Fabrication of novel III-N and III-V modulator structures by ECR plasma etching

PDF Version Also Available for Download.

Description

Quantum well microdisk laser structures have been fabricated in the GaN/InGaN, GaAs/AlGaAs and GaAs/InGaP systems using a combination of ECR dry etching (Cl{sub 2}/CH{sub 4}/H{sub 2}/Ar, BCl{sub 3}/Ar or CH{sub 4}/H{sub 2}/Ar plasma chemistries respectively) and subsequent wet chemical etching of a buffer layer underlying the quantum wells. While wet etchants such as HF/H{sub 2}O and HCl/HNO{sub 3}/H{sub 2} O are employed for AlGaAs and InGaP, respectively, a new KOH based solution has been developed for AlN which is completely selective over both GaN and InGaN. Typical mask materials include PR or SiN{sub x}, while the high surface recombination velocity ... continued below

Physical Description

6 p.

Creation Information

Pearton, S.J.; Abernathy, C.R. & MacKenzie, J.D. December 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsors

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Quantum well microdisk laser structures have been fabricated in the GaN/InGaN, GaAs/AlGaAs and GaAs/InGaP systems using a combination of ECR dry etching (Cl{sub 2}/CH{sub 4}/H{sub 2}/Ar, BCl{sub 3}/Ar or CH{sub 4}/H{sub 2}/Ar plasma chemistries respectively) and subsequent wet chemical etching of a buffer layer underlying the quantum wells. While wet etchants such as HF/H{sub 2}O and HCl/HNO{sub 3}/H{sub 2} O are employed for AlGaAs and InGaP, respectively, a new KOH based solution has been developed for AlN which is completely selective over both GaN and InGaN. Typical mask materials include PR or SiN{sub x}, while the high surface recombination velocity of exposed AlGaAs ({approximately} 10{sup 5} cm{center_dot}sec {sup {minus}1}) requires encapsulation with ECR-CVD SiN{sup x} to stabilize the optical properties of the modulators.

Physical Description

6 p.

Notes

OSTI as DE96003071

Source

  • Fall meeting of the Materials Research Society (MRS), Boston, MA (United States), 27 Nov - 1 Dec 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96003071
  • Report No.: SAND--95-2708C
  • Report No.: CONF-951155--11
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 171371
  • Archival Resource Key: ark:/67531/metadc665972

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 1, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • June 22, 2016, 7:07 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Pearton, S.J.; Abernathy, C.R. & MacKenzie, J.D. Fabrication of novel III-N and III-V modulator structures by ECR plasma etching, article, December 1, 1995; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc665972/: accessed September 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.