TECHNICAL REPORT
September 1 through November 30, 1994

Project Title: COMBINED REMOVAL OF SO$_x$ AND NO$_x$ FROM FLUE GAS USING NON-THERMAL PLASMA

DOE Cooperative Agreement Number: DE-FC22-92PC92521 (Year 3)
ICCI Project Number: 94-1/2.1A-4P
Principal Investigator: Shirshak K. Dhali, SIUC
Project Manager: Frank I. Honea, ICCI

ABSTRACT

The SO$_2$ removal efficiency was studied for concentration in the range of 333-3000 ppm (parts per million). Since the sulfur content of Illinois coal is high, the SO$_2$ concentration in typical flue gas is in the high end of the range shown above. With high concentration of SO$_2$ the removal efficiency decreases. However, the removal scales well with applied voltage, electrode length, and supply frequency.

In this period the modeling of the process was also accomplished. The results show that a Townsend-type discharge is more efficient than a streamer type discharge in producing OH and O radicals. This explains why UV-irradiation helps the removal efficiency. The details are discussed in the report.
TECHNICAL REPORT
September 1 through November 30, 1994

Project Title: COMBINED REMOVAL OF SO\textsubscript{x} AND NO\textsubscript{x} FROM FLUE GAS USING NON-THERMAL PLASMA

DOE Cooperative Agreement Number: DE-FC22-92PC92521 (Year 3)
ICCI Project Number: 94-1/2.1A-4P
Principal Investigator: Shirshak K. Dhali, SIUC
Project Manager: Frank I. Honea, ICCI

ABSTRACT

The SO\textsubscript{2} removal efficiency was studied for concentration in the range of 333-3000 ppm (parts per million). Since the sulfur content of Illinois coal is high, the SO\textsubscript{2} concentration in typical flue gas is in the high end of the range shown above. With high concentration of SO\textsubscript{2} the removal efficiency decreases. However, the removal scales well with applied voltage, electrode length, and supply frequency.

In this period the modeling of the process was also accomplished. The results show that a Townsend-type discharge is more efficient than a streamer type discharge in producing OH and O radicals. This explains why UV-irradiation helps the removal efficiency. The details are discussed in the report.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
EXECUTIVE SUMMARY

The primary objective of the proposed research is to investigate a novel scheme for the simultaneous removal of SO$_2$/NO$_x$ using a non-thermal plasma technique (dielectric-barrier corona discharge). Since the proposed approach also has the potential to remove volatile organic compounds (VOC) and hazardous trace elements, a study will be done on the removal of elemental mercury.

Improvement in percent removal is not always accompanied by increased utilization of electrical energy. When a parameter is varied, the energy input also varies. The electrical energy utilization with relation to removal of SO$_2$ by a dielectric-barrier has not been reported in earlier papers because of the difficulty in measuring the energy associated with the random discharges. In order to obtain an estimate of the utilization of the electrical energy needs, the power input to the discharge has to measured. For a dielectric-barrier discharge this can be done by measuring the discharge voltage and the charge transported through the discharge. The charge transported can be measured from the voltage across a large capacitor in series with the discharge.

A convenient parameter used to describe the power input to the discharge is the average energy density which is defined as the (average power input)/(flow rate of the gas). This quantity gives a measure of the amount of electrical energy inputted per unit volume of the processed gas. It is clear that increased removal of SO$_2$ at higher voltages comes at the expense of increased power input.

Shown in Fig. 1 is the typical removal efficiency of dielectric-barrier discharge reactor for different SO$_2$ concentration. Clearly at low concentrations of SO$_2$ efficient removal can be achieved. Although for high concentration of SO$_2$ (combustion of high sulfur coal produces 2500-3000 ppm) the removal is only 25-30%, the removal efficiency increases with increasing length of the electrode. With electrode length of 20 cm, the percent removal be raised to about 60% for SO$_2$ concentration in the range of 2000 ppm. The increase in removal due to an increase in length is due to the increased residence time of the gas being processed.

Monte Carlo calculations of energy distributions, transport properties and dissociation coefficient rates of electrons in flue gas was done by tracking a single electron for 10^8 collisions. The flue gas consist of a mixture of individual gases whose electron impact cross section are available in the literature. The Monte Carlo calculation takes into account the detailed collisional processes in the gas to determine the electron energy distribution function (EEDF). Once the EEDF in particular gas at a given E/N (reduced field) is known, the rates can be determined from the cross section value.

The efficiency (G-factor) of O(3P) and OH production are of the order of 1 per 100 eV of electrical energy input. Clearly the production of [O] and [OH] are not very energy efficient. Calculation for a flue gas with higher O$_2$ concentration shows a proportional increase in the G-factor.
In microdischarges, which are streamer type discharges, the expected G-factors will be lower than the Townsend type discharge. In order to get an estimate of G-factors in microdischarges, streamer calculations were performed in a flue gas. The transport and rate coefficients were obtained from the Monte Carlo calculation.

When electron avalanches develop to a critical size, the space charge field will make the field nonuniform and very high in certain regions. Photoelectrons generated ahead of the space-charge front causes a rapid growth in the high field and a fast propagation of the front. As can be expected the G-factors in a streamer discharge is about a factor of two lower compared to the Townsend type discharge.

These results were presented at the Non-thermal Plasma Session of the Emerging Technologies in Hazardous Waste Management VI Conference on September 19, 1994. This conference is sponsored by the Division of Industrial and Engineering Chemistry of the American Chemical Society.

Fig.1 Percentage SO₂ removal as a function of the energy density. The concentration of N₂/O₂/H₂O/CO₂ was in ratio of 75/5/2.6/17.4 with a total flow of 3000 SCCM at 760 Torr. The electrode length was 10 cm.
OBJECTIVES

The primary objective of the proposed research is to investigate a novel scheme for the simultaneous removal of SO\textsubscript{2}/NO\textsubscript{x} using a non-thermal plasma technique (dielectric-barrier corona discharge). Since the proposed approach also has the potential to remove volatile organic compounds (VOC) and hazardous trace elements, a study will be done on the removal of elemental mercury. Specifically, the following will be done to accomplish the above stated objectives.

1. *Optimization of the discharge for the removal of SO\textsubscript{2} and NO\textsubscript{x} without additives:*

2. *Study the reduction of NO\textsubscript{x} with ammonia injection into the plasma:*

3. *Study of the removal of mercury and volatile organic compounds (VOC):*

INTRODUCTION AND BACKGROUND

In a plasma, chemical reactions can take place which is ordinarily not possible without a catalyst. We have conclusively demonstrated that plasma chemistry alone is sufficient to convert SO\textsubscript{2} to H\textsubscript{2}SO\textsubscript{4}, the plasma being produced by a dielectric-barrier discharge. We get nearly 80% removal of SO\textsubscript{2} in a flue gas containing 775 ppm (parts per million) of SO\textsubscript{2} and 99% for SO\textsubscript{2} in concentrations of 300 ppm. However, many questions have to be answered before this technique can be put to practical use.

Theory and experiments suggest that chemical reactions in the plasma are favorable for the removal of SO\textsubscript{2}/NO\textsubscript{x}. In a dielectric-barrier discharge, the dissociation of water and oxygen by electrons produce hydroxyl radicals and oxygen atoms, and the reactions are shown below:

\[
\begin{align*}
O_2 + e & \rightarrow O + O^1(D) + e \rightarrow H_2O \\
H_2O + e & \rightarrow H + OH + e.
\end{align*}
\]

The O and OH radicals react with SO\textsubscript{2} to form H\textsubscript{2}SO\textsubscript{4}, and the reaction scheme is shown below:

\[
\begin{align*}
SO_2 + O & \rightarrow SO_3; \\
SO_2 + OH & \rightarrow HSO_3; \\
SO_3 + H_2O & \rightarrow H_2SO_4 \\
HSO_3 + OH & \rightarrow H_2SO_4
\end{align*}
\]

The H\textsubscript{2}SO\textsubscript{4} forms droplets which can be removed from the gas stream by an electrostatic precipitator.

For the removal of NO, the following reaction scheme is proposed

\[
\begin{align*}
NO + O + M & \rightarrow NO_2 + M; \\
NO_2 + OH & \rightarrow HNO_3.
\end{align*}
\]
The HNO₃ produced as an end product of the reaction may be removed by injection of NH₃ or Ca(OH)₂ to form NH₄NO₃ or Ca(NO₃)₂ respectively. The particles thus formed can then be removed from the gas stream by an electrostatic precipitator.

The proposed reaction scheme is the same as the Thermal DeNOₓ process (Lyon 1987) which takes place in the temperature range of 900-1100 °C. However in a plasma the reactions are possible at temperatures below 300 °C and these reactions are shown below:

\[
\begin{align*}
NH_3 + e^- & \rightarrow NH_2 + H + e^- \\
NH_3 & \xrightarrow{OH} NH_2 \xrightarrow{NO} N_2 + H_2O \\
NH_3 & \xrightarrow{O} NH_2 \xrightarrow{NO} N_2 + H_2O
\end{align*}
\]

This study will be done for a set of parameters that are typical for coal-fired combustion facility.

The list of chemical substances that must be monitored and controlled under evolving environmental regulations is increasing rapidly. The Clean Air Act Amendments list 190 chemicals, many of which are emitted by fossil fuel-fired boilers. These guidelines will provide the technical basis for selecting appropriate control technology options to meet both current and proposed environmental regulations (EPRI 1992). Coal contain various mercury compounds, probably bound to sulfur in one way or another. It is very likely that during combustion process (above 700 °C), the compounds are thermally decomposed giving elemental mercury. It is also likely that divalent Hg is reduced on the surface of a burning particle. When the combustion gases are cooled, a small fraction of the mercury is oxidized. Oxidized mercury has its advantages and disadvantages: the disadvantage is that, HgO is more hazardous to the local environment if released to the atmosphere; the advantage is that it is easier to retain in flue gas cleaning system. For power plants with efficient collection systems, it is an advantage to convert elemental mercury to its oxide. In a dielectric-barrier discharge, oxygen atoms are readily created by electron-impact dissociation and the oxidation reaction below 600 °C can be achieved.

EXPERIMENTAL PROCEDURES

The experimental setup is shown in Fig. 2. The power supply for the discharge is a 2kW, 0 to 5 kHz ac source. The discharge electrode configuration currently in use is coaxial. The inner electrode is exposed metal (stainless steel) and the outer electrode is glass coated with a conducting surface.

The on-line diagnostics consists of emission spectroscopy, mass spectroscopy, and SO₂ pulsed fluorescence spectroscopy. The diagnostics are geared mainly towards estimating the species type and concentration. The main aim of the measurements is to understand the parameter influence on the removal of SO₂/NOₓ. A quadrupole residual gas analyzer with a pressure converter will be used to obtain the spectra of the effluent.
from the reactor. This will be the main diagnostic tool for studying the NO$_x$ removal process. The main instrument available for SO$_2$ analysis is the Thermo-Electron Model 40 pulsed fluorescent SO$_2$ analyzer.

RESULTS AND DISCUSSIONS

For the results reported here, the dimension of the inner electrode (A) is 0.5 cm, and the inner diameter of the glass dielectric was fixed at 2 cm. The length of the outer electrode is 10 cm. All the experimental results reported were performed at atmospheric pressures (760 Torr) and inlet gas was at room temperature. The basic composition of the gas consist of N$_2$/O$_2$/H$_2$O/CO$_2$ in the ratio of 75/5/2.6/17. The SO$_2$ concentration with discharge turned off and the discharge turned on were measured to obtain the percent $\eta(\%)$ removal from the flue gas stream:

$$
\eta(\%) = \frac{([SO_2]_{off} - [SO_2]_{on})}{[SO]_{off}} \times 100.
$$

Improvement in percent removal is not always accompanied by increased utilization of electrical energy. When a parameter is varied, the energy input also varies. The electrical energy utilization with relation to removal of SO$_2$ by a dielectric-barrier has not been reported in earlier papers because of the difficulty in measuring the energy associated with the random discharges. In order to obtain an estimate of the utilization of the electrical energy needs, the power input to the discharge has to measured. For a dielectric-barrier discharge this can be done by measuring the discharge voltage and the charge transported through the discharge. The charge transported can be measured from the voltage across a large capacitor in series with the discharge.

A convenient parameter used to describe the power input to the discharge is the average energy density which is defined as the (average power input)/(flow rate of the gas). This quantity gives a measure of the amount of electrical energy inputted per unit volume of...
the processed gas. It is clear that increased removal of SO_2 at higher voltages comes at the expense of increased power input.

Shown in Fig. 1 is the typical removal efficiency of dielectric-barrier discharge reactor for different SO_2 concentration. Clearly at low concentrations of SO_2 efficient removal can be achieved. Although for high concentration of SO_2 (combustion of high sulfur coal produces 2500-3000 ppm) the removal is only 25-30%, the removal efficiency increases with increasing length of the electrode. With electrode length of 20 cm, the percent removal be raised to about 60% for SO_2 concentration in the range of 2000 ppm. The increase in removal due to an increase in length is due to the increased residence time of the gas being processed.

MODEL CALCULATION OF RADICAL PRODUCTION

Monte Carlo calculations of energy distributions, transport properties and dissociation coefficient rates of electrons in flue gas was done by tracking a single electron for 10^8 collisions. The flue gas consist of a mixture of individual gases whose electron impact cross section are available in the literature. The Monte Carlo calculation takes into account the detailed collisional processes in the gas to determine the electron energy distribution function (EEDF). Once the EEDF in particular gas at a given E/N (reduced field) is known, the rates can be determined from the cross section value. The dissociation reactions listed below are of particular interest for pollution control treatment. These electron impact processes are the primary source of radicals required to remove the pollutants.

$$e + O_2 \rightarrow h \rightarrow O(3P) + O(3P)$$
$$e + O_2 \rightarrow h \rightarrow O(3P) + O(1D)$$
$$e + N_2 \rightarrow h \rightarrow N + N + e$$
$$e + H_2O \rightarrow h \rightarrow OH + H + e$$
$$e + CO_2 \rightarrow h \rightarrow O + CO + e$$

where k_i is the dissociation rate which can be obtained from the velocity distribution function $f(v)$ obtained from the Monte Carlo calculation [19]:

$$k_i = \int Q_i(v)f(v)vdv$$

where Q_i is the dissociation cross section of the collisional process, v is the electron velocity. The k_i is a function of the reduced field (E/N).

The radicals produced by electron impact undergo reactions with other radicals and molecules in the discharge. Shown below are the important reactions that determine the concentration of important radicals:
where M is the three body partner; \(k_i \) is the rate constant which is not dependent on E/N.

The waste destruction process is divided into three parts to simplify the calculations: (1) the discharge phase, (2) a post discharge phase where the excited radicals are quenched to form longer-lived radicals, and (3) a phase where the radicals react with the pollutants. The discharge phase is of the order of a few nanoseconds for streamer like microdischarges encountered in atmospheric pressure dielectric-barrier discharge. The order of quenching of excited radicals like \(O(3P) \) is of the order of few tens of nanoseconds or longer. The radical reaction with pollutants is of the order microsecond or longer.

For a generalized electron impact dissociation process, assume that a dissociated product with density \([A] \) is produced from a parent gas with density \([AB] \) with a rate constant \(k_A \). If \(\Delta \varepsilon \) is the energy density in eV deposited into the discharge in time \(\Delta T \), then the radicals produced per 100 eV of energy due electron impact only is defined as,

\[
Ge[A] = \frac{100 \times \Delta[A]}{\Delta \varepsilon} \quad (13)
\]

The overall efficiency of formation of radicals will involve the molecule-radical and radical-radical reactions listed earlier. The overall radical formation efficiency of the oxygen atom (O) and hydroxyl radical (OH) is given by

\[
G(O^3 P) = Ge(O^3 P) + \frac{Ge(O^1 D)}{1 + \frac{k_7[H_2O]}{k_6[O_2]}} \quad (14)
\]

\[
G(OH) = Ge(OH) + \frac{2*Ge(O^1 D)}{1 + \frac{k_7[H_2O]}{k_6[O_2]}} \quad (15)
\]

For a Townsend like discharge, with a constant E/N (reduced field), the radical density \(\Delta[A] \) at time \(\Delta T \) is given by

\[
\Delta[A] = k_A[AB]\int_0^{\Delta T} n_e dt. \quad (16)
\]
The ΔE, the energy density in eV deposited into the discharge in time ΔT, is given by

$$\Delta E = e^{-1} \int_0^{\Delta T} JEdt = v_d E \int_0^{\Delta T} n_e dt$$

(17)

where J the current density, E is the constant electric field, e is the unsigned electron charge, v_d is the drift velocity which is constant for a given E, and n_e is the electron density. For a Townsend type discharge

$$Ge[A] = 100 \frac{N}{v_d(E/N)}$$

(18)

where N is the total particle density. Therefore the overall G-factor (for a Townsend type discharge) for $O(3P)$ and OH radicals may be expressed as

$$G[O(3P)] = \frac{100}{v_d(E/N)} \left\{ \left(2k_1 + k_2 \right) \frac{[O_2]}{N} + \frac{k_2 \frac{[O_2]}{N}}{1 + \frac{k_3[O_2]}{k_6[O_2]}} \right\}$$

(19)

$$G[OH] = \frac{100}{v_d(E/N)} \left\{ k_4 \frac{[H_2O]}{N} + \frac{2k_2 \frac{[O_2]}{N}}{1 + \frac{k_3[O_2]}{k_6[O_2]}} \right\}$$

(20)

The plot of the G-factor for OH and $O(3P)$ radicals are shown in Fig. 3 for a flue gas with $N_2/O_2/H_2O/CO_2$ ratio of 80/6/5/9. The efficiency of $O(3P)$ and OH production are of the order of 1 per 100 eV of electrical energy input. Clearly the production of $[O]$ and $[OH]$ are not very energy efficient. Calculation for a flue gas with higher O_2 concentration shows a proportional increase in the G-factor.
In microdischarges, which are streamer type discharges, the expected G-factors will be lower than the Townsend type discharge. In order to get an estimate of G-factors in microdischarges, streamer calculations were performed in a flue gas. The transport and rate coefficients were obtained from the Monte Carlo calculation.

When electron avalanches develop to a critical size, the space charge field will make the field nonuniform and very high in certain regions. Photoelectrons generated ahead of the space-charge front causes a rapid growth in the high field and a fast propagation of the
front. This effect of space charge dominated transport which occurs at high pressures (atmospheric) and high voltages is called the streamer mechanism. The simplest set of equation describing the streamer formation and propagation is the continuity equation for electrons, positive ions, and negative ions, coupled with the Poisson’s equation for the electric field. The G-factors calculated for a streamer type discharge in a flue gas (N₂/O₂/H₂O/CO₂ ratio of 80/6/5/9) is shown in Fig. 4. As can be expected the G-factors in a streamer discharge is about a factor of two lower compared to the Townsend type discharge.

The third phase of the discharge involves the reaction of the radicals with the pollutants as described by the set of reactions given below. The O in these is the ground state oxygen atom O(3P).

\[
2OH + SO₂ \rightarrow H₂SO₄; k_{11} = 7.25 \times 10^{-23} \text{ cm}^6 \text{s}^{-1}
\]

\[
2OH + M \rightarrow H₂SO₄; k_{12} = 6.5 \times 10^{-31} \text{ cm}^6 \text{s}^{-1}
\]

\[
OH + O \rightarrow H + O₂; k_{13} = 3.7 \times 10^{-11} \text{ cm}^3 \text{s}^{-1}
\]

\[
O + SO₂ + M \rightarrow SO₃ + M; k_{14} = 8.2 \times 10^{-32} \text{ cm}^6 \text{s}^{-1}
\]

\[
O + O₂ + M \rightarrow O₃ + M; k_{15} = 5.5 \times 10^{-34} \text{ cm}^6 \text{s}^{-1}
\]

\[
O + O₃ \rightarrow 2O₂; k_{16} = 8.8 \times 10^{-15} \text{ cm}^3 \text{s}^{-1}
\]

where M is the third body whose concentration is the total gas density. Using the above rates, the radical utilization efficiency for the destruction of SO₂ is defined as [20]

\[
\eta[O] = \frac{\partial[SO₂]}{\partial[O]} = \frac{k_{14}[SO₂][M]}{k_{14}[SO₂][M] + k_{15}[O₂][M] + k_{16}[O₃] + k_{13}[OH]}
\]

\[
\eta[OH] = \frac{\partial[SO₂]}{\partial[OH]} = \frac{k_{11}[SO₂]}{k_{11}[SO₂] + k_{12}[M] + k_{13}[O]}[OH]
\]

For [SO₂] = 0.66*10³ [M] (667 ppm), [O₂] = 6.0*10⁻² [M], and [M] = 2.68*10¹⁹ cm⁻³, it \(\eta[O]=0.5 \) and \(\eta[OH]=1 \). Therefore, the total SO₂ removal efficiency (molecules removed per 100 eV of energy input is given by

\[
\eta_t = G[O]\eta[O] + G[OH]\eta[OH].
\]

From Fig. 3 and Fig. 4 the maximum value of \(\eta_t = 1.7 \) and 0.5 for a Townsend and a streamer discharge respectively. For comparison with the experimental data, this can be
converted to kWh required per kg of SO₂ removed from the value \(n_t \) calculated above. For the Townsend and the streamer type discharge this number is 48 kWh and 166.8 kWh per kg of SO₂ removed respectively.

CONCLUSIONS

In conclusion, the data on electrical energy utilization is presented. The measured values of kWh required per kg of SO₂ removed is very close to the theoretical prediction. It is also apparent from the calculations that a Townsend type discharge is about three times more efficient in removing SO₂ compared to the streamer type discharge. Also the experimental results point to the fact the removal efficiency scales well with length of the chamber and power frequency.

Disclaimer Statement

(A) Makes any warranty of representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately-owned rights; or

(B) Assumes any liability with respect to use of, or for damages resulting from the use of, any information, apparatus, method or process disclosed in this report.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U. S. Department of Energy. The views and opinions of authors expresses herein do not necessarily reflect those of the U. S. Department of Energy."

Notice to Journalists and Publishers: If you borrow information from any part of this report, you must include a statement about the DOE and Illinois cost-sharing of the project.
PROJECT MANAGEMENT REPORT
September 1 through November 30, 1994

Project Title: COMBINED REMOVAL OF SO\textsubscript{x} AND NO\textsubscript{x} FROM FLUE GAS USING NON-THERMAL PLASMA

DOE Cooperative Agreement Number: DE-FC22-92PC92521 (Year 3)
ICCI Project Number: 94-1/2.1A-4P
Principal Investigator: Shirshak K. Dhali, Department of Electrical Engineering, Southern Illinois University at Carbondale

Project Manager: Frank I. Honea, Illinois Clean Coal Institute

COMMENTS

None.