The dynamics of marginality and self-organized criticality as a paradigm for turbulent transport

PDF Version Also Available for Download.

Description

A general paradigm, based on the concept of self-organized criticality (SOC), for turbulent transport in magnetically confined plasmas has been recently suggested as an explanation for some of the apparent discrepancies between most theoretical models of turbulent transport and experimental observations of the transport in magnetically confined plasmas. This model describes the dynamics of the transport without relying on the underlying local fluctuation mechanisms. Computations based on a cellular automata realization of such a model have found that noise driven SOC systems can maintain average profiles that are linearly stable (submarginal) and yet are able to sustain active transport dynamics. ... continued below

Physical Description

24 p.

Creation Information

Newman, D.E.; Carreras, B.A.; Diamond, P.H. & Hahm, T.S. December 31, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A general paradigm, based on the concept of self-organized criticality (SOC), for turbulent transport in magnetically confined plasmas has been recently suggested as an explanation for some of the apparent discrepancies between most theoretical models of turbulent transport and experimental observations of the transport in magnetically confined plasmas. This model describes the dynamics of the transport without relying on the underlying local fluctuation mechanisms. Computations based on a cellular automata realization of such a model have found that noise driven SOC systems can maintain average profiles that are linearly stable (submarginal) and yet are able to sustain active transport dynamics. It is also found that the dominant scales in the transport dynamics in the absence of sheared flow are system scales rather than the underlying local fluctuation scales. The addition of sheared flow into the dynamics leads to a large reduction of the system-scale transport events and a commensurate increase in the fluctuation-scale transport events needed to maintain the constant flux. The dynamics of these models and the potential ramifications for transport studies are discussed.

Physical Description

24 p.

Notes

INIS; OSTI as DE96004930

Source

  • 37. annual meeting of the American Physical Society Division of Plasma Physics, Louisville, KY (United States), 6-10 Nov 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96004930
  • Report No.: CONF-951182--4
  • Grant Number: AC05-84OR21400
  • Office of Scientific & Technical Information Report Number: 188629
  • Archival Resource Key: ark:/67531/metadc665056

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Jan. 21, 2016, 8:04 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Newman, D.E.; Carreras, B.A.; Diamond, P.H. & Hahm, T.S. The dynamics of marginality and self-organized criticality as a paradigm for turbulent transport, article, December 31, 1995; Tennessee. (digital.library.unt.edu/ark:/67531/metadc665056/: accessed June 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.