
UCEUL-JC-130862
PREPRINT

Alek I. Shestakov and Jose L. Milovich

Berkeley, Calrfornia
August 9 - 11) 1998

This is a preprint of a paper intended for publication in a journal or pr
Since changes may be made before publication, this preprint is made available with
the understanding that it will not be cited or reproduced without the permission of the
rcnthnr

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

Aleksei I. Shestakov and Jose L. Milovich

Lawrence Livermore National Laboratory
Livermore CA 94550

Abstract. We describe the paralleiization of a three dimensional, un-
structured grid, finite element code which solves hyperbolic conservation
laws for mass, momentum, and energy, and diffusion equations modeling
heat conduction and radiation transport. Explicit temporal differencing
advances the cell-based gasdynamic equations. Diffusion equations use
fully implicit differencing of nodal variables which leads to large, sparse,
symmetric, and positive definite matrices. Because of the unstructured
grid, the off-diagonal non-zero elements appear in unpredictable loca-
tions. The linear systems are solved using parallelized conjugate gradi-
ents. The code is parailelized by domain decomposition of physical space
into disjoint subdomains (SDS). Each processor receives its own SD plus
a border of ghost cells. Results are presented on a problem coupling
hydrodynamics to non-linear heat conduction.

We describe the paralleiization of ICFSD [l], a 3D, unstructured grid, finite eie-
ment code written in C-t--t-. The ICF3D mesh consists of an arbitrary collection
of hexahedra, prisms, pyramids, and/or tetrahedra. The only restriction is that
cells share like-kind faces. VVe parallelize by first decomposing the physical do-
main into a collection of disjoint subdomains (SDS), one per processing element
(PE). The decomposition tags each cell with the PE number which will “own”
it, A collection of cells owned by a PE comprises the PE’s SD. A cell owned by
another PE and which shares at least one vertex with an owned cell is called
a ghost cell. Each PE receives a terse description of only its SD plus a layer of
ghost cells. The decomposition is especially suited to distributed memory archi-
tectnres (DMP) such as the CRAY T3E. However, it may also be used on shared
memory processors (SMP). ICF3D is portabIe; it runs on uniprocessors and mas-
sively parallel platforms (MPP). A single program multiple data (SPMD) model
is adopted. In XCF3D, three levels of parallelization difficulties arise:

1. Embarrassingly parallel routines such as equation-of-state function calls which
do not require any message passing since each cell is owned by only one PE.

* Work performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under coetract number W-7405-ENG-48.

2. Straight.for\\-;lrd parallclizntion of temporally explicit algorithms such as the
hydrodynamic package.

3. Difficult problems requiring global communication, e.g., the solution of the
linear systems which are the discretizstion of the diffusion equations. -

The mesh consists of cell, face, and vertex objects. Since the input files as-
sign PE ownership only to the cells, some faces and vertices lie on inter-PE
“boundaries.” Physics modules such as the one advancing the hydrodynamic
equations, which update cell-centered data, also compute face-centered quan-
tities, e.g., fluxes. If a face lies on an inter-PE boundary, the flux across it is
computed by the two PEs which own the cells on either side. Fluxes are com-
puted after the PEs exchange appropriate information to ensure that both obtain
the same flux. Modules such as the diffusion solver update vertex-centered data.
These equations are advanced by standard finite element (FE) techniques which
lead to large, sparse, symmetric positive definite (SPD) linear systems that are
solved using preconditioned conjugate gradient (CC) methods. The assembly of
the linear systems requires integrating over cells, i.e., a cell-centered computa-
tion, and is done by each PE over only its owned cells. However, once the linear
system has been completely assembled and properly distributed among the PEs
the calculation is vertex-centered. A principal result of this paper shows how to
assemble and solve such systems with the restriction that each PE sees only its
SD and the surrounding ghost cells.

The PEs communicate using message passing function libraries. Two types
are available, MPI and the native CR.qY SH;LIEM libraries. The former is
portable; it is available on both SMPs and DMPs.

In ICF3D two types of communication arise, global and point-to-point (PtP).
An example of the former is the calculation of a new time step At. First, each
PE loops through its cells or vertices and finds an acceptable value, then a
global reduction function forms a single scalar and distributes it to all PEs. In
PtP communication, PE[i] exchanges messages only with those PEs that own
its ghost cells. For such exchanges, ICF3D relies on special “message passing
objects” (MPO) which are constructed during the initialization of the run. The
MPO constructor relies on mesh connectivity information that ICFSD computes
as it builds the mesh objects. The actual calls to MPI (or SHMEM) functions
are made by the MPO member functions.

In the next section, we discuss what is required for initialization. In Sect. 3 we
describe the parallelization techniques required by the hydrodynamic module.
Section 4 deals with analogous issues for the diffusion packages. Section 5 dis-
pIays results on a problem which couples the explicit hydrodynamic and implicit
diffusion schemes. Concluding remarks appear in Sect. 6.

2 Initialization

Before describing the procedures specific to MPP simulations, we discuss those
required to initialize any run, even those for uniprocessors. The input and output
files describe the mesh in the AVS UCD format [3] which uses two lists. The first,

of Icngt,h A’,,, is the indcscd list of vertices. Each vertex is specified by a 3-tuple
- the three coordinates of the vertcs.’ The second list, N, long, is the indexed
list, of cells. Each entry in the cell Iist contains a string denoting the cell’s type, _
e.g., hex and a properly ordered list of indices into the vertex list. In addition,
each vertex and cell has a global sequence number (GSN) and each cell has an
assigned PE number. The GSN is unchanged during the run. The vertices, cells,
and to-be-constructed faces also have a local sequence number, but these are
relevant only to the code itself during the run.

After reading the input file, the mesh is created by constructing the cell,
vertex, and face objects. The objects are accessed by pointers. The objects also
have their own interconnecting pointers.

For MPP runs, as the cells are read in, the cell objects are constructed so that
the cell pointers first list the owned ceils, then the ghost cells. There is also a
considerable amount of sorting of cells andvertices to facilitate the construction
of the MPOs. However, this effort is a smal1 overhead in the eventual problem
running time because the mesh connectivity, and hence the logica data of the
MPOs, do not change during the course of the run.

3 Hydrodynamics

Two types of message exchanges, face and vertex centered, arise in the hydro-
dynamic scheme. The scheme [4] is conceptually straightforward to parallelize
since it is compact and temporally explicit, although it is second order in both
space and time. The method is an extension of the Godunov scheme in which all
variables are cell-based. If applied to the equation, i&f + ‘7.F = 0 , the scheme
integrates over At and a ceil to advance the average value Pj of the j-th cell:

where Vj is the cell volume, the superscript denotes the time level, and the area
integral is a sum over the cell’s faces. The face fluxes are solutions to Riemann
probIems whose initial conditions are the cell-based p” on either side of the face.
In lD, this yieids the explicit dependence,

\ p-1 = myi-1, fj”, fj”,,> -

Hence, if an inter PE boundary separates the j-th and (jfl)-st cells, if PE[i]
owns the j-th cell, and if the latest value fj+r has been passed and loaded into
the proper ghost cell, then PEP] will compute the correct, new cell average.

The responsibility for the message passing lies with an MPO, which in this
case is face-cell-centered. That is, both send and receive MPOs run through the
same faces, but the sending MPG reads and packs data into a buffer from owned
cells, while the receiving MPO unpacks a buffer and loads data into ghost cells.

’ ICF3D may be run in either 3D Cartesian, cylindrical, or spherical coordinate sys-

T11e SCCOII~I order aspect of t,lrtt scheme complicates the above procedure.
Temporal accuracy is obtained by a two-step Runge-I(utta scheme which makes
two passes through the coding. This implies two sets of message eschanges per
time cycle, but does not cause any other complications. However, the spatial -
accuracy does complicate matters since in each cell, the dependent variables are
non-constant and may have different values at each of the vertices. Across each
face, the initial data of the Riemann problem are the values of the variables on
the vertices of the cell adjoining the face. This data is obtained by following the
pointer of the face, to the cell, and then to the correct vertex values.

The second type of message exchange is vertex-centered and is required by
the limiting procedure which removes local extrema from the cell’s vertex values.
For example, after the DFE pressures are calculated, they are restricted (limited)
to a range obtained from the average values of the adjacent cells. The procedure
is also explicit with compact support. If the vertex lies on an inter-PE boundary,
by definition, there is at least one ghost cell attached. Special MPOs collect and
distribute the extremal values to all PEs that own ceils attached to the vertex.

4 Diffusion

In contrast to the hydrodynamic module in which calls to the parallelization
functions appear in several places, e.g., before computing fluxes, in the diffusion
modules, the parallelization occurs after the equation is discretized, a “local”
linear system assembled, and the system solver called.

In ICFJD diffusion equations arise in simulating heat conduction, or in the
two versions of the diffusion approximation for radiation transport. In all cases
the equation is of the form

GBtf=V-(DVf)-t-S-Lf, (1)
where G, D, S, L 2 0. The unknown function is approximated as,

. --

where, if oi is a vertex, &(zi) = 6ij is the usual basis function. To advance
Eq. (l), we use implicit temporal differencing and obtain,

(G’ + L’ - V.DV)fn = G’fn--l -I- 5’. (2)
Note that At is absorbed into D’, I,‘, and S’. Next, Eq. (2) is multiplied by
a basis function $i and integrated over the “domain.” For MPP applications,
the relevant domain is the SD of the PE, i.e., only its owned cells. Thus, the
index i of the 4; function ranges over the vertices of only the owned cells. Each
multiplication by Qi corresponds to one row of the linear system, Af = b for
the nodal unknowns f;. The matrix is SPD, but the system is incomplete since
equations corresponding to unknowns on the inter-PE boundary do not include
integrals over ghost cells.

The MPP methodology is incorporated into the solver which, for MPP runs,
first calls another routine that assembles the distributed linear system.

4.1 The MPP Distribrltcd System

Since the linear systems are vertes-b&ed, we extend the concept of PE ownership .
to the vertices. If all cells adjoining n vertes are owned by PE[i], we let PE[i]
own the vertex. This procedure leaves ambiguous the ownership of vertices on
inter-PI3 boundaries and those on the “exterior” of the ghost cells. Ownership of
the former may be determined without requiring message passing. The simplest
algorithm is for each PE to survey the ownership of all cells attached to the
vertex and assign the vertex to the PE of lowest number. Assigning ownership
of the exterior nodes requires message-passing since a PE does not have access
to all cells that are attached to them. Since a PE unequivocally knows who
owns the vertices attached to all its owned cells, during the initialization phase,
each PE receives a message from the owners of its ghost cells regarding the
ownership of this PE’s exterior vertices. Although the coding for this procedure
is complicated, it is called only once during initialization.

One essential operation within the CC iterations is MatVec, the multiplica-
tion of a matrix by a vector. On %PPs, after the system has been distributed,
the matrices are rectangular. The number of rows equals the number of owned
vertices and the columns correspond to the number of vertices linked to the
owned vertices. The matrices are stored in compressed row form to avoid storing
zeroes.

To facilitate the assembly of the distributed system, the vertices are sorted
into six types: TI to Ts. Before describing them, we define V to be the set of
vertices owned by the PE, W to be the set of vertices not owned by the PE, S(Z)
as the set of vertices connected to the vertex 2 by the stencil, and as eztetior
the vertices 01 ghost cells which do not lie on inter-PE boundaries. Thus,

- TI ==(z:ls~V.VpyES(z), YEV}
- Tz={z/z~V.3y~S(z), YEW)
- T3 = {z 1 a: G V. z is on inter-PE bdry.}
-rr,=={x1xEW* IC is on inter-PE bdry.}
- Tj = {z 12: is exterior. 3y E 2’3, z E S(y)}
- T6 = {Z 1 z is exterior. VJI~ E S(Z), 1/ E W}

The six types stem from the rkquirements for assembling the distributed
system and for performing a MatVec. For the Tl and T2 vertices, the PE can
compute the entire row of matrix coefficients without input from other PEs.
However, on T2 vertices, before completing a MatVec, the PE needs the latest
value on some Td vertices. On Ts vertices, the PE needs input from other PEs
for completing the calculation of the row and for a MatVec operation. Linear
equations which the PE computes on its T4 vertices are sent to the PE which
owns them. The Ts vertices are not needed in the diffusion module.

Before calling the solver, each PE computes a partial linear system, Ax = b,
after performing the required finite element integrations over the owned celIs. If

we index the matris and vector elcrncnts by type, then

and similarly for b. In Eq. (3) Aij denotes the, not necessarily square, matrix of
coefficients of interactions between types Ti and Tj vertices and similarly xi are
the type Ti vector elements.

After computing the incomplete linear system whose matrix is given by
Eq. (3), for MPP runs, the solver first calls certain MPOs which assemble the
distributed system. Each row of TJ vertices is sent to the PE which owns the
vertex. In the context of how to compute a ivIatVec y = Ax, if the subscripts a
and b divide the vertices into types T t,2,3 and TG,~ respectively, we have

where,

All Al2
A a = AIZ 4422

(
(5)

In Eq. (5) the primes denote matrix coeficients which have been computed by
other PEs, i.e., on their Ta vertices, and message-passed to this PE.

4.2 The Parallel Solver

The resulting linear equations are solved using preconditioned conjugate gradi-
ents (PCG). T wo types of preconditioners are available: n-step Jacobi, and a
parallel version of incomplete Cholesky (XC). Each iterative step of CG requires

- Three SAXPY, i.e., cy z + y where a is scalar and x and y are vectors
- Two dot products
- One MatVec
- Solving the preconditioned system,

PL f . (6)

The SAXPY operations do not require any message passing.
The dot products are calculated using a global reduction function.
The MatVec is computed according to the splitting defined in Eq. (5) except

we interleave message passing and computation. The procedure is as follows. The
PEs first calI asynchronous receive functions and then halt at a barrier. Next,
the PEs call the ready-to-send functions and, without waiting for the messages
to arrive, calculate the first part of Eq. (Lb), i.e., A,t,. Afterwards, the PEs halt
at another barrier before adding &zb to the result,

The key behind PCG is a preconditioning ma.trix P which closely resembles
.4 and at the same time renders Eq. (G) easy to solve. 30th the IC and n-
step Jacobi preconditioners can be cast in the form of generalized polynomial
preconditioners in which A is first factored into two parts,

A =I M - N = M (I - G) , G 2 it/f -1~ .

If IlG((< 1, then the inverse may be approximated by

A-’ = (I - G)-‘W’ a (I-t- G + . . . t Gi-‘)M-’ .

We now define P as the inverse of the approximation, i.e.,

j-l

P A M x ci
()

-1

i=O

where G” = I.
For n-step Jacobi, M = diag(A) and we set j = n in Eq. (7); I-step is the

easily parallelizable diagonal scaling preconditioner. If n > 1, the preconditioner
requires n - 1 operations, each of which consists of a multiplication by the off-
diagonal elements of .“I, then by M”‘.

Unfortunately, in our applications n steps are usually no better than simple
diagonal scaling and can be significantly worse than 1. step - see ref. [I].

Our favored preconditioner is a paraRe IC variant which we now describe, In
the context of Eq. (7) we set Q = 4. and let P = LDLT , where L is lower triangu-
lar with unit diagonal, D is diagonal, and the sparsity pattern of L matches that
of A except that we do not allow links to types Td and Ts vertices. In other words,
we form an incomplete factorization of matrix A, in Eq. (5). Since A, links only
the owned nodes, the preconditioning step does not inhibit paralleiization, nor
does it require any message passing.

On each PE, our parallel IC preconditioner is equivalent to an incomplete
decomposition of the underlying diffusion equation on the a;,~,3 nodes with
homogeneous Dirichlet data specified on the non-owned T~,s vertices. In that
light, a possible improvement may be to replace the homogeneous data with
“stale” values of the z vector on the ?‘,,,s vertices.

We end this section with a comparison of execution times of runs using two
preconditioners, IC and l-step Jacobi. Table 1 shows the effect of increasing
the number of PEs while keeping the mesh size fixed. As expected, our parallel
ICCG degrades as the SDS get smaller while Jacobi scales with the number
of PEs. Although the problem size is small, the parallel XC preconditioner is
superior to l-step Jacobi.

In this section, we present a calculation that uses the parallelization routines
described above. Although the problem is spherically symmetric, we run in 3D
and compare results to a 1D spherical calculation.

Tz~blc 1. Tilcrnlal I~‘FI~c Prol~lcxn. Execution tirrlc for different prcc:onditioncrs and PE
corlfigurations, 32 x 8 x S CCIIS, 2337’ vertices.

Preconditioner
ICCG

I-step Jacobi

4 PEs 16 PEs
512 cells/PE 123 cells/PE

163. 82.
404. 129.

The problem, suggested by Reinicke and Meyer-ter-Vehn [6] and later ana-
lyzed in ref. [‘iI, consists of the sudden release of energy in the center of a cold,
constant-density gas. The problem is a combination of the well-known hydrody-
namic point explosion[S] and the spherically expanding thermal wave (91.

The equations of interest are the Euler equations with heat conduction:

dtp+V+m) =o,
&(PU)f~+ml+p)=O,

&(pE) 9 V.(u(pE + p)) = --V-H , (8)

where the heat flux has the form,

Ii= -xOT , where x = x,,Tb ,

and where ~0, and 6 are constants. In Eqs. (a), u, p, p, T, and E denote the
velocity, density, pressure, temperature, and total specific energy respectively.
The thermodynamic variables satisfy the ideal gas equation of state,

P = (7 - Ihe = (7 - l)pcvT .

At t = 0, the energy is all internal and is concentrated at the origin,

d%=o = pelt=0 = EO S(r) ,

while the quiescent gas is at constant density, &o = 1. We set,

y = 7/5 , b = 5/2 , x0 = CTJ = 1 , and Ee = 0.76778.

The numerical value for Ec was calculated a posteriori after we initialized the
central T to a large value.

The solution may be estimated by separate analyses of the corresponding
pure hydrodynamic and pure diffusion problems, both of which possess similarity
solutions. However, in this case, the coupled problem is not self-similar.

The pure diffusion solution is characterized by a temperature front rf which
increases with time. The pure hydrodynamic problem is characterized by an
infinite strength shock whose position rS also grows with time. For the parameters
chosen,

rs a P and rr a t2jrg .

Thus, in early t,imcs, diffusion dominates; in late times, hydrodynamics.
In ref. (71, the author computes an approsimate time tx and radius rx for

the two fronts to intersect,. For the parameters chosen,

tx = 0.8945 and r, = 0.9371 .

Figure 1 displays p and T at the late-time, hydrodynamically dominated regime,
t = 13; at 9’ % 1.28 we have a strong shock.

I 5: temperature/O.20206

0.6--

Fig. 1. Density and temperature vs. T at late time. T is normalized by T(r = (I), p is
normalized by the value across an infinite strength shock.

The results depicted in Fig. 1 were obtained by running ICF3D in “ID”
mode, i.e., with only 1 cell in the transverse directions and 100 radial celk. We
now display resuIts of a 3D run in Cartesian coordinates on an unstructured
grid on 64 PEs. The mesh consists of 11580 tetrahedra and 2053 nodes and is
created by the LaGriT code [5] obtained from Los Alamos NationaI Laboratory.
The radial direction is discretized into initially 16 “spherical shells” of uniform
width 5, = 0.125. We partition the mesh using METIS (21. Figure 2 displays the
outside of the spherical domain. The innermost “sphere” consists of 20 tetrahedra
all connected at the origin.

Figures 3 and 4 respectively display p and T across the 2 = 0 plane at
t = 1.8. The p result in Fig. 3 shows jaggedness in the transverse direction
and an inability to reach the high compressions attained by the 1D result. Both
errors are due to the coarseness of the grid and to the usage of tetrahedral cells.
The result in Fig. 4 compares more favorably with Fig. 1. Bowever, none of

Fig. 2. Exterior of spherical domain. Colors represent FE numbers.

the discrepancies between the 3D and 1D results are due to the parallelization.
There is no sign of the subdivision of the domain into 64 SDS.

Fig. 3. Density at t = 1.802 across 2 = -* 0 plane. _

Lastly, we present a scalability study by varying the number of PEs while
keeping the mesh size fixed. First, we define the parallelization efficiency EN,

tN/2
EN = -

2eN

where TV is the execution time for N PEs. Table 2 lists EN derived from the
execution times of runs on an %BIM SP2 for the above unstructured grid problem.
Note that EN remains close to X as N increases.

‘Fable 2. Number of PEs N, execution time t iv, and pCuallelization efficiency EN for
a fixed size prablcm (12580 cells, 2053 nodes) run for 200 cycles.

iv tN(SeC) EN
8 1628.02 -
16 882.77 .922
32 489.78 .901
64 277.08 .884

We have presented a scalable method for parallelizing a 3D, unstructured grid,
finite element code. The method is a SPMD model targeted for distributed mem-
ory architectures, but also works on.shared memory computers. We decompose
physical space into a collection’of disjoint SDS, one per PE. The input files tag
cells with a PE number. The code forms an analogous designation for the ver-
tices. The SDS are surrounded by a layer of ghost cells which are used to store
data that is owned, i.e., computed, by other PEs. Explicit calls to message pass-
ing functions communicate the data amongst the PEs. The calls are made by
special MPOs which contain information that describes the PE network.

Fig. 4. Normalized ?? at t = 1.802 across 2 = 0 plane.

We have demonstrated the method on a test problem requiring both tempo-
rally explicit and implicit schemes for partia% differential equations. The concept
of ghost ceils leads to a straightforward parallelization of the explicit hydrody-
namic scheme. The MPOs insure that the data computed by other PEs is placed
in the expected locations.

Parallelization of the implicit discretiaation of the diffusion equations consists
of a wrapper around the call to the linear system solver. For an MPP run, the

liucar SystCrn gencrntcd by thC uniprocessor coding is incomplCtC since it is
formed by integrating over only the owned cells. The parallelization completes
the system by sending equations on non-owned vertices to the PE that owns
them.

Since the linear systems are large, sparse, and SPD, they are solved using a
parallelized PCG algorithm in which our noteworthy contribution is the parallel
IC prcconditioner. In a sense, it is even more incomplete than typical IC since
our decomposition ignores links to non-owned vertices. Its utility depends on
PEs having large SDS. In all cases studied, the number of CG iterations required
using the parallel IC is less than that required by Jacobi. However, if the SDS
are very small, and/or the matrix condition number is small, Jacobi is faster. In
our applications, the parallel IC preconditioner has been very effective.

The important aspect of our parallelization strategy is its consistent reliance
of domain decomposition of physical space. We are now parallelizing the laser
deposition module along the same lines. Preliminary results are encouraging.

References

1. A. I. Shestakov, M. K. Prasad, J. L. Milovich, N. A. Gentile, J. F. Painter, G, Fur-
nish, and P. F. Dubois, “The ICF3D Code,” Lawrence Livermore National Labo-
ratory, Livermore, CA, UCRL-JC-124448, (1997), submitted to Comput. Methods

Appl. Mech. Engin.
2. G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for par-

titioning irregular graphs,” Technical Report TR 95-035, Department of Com-
puter Science, Univ. Minn., 1995. To appear in SIAM Journal on Scientific
Computing 1997. A short version appears in Xnti. Conf. on Parallei Process-
ing 1995. The METIS program is available on the web from: http://www-
users.cs.umn.edu/ ka.rypis/metis/metis/ mainhtml

3. AVS Developer’s Guide, Advanced Visual Systems, Inc., Release 4, May 1992, p.
E-l, 300 Fifth Ave., Waltham MA 02153.

4. D. S. Kershaw, M. K. Prasad, M. J. Shaw, and 9. L. Milovich, Comput. Methods
Appl. Mech. Engin., 158 p. 81 (1998).

5. www.tl2,lanl.gov/ lagrit.
6. P. Reinicke and J. Meyer-tes-Vehn, Phys. Fluids A 3 (7), p. 1807 (1991).
7. A. I. Shestakov, “Simulation of two Point Explosion-Heat Conduction Problems

with a Hydrodynamic-Diffusion Code,” Lawrence Livermore National Laboratory,
Livermore, CA, UCRL-JC-124448, (1998), submitted to Phys. Fluids A.

8. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd Ed., Pergamon Press,
Oxford p. 404 (1987).

9. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature
Hydrodynamic Phenomena, Vol. II, Academic Press, p. 668 (1966).

We gratefully acknowledge the help of D. George and A. Kuprat of Los Alamos
National Laboratory for supplying the LaGriT mesh generation code.

