









































» All transport media properties are homogeneous and isotropic.
s Flow in both the partially saturated and saturated zones is uniform.
» The satrated zone is of finite, constant thickness and of infinite lateral exient.

» The flow system is at steady state. Drawdown effects of withdrawal wells and other transient
stresses on the aquifer are not considered by the semianalytical solutions. Flow velocities are
provided by the user.

» Density differences between a contaminant plume and the namral groundwater are negligible.
The specific topics addressed in Chapter 2.0 of this repon are as follows:

» Advective-Dispersive Equation--The advective-dispersive equation describes solute migration in the
groundwater environment (both partially saturated and sarurated zones). The form of the equation
used by the groundwater component is discussed.

« Contaminant Concentration Equations--The various semianalytical solutions (i.e., combined
analytical and numerical algorithms) to the advective-dispersive equation are presented. The
solutions describe solute concentrations.

+ Contaminant Flux Equations--The various equations describing contaminant fluxes from one
medium to another are presented. The equations describe solute movement between a series of
partially sarurated zones, partially saturated and saturated zones, and/or a saturated zone and a
surface-water body.

« Steady-State Groundwater Equations--This section describes the steady-state solutions to the
advective-dispersive equation for contaminant transport in the partially saurated and sarurated
ZOnes.

» Mixing Length--Lateral and vertical mixing lengths are defined; these describe the lateral and
vertical distances over which a migrating solute plume can be considered to be fully mixed. The
time for the contaminant to travel from the waste site through groundwater media to a receptor of
concern is described. The travel time is used in determining mixing lengths.

The specific topics addressed in Chapter 3.0 of this report are as foliows:

* Integration Limits--Because the solutions to the advective-dispersive equation are semianalytical and
must be integrated over time, integration limits that increase computational efficiency are described.

» Adapuve Simpson’s Quadrature Integration Routine--This section briefly describes the integration
scheme that is employed for the groundwater environment.
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» Features for Far-Field/Near-Field Situations--Techniques that enhance the groundwater component's
performance under near- and far-field conditions are discussed. :

+ Groundwater Mass Balance at the Source--This section briefly describes the fearures that ensure
mass is conserved in the analysis.

» Contaminant Degradation/Decay--The technique for computing the degradation of chemicals and/or
the decay of radionuclides is described.

Chapter 4.0 of this report discusses measured concentrations in the groundwater environment. This
chapter describes the option within the methodology of using measured environmental contaminant
levels in the assessment of health impacts to surrounding sensitive receptors as opposed to performing

transport calculations to estimate these environmental concentrations.

Chapter 5.0 provides a listing of the equation notations found throughout the report.

1.4



2.0 Advective-Dispersive Equation

The advective-dispersive equation for solute movement through a porous medium with a constant,
steady-state flow velocity forms the basis of all groundwater solution algorithms. As noted by Codell
et al. (1982), the algorithms are developed for the limiting case of unidirectional advective transport
with three-dimensional dispersion in a homogeneous aquifer. Let n and n, represent total and effective
porosities, respectively; then n - n, is the remaining void fraction devoted to immobile pore water. A
mass balance on the differential volume dV = dx dy dz gives the expression:
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where n = total porosity (dimensionless)
n, = effective porosity (dimensionless)
C = dissolved concentration in the mobile liquid phase (g/mL or Ci/mL)®
= soil particle density (g/cm’)
= time (s)
dissolved concentration in the immobile liquid phase (g/mL or Ci/mL)
= particulate concentration on the solid phase (g/g or Ci/g)
= the x-component groundwater velocity (also referred to as pore-water, seepage, or
average linear velocity) (cm/s)
D,D,D, = the dispersion coefficients for the mobile liquid phase in the x-, y-, and z-directions,
respectively (cm?/s)
D,D, D, = the diffusion coefficients for the immobile liquid phase in the x-, y-, and z-directions,
respectively (cm?/s)
A = the decay constant [(In 2)/(half-life)] (s™).

:‘UQHP
H

The following list describes the terms in Equation 2.1:
(a} accumulation (storage) in the mobile liquid phase

(b) accumulation in the immobile liquid phase

(a) When two sets of units are provided, the first refers to chemicals, and the second refers to
radionuclides.
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(c) accumulation in the solid phase

(d) x-direction advective transport of the mobile liquid phase

(e) dispersive transport of the mobile liquid phase in the x-, y-, and z-directions, respectively

(f) diffusive transport of the immobile liquid phase in the x-, y-, and z-directions, respectively

(g) degradation/decay in the mobile liquid phase

(h) degradation/decay in the solid phase

(i) degradation/decay in the immobile liquid phase.

Equation 2.1 can be streamlined with two simplifying assumptions. First, there is no diffusion of
contaminant into the immobile liquid phase. Field studies indicate that including this phenomenon
produces inappropriate analyses, as the retardation factor can never approach unity when the total
porosity does not equal the effective porosity (see Equation 2.5). Second, the contaminant sorption
process can be described by a constant (Kd) representing the ratio between the contaminant adsorbed to
the soil matrix (P) and the contaminant dissolved in solution (C). Using these assumptions,

Equation 2.1 can be rewritten as

¢, wac b oc D ogic D ogic

= — AC (2.2)
ot Rﬂ dx Rﬂ ax? Rﬂ oy? Rﬂ Az
in which
5,

Ry = 1+ —=Kd (2.3)
and

D=oau-+D, , (2.4)
where R;, = retardation factor (dimensionless)

B, = bulk density (g/cm?)
Kd equilibrium (partition or distribution) coefficient (mL/g)
a dispersivity in the x-, y-, or z-direction (cm)
D,y = molecular diffusion [= 0.52 cm?/d, which is the upper value of a range of experi-
mentally determined molecular diffusion coefficients for trivalent and monovalent ions
in fine sand found by Duursma (1966) as reported by Milis et al. (1985))].

il
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The retardation factor is used as a measure of the mobility of constituents in a porous medium. It
represents the ratio of the mean pore-water velocity to the mean contaminant migration velocity and can
be expressed in a number of ways. Other forms describing the retardation factor have also appeared in
the literature (e.g., any groundwater textbook) and have been expressed by

n b
R, =—+2Kd
2ty T @’
b
R =1 +de (2.6)
B,
R, =1 +—0de (2.7)

where 8 = moisture content of the partially saturated zone (dimensionless).

Equations 2.3 and 2.7 are currently used in MEPAS, because the assumptions that form the basis
of these equations are consistent with those used to simplify the advective-dispersive equation
(Equation 2.2). Equation 2.5 assumes that the porous medium is composed of interconnecied pore
spaces through which flow occurs (n,) and dead-end pore spaces through which no flow occurs (n - n,).
The contaminant in Equation 2.5 is assumed to migrate through the interconnected pore spaces, diffuse
into dead-end pore spaces, and instantaneously adsorb to or desorb from the soil matrix where fluid is
and is not flowing. Equation 2.5 also assumes that the solute concentration in the dead-end pore spaces
is equivalent to the solute concentration in the free-flowing spaces and that the dispersion coefficients in
both locations are equivalent. Equation 2.3 includes the same processes as Equation 2.5 except that the
contaminant does not diffuse into dead-end pore spaces. Equation 2.6 includes the same phenomena as
Equation 2.5 except that the porous medium contains no dead-end pore spaces. Equations 2.6 and
2.7 describe the retardation of the contaminant in a similar manner; the major difference between
them is that the porosity in Equation 2.6 is replaced by the moisture content to give Equation 2.7.
Equations 2.3, 2.5 and 2.6 are associated with the satrated zone, while Equation 2.7 is used in the
partially saturated zone. By making the following substitutions

g X
T 2.8
R, (2.8)
and

. D
D "% (2.9)
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Equation 2.2 can be rewritten as

2 2 2
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As written, Equation 2.1 specifically addresses the general conditions for saturated flow and solute
movement. However, Equation 2.1 can also be applied to the parmially saturated zone if the total and
effective porosities are assumed to be equal to the soil moisture content. In addition, one-dimensional,
unidirectional flow and dispersion are assumed only in the vertical (z) direction in the partiatly saturated
zone. Note that with these assumptions, Equation 2.7 defines the retardation factor, and Equation 2.10
is applicable if the coordinate system is rotated such that the x-axis corresponds to the z-direction and
dispersion is only considered in the flow direction (i.e., D_: and D’ equal zero).

The solution algorithm to the advective-dispersive equation is based on homogeneous and isotropic
s0il parameters (Van Genuchten and Alves 1982; Donigian et al. 1983). The partially saturated soil
beneath the waste site is assumed at a unit hydraulic gradient, and the moisture content is assumed to
fluctuate between field capacity and saturation. The hydraulic conductiviry is based on an empirical
equation proposed by Gardner (1960), Gardner et al. (1970), Campbell (1974}, and Clapp and
Homberger (1978) and is expressed as (Hille] 1980)

1im
K8 = Ks[—g] (2.11)
in which
1
mo= 3p <3 . (2.12)

where X(0) = hydraulic conductivity (cm/s)
K, = saturated hydraulic conductiviry (cm/s)
m = empirically based parameter that is a function of soil properies (dimensionless)
b = soil type coefficient (dimensionless).

Hillel (1980} notes that although attempts have been made to develop theoretically based equations
relating hydraulic conductivity to moisture content, the state of the art is such that consistently accurate
a priori predictions of K(0) from basic soil properties are difficult.

Whelan et al. (1986) note that if the rate of water infiltration from the waste site (i.e., leach rate) is
less than the soil transmission rate, as described by the general equation for liquid flow in the partially
saturated zone (i.e., the Richards equation) (Hanks and Ashcroft 1980; Hillel 1980), the water moves
through the soil at the infiltration rate, accounting for adjustments in the soil moisture content.
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Applying Darcy’s law and the unit hydraulic gradient assumption, the hydraulic conductiviry is equal to
the infiltration rate. Thus, Equation 2.11 is used to compute the soil moisture content. For an infil-
tration rate equal to or greater than the transmission rate, the leachate is assumed to move at the
transmission rate of the soil, which is equal to the saturated hydraulic conductivity (because of the unit
hydraulic gradient assumption).

For ponded waters, Hillel (1971) notes that the downward infiltration into an initially partially satu-
rated soil generally occurs under the combined influence of suction and gravity gradients. As the water
penetrates deeper and the wertted part of the profile lengthens, the average suction gradient decreases,
because the overall difference in pressure head (between the saturated soil surface and the unwetted soil
inside the profile) divides itself along an ever-increasing distance. This trend will continue until
evenmally the suction gradient in the upper part of the profile becomes negligible, leaving the constant
gravitational gradient as the only remaining force moving water downward in this upper or transmission
zone. Because the gravitational head gradient has the value of unity, it follows that the water flux tends
to approach the samurated hydraulic conductivity as the limiting value. Therefore, in a uniform soil
without crust under prolonged ponding, as the water content of the wetted zone approaches saturation,
the infiltration rate approaches the samrated hydraulic conductivity. Based on this reasoning, a unit
hydraulic gradient and samrated conditions, as described by a saturated hydraulic conductivity, are
assumed for the subsurface region below ponded sites.

2.1 Contaminant Concentration Equations

By solving Equation 2. 10 with the appropriate boundary and initial conditions, a set of semi-
analytical expressions is obtained that characterize the transport of contaminants through the partially
saturated and saturated zones. These expressions are based on Green's functions and have been
reporied by several researchers (e.g., Selim and Mansell 1976; Yeh and Tsai 1976; Yeh 1981; Codell
et al. 1982). Various analytical expressions describing solute concentrations at selected locations and
times can be described by one basic equation:

Ci, = @,X,Y.Z, (2.13)

solute concentration per unit mass/activity at location x, v, z and time ¢ for an

instantaneous source release for the ¢-th solution (cm*)®®

o, = parameter that ensures mass balance and that is based on initial and boundary conditions
for the m-th assumption (dimensionless)

= Green's function in the x-direction for the i-th solution (cm™)

Green's function in the y-direction for the j-th solution (cm")

Z, = Green's function in the z-direction for the k-th solution (cm™).

where Ci,

~

[

(a) Based on a unit mass in grams, or a unit activity in curies.
{b) When included in an equation, "Ci" refers to instantaneous solute concentration; otherwise, "Ci" refers
to the unit "curies.”
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., is given by the following equations:

a -
! Rn, (2.14)
|
a, = Ron (2.15)
2
1
a = (2.16)
Rﬁn
1
a, = G (21D
Rﬂ :

Currently, o, and o, are used in the groundwater pathway.
2.1.1 Green's Functions

The various solutions associated with X;, ¥, and Z, in Equation 2.13 can be derived using Green's
relationships (Carslaw and Jaeger 1959; Yeh and Tsai 1976; Yeh 1981) or by the method of separation
of variables (Ritger and Rose 1968; Codell et al. 1982). X, Y, and Z, reflect the geometry associated
with the source (i.e., boundary conditions) releasing the contaminants. For example, a point source and
a line source will each have a different solution. The expressions describing X;, ¥}, and Z, by source-

term type that are incorporated into MEPAS are as follows:

172

—y e
exp(-Ar)exp SAxw ey

4Dt

X, =

2.18
47Dt (2.18)

withC=0atr=00rx = e

where X, = the point-source solution in the x-direction with flow in the x-direction {cm™)
x distance of travel in the x-direction (cm).
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x+—-u't X-—-u't

X, = % exp(-An erf|—2— | - erf|—2—— (2.19)
2o (4D,1)"" (4D, 1)

withC=0at:=00rx = +

where X, = line-source solution in the x-direction with flow in the x-direction (cm’™")
! = length of contaminated line source in the x-direction (cm).

12
exp

Y, = (2.20)

4 ;er_\_tr

withC=0att=00ry= £

where ¥, = point-source solution in the y-direction with flow in the x-direction for an aquifer of
infinite width (cm™)
y = distance of travel in the y-direction (cm}.
b b
1 Y7y Y73 (2.21)
Y, = —|edf -erf :
25 [(4 D,n"” [(4 D"

withC=0att=0o0ry= £

line-source solution in the y-direction with flow in the x-direction for an aquifer of

where ¥, =
infinite width (cm™)
b = length of contaminated line or area source in the y-direction {cm).
172 Ry
Z! = - cxp(—it) exp __(‘Z‘Hr—.l’) (222)
4rD ¢ 4Dt

withC=0atr=0o0rz= 1=

where Z, = point-source solution in the z-direction with flow in the z-direction (cm™) (Note: This
expression represents the one-dimensional solution of the advective-dispersive transport
equation (i.e., Equation 2.10 in the z-direction.)
z = distance of travel in the z-direction {cm)
w = flow velocity in the z-direction, adjusted for retardation (i.e., ratio of the leach rate and

retardation factor} (cm/s).
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The point source solution, which is bounded in the vertical direction by the water-table on top and an
aquitard on the bottom, is adapted from Yeh (1981), and is given as

(2.23)

with dC/6z = Gaty =0andy = &

where Z, = solution in the z-direction for flow in the x-direction {cm™)
Z depth below water table of calculated concentration at the receptor (cm)
h thickness of aquifer (cm).

il

In MEPAS, when the exact formulation for the solution in the z-direction (Equation 2.23) does not con-
verge within an adequate time frame, the following equation is used as an approximation (Yeh 1981):

- 2Nh)?
Z, = 2 E exp 2= 2NR
JaD i | Y 4Dt
(2.24)
s - _ 2 bt - P
oY Jexp| - EZ2V DAEN g | f [ 220V + D)
Py 4D Mo 4Dt
Under fully mixed conditions in the z-direction, Equation 2.23 reduces to the venically averaged
solution over the total aquifer thickness:
z -1 (2.25)
P oh

2.1.2 Solute Concentrations

Solute concentrations are computed by combining Green's functions (i.e., X}, ¥, and Z)) in a multi-

1 L

plicative manner. The types of configurations at the source considered in MEPAS are point source, line
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source (in both the x- and y-directions), and area source {in the x-y plane). The various instantaneous
solute concentration options addressed by MEPAS for the saturated zone are presented in a form similar
1o thar expressed by Equation 2.13, and are as follows:

Point Source

G, = XY, 2, (2.26)
where Ci, = solute concentration per unit mass/activity at location x, y, z for an instantaneous release
from a point source at the water table (cm™).

Line Source

Ci, = ¢,X,Y,Z, (2.28)

Ci, = X\ Y,Z, (2.27)
where Ci, = solute concentration per unit mass/activity at location x, y, Z for an instantaneous release
from a line source in the y-direction at the water table (cm’)

solute concentration per unit mass/activity at location x, y, z for an instantaneous release
from a line source in the x-direction at the water table (cm™).

Ciy

Area Source

Ci, = ¢,X,Y,Z, (2.29)

where Ci, = solute concentration per unit mass/activity at location x, y, z for an instantaneous release
from line sources in the x- and y-directions (i.e., horizontal area source) at the water
wable (cm™).

Note that when two line-source solutions corresponding to orthogonal directions (e.g., X, and ¥, in
Equation 2.29) are combined, a solution results for an area source.

The following equation can be used for calculating concentrations in the partially saturated zone.
Although this computation is not performed in MEPAS, this equation is used as the basis for deriving
the contaminant flux equation for the partially sarurated zone (Equation 2.38):

a,z

G = 4o
5T T (2.30)

where Ci; = solute concentration per unit mass/activity at location z, with flow only in the z-direction
for an instantaneous release from a point source (cm™).
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Note that Equations 2.13 through 2.30 have been formulated in terms of an instantaneous contaminant
release (i.e., a pulse release over zero time). Codell et al. (1982) note that these equations can be
generalized for arbitrary time-varying releases by using the convolution integral

(7 = ff(r) Ci.(t - t)dr (2.31)
Q

where (1) solute concentration at time t (g/mL or Ci/mL)
1 = the time over which contaminant concentration is computed (s)
f(t) = source term expressed as a temporally varying contaminant flux (g/s or Ci/s).

2.2 Contaminant Flux Eguations

Conaminant fluxes are computed to indicate the transfer of contaminants between successive media
(between partially saturated layers, partially saturated and saturated zones, etc.). The fluxes are com-
puted when they leave one medium (e.g., the saturated zone) and act as boundary conditions for the
next medium to be modeled (e.g., the surface-water environment). The MEPAS methodology can
calculate the flux of a contaminant between partially saturated layers, between a partially saturated layér
and the saturated zone, and at the interface where the saturated zone discharges into a surface-water
body. It is assumed that if a surface-water body is part of the transport scenario, then it will be the final
transporting medium, and all contaminants entering the subsurface environment will eventually enter the
water body, except contaminants lost through degradation/decay.

The MEPAS methodology assumes a unidirectional flow field and bases its flux computations on
contaminated material crossing a plane perpendicular to the flow axis. Using the sarurated zone as an
example, the instantaneous flux across a plane oriented perpendicular to the x-direction (i.e., the
direction of flow) can be described by the following equation:

dFi, oCi,
=n |uCi,-D —— (2.32)
dA ¢ * ox
where Fi, = contaminant flux per unit mass/activity resulting from an instantaneous release (s)
A = cross-sectional area perpendicular to the flow direction (d4 = dy dz) (cm?).

The total flux across the plane is, therefore, described by laterally and vertically integrating
Equation 2.32:

H 4oy

Ffr=neff
[

_ dCi,
uCi, - ng dydz (2.33)
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The temporally distributed contaminant flux (F7,) in the longimdinal direction due to an instantaneous
release from a point source at x = 0 and ¢ = 0, as described by Equation 2.26, is given by

x+u't

- ® 2 .
(x-u’t) NP
(16 frD;r 2

Fi, = expi-
4Dt

(2.39)

The temporally distributed contaminant flux (F#,) in the longitudinal direction due to an instantaneous
release from an area source at x = 0 and ¢ = 0, as described by Equation 2.29, is given by

112

L (D 0 [erf(A)) - erf(a,)]

Fi, = [exp( -AbH

{ 4 J'TD_;I (2.35)
. D;[exp( ~AD) - exp( —Af)]}
in which
[
X +-—=-ut
A -2 (2.36)
(4D;t)”2
l
X - -5 -ut
A s — 2.37)
(4D;t)h’2

The contaminant flux in the vertical direction with flow in the vertical direction (Fi;) due to an instan-
taneous release from a point source at 2 = 0 and ¢ = 0, as described by Equation 2.30, is given by

» " —w
Fi, = ;‘” eXD 4~ a-wy | At (2.38)
(16D 1" 4Dt
where 2 = distance of travel in the z-direction (cm).

Equations 2.34, 2.35, and 2.38 have been formulated in terms of an instantaneous contaminant
release. These equations can be generalized for arbitrary time-varying releases by the use of the
convolution integral:

F(p) = ff(t)F:}.(r— 1)dr (2.39)
0

where F(1) = contaminant flux at time t (g/s or Ci/s).



Note that when Equations 2.34, 2.35, and 2.38 were derived, the a,, terms factored out of the solutions.

2.3 Steady-State Groundwater Equations

This section presents the solutions to the three-dimensional advective-dispersive equation under
steady-state conditions (Section 2.1 presents the transient solutions). The steady-state solutions were
used to verify the transient equations.

The steady-state, one-dimensional, advective-dispersive equation with degradation/decay is used to
describe steady-state contaminant transport through the partially samrated zone and is presented as
follows:

.8C _ ,-8°C
us> =D, = - AC (2.40)
“ Z

The solution to Equation 2.40 has been reported by Van Genuchten and Alves (1982) and is presented
as follows:

2u .Co [ Z
C(z) = exp
"+ [{u ;)2_'_4,{0:']11'2 [

[u " - ((u )+ 4/IDZ.)”2] (2.41)

where C(z) = steady-state contaminant concentration at location z {(g/mL or Ci/mL}
Co initial contaminant concentration at the source {g/mL or Ci/mL}.

il

The steady-state, vertically averaged, two-dimensional, advective-dispersive equation with
degradation/decay is used to describe steady-state contaminant transport through the saturated zone and
is presented as follows:

2 2
w9 ;2. p T e (2.42)
ox ox? 7 gy? .
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The solution to Equation 2.42 has been reported by Sayer (1973) and Reckhow and Chapra (1983) and
is presented as foliows: .

Clxy) = Qe exp “x
2 ;'rhm{Dx‘D_\_')l”2 2D/
(2.43)
v 3 12 2 142
Ko ,JC2 + ny 4 U’
D’ D’ {2D/
where C(x,y) = steady-state contaminant concentration at location x and y (g/mL or Ci/mL)
Qc = contaminant flux (boundary condition) (g/s or Ci/s)
h, = vertical distance in an aquifer over which the contaminant is assumed to be
uniformly distributed (cm) (see Equation 2.51)
Ko = modified Bessel function of the second kind, zeroth order (dimensionless).

2.4 Mixing Length Equations

When a contaminant travels from a waste site to a receptor of concern (e.g., well or river), the con-
taminant is temporally and spatially redistributed--longitudinally, vertically, and laterally--by the
transporting medium. At any given distance downgradient from a waste site releasing contaminants to
an aquifer of constant thickness, contaminants near the water table can be considered to be fully mixed
over some distance in both the lateral and vertical directions. As Codell et al. (1982) note, vertical
dispersion close to the point of release is considered to be very small, and is not influenced by the
vertical dimensions of the aquifer. As the contaminant moves downgradient from the point of release,
the mixed region increases in vertical extent while the aquifer geometry becomes more of an influence
in the spatial distribution of contaminant. Eventually, at some distance downgradient from the source,
the contaminant becomes fully mixed vertically over the aquifer thickness.

This section briefly identifies the basis for defining the spatial extent of the mixing regions used in
the satrated zone component of MEPAS. Vertical and lateral mixing lengths are used when estimating
the samrated zone water flux for near-field dilution (see Section 3.3) and for measured concentration
scenarios (see Section 4.0). A lateral mixing length is also used to estimate the spatial extent of ground-
water contamination at the edge of a surface-water body, and a vertical mixing length is needed by the
steady-state equation for the samrated zone (Equation 2.43).

2.4.1 Vertical Mixing Length

The vertical mixing length is the vertical distance over which contamination at some downgradient
distance from the source is considered uniformly mixed. The vertical mixing length is estimated by
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employing the advective-dispersive equation and its associated Gaussian distribution solution. The
one-dimensional, advective-dispersive equation in the vertical direction is written as

ot _pret (2.44)
The unit area solution to Equation 2.44 in an aquifer of infinite vertical extent is described by

2

z
C = —— 5P| - — (2.45)
0,27 20
in which
o, = (2D 1) (2.46)
where M = contaminant mass/activity per unit area (g/cm’® or Ci/cm?)
o, = standard deviation in the vertical direction (cm)

5 representative contaminant travel time (defined in Section 2.5) (s).

With the assumption that no contaminant diffusion occurs through the water table once the contaminant
has entered the saturated aquifer, contaminant spreading in the vertical direction is only downward.
Because of this, the vertical mixing depth for the fully mixed condition is assumed as the dispersive
distance associated with one-half the standard deviation:

112

D1,
h = g = | —

ls (2.47)
"2 2

where h, = vertical distance over which the contaminant is assumed to be uniformly distributed
(equivalent to one-half the standard deviation} (cm).

To illustrate thar Equation 2.47 has a physical basis, a similar mixing depth expression can be
developed by defining a time scale associated with complete vertical mixing as similar to the one found
in Codell et al. (1982):

(h.y
I

Z

i =& (2.48)

where 1, = time to achieve the fully mixed condition (i.e., representative contaminant travel time) (s)
£ = proportionality coefficient (dimensionless)
h, = alternative vertical distance over which the contaminant is assumed to be uniformily
distributed {cm).
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By rearranging Equation 2.48, the effective depth, which represents the fully mixed condition, can be
solved for '

B = (¢t D)V (2.49)

in which

¢ = (2.50)

1
;
where ¢ = proportionality constant {dimensionless).

Codell et al. (1982) note that when ¢ < 3.3, the fully mixed condition can be assumed, because the
release may be considered to be unaffected by the confining layer beneath the plume. When ¢ is
between 3.3 and 12, the release is considered to be neither fully mixed over the depth of the aquifer nor
unaffected by the aquifer boundary. Because Equation 2.47 represents a more conservative expression
than Equation 2.49 when ¢ equals 3.3, and because its derivation is consistent with other mixing-length
estimations used in the MEPAS methodology, Equation 2.47 is used to describe the vertical mixing
length in the groundwater environment.

The MEPAS methodology computes A, to identify the mixing depth. If A, is less than the aquifer
depth, A, is used as the mixing depth. If h,, is greater than the aquifer depth, the aquifer depth is used
as the mixing length.

Equation 2.47 is valid as long as the waste site remains above the water table. When the waste site
penetrates the aquifer (i.e., a portion of the waste site is situated below the water table), the vertical
mixing zone is increased by that portion of the waste site below the water table. For a partially
penetrating waste site, the mixing depth can be expressed as

112

+ k (2.51)

W

h =

m

D1,
2

where h,, = depth of the waste site below the water table (cm).
2.4.2 Lateral Mixing Length

The groundwater pathway interacts with the surface-water pathway by supplying the necessary
boundary conditions (i.e., temporally varying contaminant fluxes). Unfortunately, the lateral distance
over which the groundwater pathway supplies contaminated water may be considered infinite. To
alleviate this problem, the MEPAS methodology computes an effective length for the line source used as
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the source term for the surface-water transport computations. The lateral mixing length for a conserva-
tive substance identifies the extent over which contamination at the groundwatér/surface-water interface
is considered fully mixed in the lateral direction. The contaminant level is assumed to be uniformly
distributed over this lateral region and is used in computing the boundary conditions for modeling the
surface-water environment.

As in the case of the vertical mixing length, the lateral mixing length is estimated by employing the
advective-dispersive equation and its associated Gaussian distribution solution. The one-dimensional,
advective-dispersive equation in the lateral direction is written as

€ pat 2.52
3t " oy? (252)

The unit area solution to Equation 2.52 in an aquifer of infinite lateral extent is described by

c y*
R ey R o) 2.53
o, (2 m'* 20 (2.53}
in which

o, = (2D, 1)'? (2.54)

where ¢, = standard deviation in the lateral direction (cm).

The lateral mixing distance for the fully mixed condition, approximately adjusted for a source term
of width b, is assumed equal to the dispersion distance associated with one standard deviation:

[, =0,+b=2D'1)"+b (2.55)

m

where 1/, = lateral distance over which the contaminant is assumed 1o be uniformly mixed (cm).

To illustrate that Equation 2.55 has a physical basis, a similar mixing width expression can be
developed by equating the longitudinal travel time to the receptor of concern with the time for complete
lateral mixing. An estimate of the time scale associated with complete lateral mixing is given by

(1

D

v

t, = ¢

(2.56)

where [, = alternative lateral distance over which the contaminant is assumed to be uniformly
distributed (cm).
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By rearranging Equation 2.56, an effective width that represents the fully mixed condition can be
calculated: o

I, = (¢, D) (2.57)

The mixing length, when approximately adjusted for a source term of width &, can be estimated as

I = (¢, D)+ b | (2.58)

As noted in the previous section, when ¢ < 3.3 in a flow field with a fixed width, the fully mixed
condition can be assumed. Because Equation 2.55 represents a more conservative expression than
Equation 2.58 when ¢ = 3.3 and because its derivation is consistent with the other mixing-length esti-
mations used in the MEPAS methodology, Equation 2.55 is used to describe the lateral mixing length in
the groundwater environment.

2.5 Travel Time and Time to Peak Equations

To define a vertical or lateral mixing length (see Equations 2.51 and 2.53), a representative travel
time has to be identified. As the plume migrates downgradient from the source, some contaminant
particles migrate faster than others (i.e., attenuation effect); therefore, a representative travel time roust
be determined. One technique of estimating the trave] time of a contaminant in a groundwater system is
to divide the distance the contaminant travels by the flow velocity, adjusted for retardation:

_ X
== (2.59)
u

where ¢ = representative contaminant travel time (s)
x = longitudinal distance traveled (cm).

This is the travel time used in the mixing-length equations (discussed in the previous section).

Equation 2.59 usually provides a good estimate of the time 10 peak of the solute concentration due
to an instantaneous release. However, it assumes that dispersion in the flow direction and degradation/
decay are negligible. A more precise estimate of the time to peak of a contaminant that does account
for dispersion and degradation/decay can be developed. The time to the peak concentration can be
estimated by 1) assuming a point source and its accompanying analytical Green's function solution in
the direction of flow for an instantaneous release (e.g., Equation 2.18 or 2.22), 2) taking its derivative
with respect 10 time, 3) setting the derivative to zero, and 4) solving for the time to peak. The
point-source solution is used, as opposed to the line-source solution, because tests mdicate that it
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provides an accurate estimation of the time o peak and because its forrnulatlon is less complicated than
that of a line source. Using Equation 2.18 as an example, we have

T (x - u -rp)z
exp( —/lrp)exp — (2.60)
apt

47D, rp

where , = time to the peak contaminant concentration (s).

P

Setting the derivative of Equation (2.60) to zero and solving for the time to maximum concentration
gives '

(u'x? +4AD x2 + (D" - D,
'o= (2.61)
4AD ]+ (u")

If degradation/decay is negligible, an estimate of the travel time, which includes advection and
dispersion, can be developed:

(u I)2+(D ) |J’2 *

(u ")

(2.62)

If dispersion and degradation/decay are negligible, Equations 2.61 and 2.62 reduce to Equation 2.59, as
expected.
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3.0 Computational Methods

This chapter describes the techniques used to analyze Equations 2.31 and 2.39. In addition,
methods employed for near-field/far-field situations, mass conservation, and decay chains are presented.

3.1 Integration Limits

Equations 2.31 and 2.39 are evaluated in MEPAS by a modified Simpson's quadramure for numeri-
cal integration (Lyness 1969, 1970). However, as noted by Codell et al. (1982), several special precau-
tions are taken to preserve computational accuracy and efficiency. The terms within the integral sign of
the equations can be nearly equal to zero over part of the computational range, if f(t) is equal to zero or
if Ci(t - t} or Fi(t - t) is equal or nearly equal to zero. If we ensure that Ci(t - t) or Fi(t - 1) is small
enough to provide little to the integration, then integration limits can be developed that improve the
compurational efficiency of the numerical integration scheme,

Solutions to the advective-dispersive equation (i.e., Equation 2.10) for an instantaneous release have
been provided in Equations 2.18 through 2.30 and 2.32 through 2.38. These equations are generalized
for arbitrary time-varying releases using the convolution integral (Equations 2.31 and 2.39). Whelan
et al. (1987) evaluated Equations 2.31 and 2.39 by a standard Simpson's rule for numerical mtegration.
In an attempt to preserve computational accuracy and to help ensure efficient run times, upper and
lower integration limits were defined such that a reasonable and efficient time frame could be developed
for defining the source term and routing contaminants through successive media. The method identified
by Whelan et al. {1987) made use of the error function argument of the area-source solution (i.e.,
Equation 5.42 of Whelan et al. 1987). This works well under most situations, but the range that defines
the lower and upper limits of integration (i.e., Equations 5.48 through 5.50 in Whelan et al. 1987) was
found to be too large at times, resulting in compurational inefficiencies. The integration limits identified .
by Whelan et al. (1987), although correct, were found to be too conservative for groundwater analyses
where the flow is relatively slow (e.g., integration of excess zero values). In addition, if the
source-term boundary condition (i.e., f(t) in Equation 2.31) has a duration less than the assessment
interval "At,"® the integration limits could miss an important portion of the integration, depending on
the velocity of groundwater flow.

To ensure that the analysis is covering only the significant portion of the integration, the upper and
lower limits are based on the temporal location of the inflection points on the rising and falling limbs of

(a) Note that "At" is defined by the difference in the upper and lower integration limits divided by the
number of evaluation intervals. For example, if concentrations are analyzed for every 10 years,
then At equals 10 years. If the peak concentration occurs within the first 10-year interval, then the
peak is missed.
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the solute concentration for an instantaneous release (e.g., Equation 2.18). These integration limits are
then checked against a sofution of the product of solute concentration for an instantaneous release and
source-term flux as well as the final solution, to ensure that only the significant portion of the
integration is inctuded in the analysis.

The integration limits can be approximated by 1) assuming a point source and its accompanying
analytical Green's function solution in the direction of flow (e.g., Equation 2.18 or 2.22), 2) 1aking the
second derivative with respect to time, 3) setting the derivative to zero, and 4) iteratively solving for the
upper and lower integration limits. The point-source solution is used as opposed to the line- or area-
source solution, because tests indicate that it provides an adequate estimation of integration limits under
all conditions and because its formulation is less complicated than that of the line or area source.

Setting the second derivative of Equation 2.18 to zero provides the appropriate solution for
identifying the inflection points as follows:

d*(X)) o - |2 _{IGH'D;(x—u'r) 132D, -y .
de? 4D's [ 4D 1y @D,
* 2- 2
“2uTx-u _{4*9; Cou oAb X))
4Dt { (4D 1)}
“2u(@-un| [0 >(l L3
4Dt (4D, 1)} 1) ar?

Equation 3.1 is solved by iteration to define the lower and upper inflection points, which are used to
define the limits of integration.

The integration limnits are calculated as a factor of the difference between the time to peak and the
inflection point of the instantaneous solution of the advective-dispersive equation for a point source
(Equation 2.26). This difference is designated as 8, where the inflection point is defined by Equation
3.1:

0 = L 3.2)

time to peak, where the first derivative of the instantaneous solution to the
advective-dispersive equation for a point source is zero (s) (see Equation 2.61)
Ly = lower inﬂect%on po?nt (s)

upper inflection point (s).

£
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-
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The lower (t;) and upper (t,) integration limits (prior to the convolution integral transformation) are
calculated as o

. 1, Ko for 7, - K6> 0 (33)
! 0 for 1, - K6 < 0
l(2 = Im’p + Ko (34)
where 1, = lower integration limit (s)
1, = upper integration limit (s)
K = constant (dimensionless).

The constant K is chosen to ensure that the peak concentration is many orders of magnitude higher than
the concentrations associated with the upper or lower integration limit.

3.2 Adaptive Simpson's Quadrature Integration Routine

To help increase the computational efficiency and flexibility of simulating contaminant transport in a
series of environmental media, an Adaptive Simpson's Quadrature integration scheme is used. The
convolution integrations identified by Equations 2.31 and 2.39 were originally solved by a standard
Simpson's rule for numerical integration. Typical problems encountered using a standard Simpson's
rule for numerical integration included the following:®

« When the difference in the error functions used in the area-source analysis (see Equations 2.19 and
2.21) approaches zero, a round-off error can be propagated in the integration.

= The integration is based on a chosen fixed time step (i.e., At). As the time step approaches zero,
the integration should approach the true solution. Unformunately, as the time step approaches zero,
the computational efficiency decreases.

To correct these concerns, a modified Simpson's quadrarure called the Adaptive Simpson's Quadrature
routine is used that varies the magnirude of the integration time step to more accurately reflect variations
in the function. In addition, the solution algorithms allow for a dynamic check on accuracy.

The Adaptive Simpson's Quadrarure routine is an adaptive numerical integration procedure
designed to approximate definite integrals to a specified precision. As used here, an adaptive algorithm
is one that automatically changes the solution strategy as the problem being solved becomes easier or
more difficult. In simplified form, this procedure is as follows: the integration process is a calculation

(a) Note that Simpson's rule for numerical integration forms the basis for many specialized integration
techniques, including the Adaptive Simpson's Quadrature briefly outlined in this section.
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of the area under a function f(t), where t lies within specified time limits. Numerically, this is done by
breaking the range of time into a number of time steps, and approximating the area within each. The
approximation of the integral is then the sum of the area associated with the individual time steps.
More time steps are needed where f(t) changes rapidly than when f(t) changes gently. An adaptive
routine automatically determines when f(t) is rapidly changing based on concentration gradients, and
reduces the size of each time step.

The Adaptive Simpson's Quadrature routine is based on Simpson's rule and uses an accuracy
control feature that dynamically adjusts the tolerance (required accuracy) of the integrand. The
tolerance of the integrand is compuied by estimating the peak concentration for the integrand and setting
the tolerance to be a function of the peak concentration (this tolerance has been tested and is based on
the required accuracy of the groundwater model). This accuracy control feature provides reduced
computational times while maintaining the desired accuracy of the results. Specific algorithms used are
described in Lyness (1969, 1970).

3.3 Features for Far-Field/Near-Field Situations

A given modeling scenario can be considered near-field or far-field depending on several criteria.
When a receptor well ts located far from a source, the physical dimensions of the source have a
negligible effect on receptor concentrations. Under these conditions, a scenario is said to be spatially
far-field, and the equations for an area source release reduce to those of a point source release. In other
words, from the point of view of the receptor well, the source term looks like a point source.

Figure 3.1 shows receptor concentrations for a spatially far-field scenario arbitrarily chosen for
illustrative purposes. This chart shows that whether the source term has an areal extent of 0.093 m? or
93,000 m?, concentrations at the receptor well are essentially the same. A scenario in which the
physical dimensions of the source have a significant effect on receptor concentrations would be a
spatially near-field scenario.

A modeling scenario can also be considered temporally far-field. This occurs when the duration of
release from the source is small relative to the time required for the contaminant to travel from the
source to the receptor. Thus, the numerically integrated solutions (i.e., Equations 2.31 and 2.39)
reduce to the analytical solutions for an instantaneous release. From the point of view of the receptor
well, the duration of rime over which contaminant is released from the source has little effect on
receptor concenirations, so the source-term flux looks like an instantaneous release. A scenario in
which the duration of release has a noticeable effect on receptor concentrations would be a temporally
near-field scenario.

Under temporally far-field conditions, the groundwater component of MEPAS uses the analytical

solutions for an instantaneous release, instead of performing numerical integration. The advantage of
this approach is that run times are significantly reduced. For each groundwater medium (i.e., partially
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