Optimization of superconducting bending magnets for a 1.0 to 1.5 GeV compact light source

PDF Version Also Available for Download.

Description

Compact light sources are being proposed for protein crystallography, medical imaging, nano-machining and other areas of study that require intense sources of x rays at energies up to 35 keV. In order for a synchrotron light source to be attractive, its capital cost must, be kept low. The proposed compact light source has superconducting bending elements to bend the stored beam and produce the x rays. Additional focusing for the machine is provided by conventional quadrupoles. An important part of the cost optimization of a compact light source is the cost of the bending magnets. In the case of a ... continued below

Physical Description

4 p.

Creation Information

Green, M.A. & Garren, A.A. June 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Compact light sources are being proposed for protein crystallography, medical imaging, nano-machining and other areas of study that require intense sources of x rays at energies up to 35 keV. In order for a synchrotron light source to be attractive, its capital cost must, be kept low. The proposed compact light source has superconducting bending elements to bend the stored beam and produce the x rays. Additional focusing for the machine is provided by conventional quadrupoles. An important part of the cost optimization of a compact light source is the cost of the bending magnets. In the case of a machine with superconducting bending elements, the bending magnet system can represent close to half of the storage ring cost. The compact light source storage rings studied here have a range of stored electron energies from 1.0 to 1.5 GeV. For a number of reasons, it is desirable to keep the storage ring circumference below 30 meters. Cost optimization parameters include: (1) the number of superconducting bending elements in the ring, and (2) the central induction of the dipole. A machine design that features two superconducting dipoles in a single cryostat vacuum vessel is also discussed.

Physical Description

4 p.

Notes

INIS; OSTI as DE96004729

Source

  • 14. international conference on magnet technology, Tampere (Finland), 11-16 Jun 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96004729
  • Report No.: LBL--37319
  • Report No.: SC-MAG--527;CONF-950691--25
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 198690
  • Archival Resource Key: ark:/67531/metadc665510

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • April 5, 2016, 12:01 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Green, M.A. & Garren, A.A. Optimization of superconducting bending magnets for a 1.0 to 1.5 GeV compact light source, article, June 1, 1995; California. (digital.library.unt.edu/ark:/67531/metadc665510/: accessed April 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.