BNL-61448

TEMPERATURE DEPENDENCE OF THE WESTCOTT G-FACTOR FOR NEUTRON CAPTURE AND NEUTRON FISSION REACTIONS IN ENDF/B-VI

Norman E. Holden High Flux Beam Reactor Reactor Division Brookhaven National Laboratory Upton, New York 11973 USA (516) 282-5204

ABSTRACT

The Westcott g-factors, which allow the user to determine reaction rates for nuclear reactions taking place at various temperatures, have been calculated using data from the Evaluated Neutron Nuclear Data library, ENDF-VI. The nuclides chosen have g-factors which are significantly different from unity and result in different reaction rates compared to nuclides whose neutron capture and fission cross sections vary as the reciprocal of the neutron's velocity. Values are presented as a function of temperature up to 400° C.

I. INTRODUCTION

Reactor neutron capture and fission reaction rates are determined as the product of the neutron flux density and the neutron capture or fission cross section. The standard energy for tabulation of thermal neutron cross sections is that of room temperature of 20.43° C, corresponding to a neutron energy of 0.0253 ev or a neutron velocity of 2200 m/s. Since most reactors do not operate at a temperature of 20° C, there must be some mechanism for converting the cross section, σ_0 , at the tabulated energy to the effective cross section, $\hat{\sigma}$, at the actual temperature of the reactor.

Westcott¹ developed a method for converting σ_0 to $\hat{\sigma}$ by describing the neutron spectrum as a combination of a Maxwell-Boltzmann speed distribution function which is characterized by a temperature, T, and a component of epithermal energy neutrons, whose neutron flux density distribution is proportional to the reciprocal of the neutron energy, i.e., dE/E. For an isotope whose neutron capture cross section does not vary inversely with the neutron velocity, $\hat{\sigma} = \sigma_0(g+rs)$, where g is the Westcott g-factor, the epithermal index, r, is approximately the fraction of the total neutron density in the epithermal component, and s is a temperature dependent quantity related to the reduced resonance integral.

In the absence of an epithermal component, r = 0, and the g-factor is the ratio of the Maxwellian averaged cross section, σ_1 , to the 2200 m/s cross section, σ_0 .

 $g = \sigma_1/\sigma_0 = (1/v_0\sigma_0)^{\frac{1}{2}} (4/\frac{1}{2}\pi)(v/v_1)^3 \sigma(v) \exp(-v/v_1)^2 dv}$ If $\sigma(v)$ varies as 1/v, the Maxwellian cross section is equivalent to the 2200 m/s value and g = 1. For nuclides with resonances in the thermal neutron energy range, g-factors are different from unity and g-factors will be temperature dependent.

II. DISCUSSION

A number of nuclides in the evaluated neutron data library, ENDF/B-VI, whose neutron capture and fission cross sections are significantly non 1/v, have been analysed to determine their Westcott gfactors as a function of various Maxwellian temperatures from 20° C to 400° C. The resulting g-factor temperature dependence is listed in the accompanying tables for fifty seven neutron capture reactions as well as thirty neutron fission reactions at five

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. different reactor temperatures.

The g-factors should be unity for those nuclei for which no resonance parameters have been measured. There are six nuclei to which this situation applies, ²³⁸Np, 236,237,243 Pu. and 250,251 Cf. Comparing the 20° C values for these nuclei, the g, or g, values are all unity within 0.8 percent, except for the ²⁵⁰Cf. The values of the g-factor depend upon the location and the strength of the resonance parameters for the nuclides. If there are no resonances near the thermal energy, the g-factor would be close to unity. This can be seen in the values for ¹⁹⁷Au, 238U, 185Re, 187Re, 244Pu, 242Cm, 244Cm, 246Cm and ²⁴⁸Cm, where the nearest resonance is at 2 eV to 5 eV, compared to the thermal energies of 0.02 eV to 0.05 eV. Whether the g-factor increases or decreases depends upon whether the closest resonance is at positive or negative energies. When the resonance is a bound level (negative energy), the g-factor will decrease with higher temperatures.

There are three nuclei, ²³⁷U, ^{246,248}Cm, which have no negative energy resonances, corresponding to bound levels in that nucleus, and have no low lying positive energy resonances. One would expect both capture and fission g-factors to be close to unity for these nuclei and this is indeed the case.

There are nine nuclei. 230Th, 234,236,238U, 242,244 Pu, 242,244 Cm, and 252 Cf for which there are no bound levels or positive energy resonances close to zero energy. Again, one would expect the g-factors for the two resonances to be close to unity in each of these cases. This is the case, although there is a difference between the g, and the gf values for ²⁴²Pu and ²⁴⁴Cm. In the first case, there are no fission widths for the bound or first four positive energy resonances, so the g, value is much closer to unity than the g, value. In the second case, most of the fission cross section comes from the bound level and the g_f value is less than unity, while the capture cross section comes primarily from the positive energy resonances and the g, value is slightly larger than unity.

There are two nuclei, ²³²U, and ²³⁸Pu, for which there are bound levels close to zero energy but no positive energy resonances below one or two electron volts. One would expect g-factors significantly less than unity for these nuclei and the g_{γ} and g_f values are about 0.97 and 0.96.

III. TEMPERATURE DEPENDENCE

The changes in g_f and g_y for ^{233,235}U and 239,241 Pu at the various temperatures indicate that some of the earlier calculations of the thermal energy parameters of the fissile nuclei, which assumed a single g, and g, for the maxwellian cross section measurements in various reactors, might have problems. A perennial concern in those calculations has been the much lower 220 m/s fission cross sections for ²³⁵U which were derived from the maxwellian measurement reaction rates compared to the direct 2200 m/s cross section measurements. If the lower g, value at the higher temperatures were utilized, the resulting equivalent 2200 m/s fission cross section might have been larger.

The uncertainties of g-factors have been analysed by Westcott² for ²³³U, ²³⁵U, ²³⁹Pu, and ²⁴¹Pu at room temperatures. The uncertainties varied from 0.1 to 0.3 percent. These are basically standard nuclides for which there are much data in the literature at room temperatures. In the case of the various nuclides studied here, the data are much less extensive. The uncertainty could be as much as an order of magnitude larger for these nuclides.

REFERENCES

¹C.H. Westcott, J. Nucl. Energy 2, 59 (1955).

²C.H. Westcott, Chalk River Nuclear Laboratory Report, AECL-3255 (April 1969).

*This research was carried out under the auspices of the US Department of Energy Contract No. DE-AC02-76CH00016.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

HEBCCUCL	, G-race	OT TOT	1	.,	
Nuclide	<u>20° C</u>	<u>100° C</u>	<u>200° C</u>	<u>300° C</u>	<u>400° C</u>
^{i©} Rh	1.0246	1.0435	1.0685	1.0953	1.1240
113Cd	1.3324	1.6155	1.9838	2.3165	2.5873
¹¹⁵ In	1.0205	1.0360	1.0564	1.0779	1.1006
135Xe	1.1613	1.2243	1.2497	1.2368	1.2022
14 ⁸ Pm	1.4758	1.9072	2.4781	2.9906	3.4011
149Sm	1.7090	2.0320	2.2853	2.4033	2.4305
¹⁵¹ Sm		0.8550	0.7784	0.7153	0.6624
Sm.	0.9291		0.7717	0.7440	0.7463
¹⁵¹ Eu	0.9014	0.8307		0.7198	0.6671
¹⁵² Eu	0.9272	0.8562	0.7819		
¹⁵³ Eu	0.9741	0.9523	0.9276	0.9055	0.8856
¹⁵⁴ Eu		1.4201	1.6744	1.9131	2.1169
¹⁵⁵ Eu	1.0573	1.1057	1.1778	1.2726	1.4078
155Gd	0.8443	0.7845	0.7115	0.6453	0.5872
157Gd	0.8521	0.7983	0.7288	0.6640	0.6060
164DY	0.9880	0.9779	0.9656	0.9537	0.9422
175Lu	0.9771	0.9572	0.9351	0.9156	0.8983
¹⁷⁶ Lu	1.7458	2.3441	3.0451	3.5959	3.9807
177Hf	1.0217	1.0382	1.0601	1.0836	1.1091:
182 Ta	1.6385	2.1545	2.7700	3.2648	3.6196
¹⁸⁵ Re	1.0066	1.0105	1.0156	1.0209	1.0265
¹⁸⁷ Re	0.9962	0.9915	0.9858	0.9802	0.9747
¹⁹⁷ Au	1.0066	1.0106	1.0156	1.0207	1.0259
²³⁰ Th	1.0076	1.0125	1.0193	1.0271	1.0359
²³¹ Pa	0.9960	0.9963	1.0307	1.1325	1.3240
233Pa	0.9812	0.9614	0.9419	0.9269	0.9156
2320	0.9738	0.9504	0.9232	0.8981	0.8748
2330	1.0269	1.0495	1.0790	1.1056	1.1272
234U	0.9920	0.9839	0.9741	0.9646	0.9553
235U	0.9832	0.9692	0.9588	0.9551	0.9558
236U	1.0040	1.0059	1.0082	1.0106	1.0131
237U		0.9809	0.9699	0.9591	0.9486
238U	0.9901	1.0057	1.0079	1.0100	1.0122
²³⁷ Np	1.0040		0.9845	0.9960	1.0317
²³⁸ Np	0.9926	0.9865	0.9760	0.9672	0.9588
²³⁶ Pu	0.9927	0.9851	0.9740	0.9644	0.9551
²³⁷ Pu	0.9919	0.9838		1.0012	1.0012
Pu m	1.0012	1.0012	1.0012	0.8428	0.8086
236Pu	0.9586	0.9219	0.8803		1
239Pu	1.1449	1.3044	1.6067	2.0214	
240Pu	1.0294	1.0524	1.0834		1.1543
²⁴¹ Pu	1.0198	1.0401	1.1084	1.2116	1.3316
²⁴² Pu	1.0115	1.0194	1.0295	1.0400	1.0507
²⁴³ Pu	0.9935	0.9865	0.9781	0.9701	0.9624
244Pu	0.9992	0.9970	0.9942	0.9915	0.9887
²⁴¹ Am	1.0018	1.0164	1.0919	1.2436	1.4634
242mAm	1.1085	1.1857	1.2717	1.3416	1.3944
²⁴³ Am	1.0153	1.0267	1.0427	1.0618	1.0852
²⁴² Cm	0.9943	0.9880	0.9803	0.9728	0.9654
²⁴³ Cm	1.0065	1.0103	1.0155	1.0211	1.0272
244Cm	1.0012	1.0006	0.9999	0.9994	0.9991
²⁴⁵ Cm	0.9495	0.9076	0.8601	0.8174	0.7790
²⁴⁶ Cm	1.0072	1.0117	1.0172	1.0229	1.0286
247 Cm	1.0270	1.0484	1.0782	1.1121	1.1523
²⁴⁸ Cm	1.0038	1.0055	1.0076	1.0097	1.0110
²⁴⁹ Cf	0.9741	0.9504	0.9266	0.9092	0.8989
250Cf	1.0150	1.0246	1.0389	1.0594	1.0970
²⁵¹ Cf	0.9951	0.9891	0.9821	0.9761	0.9717
²⁵² Cf	0.9922	0.9844	0.9748	0.9655	0.9564

Westcott G-Factor for (N,Gamma) Reactions

Wescott G-Factor for (N,Fission) Reactions							
Nuclide	<u>20° C</u>	<u>100° c</u>	<u>200° c</u>	<u>300° C</u>	<u>400° C</u>		
²³¹ Pa	1.0167	1.0351	1.0944	1.2308	1.4795		
232 _U	0.9785	0.9591	0.9365	0.9156	0.8963		
233U	0.9973	0.9959	0.9954	0.9963	0.9979		
234U	0.9904	0.9810	0.9695	0.9584	0.9476		
235U	0.9817	0.9657	0.9504	0.9398	0.9326		
236U	1.0055	1.0086	1.0125	1.0165	1.0131		
²³⁷ U	0.9901	0.9811	0.9701	0.9594	0.9490		
²³⁷ Np	0.9858	0.9716	0.9558	0.9439	0.9382		
235 ND	0.9925	0.9848	0.9754	0.9664	0.9577		
²³⁶ Pu	0.9919	0.9838	0.9740	0.9644	0.9551		
²³⁷ Pu	1.0011	1.0012	1.0012	1.0012	1.0012		
238 Pu	0.9588	0.9222	0.8807	0.8433	0.8093		
²³⁹ Pu	1.0553	1.1214	1.2591	1.4581	1.7008		
240Pu	1.0261	1.0464	1.0737	1.1034	1.1362		
²⁴¹ Pu	1.0539	1.1074	1.2088	1.3124	1.4275		
242pu	1.0021	1.0023	1.0025	1.0028	1.0030		
²⁴³ Pu	0.9935	0.9865	0.9781	0.9700	0.9624		
²⁴¹ Am	1.0146	1.0455	1.1563	1.3638	1.6552		
^{242m} Am	1.1025	1.1756	1.2571	1.3235	1.3740		
²⁴³ Am	1.0136	1.0242	1.0418	1.0688	1.1093		
²⁴² Cm	0.9938	0.9872	0.9791	0.9711	0.9634		
²⁴³ Cm	1.0074	1.0119	1.0180	1.0245	1.0315		
244Cm	0.9905	0.9811	0.9698	0.9589	0.9485		
²⁴⁵ Cm	0.9552	0.9180	0.8761	0.8387	0.8055		
246Cm	1.0077	1.0125	1.0186	1.0247	1.0309		
²⁴⁷ Cm	1.0296	1.0533	1.0859	1.1230	1.1666		
²⁴⁸ Cm	1.0036	1.0052	1.0071	1.0091	1.0119		
249Cf	0.9805	0.9623	0.9454	0.9353	0.9330		
²⁵¹ Cf	0.9993	0.9961	0.9932	0.9920	0.9934		
²⁵² Cf	0.9924	0.9847	0.9754	0.9663	0.9573		