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ABSTRACT 

The Advanced Test Reactor (ATR) Simulator at the 
Test Reactor Area of the Idaho National Engineering 
Laboratory (INEL) has recently been upgraded to reflect 
plant installation of a distributed control system @CS). 
The ATR Simulator re-design implements traditional needs 
for software extensibility and plant installation prototyping, 
but the driving force behind its new design was an 
instruction requirement for multiple, concurrent-training 
sessions. Support is provided for up to three concurrent, 
independent or interacting, training sessions of reactor, 
balance of plant, and experiment loop operators. This 
capability has been achieved by modifying the existing 
design to consistently apply client-server, parent-child, and 
peer-to-peer processing technologies, and then to 
encapsulate concurrency software into all interfaces. When 
the resulting component-oriented design is linked with 
build and runtime flexibility in a distributed computing 
environment, traditional needs for .extensibility and parallel 
software and scenario development are satisfied with 
minimal additional effort. Sensible configuration 
management practices coupled with the ability to perform 
piecewise system builds also greatly facilitate prototyping of 
plant changes prior to installation. 

INTRODUCTION 

The first simulator for the Advanced Test Reactor was 
built concurrently with the facility itself in the 1960s. That 
simulator was fundamentally an analog computer with 
hardware sized to the complexity of the ATR model. Though it 
was sufficient for training in the early days, it offered no 
flexibility, limited accuracy and poor reliability. The move to a 
digital computer-based Simulator took place in the early 1980s. 

Later, the Simulator was completelyredesigned and placed into 
service in 1994. That latest upgrade is the subject of this paper. 

The ATR is a 250 MW reactor designed to provide a 
nuclear environment for the development and testing of nuclear 
fuels and materials. It consists of three basic systems: the 
reactor itself, the experiment loops, and what we shall refer to 
as the balance of plant (BOP). The latter includes primary and 
secondary coolant piping, pumps, heat exchangers, cooling 
towers and fans, etc. Given the mission of ATR, there are no 
turbines, generators, or output connections to a power grid. 
ATR control philosophy is also partitioned into three distinct 
areas: the control of reactor power, control of up to nine 
(substantially independent) experiment loops, and the control 
of the BOP. 

The requirement to upgrade the ATR Simulator came 
fiom a concurrent sister project involving the replacement of 
most of the instrumentation and control equipment in the BOP, 
Experiment Loops, and some aspects of Reactor Control, with 
the latest generation of DCS equipment. Thus, the upgraded 
Simulator had to include exact emulations of the DCS 
equipment. 

SYSTEM OVERVLEW 

From a software perspective three subsystems comprise 
the ATR Simulator: 

Operator Consoles 
Simulation Models 
Instructor Station 

These subsystems and their interactions are described 
in the following sections. 

Operator Consoles 

The Operator Consoles subsystem includes not only the 
duplication of all plant control interfaces, but also includes 
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software 3 hardware interfaces and remote processing units 
(RPUs). From the software, run-time perspective, these 
hardware interfaces are an extension of the user-interface. 
There are three console display systems: 

reactor console display system 
0 

0 

experiment loops console display system 
balance of plant console display system 

Hardware interfaces include those to the reactor control 
rods, sequential events recorder, annunciators, and PID 
controllers in the P U S .  

Simulation Models 

47 models are combined to provide training capability 
for all essential plant functions. Real time is simulated by 
cycling all models in timeslots of 10 or 100 milliseconds. 
The computer code of the models is divided into three bins 
for ease of maintainability, one each corresponding to the 
primary control functions of the plant, i.e., 

reactor operation 
balance of plant operation 
experiment loops operation 

Model bins can be combined at run time to provide 
several modes of training capability, including the 
following independent modes: 

reactor-only training (R) 

experiment loops-only training (L) 
balance of plant-only training (B) 

Model bins are also combined to create several 
interacting modes of training: 

reactor, balance of plant, and experiment loops 

reactor interacting with balance of plant (RBI 
reactor interacting with experiment loops (RL) 

interacting @BL) 

In all but the RBL simulation, simplified models 
representing otherwise missing elements of the plant are 
added to maintain realistic plant-wide behavior. The ATR 
Simulator is specifically designed to permit operation of 
concurrent modes. These parallel training sessions are 
limited in availability only by the need for hardware 
consoles, The ATR Simulator accurately reflects the plant 
using a single duplicate of all consoles restricting the 
concurrent modes to: 

0 

0 

0 

parallel R, B, and L sessions 
parallel RB and L sessions 
parallel RL and B sessions. 

Instructor Station 

The Instructor Station subsystem extends deeply into 
the software system, including all aspects of event 
scheduling and management. In essence, these are all the 
components of the simulator injecting changes into steady 
state conditions of the model subsystem. The major 
components include: 

0 event management 
scenario management 

0 history management 
state management 

States and transitions are given in Figure 1 below. The 
initial, Dormant state is of significance only to the ATR 
Simulator as simulation mode selection occurs during 
transition from this state to the Freeze state. The Models- 
and IO-Only states separate running of Simulation Models 
from Operator Console processes for development 
flexibility, and are in fact special cases of the Run mode. 

Figure 1. State transitions for the ATR Simulator. 

Subsystem Interaction 

Model state variables are recorded and maintained in a 
networked, shared-memory segment. The state variables 
together with all variables written to and read from 
hardware interfaces form the Common Control Variables 
(CCVs). The CCVs tie the three simulator subsystems 
together and provide extensive operational as well as 
development and test capabilities. For example, the CCVs 
as initial condition vectors are used to start the simulator in 
any previously recorded state. Instructors control the 



simulator by fixing or ramping CCVs, and developers 
design and test by observing CCVs. Continuous, real-time 
recording of CCVs provides for rewind, playback, and fast- 
forwarding capabilities. Figure 2 illustrates how the three 
ATR Simulator subsystems interact through 9,652 CCVs in 
the ATR Simulator. 
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Figure 2. ATR Simulator subsystem interaction overview. 

Figure 3 shows the block diagram for the computer 
hardware and network configuration. Simulation Model 
processes run exclusively on the high-performance Model 
computer, Instructor Station processes are distributed over 
the Model, Management, and Instructor computers, and 
Operator Console processes are distributed over the IO, 
Model, and Console Display System (CDS) computers. 
Note an additional dedicated network connecting the IO 
and Model computers. Each CDS consists of three to five 
workstations. 
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MODELS 

The criterion for model accuracy was whether or not an 
operator could see a particular plant response in the course of 
operating the plant. If the response could be seen in the plant, 
then it must be seen in the Simulator. This applied to both 
static and dynamic responses. With this as a guideline, certain 
assumptions were made. The accurate simulation of 
catastrophic events such as guillotine primary coolant pipe 
breaks was not requir4 under these extreme conditions the 
operator’s action was simply to exit the facility, leaving the 
safety systems to react as they were designed. Thus, for 
example, the modeling of twc-phase coolant conditions was 
unnecessary except in certain portions of the Experiment 
Loops. Turbulent flow could be assumed in mast piping. 

The models do, however, allow the simulation, of a great 
variety of anomalies that are relevant to operator training, such 
as smaller pipe breaks, heat exchanger leaking and blockage, 
electrical power failures, pump trips, and so forth. The effects 
of cooling fan speeds and weather conditions on cooling tower 
efficiency are also included so that, for example, the effect of a 
weather fiont or seasonal changes can be simulated. 

The creation of computer-based models for the various 
ATR subsystems proceeded as follows. Flrst, mathematical 
models were created, using existing plant documentation, 
actual static and dynamic measurements, and of course 
appropriate physics. Model complexity, precision, and 
accuracy were established on the basis of the mission, i.e., 
operator training, as opposed to precise engineering analysis. 
Second, corresponding computer models were created using a 
design package called XANALOG, a graphical simulation tool 
similar to MATRE-X and CTRGC. Model response, 
accuracy, and stability were carefully verified in this domain 
before proceeding to the next step of creating corresponding 
code that could be ported to the simulator computers. 
XANALOG is capable of automatic code generation in either 
C or Fortran, but as a practical matter this step was not quite as 
trivial as expected. 

Computer throughput was sized to accommodate the 
required model response. Many thennal equations run on a 
100 ms cycle time. Most of the flow and pressure equations 
run at 20 ms, but some hydraulic model portions must run at 2 
ms to maintain correct dynamic response. 

DESIGNING FOR MANY OBJECTIVES 

~ The goal of upgrading the ATR Simulator to reflect 
plant changes had several objectives: 



add balance of plant and experiment loops simulation 
add independent, interacting, and concurrent 
simulation modes 
retain existing reactor simulator functionality 

Buried in these objectives were requirements for plant 
prototyping, scenario and software development, and 
system extensibility. 

Of most significance was the need to support additional 
and concurrent simulations. Without regard to 
implementation, this would increase computing demands 
by two orders of magnitude. Not only would the lines of 
commented source increase from 80,000 to more than 
220,000, but up to three simulations would require 
simultaneous processing. Simulation codes themselves 
account for 45,000 lines of C implemented using Euler 
(40%) and Runga Kutta 4 (lX4, 60%) numerical 
integration methods. Modeling codes using RK4 linearly 
increase time complexity 20 times, and for pressures and 
flows (34% of modeling code) 200 times. Compute power 
pee& were in part met by upgrading existing equipment, 
Le., replacing a 4 specfp92 HP9000 series 350 with a 168 
specfp92 HP9000 series 730. With the exception of turn- 
key components, the ATR Simulator runs on HP-UX 

' versions 7.05 and 9.07. 

Clients, Servers, Peers, and Managers 

Supporting the requirements without compromising 
real time was further achieved through application of 
detailed analysis and synthesis software engineering 
procedures. 

First, the existing reactor simulator was analyzed and 
modularized into a set of interacting components. Berkeley 
sockets and link-level communications were used to scale 
processing from two to three hosts. Scenario management, 
event management, and history management were 
converted or extended to clients and servers. Simulation 
models and hardware input and output were separated and 
distributed into peer-to-peer processes using link-level 
communications. The ethernet between the IO and Model 
computers (Figure 3) is dedicated to connecting the peer 
processes, which transmit 40 packets per second. While 
this provides for high-speed network communications, it 
dictates the need for custom, exception-based error 
handling. This was accomplished through carefid 
definition of interactions using a simple finite state- 
machine shown in Figure 4 (e  indicates an error state; 
event sequences omitted for clarity). 
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Figure 4. Finite state machine for IO-Model handshaking. 

Second, a new service called the Mode Manager was 
introduced for inclusion at all newly defined interfaces. 
This layer of concurrency control software involves 
correctly matching a service request to the service provider. 
For example, with three concurrent simulations running a 
request to ramp a variable must be properly matched with 
the desired simulation. The Mode Manager accomplishes 
this by maintaining a mode mask in the CCV containing 
slots for each simulation and corresponding simulation 
state. Three slots permit three concurrent simulations each 
with a private set of CCVs. The mode mask itself resides 
in a global CCV section. Only the Mode Manager may 
manipulate the mode mask. 

Parents And Children 

The last step was the redesign of the Model Processes 
to understand modes. A parent-child model was used to 
implement the need for rapid state transitions, to manage 
multiple simulation model processes, and to provide 
development and test capability concurrent with operational 
use. In fact, operational use of several fully tested ATR 
Simulator modes commenced prior to full completion of the 
upgrade. 

A parent control process monitors the mode mask for 
changes fiom and to the Dormant state, spawning and 
killing up to three concurrent model processes, respectively. 
Model processes themselves check the mode mask to 
identify themselves, Le., what simulation mode they 
represent. The model processes also use the mode mask to 
determine what state they are in. For example, entry into 



the Initialize state requires special first-time processing to 
properly set hardware channels and state variables. 

The parent, control process is responsible for running 
the children, digital-tc-analog conversions, engineering 
unit conversions, and network communications software 
within a 100 ms timeslot. Semaphores are used to 
synchronize processing within this timeslot. Network 
communications involve sending several link-level packets 
from the Model computer to tke IO computer, which is 
dedicated to hardware writes and reads. Figure 5 shows the 
resulting use of the CCV shared memory segment. In this 
case three slots are in use by independent simulations. For 
each simulation only those variables associated with the 
operator console are IO bound. 

i 
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Figure 5. CCV occupied by three independent simulations. 

The interacting RL case is illustrated by Figure 6, 
where variables for both Reactor and Experiment Loops are 
IO bound. 
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Figure 6. CCV occupied by two independent simulations of 
which one uses an interacting mode. 

Figure 7 shows a control panel available to instructors 
for mode selection. This control panel is a tcl/tk wrapper 
around the Scenario Manager, The Scenario Manager is 
an interpreter that acts in a client-server relationship with 
the Event Manager to inject changes into the Simulation 
Model subsystem. 

Figure 7. Simulation mode management control panel. 

In this figure we see a REACTOR-PROCESS (Rl3) 
simulation 15.1s into a run, a frozen LOOPS simulation, 
and a third, dormant slot. 

Besides controlling modes through points and clicks, 
simulation selection from this control panel generates a 
gnu-client request to an emacs-server responding with a 
Scenario Manager interpreter for precise event scheduling. 
Instructors can develop sophisticated scenario programs 
using tcl/tk interactions with the Scenario Manager. 

IMPLEMENTING FOR THE LONG TERM 

Mature software development practices are a 
prerequisite to the production of quality software. Software 
experiences specific to nuclear training simulators have 
been documented (Davis and Webb 1988). At the ATR 
Simulator, several steps were taken to address the need to 
develop within short time frames and produce intermediate 
deliverables. These included 

0 

0 component-oriented development 
0 

0 

sensible configuration management (CM) practices 
tightly woven into the development process 

strict adherence to build- and run-time flexibility rules 
extensive use of Unix and other productivity tools 

In order for CM to aid rather than restrict the 
development process the software engineer must see its 
benefits. Every developer must be accountable to perform 
code checkouts and checkins, perform system builds, 
establish baselines, and work directly with customers to 
sign off change requests. 

In a concept overloaded software world, many basic 
computer science precepts retain high value. Data-driven 
processing and loosely-coupled components are inherent to 
producing flexible and maintainable code. This includes 
decoupling source from its build- and run-time 
environments to produce build and run anywhere software. 
And, it also includes the requirement to permit piecewise 
system builds. 

.- 



Applying CM sensibly and linking the component- 
oriented design with build- and run-time flexibility in a 
distributed computing environment has produced many 
benefits. Several sofnyare Simulators, each offering 
concurrent simulations, can run simultaneously without the 
need for additional hardware, resulting in minimal 
hindrance between the following activities: 

software development 
0 training sessions 

scenario development 
plant prototyping 

This is in contrast to offering similar capabilities using 
duplicate, independent hardware (Gregory et al. 1991). 

As in any well-designed, distributed system, the ATR 
Simulator’s clients and servers can run within the domain 
of a single machine. This is illustrated in Figure 8 by the 

This tool plots any CCV variable for any simulation mode 
(concurrent and / or integrated) against time. The figure 
below shows a selection of variables for RB (REACTOR- 
PROCESS, interacting) and L (LOOPS, independent) 
simulations. 

1 use of the xCCV development tool under model-only mode. 

FUTURE DlRECTIONS 

The current generation technology ATR Simulator was 
originally completed in 1989 (Burtt et al. 1989). This 
upgrade was completed in 1994. The software life cycle is 
currently at a maintenance stage where bug fixes and minor 
enhancements are ongoing. Additional upgrades are 
currently not planned. 

Were additional simulation capabilities required, the 
team involved with the ATR Simulator would draw heavily 
from the ATR Simulator’s concepts and experiences. In 
particular, the component-oriented approach would likely 
be extended to include additional client-server and peer-to- 
peer processing for decreased coupling of components. 
This would result in yet more flexibility, maintainability, 
and reliability. This would be of most interest when the use 
of independent, interoperating, and concurrent simulation 
modes are generalized without restrictions on instances 
(currently three) or distribution resulting in a fully 
scaleable simulator system. This would correspond to 
several trends in simulation capability, including both 
larger and smaller scale simulators (White 1992). 
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