPEN PLUS was used to model the SCWO process. Simulations were made for normal MODAR operating conditions (baseline case) and two other cases replacing water by carbon dioxide. The basis for and assumptions used in the simulation are given. Economic evaluations were made and costs were compared with the baseline case and a case with 60% replacement of water by carbon dioxide. The equipment cost is almost the same. However, the case with replacement of water by carbon dioxide reduces the energy requirement in the end process by a factor of three, which is a significant energy savings in the operation. Also, the injection of carbon dioxide into the SCWO reactor feed is expected to reduce corrosion and makes salt particles non-sticky. However, these advantages need to be confirmed by experiment.

Physical Description

38 p.

Notes

OSTI as DE96010354

Source

  • Other Information: PBD: Mar 1996

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96010354
  • Report No.: INEL--96/0113
  • Grant Number: AC07-94ID13223
  • DOI: 10.2172/236239 | External Link
  • Office of Scientific & Technical Information Report Number: 236239
  • Archival Resource Key: ark:/67531/metadc666329

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • April 25, 2016, 11:27 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Oh, C.H. Alternate fluid to improve energy efficiency of supercritical water oxidation process, report, March 1, 1996; Idaho Falls, Idaho. (digital.library.unt.edu/ark:/67531/metadc666329/: accessed November 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.