The Role of Electrode Contamination and the Effects of Cleaning and Conditioning on the Performance of High-Energy, Pulsed-Power Devices

PDF Version Also Available for Download.

Description

High-energy pulsed-power devices routinely access field strengths above those at which broad-area, cathode-initiated, high-voltage vacuum-breakdown occur. Examples include magnetically-insulated-transmission lines and current convolutes, high-current-density electron and ion diodes, high-power microwave devices, and cavities and other structures for electrostatic and RF accelerators. Energy deposited in anode surfaces may exceed anode plasma thermal-desorption creation thresholds on the time-scale of the pulse. Stimulated resorption by electron or photon bombardment can also lead to plasma formation on electrode or insulator surfaces. Device performance is limited above these thresholds, particularly impulse length and energy, by the formation and expansion of neutral and plasma layers formed, ... continued below

Creation Information

Cuneo, M.E. November 10, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 55 times , with 4 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Laboratories, Albuquerque, NM, and Livermore, CA
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

High-energy pulsed-power devices routinely access field strengths above those at which broad-area, cathode-initiated, high-voltage vacuum-breakdown occur. Examples include magnetically-insulated-transmission lines and current convolutes, high-current-density electron and ion diodes, high-power microwave devices, and cavities and other structures for electrostatic and RF accelerators. Energy deposited in anode surfaces may exceed anode plasma thermal-desorption creation thresholds on the time-scale of the pulse. Stimulated resorption by electron or photon bombardment can also lead to plasma formation on electrode or insulator surfaces. Device performance is limited above these thresholds, particularly impulse length and energy, by the formation and expansion of neutral and plasma layers formed, primarily from electrode contaminants. In-situ conditioning tech&ques to modify and eliminate the contaminants through multiple high-voltage pukes, low base pressures, RF discharge cleaning, heating, surface coatings, and ion- and electron-beam surface treatment allow access to new regimes of performance through control of plasma formation and modification of the plasma properties. Experimental and theoretical progress from a variety of devices and small scale experiments with a variety of treatment methods will be reviewed and recommendations given for future work.

Source

  • Journal Name: Special Issue of the IEEE Transactions on Dielectrics and Electrical Insulation

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00001937
  • Report No.: SAND98-1396J
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 1937
  • Archival Resource Key: ark:/67531/metadc665587

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 10, 1998

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Dec. 7, 2016, 8:43 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 55

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Cuneo, M.E. The Role of Electrode Contamination and the Effects of Cleaning and Conditioning on the Performance of High-Energy, Pulsed-Power Devices, article, November 10, 1998; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc665587/: accessed October 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.