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A non-equilibrium thermodynamic model is developed for the dissolution response of uranium 

oxide spent fuels waste forms. The objective is to derive function forms for the dissolution rate that are 

consistent with quasi-static, irreversible thermodynamic processes. These function forms contain 

thermodynamic chemical potentials of both the solid (spent fuels) and the solution (water chemistries) 

along with a set of coefficients and parameters that can be evaluated by numerical regression of 

dissolution test data. Currently, detailed knowledge is not available for the atomic (mechanistic) steps 

and the sequence of chemical/electro-chemical reaction steps to describe the dissolution process over the 

range of spent fuel inventory, potential water chemistries, and temperatures. The existing approach is 

obtaining an experimental data base of dissolution rates for a subset of spent fuels over a range of 

controlled, aggressive water chemistries and temperatures. With a numerical regression algorithm, 

these data are used to evaluate empirical parameters in a rate law? The function form of this rate law is . 

a product polynomial of the bulk water chemistry concentrations and temperature.10 In its present 

form, this function form does not have an explicit thermodynamic dependence on the uranium oxide 

waste form. In addition, the use of bulk concentrations in the function form for the regression analysis 

of the dissolution data would not explicitly account for a dependence from possible surface to bulk 

concentration differences due to surface adsorption and dipole layers. The following thermodynamic 

model uses analysis methods and physical concepts taken primarily from classical mechanics$~7 

colloidal foundations? thermodynamics,33,* eIectro-chemistryy1~ and geochemistry.10 

Nonequilibrium Thermodynamic Dissolution Rate Function Forms 

In the following, thermodynamic internal energy functionals are used to represent the energy 

responses for a generic solid and a generic liquid. The solid and liquid are in contact at an idealized 

wetted surface. This wetted surface is a material discontinuity, and it is also a dissolution front that 

propagates at an idealized dissolution velocity, 1. 
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The generic solid will have bulk constituents of typical U 0 2  spent fuel, namely minor 

concentrations of other actinides, fission products, and defects in the bulk lattice structure denoted by a 

column matrix cfs). The bulk lattice is assumed to be nominally that of the UO;! lattice structure; 

however, other oxide phases and adsorbed complexes as a result of solid-water chemistry reactions 

may exist on and in spatial neighborhoods of the wetted surface. These are denoted by a column matrix 

cfs~). The generic liquid will be represented with a subset of arbitrary initialbulk constituents denoted 

by column matrix (fL}. In addition the liquid has two subsets of water chemistry products formed 

from the dissolution of the solid and denoted by column matrices cfm) and cfLs~) .  The new reaction 

product constituents Cfs~), vis) and cfis~)are interrelated to the initial solid and liquid constituents 

cfs,f~) by stoichiometric chemical reaction expressions. 

Each of the constituent densities of the solid and the liquid will be assumed to move with the 

particle velocity of its spatial neighborhood, y plus its intrinsic diffusional velocity, y, relative to the 

particle velocity. Thus the argument variables of the constituent functionsf~,fSLyf~,fLS, andfuL are 

spatial points icy at time, ,f, and species associated relative velocities, vs,v,,vL,v, and 

respectively. Finally, the thermodynamic internal energy functional also h e  argument functions for the 

entropy and the elastic (recoverable) strain tensor. The entropy functions are denoted by qs(a;t) and 

?&,Z), and the strain tensors by ys(a;t) and y ~ ( ~ t ) ;  for points x at time c of the solid and liquid, 

respectively. Note that entropy and strain are material particle functions and do not have diffusional 

velocities relative to their material particle located at point x with velocity y(x,z). In the following, the 

effect of non-recoverable defoxmations with finite, discontinuous strain tensor effects will be neglected. 

Using the above notation and definition of functions, the internal energy functional for the solid 

and liquid are defined as 

ES(V~ ,Y~ , {L} )  & s ( q s ~ ~ s ~ ~ ~ f z )  & E L ( W Y L , { L } )  - = e  L ( ~L,YLYf.LYf,YfLSL) 

and it is assumed that a functional derivative exists with respect to each of their argument functions for 

all times, z, and at all points, L of the solid and liquid bodies & + Et plus surfaces 6% + 6%~.  

The following analysis provides some details for only the energy conditions across an arbitrary 

segment &?I of JR] for quasi-static conditions. In equation form, the surface contribution to the 

energy equation can be written with some shoznand notation for arbitrary dR] as: 
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L L L + AfE(fl!}*E]s -e.-..E], -b. E];  +@ . E l s )  = 0 

where terms for internal energy discontinuities with particle velocity, y, minus front velocity, y, 

contributions am separated from the diffusional flux velocity, y, terms and from the energy rate terms 

from stress, heat flux and the quasi-static electric current/field work term. Eq. 2 can be simplified to 

obtain the following entropy pductioddissipation equation across JR]: 

In terms of the shorthand notation, the coefficients appear to be the same for both rate terms. However, 

when the stoichiometric equation forms for the reactions are formally incorporated, the thermodynamic 

force functionals describe an independent energy change for chemical reaction kinetics and an 

independent energy change for diffusional mass transport kinetics. Using Onsager's concepts to  

describe nonequilibrium or irreversible thermodynamic processes, the two rate functions are coupled by 

function or functional coefficients to the two thermodynamic forces of energy kinetics and diffusion 

mass transport kinetics. Formally these are 

where the four coefficients Lw, LVV, LVV, and LW (which can be functions of cfl) couple the rate 

functions to the thermodynamic forces. 

Eq. 4 provides thermodynamic function forms that shouid be evaluated at the dissolution fiont for 

the dissolution rate function, which is essentially the dissoiution front velocity when the details of the 

surface particle velocities are neglected. For numerical regression analyses, particular chemical 

reactions with some regression parameters will be assumed; and the regression parameters evaluated 

based on the available thermodynamic values and dissolution data sets. 
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