Actinide partitioning studies using dihexyl-N,N-diethycarbamolymehtyl phosphonate and dissolved zirconium calcine

PDF Version Also Available for Download.

Description

A baseline flowsheet capable of partitioning the transuranic (TRU) elements from dissolved zirconium calcines has been developed. The goal of the TRU partitioning process is to remove the TRUs from solutions of dissolved zirconium calcines to below the 10 CFR 61.55 Class A waste limit of 10 nCi/g. Extraction, scrub, strip, and wash distribution coefficients for several elements, including the actinides, were measured in the laboratory by performing equal volume batch contacts. A solvent containing diheyl-N, N- diethylcarbamoylmethyl phosphonate (CMP), tributylphosphate (TBP), and a branched chain hydrocarbon as the diluent were used to develop this process. A non-radioactive zirconium pilot-plant ... continued below

Physical Description

43 p.

Creation Information

Brewer, K.N.; Herbst, R.S.; Law, J.D.; Garn, T.G.; Tillotson, R.D. & Todd, T.A. January 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A baseline flowsheet capable of partitioning the transuranic (TRU) elements from dissolved zirconium calcines has been developed. The goal of the TRU partitioning process is to remove the TRUs from solutions of dissolved zirconium calcines to below the 10 CFR 61.55 Class A waste limit of 10 nCi/g. Extraction, scrub, strip, and wash distribution coefficients for several elements, including the actinides, were measured in the laboratory by performing equal volume batch contacts. A solvent containing diheyl-N, N- diethylcarbamoylmethyl phosphonate (CMP), tributylphosphate (TBP), and a branched chain hydrocarbon as the diluent were used to develop this process. A non-radioactive zirconium pilot-plant calcine was spiked with the TRUs, U, Tc, or a radioactive isotope of zirconium to simulate the behavior of these elements in actual dissolved zirconium calcine feed. Distribution coefficient data obtained from laboratory testing were used to recommend: (1) solvent composition, (2) scrub solutions capable of selectively removing extracted zirconium while minimizing actinide recycle, (3) optimized strip solutions which quantitatively recover extracted actinides, and (4) feed adjustments necessary for flowsheet efficiency. Laboratory distribution coefficients were used in conjunction with the Generic TRUEX Model (GTM) to develop and recommend a flowsheet for testing in the 5.5-cm Centrifugal Contractor Mockup. GTM results indicate that the recommended flowsheet should remove the actinides from dissolved zirconium calcine feed to below the Class A waste limit of 10 nCi/g. Less than 0.01 wt% of the extracted zirconium will report to the high- activity waste (HAW) fraction using the 0.05 M H{sub 2}C{sub 2}O{sub 4} in 3.0 M HNO{sub 3} scrub, and greater than 99% of the extracted actinides are recovered with 0.001 M HEDPA.

Physical Description

43 p.

Notes

INIS; OSTI as DE96007525

Source

  • Other Information: PBD: Jan 1996

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96007525
  • Report No.: INEL--96/0021
  • Grant Number: AC07-94ID13223
  • DOI: 10.2172/206884 | External Link
  • Office of Scientific & Technical Information Report Number: 206884
  • Archival Resource Key: ark:/67531/metadc665946

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Feb. 24, 2016, 7:01 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Brewer, K.N.; Herbst, R.S.; Law, J.D.; Garn, T.G.; Tillotson, R.D. & Todd, T.A. Actinide partitioning studies using dihexyl-N,N-diethycarbamolymehtyl phosphonate and dissolved zirconium calcine, report, January 1, 1996; Idaho Falls, Idaho. (digital.library.unt.edu/ark:/67531/metadc665946/: accessed October 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.