Epitaxial Growth of Metal Fluoride Thin Films by Pulsed-Laser Deposition

D. P. Norton, J. D. Budai, B. C. Chakoumakos, D. B. Geohegan and A. Puretzky

December 1995

Prepared by
Solid State Division
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, Tennessee 37831-6056
managed by
LOCKHEED MARTIN ENERGY SYSTEMS, INC.
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-84OR21400

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
Epitaxial Growth of Metal Fluoride Thin Films by Pulsed-Laser Deposition

D. P. NORTON,* J. D. BUDAI,* B. C. CHAKOUMAKOS,* D. B. GEOHEGAN* AND A. PURETZKY,** Oak Ridge National Laboratory, Solid State Division, Oak Ridge, TN 37831-6056; **Institute of Spectroscopy, Troitsk, Russia.

ABSTRACT

We have investigated the growth of GdLiF4 thin films for optical waveguide applications using pulsed-laser deposition (PLD). Epitaxial, c-axis oriented GdLiF4 films have been grown from undoped GdLiF4 targets in an on-axis PLD geometry on (100) CaF2. These films exhibit a high density of particulates on the surface which are ejected from the target in the ablation process. Growth from Nd-doped polycrystalline GdLiF4 ablation targets results in relatively smooth films with lower particulate densities, as Nd doping significantly increases the optical absorption of GdLiF4 at the ablation laser wavelength of 193 nm and permits efficient pulsed-laser deposition. Optical emission spectra of the ablation pume reveals the presence of atomic fluorine, gadolinium, and lithium, indicating the dissociation of the metal-fluorine bonds in the ablation process. In addition, we find that the residual background oxygen pressure must be sufficiently reduced to avoid the formation of Gd4O3F6 as an impurity oxy-fluoride phase in the films.

INTRODUCTION

Metal fluorides are important materials for both active and passive optical components. Their low refractive index, wide optical transmission range, and low nonradiative decay rate make them attractive for numerous optical applications. The epitaxial growth of metal-fluoride films for waveguide device structures in of interest for several material systems. Most of the effort in growing epitaxial metal fluorides has focused on binary compounds, such as CaF2, SrF2, and BaF2, using a variety of techniques such as molecular beam epitaxy and chemical vapor deposition.1-6 These efforts have included the epitaxial growth of rare-earth doped binary fluoride films, as rare-earth doped metal fluoride bulk crystals are among the most actively studied solid-state laser materials. However, little attention as been given to the epitaxial growth of more complex metal fluorides, despite promising properties observed in bulk single crystals. One such metal fluoride material is GdLiF4, which is optically transparent over a large spectral region and is a promising laser host crystal when doped with optically-active rare earth ions.7 Potential optical waveguide devices utilizing rare earth-doped GdLiF4 thin films include compact, solid state upconversion lasers for display and data-storage applications, and 1.3 and 1.55 μm wavelength optical amplifiers in optic fiber communication systems. Unfortunately, no film growth technique has been shown effective in obtaining epitaxial GdLiF4 films suitable for these waveguide structures. In this paper, we report on the growth of GdLiF4 thin films using pulsed-laser deposition.

EXPERIMENTAL

The (Gd,Nd)LiF4 films were grown using conventional pulsed-laser deposition. An ArF excimer laser beam (~140 mJ, 193 nm, 38ns full-width half-maximum (FWHM) pulse duration, 3.3 Hz) was focused to a horizontal line on ~25 mm diameter stoichiometric GdLiF4 and Gd0.95Nd0.05LiF4 rotating targets. The ablation targets were prepared from high-purity GdF3, LiF, and NdF3 powders and sintered in flowing argon at 600°C. The focused laser energy density was 1.5–3.0 J/cm2, and the heated substrates were placed ~4.5 cm from the sintered
target. The substrates were heated to 350–450°C with film growth carried out in either vacuum or 100 mTorr argon. Typical growth parameters yielded a film growth rate of ~20 Å/min. Substrates used in this effort included (100)-oriented CaF2 and (012) Al2O3 (sapphire).

DISCUSSION

Figure 1 shows x-ray diffraction patterns obtained from a GdLiF4 thin film deposited on (100) CaF2. The film was grown at 450°C in vacuum with a base pressure of 6×10^{-7} Torr. The diffraction pattern indicates strong (002) and (004) GdLiF4 peaks very close to the (002) peaks from the CaF2 substrate, as well as weaker peaks attributed either to polycrystalline GdLiF4 or an oxy-fluoride impurity phase. A ϕ-scan through the GdLiF4 (105) indicates that the c-axis oriented material is in-plane aligned with lattice parameters of $a=5.21\text{Å}$ and $c=10.98\text{Å}$. The polycrystalline GdLiF4 observed in the diffraction pattern appears to originate from a significant density of randomly-oriented GdLiF4 particulates on the film surface. Particulates are often observed in films grown by on-axis PLD, particularly when the ablated material has a relatively low optical absorption coefficient at the ablation wavelength. Under these conditions, the ablation laser pulse interacts with a relatively large volume of the target material. While some of the ablated material is vaporized in the ablation process, a significant fraction is ejected from the target as particulates. The high density of GdLiF4 particulates in these films reflects the low optical absorption coefficient of the target at 193 nm.

![Fig. 1](image)

Fig. 1 Four-circle x-ray diffraction patterns from a (a) $\theta-2\theta$ scan and (b) ϕ-scan through the GdLiF4 (105) peak for a GdLiF4 film grown on (100) CaF2 by pulsed-laser deposition.

For waveguide applications, surface roughness is a significant issue, as it leads to optical losses. In an attempt to reduce the density of particulates in these films, we investigated the laser ablation growth of Nd-doped GdLiF4 films, where Nd was added to increase the optical absorption coefficient of the ablation target at 193 nm and permit more efficient laser ablation using an ArF excimer laser. Nd is also an interesting active rare-earth dopant with a high solubility in GdLiF4. Several of the absorption lines of Nd$^{3+}$ ions overlap the emission lines of GaAs-GaAlAs lasers, making Nd-doped thin-film structures suitable for use in GaAs-based optoelectronic systems. Using pulsed-laser deposition, we were able to grow c-axis oriented Gd$_{0.95}$Nd$_{0.05}$LiF$_4$ films on a variety of substrates, including (100) CaF2 and Al$_2$O$_3$. Figure 2 shows the x-ray diffraction pattern for a 500 nm-thick, c-axis oriented Gd$_{0.95}$Nd$_{0.05}$LiF$_4$ film grown on single crystal Al$_2$O$_3$ at 350°C. Similar results were observed on (100) CaF2.
Fig. 2. X-ray diffraction data for c-axis oriented, 0.5 μm thick Gd_{0.95}Nd_{0.05}LiF_{4} thin film grown on (012) Al_{2}O_{3} substrates. This film was grown in a background gas of 100 mTorr argon with a base pressure of 2 × 10^{-7} Torr.

While clearly c-axis textured, four-circle x-ray diffraction revealed no evidence of in-plane alignment of this films, possibly due to the relatively low growth temperature utilized. These films were significantly smoother than films grown from the undoped target. Figure 3(a) shows surface profile scans for films deposited from undoped and Nd-doped GdLiF_{4} ablation targets using pulsed-laser deposition. From the surface profiles, one can see that the film grown from the Nd-doped target is significantly smoother with a lower density of particulates than the film grown from the undoped target. Figure 3(b) shows a scanning electron micrograph of a film grown from the Gd_{0.95}Nd_{0.05}LiF_{4} target. From the micrograph, one observes some particles on the surface, although the underlying film appears to be relatively smooth. The presence of these particles in both undoped and Nd-doped films suggests that an alternative PLD geometry, such as off-axis, may be necessary in growing films smooth enough for waveguide applications.
In films that were grown with only moderately low vacuum base pressures, we often observed epitaxial Gd$_4$O$_3$F$_6$ as an oxy-fluoride impurity phase. The importance of achieving a low base pressure and eliminating residual sources of oxygen can be seen in x-ray diffraction patterns shown in Fig. 4. These patterns were obtained from two films grown with the same Gd$_{0.95}$Nd$_{0.05}$LiF$_4$ ablation target at base pressures of 1.5×10^{-6} Torr and 2.0×10^{-7} Torr. The figure shows that the film grown with a base pressure of 2.0×10^{-7} Torr is c-axis oriented (Gd,Nd)LiF$_4$. However, pulsed-laser deposition from the same target at a higher base pressure of 1.5×10^{-6} Torr yields the oxy-fluoride Gd$_4$O$_3$F$_6$ with virtually no evidence for (Gd,Nd)LiF$_4$. In fact, we found that with (Gd,Nd)LiF$_4$ targets, epitaxial Gd$_4$O$_3$F$_6$ could easily be grown by pulsed-laser deposition on a variety of substrates. Clearly, the formation of GdLiF$_4$ without the presence of this oxy-fluoride impurity phase requires near-UHV base pressures in the film growth system.

In addition to characterizing the film properties, we also investigated the emission spectra of the ablation plume. Figure 5 shows the emission spectrum of an ablation plume from a Gd$_{0.95}$Nd$_{0.05}$LiF$_4$ target irradiated with a focus 193 nm ArF excimer beam. The laser energy density used to obtain this ablation spectrum was 1.7 J/cm2 with a beam spot size of 1.6 \times 0.7 mm2. The spectrum was taken 1 cm above the ablation target surface 1 μs after the laser pulse in a base pressure was 10^{-6} Torr. The spectrum shows the presence of atomic fluorine, gadolinium, and lithium in the plume indicating dissociation of the metal-fluorine bonds in the ablation process. Note that this differs from what is typically observed in thermal evaporation sources of metal fluorides in which the metal-fluorine bonds remain intact in the evaporant flux. Atomic metal species in the ablation flux will be quite vulnerable to reacting with any background impurity gases as is observed with the formation of oxy-fluorides.
CONCLUSION

In summary, we have investigated the growth of GdLiF\(_4\) thin films for optical waveguide applications using pulsed-laser deposition. Epitaxial, c-axis oriented GdLiF\(_4\) films which are in-plane aligned have been grown on (100) CaF\(_2\) substrates. Films grown from undoped GdLiF\(_4\) targets in an on-axis PLD geometry exhibit a high density of particulates on the surface which are ejected from the ablation target.

We have also investigated the growth of Nd-doped GdLiF\(_4\), where Nd doping of the polycrystalline GdLiF\(_4\) ablation targets both increases the optical absorption of GdLiF\(_4\) at the ablation laser wavelength of 193 nm as well provides a source of optically-active Nd\(^{+3}\) ions in the films. Films grown from Nd-doped GdLiF\(_4\) targets by pulsed-laser deposition were significantly smoother with a lower particulate density than films grown from undoped ablation targets, although an off-axis PLD geometry may be necessary in order to achieve waveguide-quality epitaxial films. In addition, we also demonstrated that near-UHV base pressures are required for the deposition of (Gd,Nd)LiF\(_4\) films without the formation of impurity oxy-fluorides, such as Gd\(_4\)O\(_3\)F\(_6\).

The authors would like to thank B. C. Chakoumakos for providing the fluoride ablation targets. This research was sponsored by the Division of Materials Sciences, U.S. Department of Energy under contract DE-AC05-84OR21400 with Lockheed Martin Energy Systems, Inc.

![Fig. 4. X-ray diffraction data for Gd\(_{0.95}\)Nd\(_{0.05}\)LiF\(_4\) and Gd\(_4\)O\(_3\)F\(_6\) films obtained from the same target by depositing with different base pressures.](image-url)
Fig. 5. Emission spectrum of the ablation plume from a Gd$_{0.95}$Nd$_{0.05}$LiF$_4$ target showing atomic lines for fluorine, gadolinium, and lithium.

REFERENCES

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.