Chatter suppression through variable impedance and smart fluids

PDF Version Also Available for Download.

Description

A novel approach to mitigating chatter vibrations in machine tools is presented. Encountered in many types of metal removal processes, chatter is a dangerous condition which results from the interaction of the cutting dynamics with the modal characteristics of the machine-workpiece assembly. Tool vibrations are recored on the surface of the workpiece during metal removal, imposing a waviness which alters the chip thickness during subsequent cutting passes. Deviations from the nominal chip thickness effect changes in the cutting force which, under certain conditions, can further excite vibrations. The chatter mitigation strategy presented is based on periodically altering the impedance of ... continued below

Physical Description

11 p.

Creation Information

Segalman, D. & Redmond, J. February 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 27 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A novel approach to mitigating chatter vibrations in machine tools is presented. Encountered in many types of metal removal processes, chatter is a dangerous condition which results from the interaction of the cutting dynamics with the modal characteristics of the machine-workpiece assembly. Tool vibrations are recored on the surface of the workpiece during metal removal, imposing a waviness which alters the chip thickness during subsequent cutting passes. Deviations from the nominal chip thickness effect changes in the cutting force which, under certain conditions, can further excite vibrations. The chatter mitigation strategy presented is based on periodically altering the impedance of the cutting tool assembly. A cyclic electric (or magnetic) field is applied to the spindle quill which contains an electro-rheological (or magneto-rheological) fluid. The variable yield stress in the fluid affects the coupling of the spindle to the machine tool structure, changing the natural frequency of oscillation. Altering the modal characteristics in this fashion disrupts the modulation of current tool vibrations with previous tool vibrations recorded on the workpiece surface. Results from a simulated milling process reveal that significant reductions in vibration amplitude can be achieved through proper selection of fluid and excitation frequency.

Physical Description

11 p.

Notes

OSTI as DE96007350

Source

  • Society of Photo-Optical Instrumentation Engineers (SPIE) smart structures and materials conference, San Diego, CA (United States), 26-29 Feb 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96007350
  • Report No.: SAND--96-0253C
  • Report No.: CONF-960268--1
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 206364
  • Archival Resource Key: ark:/67531/metadc665251

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • April 14, 2016, 7:28 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 27

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Segalman, D. & Redmond, J. Chatter suppression through variable impedance and smart fluids, article, February 1, 1996; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc665251/: accessed September 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.