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Abstract. We describe the paralleiization of a three dimensional, un- 
structured grid, finite element code which solves hyperbolic conservation 
laws for mass, momentum, and energy, and diffusion equations modeling 
heat conduction and radiation transport. Explicit temporal differencing 
advances the cell-based gasdynamic equations. Diffusion equations use 
fully implicit differencing of nodal variables which leads to large, sparse, 
symmetric, and positive definite matrices. Because of the unstructured 
grid, the off-diagonal non-zero elements appear in unpredictable loca- 
tions. The linear systems are solved using parallelized conjugate gradi- 
ents. The code is parailelized by domain decomposition of physical space 
into disjoint subdomains (SDS). Each processor receives its own SD plus 
a border of ghost cells. Results are presented on a problem coupling 
hydrodynamics to non-linear heat conduction. 

We describe the paralleiization of ICFSD [l], a 3D, unstructured grid, finite eie- 
ment code written in C-t--t-. The ICF3D mesh consists of an arbitrary collection 
of hexahedra, prisms, pyramids, and/or tetrahedra. The only restriction is that 
cells share like-kind faces. VVe parallelize by first decomposing the physical do- 
main into a collection of disjoint subdomains (SDS), one per processing element 
(PE). The decomposition tags each cell with the PE number which will “own” 
it, A collection of cells owned by a PE comprises the PE’s SD. A cell owned by 
another PE and which shares at least one vertex with an owned cell is called 
a ghost cell. Each PE receives a terse description of only its SD plus a layer of 
ghost cells. The decomposition is especially suited to distributed memory archi- 
tectnres (DMP) such as the CRAY T3E. However, it may also be used on shared 
memory processors (SMP). ICF3D is portabIe; it runs on uniprocessors and mas- 
sively parallel platforms (MPP). A single program multiple data (SPMD) model 
is adopted. In XCF3D, three levels of parallelization difficulties arise: 

1. Embarrassingly parallel routines such as equation-of-state function calls which 
do not require any message passing since each cell is owned by only one PE. 

* Work performed under the auspices of the U.S. Department of Energy by the 
Lawrence Livermore National Laboratory under coetract number W-7405-ENG-48. 



2. Straight.for\\-;lrd parallclizntion of temporally explicit algorithms such as the 
hydrodynamic package. 

3. Difficult problems requiring global communication, e.g., the solution of the 
linear systems which are the discretizstion of the diffusion equations. - 

The mesh consists of cell, face, and vertex objects. Since the input files as- 
sign PE ownership only to the cells, some faces and vertices lie on inter-PE 
“boundaries.” Physics modules such as the one advancing the hydrodynamic 
equations, which update cell-centered data, also compute face-centered quan- 
tities, e.g., fluxes. If a face lies on an inter-PE boundary, the flux across it is 
computed by the two PEs which own the cells on either side. Fluxes are com- 
puted after the PEs exchange appropriate information to ensure that both obtain 
the same flux. Modules such as the diffusion solver update vertex-centered data. 
These equations are advanced by standard finite element (FE) techniques which 
lead to large, sparse, symmetric positive definite (SPD) linear systems that are 
solved using preconditioned conjugate gradient (CC) methods. The assembly of 
the linear systems requires integrating over cells, i.e., a cell-centered computa- 
tion, and is done by each PE over only its owned cells. However, once the linear 
system has been completely assembled and properly distributed among the PEs 
the calculation is vertex-centered. A principal result of this paper shows how to 
assemble and solve such systems with the restriction that each PE sees only its 
SD and the surrounding ghost cells. 

The PEs communicate using message passing function libraries. Two types 
are available, MPI and the native CR.qY SH;LIEM libraries. The former is 
portable; it is available on both SMPs and DMPs. 

In ICF3D two types of communication arise, global and point-to-point (PtP). 
An example of the former is the calculation of a new time step At. First, each 
PE loops through its cells or vertices and finds an acceptable value, then a 
global reduction function forms a single scalar and distributes it to all PEs. In 
PtP communication, PE[i] exchanges messages only with those PEs that own 
its ghost cells. For such exchanges, ICF3D relies on special “message passing 
objects” (MPO) which are constructed during the initialization of the run. The 
MPO constructor relies on mesh connectivity information that ICFSD computes 
as it builds the mesh objects. The actual calls to MPI (or SHMEM) functions 
are made by the MPO member functions. 

In the next section, we discuss what is required for initialization. In Sect. 3 we 
describe the parallelization techniques required by the hydrodynamic module. 
Section 4 deals with analogous issues for the diffusion packages. Section 5 dis- 
pIays results on a problem which couples the explicit hydrodynamic and implicit 
diffusion schemes. Concluding remarks appear in Sect. 6. 

2 Initialization 

Before describing the procedures specific to MPP simulations, we discuss those 
required to initialize any run, even those for uniprocessors. The input and output 
files describe the mesh in the AVS UCD format [3] which uses two lists. The first, 



of Icngt,h A’,,, is the indcscd list of vertices. Each vertex is specified by a 3-tuple 
- the three coordinates of the vertcs.’ The second list, N, long, is the indexed 
list, of cells. Each entry in the cell Iist contains a string denoting the cell’s type, _ 
e.g., hex and a properly ordered list of indices into the vertex list. In addition, 
each vertex and cell has a global sequence number (GSN) and each cell has an 
assigned PE number. The GSN is unchanged during the run. The vertices, cells, 
and to-be-constructed faces also have a local sequence number, but these are 
relevant only to the code itself during the run. 

After reading the input file, the mesh is created by constructing the cell, 
vertex, and face objects. The objects are accessed by pointers. The objects also 
have their own interconnecting pointers. 

For MPP runs, as the cells are read in, the cell objects are constructed so that 
the cell pointers first list the owned ceils, then the ghost cells. There is also a 
considerable amount of sorting of cells andvertices to facilitate the construction 
of the MPOs. However, this effort is a smal1 overhead in the eventual problem 
running time because the mesh connectivity, and hence the logica data of the 
MPOs, do not change during the course of the run. 

3 Hydrodynamics 

Two types of message exchanges, face and vertex centered, arise in the hydro- 
dynamic scheme. The scheme [4] is conceptually straightforward to parallelize 
since it is compact and temporally explicit, although it is second order in both 
space and time. The method is an extension of the Godunov scheme in which all 
variables are cell-based. If applied to the equation, i&f + ‘7.F = 0 , the scheme 
integrates over At and a ceil to advance the average value Pj of the j-th cell: 

where Vj is the cell volume, the superscript denotes the time level, and the area 
integral is a sum over the cell’s faces. The face fluxes are solutions to Riemann 
probIems whose initial conditions are the cell-based p” on either side of the face. 
In lD, this yieids the explicit dependence, 

\ p-1 = myi-1, fj”, fj”,,> - 

Hence, if an inter PE boundary separates the j-th and (jfl)-st cells, if PE[i] 
owns the j-th cell, and if the latest value fj+r has been passed and loaded into 
the proper ghost cell, then PEP] will compute the correct, new cell average. 

The responsibility for the message passing lies with an MPO, which in this 
case is face-cell-centered. That is, both send and receive MPOs run through the 
same faces, but the sending MPG reads and packs data into a buffer from owned 
cells, while the receiving MPO unpacks a buffer and loads data into ghost cells. 

’ ICF3D may be run in either 3D Cartesian, cylindrical, or spherical coordinate sys- 



T11e SCCOII~I order aspect of t,lrtt scheme complicates the above procedure. 
Temporal accuracy is obtained by a two-step Runge-I(utta scheme which makes 
two passes through the coding. This implies two sets of message eschanges per 
time cycle, but does not cause any other complications. However, the spatial - 
accuracy does complicate matters since in each cell, the dependent variables are 
non-constant and may have different values at each of the vertices. Across each 
face, the initial data of the Riemann problem are the values of the variables on 
the vertices of the cell adjoining the face. This data is obtained by following the 
pointer of the face, to the cell, and then to the correct vertex values. 

The second type of message exchange is vertex-centered and is required by 
the limiting procedure which removes local extrema from the cell’s vertex values. 
For example, after the DFE pressures are calculated, they are restricted (limited) 
to a range obtained from the average values of the adjacent cells. The procedure 
is also explicit with compact support. If the vertex lies on an inter-PE boundary, 
by definition, there is at least one ghost cell attached. Special MPOs collect and 
distribute the extremal values to all PEs that own ceils attached to the vertex. 

4 Diffusion 

In contrast to the hydrodynamic module in which calls to the parallelization 
functions appear in several places, e.g., before computing fluxes, in the diffusion 
modules, the parallelization occurs after the equation is discretized, a “local” 
linear system assembled, and the system solver called. 

In ICFJD diffusion equations arise in simulating heat conduction, or in the 
two versions of the diffusion approximation for radiation transport. In all cases 
the equation is of the form 

GBtf=V-(DVf)-t-S-Lf, (1) 
where G, D, S, L 2 0. The unknown function is approximated as, 

. -- 

where, if oi is a vertex, &(zi) = 6ij is the usual basis function. To advance 
Eq. (l), we use implicit temporal differencing and obtain, 

(G’ + L’ - V.DV)fn = G’fn--l -I- 5’. (2) 
Note that At is absorbed into D’, I,‘, and S’. Next, Eq. (2) is multiplied by 
a basis function $i and integrated over the “domain.” For MPP applications, 
the relevant domain is the SD of the PE, i.e., only its owned cells. Thus, the 
index i of the 4; function ranges over the vertices of only the owned cells. Each 
multiplication by Qi corresponds to one row of the linear system, Af = b for 
the nodal unknowns f;. The matrix is SPD, but the system is incomplete since 
equations corresponding to unknowns on the inter-PE boundary do not include 
integrals over ghost cells. 

The MPP methodology is incorporated into the solver which, for MPP runs, 
first calls another routine that assembles the distributed linear system. 



4.1 The MPP Distribrltcd System 

Since the linear systems are vertes-b&ed, we extend the concept of PE ownership . 
to the vertices. If all cells adjoining n vertes are owned by PE[i], we let PE[i] 
own the vertex. This procedure leaves ambiguous the ownership of vertices on 
inter-PI3 boundaries and those on the “exterior” of the ghost cells. Ownership of 
the former may be determined without requiring message passing. The simplest 
algorithm is for each PE to survey the ownership of all cells attached to the 
vertex and assign the vertex to the PE of lowest number. Assigning ownership 
of the exterior nodes requires message-passing since a PE does not have access 
to all cells that are attached to them. Since a PE unequivocally knows who 
owns the vertices attached to all its owned cells, during the initialization phase, 
each PE receives a message from the owners of its ghost cells regarding the 
ownership of this PE’s exterior vertices. Although the coding for this procedure 
is complicated, it is called only once during initialization. 

One essential operation within the CC iterations is MatVec, the multiplica- 
tion of a matrix by a vector. On %PPs, after the system has been distributed, 
the matrices are rectangular. The number of rows equals the number of owned 
vertices and the columns correspond to the number of vertices linked to the 
owned vertices. The matrices are stored in compressed row form to avoid storing 
zeroes. 

To facilitate the assembly of the distributed system, the vertices are sorted 
into six types: TI to Ts. Before describing them, we define V to be the set of 
vertices owned by the PE, W to be the set of vertices not owned by the PE, S(Z) 
as the set of vertices connected to the vertex 2 by the stencil, and as eztetior 
the vertices 01 ghost cells which do not lie on inter-PE boundaries. Thus, 

- TI ==(z:ls~V.VpyES(z), YEV} 
- Tz={z/z~V.3y~S(z), YEW) 
- T3 = {z 1 a: G V. z is on inter-PE bdry.} 
-rr,=={x1xEW* IC is on inter-PE bdry.} 
- Tj = {z 12: is exterior. 3y E 2’3, z E S(y)} 
- T6 = {Z 1 z is exterior. VJI~ E S(Z), 1/ E W} 

The six types stem from the rkquirements for assembling the distributed 
system and for performing a MatVec. For the Tl and T2 vertices, the PE can 
compute the entire row of matrix coefficients without input from other PEs. 
However, on T2 vertices, before completing a MatVec, the PE needs the latest 
value on some Td vertices. On Ts vertices, the PE needs input from other PEs 
for completing the calculation of the row and for a MatVec operation. Linear 
equations which the PE computes on its T4 vertices are sent to the PE which 
owns them. The Ts vertices are not needed in the diffusion module. 

Before calling the solver, each PE computes a partial linear system, Ax = b, 
after performing the required finite element integrations over the owned celIs. If 



we index the matris and vector elcrncnts by type, then 

and similarly for b. In Eq. (3) Aij denotes the, not necessarily square, matrix of 
coefficients of interactions between types Ti and Tj vertices and similarly xi are 
the type Ti vector elements. 

After computing the incomplete linear system whose matrix is given by 
Eq. (3), for MPP runs, the solver first calls certain MPOs which assemble the 
distributed system. Each row of TJ vertices is sent to the PE which owns the 
vertex. In the context of how to compute a ivIatVec y = Ax, if the subscripts a 
and b divide the vertices into types T t,2,3 and TG,~ respectively, we have 

where, 

All Al2 
A a = AIZ 4422 

( 
(5) 

In Eq. (5) the primes denote matrix coeficients which have been computed by 
other PEs, i.e., on their Ta vertices, and message-passed to this PE. 

4.2 The Parallel Solver 

The resulting linear equations are solved using preconditioned conjugate gradi- 
ents (PCG). T wo types of preconditioners are available: n-step Jacobi, and a 
parallel version of incomplete Cholesky (XC). Each iterative step of CG requires 

- Three SAXPY, i.e., cy z + y where a is scalar and x and y are vectors 
- Two dot products 
- One MatVec 
- Solving the preconditioned system, 

PL f . (6) 

The SAXPY operations do not require any message passing. 
The dot products are calculated using a global reduction function. 
The MatVec is computed according to the splitting defined in Eq. (5) except 

we interleave message passing and computation. The procedure is as follows. The 
PEs first calI asynchronous receive functions and then halt at a barrier. Next, 
the PEs call the ready-to-send functions and, without waiting for the messages 
to arrive, calculate the first part of Eq. (Lb), i.e., A,t,. Afterwards, the PEs halt 
at another barrier before adding &zb to the result, 



The key behind PCG is a preconditioning ma.trix P which closely resembles 
.4 and at the same time renders Eq. (G) easy to solve. 30th the IC and n- 
step Jacobi preconditioners can be cast in the form of generalized polynomial 
preconditioners in which A is first factored into two parts, 

A =I M - N = M (I - G) , G 2 it/f -1~ . 

If IlG(( < 1, then the inverse may be approximated by 

A-’ = (I - G)-‘W’ a (I-t- G + . . . t Gi-‘)M-’ . 

We now define P as the inverse of the approximation, i.e., 

j-l 

P A M x ci 
( ) 

-1 

i=O 

where G” = I. 
For n-step Jacobi, M = diag(A) and we set j = n in Eq. (7); I-step is the 

easily parallelizable diagonal scaling preconditioner. If n > 1, the preconditioner 
requires n - 1 operations, each of which consists of a multiplication by the off- 
diagonal elements of .“I, then by M”‘. 

Unfortunately, in our applications n steps are usually no better than simple 
diagonal scaling and can be significantly worse than 1. step - see ref. [I]. 

Our favored preconditioner is a paraRe IC variant which we now describe, In 
the context of Eq. (7) we set Q = 4. and let P = LDLT , where L is lower triangu- 
lar with unit diagonal, D is diagonal, and the sparsity pattern of L matches that 
of A except that we do not allow links to types Td and Ts vertices. In other words, 
we form an incomplete factorization of matrix A, in Eq. (5). Since A, links only 
the owned nodes, the preconditioning step does not inhibit paralleiization, nor 
does it require any message passing. 

On each PE, our parallel IC preconditioner is equivalent to an incomplete 
decomposition of the underlying diffusion equation on the a;,~,3 nodes with 
homogeneous Dirichlet data specified on the non-owned T~,s vertices. In that 
light, a possible improvement may be to replace the homogeneous data with 
“stale” values of the z vector on the ?‘,,,s vertices. 

We end this section with a comparison of execution times of runs using two 
preconditioners, IC and l-step Jacobi. Table 1 shows the effect of increasing 
the number of PEs while keeping the mesh size fixed. As expected, our parallel 
ICCG degrades as the SDS get smaller while Jacobi scales with the number 
of PEs. Although the problem size is small, the parallel XC preconditioner is 
superior to l-step Jacobi. 

In this section, we present a calculation that uses the parallelization routines 
described above. Although the problem is spherically symmetric, we run in 3D 
and compare results to a 1D spherical calculation. 



Tz~blc 1. Tilcrnlal I~‘FI~c Prol~lcxn. Execution tirrlc for different prcc:onditioncrs and PE 
corlfigurations, 32 x 8 x S CCIIS, 2337’ vertices. 

Preconditioner 
ICCG 

I-step Jacobi 

4 PEs 16 PEs 
512 cells/PE 123 cells/PE 

163. 82. 
404. 129. 

The problem, suggested by Reinicke and Meyer-ter-Vehn [6] and later ana- 
lyzed in ref. [‘iI, consists of the sudden release of energy in the center of a cold, 
constant-density gas. The problem is a combination of the well-known hydrody- 
namic point explosion[S] and the spherically expanding thermal wave (91. 

The equations of interest are the Euler equations with heat conduction: 

dtp+V+m) =o, 
&(PU)f~+ml+p)=O, 

&(pE) 9 V.(u(pE + p)) = --V-H , (8) 

where the heat flux has the form, 

Ii= -xOT , where x = x,,Tb , 

and where ~0, and 6 are constants. In Eqs. (a), u, p, p, T, and E denote the 
velocity, density, pressure, temperature, and total specific energy respectively. 
The thermodynamic variables satisfy the ideal gas equation of state, 

P = (7 - Ihe = (7 - l)pcvT . 

At t = 0, the energy is all internal and is concentrated at the origin, 

d%=o = pelt=0 = EO S(r) , 

while the quiescent gas is at constant density, &o = 1. We set, 

y = 7/5 , b = 5/2 , x0 = CTJ = 1 , and Ee = 0.76778. 

The numerical value for Ec was calculated a posteriori after we initialized the 
central T to a large value. 

The solution may be estimated by separate analyses of the corresponding 
pure hydrodynamic and pure diffusion problems, both of which possess similarity 
solutions. However, in this case, the coupled problem is not self-similar. 

The pure diffusion solution is characterized by a temperature front rf which 
increases with time. The pure hydrodynamic problem is characterized by an 
infinite strength shock whose position rS also grows with time. For the parameters 
chosen, 

rs a P and rr a t2jrg . 



Thus, in early t,imcs, diffusion dominates; in late times, hydrodynamics. 
In ref. (71, the author computes an approsimate time tx and radius rx for 

the two fronts to intersect,. For the parameters chosen, 

tx = 0.8945 and r, = 0.9371 . 

Figure 1 displays p and T at the late-time, hydrodynamically dominated regime, 
t = 13; at 9’ % 1.28 we have a strong shock. 

I 5: temperature/O.20206 

0.6-- 

Fig. 1. Density and temperature vs. T at late time. T is normalized by T(r = (I), p is 
normalized by the value across an infinite strength shock. 

The results depicted in Fig. 1 were obtained by running ICF3D in “ID” 
mode, i.e., with only 1 cell in the transverse directions and 100 radial celk. We 
now display resuIts of a 3D run in Cartesian coordinates on an unstructured 
grid on 64 PEs. The mesh consists of 11580 tetrahedra and 2053 nodes and is 
created by the LaGriT code [5] obtained from Los Alamos NationaI Laboratory. 
The radial direction is discretized into initially 16 “spherical shells” of uniform 
width 5, = 0.125. We partition the mesh using METIS (21. Figure 2 displays the 
outside of the spherical domain. The innermost “sphere” consists of 20 tetrahedra 
all connected at the origin. 

Figures 3 and 4 respectively display p and T across the 2 = 0 plane at 
t = 1.8. The p result in Fig. 3 shows jaggedness in the transverse direction 
and an inability to reach the high compressions attained by the 1D result. Both 
errors are due to the coarseness of the grid and to the usage of tetrahedral cells. 
The result in Fig. 4 compares more favorably with Fig. 1. Bowever, none of 



Fig. 2. Exterior of spherical domain. Colors represent FE numbers. 

the discrepancies between the 3D and 1D results are due to the parallelization. 
There is no sign of the subdivision of the domain into 64 SDS. 

Fig. 3. Density at t = 1.802 across 2 = -* 0 plane. _ 

Lastly, we present a scalability study by varying the number of PEs while 
keeping the mesh size fixed. First, we define the parallelization efficiency EN, 

tN/2 
EN = - 

2eN 

where TV is the execution time for N PEs. Table 2 lists EN derived from the 
execution times of runs on an %BIM SP2 for the above unstructured grid problem. 
Note that EN remains close to X as N increases. 



‘Fable 2. Number of PEs N, execution time t iv, and pCuallelization efficiency EN for 
a fixed size prablcm (12580 cells, 2053 nodes) run for 200 cycles. 

iv tN(SeC) EN 
8 1628.02 - 
16 882.77 .922 
32 489.78 .901 
64 277.08 .884 

We have presented a scalable method for parallelizing a 3D, unstructured grid, 
finite element code. The method is a SPMD model targeted for distributed mem- 
ory architectures, but also works on.shared memory computers. We decompose 
physical space into a collection’of disjoint SDS, one per PE. The input files tag 
cells with a PE number. The code forms an analogous designation for the ver- 
tices. The SDS are surrounded by a layer of ghost cells which are used to store 
data that is owned, i.e., computed, by other PEs. Explicit calls to message pass- 
ing functions communicate the data amongst the PEs. The calls are made by 
special MPOs which contain information that describes the PE network. 

Fig. 4. Normalized ?? at t = 1.802 across 2 = 0 plane. 

We have demonstrated the method on a test problem requiring both tempo- 
rally explicit and implicit schemes for partia% differential equations. The concept 
of ghost ceils leads to a straightforward parallelization of the explicit hydrody- 
namic scheme. The MPOs insure that the data computed by other PEs is placed 
in the expected locations. 

Parallelization of the implicit discretiaation of the diffusion equations consists 
of a wrapper around the call to the linear system solver. For an MPP run, the 



liucar SystCrn gencrntcd by thC uniprocessor coding is incomplCtC since it is 
formed by integrating over only the owned cells. The parallelization completes 
the system by sending equations on non-owned vertices to the PE that owns 
them. 

Since the linear systems are large, sparse, and SPD, they are solved using a 
parallelized PCG algorithm in which our noteworthy contribution is the parallel 
IC prcconditioner. In a sense, it is even more incomplete than typical IC since 
our decomposition ignores links to non-owned vertices. Its utility depends on 
PEs having large SDS. In all cases studied, the number of CG iterations required 
using the parallel IC is less than that required by Jacobi. However, if the SDS 
are very small, and/or the matrix condition number is small, Jacobi is faster. In 
our applications, the parallel IC preconditioner has been very effective. 

The important aspect of our parallelization strategy is its consistent reliance 
of domain decomposition of physical space. We are now parallelizing the laser 
deposition module along the same lines. Preliminary results are encouraging. 
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