Implementation and verification of a coupled fire model as a thermal boundary condition within P3/THERMAL

PDF Version Also Available for Download.

Description

A user-defined boundary condition subroutine has been implemented within P3/THERMAL to represent the heat flux between a noncombusting object and an engulfing fire. The heat flux calculations includes a simple 2D fire model in which energy and radiative heat transport equations are solved to produce estimates of the heat fluxes at the fire-object interface. These estimates reflect radiative coupling between a cold object and the flow of hot combustion gases which has been observed in fire experiments. The model uses a database of experimental pool fire measurements for far field boundary conditions and volumetric heat release rates. Taking into account ... continued below

Physical Description

11 p.

Creation Information

Hensinger, D.M.; Gritzo, L.A. & Koski, J.A. March 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A user-defined boundary condition subroutine has been implemented within P3/THERMAL to represent the heat flux between a noncombusting object and an engulfing fire. The heat flux calculations includes a simple 2D fire model in which energy and radiative heat transport equations are solved to produce estimates of the heat fluxes at the fire-object interface. These estimates reflect radiative coupling between a cold object and the flow of hot combustion gases which has been observed in fire experiments. The model uses a database of experimental pool fire measurements for far field boundary conditions and volumetric heat release rates. Taking into account the coupling between a structure and the fire is an improvement over the {sigma}T{sup 4} approximation frequently used as a boundary condition for engineered system response and is the preliminary step in the development of a fire model with a predictive capability. This paper describes the implementation of the fire model as a P3/THERMAL boundary condition and presents the results of a verification calculation carried out using the model.

Physical Description

11 p.

Notes

INIS; OSTI as DE96006885

Source

  • MacNeil Schwendler Corporation world users conference, Newport Beach, CA (United States), 3-7 Jun 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96006885
  • Report No.: SAND--96-0487C
  • Report No.: CONF-9606135--1
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 231858
  • Archival Resource Key: ark:/67531/metadc666269

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • April 14, 2016, 4:05 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hensinger, D.M.; Gritzo, L.A. & Koski, J.A. Implementation and verification of a coupled fire model as a thermal boundary condition within P3/THERMAL, article, March 1, 1996; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc666269/: accessed May 26, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.