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Abstract 

Guidelines for the programming and auditing of software written in high level languages for safety 
systems are presented. The guidelines are derived from a framework of issues significant to software 
safety which was gathered from relevant standards and research literature. Language-specific 
adaptations of these guidelines are provided for the following high level languages: Ada, C/C++, 
Programmable Logic Controller (PLC) Ladder Logic, International Electrotechmcal Commission 
(IEC) Standard 1131-3 Sequential Function Charts, Pascal, and PL/M. Appendices to the report 
include a tabular summary of the guidelines and additional information on selected languages. 
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Executive Summary 

This report provides guidance to the NRC on auditing of programs for safety systems written in the following 
six high level languages: Ada, C and C++, PLC Ladder Logic, Sequential Function Charts, Pascal, and PL/M. 
It could also be used by those developing safety significant software as a basis for project-specific 
programming guidelines. The focus of the report is on programming, not design, requirements development, 
or testing. However, it is not intended as a general programming style guide; excellent sources already exist. 

A uniform framework for the formulation and discussion of language-specific programming guidelines was 
the basis for developing the guidelines. The framework is a 3-level hierarchy. At the top of the hierarchy are 
top level attributes, i.e., attributes which largely define a general quality of software related to safety. Four 
top level attributes were defined. These are: 

• Reliability. The predictable and consistent performance of the software under conditions specified 
in the design basis. This top level attribute is important to safety because it decreases the likelihood 
that faults causing unsuccessful operation will be introduced into the source code during 
implementation. 

Robustness. Robustness is the capability of the safety system software to operate in an acceptable 
manner under abnormal conditions or events. This top level attribute is important to safety because 
it enhances the capability of the software to handle exception conditions, recover from internal 
failures, and prevent propagation of errors arising from unusual circumstances. 

• Traceability. Traceability relates to the feasibility of reviewing and identifying the source code and 
library component origin and development processes, i.e., that the delivered code can be shown to be 
the product of a disciplined implementation process. Traceability also includes being able to associate 
source code with higher level design documents. This top level attribute is important to safety because 
it facilitates verification and validation, and other aspects of software quality assurance. 

• Maintainability. The means by which the source code reduces the likelihood that faults will be 
introduced during changes made after delivery. This top level attribute is important to safety because 
it decreases the likelihood of unsuccessful operation resulting from faults during adaptive, corrective, 
or perfective software maintenance. 

Immediately below these top level attributes are intermediate attributes, i.e., related to the top level attribute 
but not sufficiently specific to define guidelines. An example of an intermediate level attribute is predictable 
memory utilization. At the lowest level are base attributes, i.e., attributes sufficiently specific to define 
guidelines. An example of a base attribute is to avoid dynamic memory allocation. The guideline which can 
be derived from this base attribute for C programs is to avoid the use of malloc in safety system software. 

Guidelines for Ada were based on the 1983 standard ("Ada 83"). Although an extensive revision to the 
standard occurred in 1995, current compiler implementations are insufficiently mature to be considered for 
safety systems at the time of the writing of this report. Thus, there is not a sufficient experience base upon 
which to develop substantive guidelines. The discussion encourages use of strong typing and exception 
handling features in Ada 83, but strongly discourages the use of tasking. Certain pragmas such as unchecked 
deallocation or suppression of run-time constraint checking are also strongly discouraged. 
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Guidelines for C and C++ were combined into a single chapter because of the close relationship between the 
two languages and because programs written in C++ are also likely to contain C code as well. Although C 
programs can interact extensively with operating systems or real time kernels, a discussion of these issues is 
not included because it is related to specific operating system characterstics and is beyond the scope of this 
study. The discussion emphasized the problems in memory allocation and deallocation, pointers, control flow, 
and software interfaces. 

Guidelines for programmable logic controller (PLC) Ladder Logic were discussed for the language in general, 
but emphasized that implementations vary significantly among vendors. Ladder Logic is fundamentally 
different from other high level languages in that it is more symbolic, has a limited number of data types, and 
has a more limited syntax. Another difference is that Ladder Logic is closely associated with PLCs, computers 
specialized for real time industrial control. This specialization results in unique I/O capabilities but limited 
information processing features. The graphical syntax of Ladder Logic requires that safety system programs 
be well organized in both their control flow and the structure of their internal data storage. 

Guidelines for Sequential Function Charts (SFCs) also recognized the fundamental difference between the 
programming paradigm for that language and those of other languages. SFCs are intended as a way to organize 
the control flow of lower level software modules written in other languages defined by the IEC 1131-3 
standard (including Ladder Logic). The guidelines emphasized the proper use of SFCs given their intended 
purpose and orientation. The guidelines also identified potential pitfalls in the application of SFCs to safety 
systems. 

The discussion of Pascal addressed not only the ANSI standard, which is fairly limited, but also the most 
popular extensions. Addressing the extensions is important because they are more widely used in real time 
and near-real time systems than is the standard language. The focus of the discussion was similar to C, dealing 
with memory allocation and deallocation, pointers, and software interfaces. 

PL/M is a language that has been used extensively in microprocessor control applications, but which is now 
no longer being supported by its corporate progenitor. The guidelines that were developed were similar to 
those of C and Pascal. However, a specific concern for the use of PL/M in safety systems is the preservation 
of the technical base including people, software tools, and support environments. 

Appendices to the document include (a) additional descriptive material on the less known real time control 
languages in this report (PLC Ladder Logic, SFCs, and PL/M), (b) tabular summaries of the guidelines in the 
main body of the report, a glossary together with an assessment of their importance, (c) a glossary, (d) 
additional material on the origin of the generic attributes, and (e) a brief description of the background of the 
report contributors. 

This report was prepared as an account of work sponsored by the Nuclear Regulatory Commission, an agency 
of the United States Government. Neither the United States Government nor any agency thereof, nor any 
employees, makes any warranty, expressed or implied, or assumes legal liability or responsibility for any 
information, apparatus, product, or process disclosed in this report, or represents that its use by such a third 
party would not infringe privately owned rights. The opinions, findings, conclusions, and recommendations 
expressed herein are those of the authors and do not necessarily reflect the views of the NRC. Use of these 
guidelines will assist auditors in identifying problems in the implementation of safety system programs, but 
it does not guarantee that such problems will not occur. The emphasis of these guidelines was on common 
attributes and related problems; it was not possible for the subject matter experts to exhaustively consider all 
legal constructs in each of the languages. 
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1 Introduction 
This is the final report prepared in accordance with the requirements of Nuclear Regulatory 
Commission (NRC) Contract RES 04-94-046. This document describes characteristics and 
programming guidelines for the following high level languages. 

Ada 
C and C++ 

• PLC Ladder Logic 
• IEC 1131 Sequential Function Charts 
• Pascal 

PL/M 

The goal of this report is to provide guidance to the NRC for reviewing high-integrity software in 
nuclear power plants. Thus the focus of the report is on implementation (i.e., programming). Issues 
related to design, requirements, verification and validation, and the development process are covered 
in other industry standards and NRC reports (e.g., IEEE 7-4.3.2-1993, IEC 880, NUREG/CR 5930, 
NUREG/CR 6263, and NUREG/CR 6293). In this document, these topics are covered only to the 
extent that they affect implementation. 

This report was prepared as an account of work sponsored by the Nuclear Regulatory Commission, 
an agency of the United States Government. Neither the United States Government nor any agency 
thereof, nor any employees, makes any warranty, expressed or implied, or assumes legal liability or 
responsibility for any information, apparatus, product, or process disclosed in this report, or 
represents that its use by such a third party would not infringe privately owned rights. The opinions, 
findings, conclusions, and recommendations expressed herein are those of the authors and do not 
necessarily reflect the views of the NRC. 

1.1 Scope 

Certain prograrnming practices can affect the safety of digital systems, and hence, guidelines can be 
developed to enhance their dependability. This document identifies such guidelines for safety 
related software written in the 6 high level languages identified above. This report is not intended 
as a general programming style guide; excellent sources already exist for these languages. However, 
this document could be used to review the development of safety-critical systems to supplement 
guidance in existing coding standards or as part of the basis for reviewing non-safety grade software 
incorporated in safety grade systems. 

Because of the focus of this work, many prograrnming topics were excluded unless they directly 
affected safety. Such topics include object-oriented analysis and design, code reuse, and efficiency 
(e.g. minimizing resource requirements or optimizing for response time). 
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Figure 1-1 Overview of guideline development process 

The applicability of the generic attributes and language specific guidelines is affected by many 
characteristics of a safety-related system. Where possible, these have been noted in the document. 
However, not all such factors can be anticipated by the subject matter experts who contributed to the 
language specific sections . Moreover, the general subject of coding practices and styles can be 
controversial. Users of this document should take both the guidance contained in this document, the 
specific project characteristics and the existing practices of the development organization into 
account as they consider the application of these guidelines. 
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1.2 Methodology 

Figure 1-1 shows the process by which the language guidelines were developed. The work is divided 
into the following 5 tasks: 

• Taskl, Generic Characteristics: Define language independent software attributes affecting 
safety 

• Task 2, Language Assessment: Relate language independent software attributes to language 
specific programming guidelines 

• Task 3, Peer Review: Revise results of Tasks 1 and 2 based on review by independent 
Subject Matter Experts (SMEs) acting as reviewers. 

• Task 4, Seminar: Present results 

• Task 5, Final Report 

The following subsections discuss the methodology in greater detail. 

1.2.1 Task 1 Methodology 

In Task 1, generic attributes of computer languages were defined through the following iterative 3-
step process: 

1. Identify safety related software attributes from review of existing work. 
2. Classify and group attributes. 
3. Validate classification. 

In the first step, attributes related to safety identified in relevant standards and the current literature 
were identified. Table 1-1 identifies the sources from which the majority attributes were extracted. 

The attributes from Step 1 were aggregated and regrouped into a three level hierarchy as follows: 

• Top level attributes: attributes which largely define a general quality of software related to 
safety. An example of a top level attribute is reliability. 

• Intermediate attributes: attributes related to the top level attribute but which are not 
sufficient specific to define guidelines. An example of an intermediate level attribute is 
predictable memory utilization. 
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Base attributes: Attributes related to intermediate attributes and sufficiently specific to 
define guidelines. An example of a base attribute is to avoid dynamic memory allocation. 
The guideline which can be derived from this base attribute for C programs is to avoid the 
use of malloc in safety systems. 

Table 1-1. Sources Used for the Identification of Software Safety Attributes 

Andersen, O. and P.G. Petersen, Standards and regulations for software approval and certification, 
ElektronikCentralen Report ECR 154 (Denmark), 1984. 
Bowen, T.P. and G.B. Wigle and J.T. Tsai, "Specification of Software Quality Attributes" Report, 3 Vols. " 
RADC-TR-85-37, available fromNTIS, 1985. 
Gottfried, R.and D. Naiditch, Using Ada in Trusted Systems, Proc. of COMPASS 93, May, 1993, National 
Institute of Standards and Technology, Washington, DC, 1993. 
Institute of Electrical and Electronic Engineers, Nuclear Power Engineering Committee, IEEE Std-603-1991, 
IEEE Standard for Nuclear Power Generating Stations. 
Institute of Electrical and Electronic Engineers, DEEE-Std-7 -4.3.2-1993, IEEE Standard Criteria for Digital 
Computers in Safety Systems of Nuclear Power Generating Station. 
International Electrotechmcal Commission (IEC), "Software for Computers in the Safety Systems of Nuclear 
Power Stations," Standard 880. 
McDermid, J.D., ed., Software Engineer's Reference Book, CRC Press, Inc., Cleveland, Ohio, 1993. 
Leveson, N.G. and C.S. Turner, An Investigation of the Therac-25 Accidents, University of California, Irvine 
Technical Report 92-108, Irvine, California, 1992. 
McGarry, F., "The Impacts of Software Engineering," briefing presented to the NRC Advisory Committee on 
Reactor Safeguards (ACRS), August 21, 1992. 
Murine, G.E., "Rome Laboratory Framework Implementation Guidebook", RL-TR-94-149, USAF Rome 
Laboratory, March 1994. 
Parnas, D.L., A. J. van Schouwen and S.P. Kwan, "Evaluation of Safety Critical Software," Communications of 
the ACM, Vol. 33, No. 6, p. 636, June, 1990. 
Proceedings of the Digital Systems Reliability and Nuclear Safety Workshop, NUREG/CP-0136, NIST SP 
500-216, 1993. 
Smith, D.J. and K.B. Wood, Engineering Quality Software: A review of Current Practices, Standards, and 
Guidelines Including New Methods and Development Tools. New York: Elsevier Applied Sciences, 1989. 
U.S. Department of Defense, DoD-Std-2167A, Software Development Standard 
Witt, B.I. and F.T. Baker and W.W. Merritt, Software Architecture and Design. Van Nostrand Reinhold, New 
York, 1994. 

The process was iterative. An initial framework was established, and the grouping and classification 
was modified as additional references were consulted and attributes added. The decision diagram 
for defining and classifying the attributes is shown in Figure 1-2. 

The classification was validated by comparing the attributes with the causes and descriptions of 
failures in two major air traffic control projects (the Federal Aviation Administration Advanced 
Automation System and Voice Control Switching System) as well as incident reports from the Eagle 
21 reactor protection system upgrades at the Tennessee Valley Authority (TVA) Sequoyah Nuclear 
Plant. Additional validation came from other published large scale studies of software failures. 
These are identified in Table 1-2. 
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Identify attribute from 
existing Sterature 

Candidate top level 
attribute 

Candidate top level 
attribute 

Intermediate level 
attribute 

Intermediate level 
attribute 

Intermediate level 
attribute 

Figure 1-2 Decision diagram for defining attributes from existing literature 

Table 1-2. Error Data Sources for Validation of Attributes 

Thayer, R., "Software Reliability Study," Rome Air Development Center report RADCTR 76-238, March, 1976. 
Chillarege, R., "Orthogonal Defect Classification," IEEE Trans. SW Engineering, November, 1991. 
TVA Letter to NRC Dated May 10,1990, Sequoyah Nuclear Plant (SQN) —Eagle 21 Functional Upgrade 
Commitments, NRC Public Document Room, Accession #910715001. 
Advanced Automation System Program Trouble Report data (IBM/Loral) January, 1993 to July, 1994, U.S. 
Federal Aviation Administration Contract DTFA01-88-C-00042 
Voice Switching and Communication System Change Request (SCR) data (Harris Corp.), January, 1991 to July, 
1994, Federal Aviation Administration Contract DTFA01-87-C-00002 
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1.2.2 Task 2 Methodology 

In Task 2, these attributes were provided to an initial set of Subject Matter Experts (SMEs) who 
developed language-specific guidelines. These experts developed language-specific guidelines as 
stand-alone documents in conjunction with the authors of the Task 1 report, who also served as 
reviewers. The SMEs were briefed on the specific nature of this work, that is, concentrating on 
safety and language-specific issues. The SMEs were also instructed to provide published literature 
citations as references for any points that they felt would be controversial. Each SME report 
prepared for a Task 2 report was reviewed and revised. This process allowed for the resolution of 
technical disagreements and uncertainties. The results of the SMEs' work were then edited for 
uniformity and integrated into a single document. The results of the Task 2 report were then sent 
to a panel of expert reviewers for their comments. Preliminary and final copies of this report were 
prepared. 

1.2.3 Task 3 Methodology 

In task 3, the generic attributes and language specific guidelines were submitted to an independent 
set of SMEs who served as reviewers. These reviewers provided an initial round of comments, after 
which the guidelines were revised. The guidelines were then resubmitted to the reviewers for a final 
round of evaluations. 

Table 1-3 lists the individuals who served as authors for the Task 2 guideline preparation and for the 
Task 3 reviews. Each SME has one or more graduate degrees and a substantial background in 
software development in both safety-critical systems and in the particular language for which the 
criteria were developed. Appendix E provides additional information on the software development 
background of these individuals. 

1.2.4 Tasks 4 and 5 Methodology 

The Task 3 report was circulated for comment within the NRC as well as to selected individuals 
outside of the NRC. As part of Task 4, a seminar was conducted at which time additional comments 
and feedback on the specific guidelines and the general conclusions of the report were gathered. 
These comments resulted in additional changes which were then incorporated into the final 
document. 
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Table 1-3. Subject Matter Experts 

Language 

Ada 

C 

PLC Ladder Logic 

IEC 1131-3 Sequential Function 
Charts 

Pascal 

PL/M 

Nuclear Systems 

Task 2 SMEs 

S. Graff 
W. Greene 

D. Lin, Ph.D 
A. Tai, Ph.D 

S. Koch, Ph.D 
H. Hecht, Ph.D 

S. Koch, Ph.D 
H. Hecht, Ph.D 

S.Graff 
M. Hecht 

D. Wendelboe 

Task 3 SMEs 

B. Sanden, Ph.D 
K.S. Tso, Ph.D 
E. Shokri, Ph.D 

A. Sorkin, Ph.D 
E. Shokri, Ph.D 
K. Ossia, Ph.D 

D. Decker 
J. Pollard 

D. Decker 
J. Pollard 

A. Sorkin, Ph.D 

A. Sorkin, Ph.D 
M. Justice 

J. Leivo 

1.3 Technical basis 

Five criteria for a technical basis on which the use of digital systems could be justified were defined 
in NUREG/CP-0136 (Beltracchi, 1994, p. 39). Table 1-4 shows how these criteria have been 
addressed in this document. 
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Table 1-4. Technical Basis Criteria and How They Were Addressed in this Document 

Technical basis criterion 

1. The topic has been clearly 
coupled to safe operations. 

2. The scope of the topic is clearly 
defined. 

3. A substantial body of knowledge 
exists, and the preponderance of 
the evidence supports a technical 
conclusion. 

4. A repeatable method to correlate 
relevant characteristics with 
performance exists. 

5. A threshold for acceptance can 
be established. 

How addressed 

The rationale for each guideline has been stated in this document 

Section 1.1 describes the scope of language specific safety concerns. 

Language-specific guidelines were based on generic attributes of safety critical 
software using the methodology defined in Section 1.2. References associated 
with the guidelines are provided at the end of each chapter 

Language-specific guidelines for each language were prepared by SMEs with 
an average of 20 years' overall programming experience. 

Language specific guidelines were reviewed by independent SMEs 

Not addressed in this document. Due to the paucity of failure data on digital 
nuclear safety systems and the (fortunate) rarity of events resulting in 
challenges to such systems, a repeatable method for correlating the identified 
attributes with safe operation is not possible at this time. However, data 
collection to permit assessment of the guidelines using actual failure 
experience is planned for a later enhancement of this document. 

Not directly addressed in this study. The guidelines identify qualitative 
attributes rather than quantitatively measurable parameters. Substantial 
progress in research on the quantitative failure behavior of high integrity 
software is necessary to formulate a threshold. 

The guidelines developed in this work provide a basis for the auditing and development of 
dependable software in safety systems, but can not be considered exhaustive because they are written 
without knowledge of the specific systems, language variants, and software development 
environments to which they may be applied. Certain guidelines proposed by SMEs were rejected 
based on the judgement of the editors or Task 3 SMEs that they were obscure or overly prescriptive, 
that is, limiting the use of a language or advocating a certain style where the safety benefit was 
unclear. On the other hand, not all guidelines included in this document may be applicable to a 
specific project because of the presence or absence of certain requirements and design constraints, 
the characteristics of a particular development environment, the testing program, or other factors. 

Use of these guidelines will assist auditors in identifying problems in the implementation of safety 
system programs, but it does not guarantee that such problems will not occur. The emphasis of these 
guidelines was on common attributes and related problems; it was not possible for the subject matter 
experts to exhaustively consider all legal constructs in each of the languages. 

1.4 Contents Overview 

This report is organized as follows: the second chapter of the report describes the generic attributes 
for software safety and the resultant guidelines. Chapters 3 through 8 describe language-specific 
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guidelines for Ada-83, C and C++, PLC Ladder Logic, IEC 1131 Sequential Function Charts, Pascal, 
and PL/M. References are provided for the languages at the end of each chapter. Appendix A 
includes an introductory discussion of PLCs, Ladder Logic, Sequential Function Charts, and PL/M. 
Appendix B includes tables summarizing the language specific guidelines for the 6 languages 
discussed in the main body of the report. These tables are intended to provide a brief overview of 
the guidelines and to satisfy the requirement for a language matrix in the Statement of Work. 
Appendix C is a glossary, Appendix D provides additional technical basis for the report, and 
Appendix E summarizes the qualifications of the subject matter experts participating in the report. 

Table 1-5 is a cross reference by language. It provides recommended selections of the report to 
readers interested in a specific language. 

Table 1-5. Language Cross Reference 

Language 

Ada 

C and C++ 

PLC Ladder 
Logic 

IEC 1131-3 
Sequential 
Function Charts 

Pascal 

PL/M 

Relevant Chapters (Main Report) 

Chapter 2 (generic guidelines) 
Chapter 3 (Ada specific guidelines) 

Chapter 2 (generic guidelines) 
Chapter 4 (C and C++ specific guidelines) 

Chapter 2 (generic guidelines) 
Chapter 5 (PLC Ladder Logic Specific 
Guidelines) 

Chapter 2 (generic guidelines) 
Chapter 6 (SFC Specific Guidelines) 

Chapter 2 (generic guidelines) 
Chapter 7 (Pascal specific guidelines) 

Chapter 2 (generic guidelines) 
Chapter 8 (PL/M specific guidelines) 

Relevant Appendices 

Appendix B.l (guideline summary and 
weighting factors) 
Appendix C (Glossary) 

Appendix B.2 (guideline summary and 
weighting factors) 
Appendix C (Glossary) 

Appendix A.1 (PLC description) 
Appendix A.2 (Ladder Logic description) 
Appendix B.3 (guideline summary and 
weighting factors) 
Appendix C (Glossary) 

Appendix A.l (PLC description) 
Appendix A,3 (SFC description) 
Appendix B.4 (guideline summary and 
weighting factors) 
Appendix C (Glossary) 

Appendix B.5 (guideline summary and 
weighting factors) 
Appendix C (Glossary) 

Appendix A.4 (PL/M description) 
Appendix B.2 (guideline summary and 
weighting factors) 
Appendix C (Glossary) 
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2 Generic Safe Programming Attributes 
This chapter describes generic, or language-independent, attributes of safe programming. These 
attributes are used as a basis for deriving the language-specific guidelines described in the following 
chapters. As noted in the previous chapter, the attributes have been defined in a hierarchical, three-
level framework. The top-level attributes, shown in Figure 2-1, are: 

Reliability. Reliability is the predictable and consistent performance of the software under 
conditions specified in the design basis. This top level attribute is important to safety 
because it decreases the likelihood that faults causing unsuccessful operation will be 
introduced into the source code during implementation. 

• Robustness. Robustness is the capability of the safety system software to operate in an 
acceptable manner under abnormal conditions or events. This top level attribute is important 

, to safety because it enhances the capability of the software to handle exception conditions, 
recover from internal failures, and prevent propagation of errors arising from unusual 
circumstances (not all of which may have been fully defined in the design basis). 

• Traceability. Traceability relates to the feasibility of reviewing and identifying the source 
code and library component origin and development processes i.e., that the delivered code 
can be shown to be the product of a disciplined implementation process. Traceability also 
includes being able to associate source code with higher level design documents. This top 

Reliability 

Safe Programming 
Attributes 

Robustness Traceability Maintainability 

genlanllimplemtntation 

Figure 2-1 Top Level Attributes 
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level attribute is important to safety because it facilitates verification and validation, and 
other aspects of software quality assurance. 

• Maintainability. Maintainability is the means by which the source code reduces the 
likelihood that faults will be introduced during changes made after delivery. This top level 
attribute is important to safety because it decreases the likelihood of unsuccessful operation 
resulting from faults during adaptive, corrective, or perfective software maintenance. 

Sections 2.1 through 2.4 discuss each of these attributes in greater detail. Appendix B lists and 
summarizes the associated lower level attributes, their relative priorities, and mitigation approaches 
(where applicable). Appendix D shows their relationship to applicable Institute of Electrical and 
Electronic Engineers (EEEE), International Electrotechmcal Commission (IEC), and Department of 
Defense (DoD) standards and frameworks. It also contains a discussion of how these attributes 
compares with other work in software safety. 

2.1 Reliability 

In the software context, reliability is either (1) the probability of successful execution over a defined 
interval of time and under defined conditions, or (2) the probability of successful operation upon 
demand (IEEE, 1977). That the software executes to completion is a result of its proper behavior 
with respect to system memory and program logic. That the software produces timely output is a 
function of the programmer's understanding of the language constructs and run-time environment 
characteristics. Thus, the intermediate attributes for reliability are: 

• Predictability of memory utilization. There is a high likelihood that the software will not 
cause the processor to access unintended or unallowed memory locations. 

• Predictability of control flow. There is a high probability that the processor will execute 
instructions in sequences intended by the programmer. 

• Predictability of timing. There is a high probability that the software executing within the 
defined run-time environment will meet its response time and capacity constraints. 

As shown in Figure 2-2, each of these intermediate attributes has multiple base attributes. The figure 
also shows that base attributes related to object-oriented programming (control over polymorphism, 
minimization of dynamic binding, and control over overloading) are related to both memory 
utilization and control flow. These attributes are discussed further in the following sections. 
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2.1.1 Predictability of Memory Utilization 

This section discusses the following base attributes that facilitate the predictability of memory 
utilization: 

• Minimizing dynamic memory allocation 
• Minimizing memory paging and swapping. 

2.1.1.1 Minimizing Dynamic Memory Allocation 

Dynamic memory allocation is used in programs to temporarily claim (allocate) memory when 
necessary during run time and to free the memory (also during run time) for other uses when no 
longer needed. The safety concern is that when memory is dynamically allocated in a real-time 
system, the software may not subsequently release all or some of it. This can happen either because: 

• The application program allocates memory to itself but does not free it as part of normal 
execution paths, or 

• A program which has temporarily allocated memory to itself is interrupted in its execution 
prior to executing the statement which releases the memory. 

Either of these situations will cause the eventual loss of all usable memory and a loss of all safety 
system functions. Dynamic memory allocation in digital safety systems should therefore be 
minimized. 

If dynamic memory allocation is unavoidable, the source code should include provisions to ensure 
that: 

• All dynamically allocated memory during a specific execution cycle is released at the end of 
that cycle, and 

• The possibility of interruption of execution between the point where memory is dynamically 
allocated and when it is released is minimized (if not totally eliminated); there should also 
be provisions in the application code that will detect any situation where dynamically 
allocated memory has not been released and release such memory. 

2.1.1.2 Minimizing Memory Paging and Swapping 

Memory paging is the use of a part of a disk (or other form of secondary or bulk memory) to store 
infrequently used primary memory areas. When these memory areas are needed by a running 
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program, the operating system causes them to be read from the disk and loaded back into the primary 
memory. Process swapping is the use of part of a disk (or other form of bulk memory) to store the 
memory image of an entire inactive process (including its data areas such as a stack space and heap 
space). When it is time for the process to be executed, the image is loaded from the disk back into 
the primary memory for use by the CPU. 

Both capabilities were developed for interactive and batch timesharing systems, where the demand 
for memory was greater than the amount installed in the computer system. However, they are 
inappropriate for safety systems because they can cause significant delays in response time and use 
complex interrupt-driven functions to handle the memory transfers. In addition, these capabilities 
depend on electromechanical components (if a disk is used as the secondary storage device) which 
are subject to failure. 

If an operating system and hardware that support memory paging or process swapping are used in 
a safety system, this feature should be disabled at the operating system level. There should be 
enough primary memory for all data and programs. If there is any question that these features were 
not disabled, there should be provisions in the safety applications software ensuring that all critical 
functions and their data areas are in primary memory during the entire period of execution. Such 
provisions in the source code include operating system calls ("pinning"), compiler directives, and 
operating system scripts. 

2.1.2 Predictability of Control Flow 

Control flow defines the order in which statements in a program are executed (i.e., sequential, 
branching, looping, or procedural) (Meek, 1993). A predictable control flow allows an unambiguous 
assessment of how the program will execute under specified conditions. 

Related base attributes are: 

• Maximizing structure 
• Minimizing control flow complexity 
• Initializing variables before use 
• Single entry and exit points for subprograms 
• Minimizing interface ambiguities 
• Use of data typing 
• Accounting for precision and accuracy 
• Order of precedence of arithmetic, logical, and functional operators 
• Avoiding functions or procedures with side effects 
• Separating assignment from evaluation 
• Proper handling of program instrumentation 
• Controlling class library size 
• Minimizing use of dynamic binding. 
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• Controlling operator overloading. 

These attributes and their relevance to safety are discussed in the following subsections. 

2.1.2.1 Maximizing Structure 

"Spaghetti code" is a common derogatory reference to code with GOTO or equivalent execution 
control statements that cause an unstructured shift of execution from one branch of a program to 
another. The safety concern is that the execution time behavior is difficult to trace and understand. 
GOTO statements can cause undesirable side effects because they interrupt execution of a particular 
code segment without assurance that subsequent execution will satisfy all conditions that caused 
entry into that segment. Standards discouraging or prohibiting such coding practices have been in 
place for more than two decades (e.g., MIL-Std-1679). Structure is maximized by the elimination 
of GOTO statements and use of appropriate block structured code. The case, i f . . t hen . . e lse , 
do u n t i l , and do while constructs permit branching with a defined return and without 
introducing the uncertainty of control flow associated with GOTO or equivalent statements (Dijkstra, 
1972; DoD-Std-2167A, Appendix C). 

2.1.2.2 Minimizing Control Flow Complexity 

An indication of control flow complexity is the number of nesting levels for branching or looping. 
Excessive complexity makes it difficult to predict the flow of a program and impedes review and 
maintenance. A specific safety concern is that the control flow may be unpredictable when 
unanticipated combinations of parameters are encountered. Excessive nesting can usually be avoided 
by the use of functions or subroutines in place of in-line branches. A specific limit on nesting as part 
of project or organizational coding guidelines can mitigate safety concerns. 

2.1.2.3 Initializing Variables Before Use 

When variables are not initialized to a known value at the beginning of an execution cycle, safety 
is impaired because they may contain "garbage" values (residue from the previous use of that 
memory area). Run-time predictability requires that memory storage areas set aside for process data 
be set to known values before being accessed (set and used). A compiler cannot be depended on to 
automatically reset memory areas set aside for variables (Gottfried, 1993; Naiditch, 1993). 

2.1.2.4 Single Entry and Exit Points for Subprograms 

Multiple entry and exit points in subprograms introduce control flow uncertainties similar to those 
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caused by GOTO statements (DoD-Std-2167A, Appendix C). Run-time execution flow predictability 
is enhanced by having only a single entry to and exit from each program. Because predictability of 
execution flow is a characteristic important to safety, multiple entry and exit points in subroutines 
or functions are undesirable even if the language supports them. 

2.1.2.5 Minimizing Interface Ambiguities 

Interface faults include mismatches in argument lists when calling other subprograms, 
communicating with other tasks, passing messages among objects, or using operating system 
services. An example of such an fault is reversing the order of arguments when calling a subroutine. 
Previous research on software failures has shown that this category of faults is quite significant 
(Chillarege, 1992; Thayer, 1976). Coding practices that can reduce or eliminate the probability of 
interface faults include: 

• Ordering arguments to alternate different data types (reducing the chance that two adjacent 
arguments will be placed in an incorrect order). 

• Using named notation rather than ordering or position notation for languages that support 
such notation, e.g., display (value=>TC5, units=>EU) rather than display (TC5, 
EU). 

• Testing for the validity of input arguments at the beginning of the subprogram. 

2.1.2.6 Use of Data Typing 

Acceptance of data that differ from those intended to be used by a program can cause failures, and 
such failures that occur during an exception condition may have particularly adverse effects on safety 
(IEEE, 1993). This concern can be addressed by declaration of data types. Originally, the primary 
advantage of declaring datatypes was to allow compilers to reserve the correct amount of memory. 
However, data typing is useful for improved definition of interfaces (see above), increased legibility 
(for reviews), and compile time and run time checking. These originally ancillary uses have now 
become the primary motivators for data typing and have prompted the use of strong typing in which 
additional declarations, at least that of a valid range, are required. The safety issues associated with 
data typing include (IEEE, 1993; DoD-Std-2167A, Appendix C): 

• Limiting the use of anonymous types (e.g., general integer or floating point without upper 
and lower limits) in strongly typed languages. 

• Ensuring that the limits on data types are not excessively constrained so that spurious 
exceptions or error messages are not generated (this is an issue in strongly typed languages). 
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Minimizing type conversions, and eliminating implicit or automated type conversions (e.g., 
in assignments and pointer operations). 

• Avoiding mixed-mode operations. If such operations are necessary, they should be clearly 
identified and described using prominent comments in the source code. 

• Ensuring that expressions involving arithmetic evaluations or relational operations have a 
single data type—or the proper set of data types for which conversion difficulties are 
minimized. 

• Limiting the use of indirection such as array indices, pointers (in Pascal or C), or access 
objects (in Ada) to situations where there are no other reasonable alternatives, and 
performing validation on indirectly addressed data prior to setting or use to ensure the 
correctness of the accessed locations. Strongly typed pointers, array indices, and access types 
reduce the possibility of referencing invalid locations. 

2.1.2.7 Accounting for Precision and Accuracy 

The software implementation must provide adequate precision and accuracy for the intended safety 
application (IEEE, 1993). Safety concerns are raised when the declared precision of floating point 
variables is not supported by analysis—particularly when small differences between large values are 
used (e.g., when computing rate of change from the difference between current and previous values, 
calculating variances, or performing filtering operations such as moving averages). 

2.1.2.8 Order of Precedence of Arithmetic, Logical, and Functional Operators 

The default order of precedence of arithmetic, logical, and other operations varies among languages. 
Developers or reviewers may make incorrect precedence assumptions when explicit parentheses are 
not used—particularly in complex expressions (DoD-Std-2167A, Appendix C). Therefore the use 
of parentheses or other mechanisms for ensuring a clear statement of the order of evaluation of 
operations should be used. 

2.1.2.9 Avoiding Functions or Procedures with Side Effects 

A side effect is a change to any variable not returned by that function that persists after the 
completion of the function. This includes changes to files, hardware registers, etc. An example of 
such a side, effect would be a change in a global variable not in the function parameter list. Side 
effects can lead to problems with unplanned dependencies and can cause bugs that are hard to find. 
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2.1.2.10 Separating Assignment from Evaluation 

Assignment statements (e.g., extem_var := 100) should be separated from evaluation 
expressions (e.g., i f sensor_val < temp_limit). The separation can be violated when 
subprograms are used as part of the evaluation. For example, a filtering function may be used as part 
of an evaluation rather than simply the sensor value: 

if(func(a) < templimit) . 

Execution of £ unc (a) may also set a global or external variable, using an assignment statement. 
For example: 

func(t); 

begin 

end. 

/* data 

/* 
externj 

/* 

declarations */ 

initiation, 
var:=0; 
an external 
and used by 

execution, or evaluation 

variable declared 
this routine */ 

at 

code 

a higher 

*/ 

scope 

As a result, when the subprogram f unc is called, it will set an external variable to a value of 0. The 
value of this variable may be used by other programs in calculations, logical decisions, or output. 
Although this change may have been explicitly intended by the programmer, it is difficult for others 
to follow. It is acceptable for the subprogram f unc to assign values to variables providing that these 
variables are visible only within the subprogram, i.e., they are local variables rather than global or 
external variables. A related attribute is minimization of the use of global variables discussed below. 

2.1.2.11 Proper Handling of Program Instrumentation 

Program instrumentation collects and outputs certain internal state values of a program during 
execution and allows the developer to check if particular aspects of the specification have been 
correctly implemented (Liao, 1991). Specific safety related issues are: 

• Minimizing Run-time Perturbations: Instrumentation that interferes with the normal 
execution flow is undesirable in safety applications. For example, extensive "write" or other 
output statements can result in the execution of a significant amount of library code 
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associated with outputting values; a less intrusive means may be to write such values to 
external memory locations where they can be processed later. It may also mean writing data 
in binary format for off-line format processing (i.e., conversion to human-readable text and 
numeric values). To minimize differences in behavior between test and normal operation, 
it may be desirable to keep certain instrumentation code in place in the actual environment. 

Maintaining Visibility of Instrumentation in Runtime Source Code: Some software tools 
alter compiler generated object (or executable) files in order to insert instrumentation 
(Campbell, 1994; Castellano, 1994). This is generally not acceptable in a safety system 
because the impact of such changes is not visible in the source code and its effect on 
execution cannot be reviewed. 

Conforming to Software Instrumentation Guidelines: Review is facilitated (and therefore 
safety is enhanced) if the instrumentation practices are described in project specific 
engineering notebooks. Guidelines are needed to identify what types of output mechanisms 
are to be used, and under which conditions they should not be used. For example, a measure 
mentioned above for minimizing runtime interference is at odds with the data abstraction and 
error containment attributes described later in this section. 

2.1.2.12 Controlling Class Library Size 

Control of class library size is important to avoid a system that becomes unmanageable or has large 
performance penalties because it has too many classes and objects (Cuthill, 1993). Safety is 
enhanced if project-specific guidelines limit the number of classes and objects... and the actual 
software conforms to these guidelines. 

2.1.2.13 Minimizing Use of Dynamic Binding 

Binding denotes the association of a name with a class. Dynamic binding permits the name/class 
association to be deferred until the object designated by the name is created at execution time. The 
unpredictability of the name/class association creates safety concerns. It also reduces the 
predictability of the runtime behavior of an object-oriented program and it complicates debugging, 
understanding, and tracing (Royce, 1993). Restrictions on, or elimination of, dynamic binding is 
desirable for safety-critical applications. 

2.1.2.14 Controlling Operator Overloading 

Polymorphism (operator overloading) can improve readability and reduce complexity by allowing 
a single subprogram or operator (in Ada) or object behavior (in C++) to be used for different data 
types. However, it can also be problematic from the perspective of predictability because it is 
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unclear how a compiler will bind code for different polymorphisms (e.g., how would a multiply 
operation on a multidimensional array be bound to scalars or one-dimensional arrays) (Royce, 1993). 
Guidance on use of operator overloading in a project-specific or organizational coding standards 
manual is therefore desirable for safety-related applications, together with verification that the code 
complies with this standard. 

2.1.3 Predictability of Timing 

Predictability of timing is crucial in a safety system used in real time control (Kopetz, 1993; 
Leveson, 1992; Turner, 1992). For example, a reactor shutdown system must generate a trip signal 
within a specified interval of operating parameters falling outside of allowable ranges. Also, diesel 
engine startup sequences require events to happen Vvithin a defined time interval. Base attributes 
related to object oriented prograrnming that have relevance to this intermediate attribute were 
discussed under previous headings: 

• Controlling class library size 
• Minimizing use of dynamic binding, and 
• Controlling operator overloading. 

Two additional base attributes related to timing discussed in the following subsections are: 

• Minimizing the use of tasking, and 
• Minimizing the use of interrupt driven processing. 

2.1.3.1 Minimizing the Use of Tasking 

Although tasking (in languages such as Ada) provides an attractive model for concurrent processing, 
its use is undesirable in safety-critical applications for the following reasons: 

• " There are timing uncertainties associated with differing implementations by compiler 
vendors, interactions with underlying operating systems (or real time kernels), and the design 
of the hardware platform. 

• The sequence of execution is uncertain when several calling alternatives are waiting to be 
executed because it is not always clear which call will be selected (Gottfried, 1993; Naiditch, 
1993). 

• Tasking allows time critical errors such as race conditions and deadlocks to develop. Such 
differences are difficult to debug (Royce, 1993). 

Therefore, tasking is to be avoided in safety systems unless there is a compelling justification. 
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2.1.3.2 Minimizing the Use of Interrupt Driven Processing 

Using interrupt driven processing to handle the acceptance and processing of plant and operator input 
can reduce average response time, but usually leads to non-deterministic maximum response times. 
Interrupt driven processing was implicated in at least one of the Therac-25 accidents (Leveson, 1992; 
Turner, 1992). Reference documents and standards related to digital system safety generally 
discourage or prohibit its use (IEC 880). Avoiding interrupt driven processing facilitates analysis 
of synchronization and run-time behavior, and avoids the non-deterrninism of response time inherent 
in interrupt driven processing. 

2.2 Robustness 

Robustness refers to the capability of the software to continue execution during off-normal or other 
unanticipated conditions. A synonym for robustness is survivability (Bowen, 1985; Wigle, 1985). 
Robustness is an important attribute for a safety system because unanticipated events can happen 
during an accident or excursion, and the capability of the software to continue monitoring and 
controlling a system in such circumstances is vital. 

As shown in Figure 2-3, the 
intermediate attributes for 
robustness are: 

• Controlling use of 
diversity 

• Controlling use of 
exception handling 

• Checking input and 
output. 

These attributes and their 
relevance to safety are 
discussed in the following 
subsections. 

2.2.1 Controlling Use of 
Diversity 

The decision to employ diverse 
software implementations is a 
design-level function and is 
therefore outside the scope of 

Figure 2-3 Robustness and Lower Level Attributes 

Robustness 
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this document. However, if diversity is called for in the design or requirements, it should be 
controlled in its application. There are two base attributes: 

• Controlling internal diversity 
• Controlling external diversity. 

2.2.1.1 Controlling Internal Diversity 

When only internal diversity is used, the interfaces to all versions must be identical. In other words, 
any sensor data or parameters from calling procedures should be passed identically to all versions, 
and output data from any version should be accepted and used by other parts of the system. 
However, internal operations and storage of local data should occur diversely in the multiple module 
versions or instantiations. Internal diversity is facilitated by an object-oriented approach in which 
the same messages and methods are used, but the internal algorithms and data representations differ 
(Cuthill, 1993). Internal diversity should be implemented in accordance with the design and with 
project-specific guidelines. These should address: 

• Diverse algorithms. Using different algorithms, unit conversions, and process parameters 
(when called for or allowed in the requirements or design) minimizes the possibility of a 
design or implementation-related failure. 

• Diverse data validation. Using alternate schemes for sensor (or other input) data and output 
data validation minimizes the possibility of a design or implementation-related failure. 

• Diverse exception handling routines. This measure reduces the probability that an error in 
the exception handling or processing will occur simultaneously on multiple versions. 

• Different data types, structures, and storage allocation. This measure reduces the possibility 
that unanticipated interactions between the object code generated by the compiler and the 
operating system will cause data or code to be inadvertently overwritten simultaneously on 
multiple versions. 

• Diverse libraries and subroutines. Avoiding use of the same application software 
subroutines, compiler-supplied library routines, and operating system provided application 
programming interfaces. This measure reduces the possibility of a simultaneous failure due 
to a defect in such routines. 

• Diverse order of arithmetic operation. Changing the order of arithmetic operations in 
conversions, arithmetic, and assignment statements by using commutative, associative, and 
distributive properties reduces the possibility of simultaneous failures due to unanticipated 
overflow conditions generated by intermediate results or problems in numerical precision. 
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Diverse order of input and output operation. Performing I/O operations in different orders 
reduces the possibility of simultaneous timing-related failures (such as a deadlock) or data-
driven failures (i.e., a program crash due to a particular data value). 

2.2.1.2 Controlling External Diversity 

Where external diversity is used, safety is enhanced if it is implemented in a disciplined manner in 
accordance with design documents. The design documents should reflect the diversity imposed by 
requirements, hazard analyses, and similar sources. External diversity is achieved by using different 
interfaces among the versions, and may be combined with internal diversity. External diversity is 
necessary when different languages are used for different versions, and may also be used to obtain 
sensor data through a different channel. Uncontrolled or unspecified external diversity can lead to 
a proliferation of interfaces which impact safety due to difficult maintenance, testing, verification, 
and validation. 

2.2.2 Controlling Use of Exception Handling 

Exception handling deals with abnormal system states and input data (IEEE, 1993). Exception 
handling provisions in some languages facilitate the establishment of an alternate execution path in 
the event of conditions which, although unexpected, result in states that can be defined in advance. 
Problems can arise in the use of exception raising and handling, however, because execution flow 
during exception conditions is often difficult to trace. 

Base attributes with respect to exception handling include (DoD-Std-2167A, Appendix, D): 

• Handling of exceptions locally 
• Preserving external control flow 
• Handling of exceptions uniformly. 

2.2.2.1 Handling of Exceptions Locally 

Propagation of exceptions through several levels of a program can cause the precise nature of the 
exception to be misinterpreted at the place where the exception handling is implemented. This cause 
of system failure (with potentially serious safety implications) is avoided if exceptions are handled 
locally. 
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2.2.2.1 Preserving External Control Flow 

Interruption of control flow external to the routine in which the exception was raised creates 
uncertainty in the execution subsequent to the exception handling. Safety is enhanced by 
preservation of control flow external to the module responsible for the exception. 

2.2.2.2 Handling of Exceptions Uniformly 

Undisciplined use of exception handling can result in inconsistent processing of the same exception 
condition in different parts of the code. At worst, it can result in some exceptions being raised and 
not handled. These problems can be avoided by guidance on the use of exceptions as part of the 
coding practices procedures of the organization or the specific project. Topics to be included in this 
guidance are: 

• General and project specific exceptions which have been defined and are allowed 
• Placement of exception handling code 
• Enumerating all intended side effects and verifying that there are no other side effects 
• Ensuring the integrity of critical state data during exception processing 
• Criteria for distinguishing what conditions should be handled through control flow constructs 

as part of normal processing versus abnormal conditions where use of exception handling 
is appropriate. 

2.2.3 Checking Input and Output 

Data corruption due to a transient failure or an invalid result can have serious consequences on 
subsequent processing if allowed to propagate. The base attributes related to input and output 
checking mitigate such consequences by containing the error. The two base attributes discussed in 
the following subsections are: 

• Input data checking and 
• Output data checking. 

2.2.3.1 Input Data Checking 

Input data includes data from another routine, data from the external environment, and data stored 
in memory from a previous iteration. Input data should be checked for validity before processing. 
Such checks reduce the probability of incorrect results or corrupted data being propagated. At a 

minimum, the values of the inputs should be checked for data type and being within an acceptable 
range. If possible, reasonableness checks on the data should also be performed. Provisions should 
exist in the safety system software to detect invalid input and to bring the module to a known state 
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(i.e., default or previously valid values) as defined in the higher-level design. 

2.2.3.2 Output Data Checking 

Output data—whether to the external environment, to another routine or stored for use in a 
subsequent iteration—should be checked for validity. At a minimum, this validity check should 
ensure that the values are of the appropriate data type and are within acceptable ranges. It is more 
desirable that the values also be checked for reasonableness. However, such reasonableness checks 
should not be so restrictive that they spuriously reject correct values. Provisions for handling 
rejected output values according to the design should also be present in the software. 

2.3 Traceability 

As defined earlier in 
this chapter, traceability 
refers to attributes of 
safety software which 
support verification of 
correctness and 
completeness compared 
with the software 
design. As shown in 
Figure 2-4, the 
intermediate attributes 
for traceability are: 

Figure 2-4 Traceability and Lower Level Attributes 
• Readability 
• Controlling use of built-in functions 
• Controlling use of compiled libraries. 

Because readability is also an intermediate attribute of maintainability, it is discussed in Section 2.4. 
The latter two attributes and their relevance to safety are discussed in the following section. 

2.3.1 Controlling Use of Built-in Functions 

Nearly all languages include built-in functions for frequently used programming tasks to maximize 
programmer productivity. However, the limitations of these functions and the way in which they 
handle exceptions may not be so well known those as the basic language constructs. Thus, the use 
of such functions raises safety concerns. 

Control use of 
compiled 
libraries 

Traceability 

Readability 
(see 

Maintainability) 
Control use of 

built in functions 
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Concerns over the use of built-in functions can be addressed through organizational or project 
specific guidelines. Regression test cases make it possible to establish conformance with expected 
results of new releases of compilers and runtime libraries. Thus, test cases, procedures, and results 
of previous testing for allowable built-in functions should be retained. Testing should also assess 
behavior for out-of-bounds and marginal conditions (e.g., negative arguments on a square root 
routine; improperly terminated strings for a string copy routine, etc.) in the specific runtime 
environment. 

2.3.2 Controlling Use of Compiled Libraries 

Compiled libraries are routines written and compiled by an entity other than the development group. 
Applications of compiled libraries include input/output operations, device drivers, or mathematical 
operations that are not defined in the standard language. Such libraries can be supplied by compiler 
vendors, third parties, or other departments of the development organization. Concerns for such 
libraries are similar to those for built-in functions. 

Concerns over the use of compiled libraries can be addressed by controlling the use of function calls 
to such libraries through organizational or project-specific guidelines. Like built-in functions, a set 
of test cases, procedures, and results should be maintained. The test cases should assess behavior 
for normal, out-of-bounds, and marginal conditions in the specific runtime environment. Regression 
testing should be performed for each new release of the compiled library. 

2.4 Maintainability 

Software maintainability reduces the likelihood that errors will be introduced while making changes. 
The intermediate attributes related to maintainability that affect safety include: 

• Readability: those attributes of the software that facilitate the understanding of the software 
by project personnel 

• Data abstraction: the extent to which the code is partitioned and modularized so that the 
collateral impact and probability of unintended side effects due to software changes are 
minimized 

• Functional cohesiveness: the appropriate allocation of design level functions to software 
elements in the code (one procedure; one function) 

• Malleability: the extent to which areas of potential change are isolated from the rest of the 
code 

• Portability: the major safety impact of which is the avoidance of non-standard functions of 
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a language. 

Figure 2-5 shows these lower level and associated base attributes, which are discussed further in the 
following subsections. 
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Figure 2-5 Maintainability and Lower Level Attributes 

2.4.1 Readability 

Readability allows software to be understood by qualified development personnel other than the 
writer. The importance of readability for maintainability can be seen by a study performed at the 
NASA Goddard Software Engineering Laboratory (McGarry, 1992) in which manual code reading 
(desk checking) was found to be more effective than structural or functional testing for finding 
coding faults. It is reasonable to extrapolate that readability would also enhance identifying code 
to be changed during corrective or adaptive maintenance and would reduce the probability of 
introducing new faults during such maintenance. 

There are no general standards for readability that can be mandated or even recommended. 
However, organizational or project-specific coding style and practices manuals (or related 
guidelines) are expected for safety-critical systems. The following base attributes are related to 
readability: 

Conforming to indentation guidelines 
Using descriptive identifier names 
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Commenting and internal documentation 
Limiting subprogram size 
Minimizing mixed language programming 
Minimizing obscure or subtle programming constructs 
Minimizing dispersion of related elements 
Minimizing use of literals. 

These attributes are discussed in the following subsections. 

2.4.1.1 Conforming to Indentation Guidelines 

Appropriate indentation facilitates the identification of declarations, control flows, non-executable 
comments, and other components of source code (DoD-Std-2167A, Appendix C). Indentation 
guidelines are generally part of a project specific or organizational programming style or standards. 
Significant issues to be addressed by indentation practices are the handling of: 

Programming blocks (sequences of statements bounded by begin and end) 
Comments 
Branching constructs (e.g., i f . . . t h e n . . . e lse, case statements, loops, etc.) 
Multiple levels of nesting (e.g., a do loop within a do loop) 
Variable and subroutine declarations 
Compiler directives 
Exception raising and handling. 

2.4.1.2 Using Descriptive Identifier Names 

Names for variables, procedures, functions, data types, constants, exceptions, objects, methods, 
labels, and other identifiers that are not easily understood can impede review and maintenance. 
Safety concerns arising from naming practices can be alleviated when names are required to be 
descriptive, consistent, and traceable to higher-level (i.e., software design) documents (DoD-Std-
2167A, Appendix C). Naming conventions are an important part of the coding style and practices 
manual. Examples of issues to be addressed include: 

• Identification of plant input data (e.g., should the variable refer to a sensor, or should it be 
called loopl_hot_leg_TCl) 

• How looping variables should be named (e.g., i , j , k or longer titles) 
• Local renaming of identifiers (e.g., average_j>rocedure .mean renamed as mean) 
• Distinguishing between different categories of identifiers (e.g., a suffix on all data types with 

an _T to distinguish them from variables) 
• Lists of project-specific terminology and reserved words (e.g., restrictions on the use of the 

terms "alarm", "limit", etc.). 
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Use of the same name for a different purpose is to be avoided unless obviously advantageous and, 
when employed, should be accompanied by clear, consistent, and unambiguous notations. Multiple 
use of the same name can be confusing. A further problem can occur if the language supports 
precompiled units (such as Ada). A variable with the same name in two different packages, one of 
which is used by the other may be interpreted by the compiler in a different manner than intended 
by the program writer. In some cases, the programmer may have omitted the declaration of a name 
in a package. Thus, another package can cause a different variable with the same name to be used 
in a totally unintended manner (Campbell, 1994; Castellano, 1994). If the particular branch or 
execution path is not encountered frequently, it is possible that such a fault would not be discovered 
until it causes a run-time failure. 

Use of reserved words for user-selected identifiers (in languages where this feature is allowed) is 
undesirable (DoD-Std-2167A, Appendix C). 

2.4.1.3 Commenting and Internal Documentation 

Incomplete comments, inconsistent formats, and comments that are not updated to reflect the current 
code impede review and raise safety concerns. These problems can be minimized by guidance in the 
organizational or project coding standards that controls comments and internal (to the program) 
documentation. Examples of items, when incorporated, that should be located in the prologue 
section include the following (DoD-Std-2167A, Appendix C): 

• The subprogram or unit purpose and how achieved 
• Functions and performance requirements, and external interfaces that the subprogram or unit 

helps implement 
• Other subprograms or units called and their dependencies 
• Use of global and local variables and, if applicable, memory and register locations together 

with special maintenance instructions 
The responsible prograrnming department or section 

• Date of creation of the unit 
• Date of latest revision, revision number, problem report number, and title associated with the 

revision 
• Intended failure behavior and related information for all major segments of the code. 
• Inputs and outputs, including data files referenced during unit entry of execution 
• Comments on the purpose, scope, and limitations on each argument (for subprograms with 

arguments). 

Similar examples for documentation within the code include: 

• Reference to higher level design documentation in comments associated with data type, 
variable, and constant declarations 
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• Purpose and expected results at the beginning of branches and programming blocks 
• Detailed in-line comments explaining unusual constructs and deviations from programming 

practices. 

2.4.1.4 Limiting Subprogram Size 

Some documents recommend specific limits on the source code of each subprogram or unit. For 
example, an average of 100 non-expandable statements and a maximum of more than 200 such 
statements has been recommended (DoD-Std-2167A, Appendix C). Concern with the size of 
subprograms was one of the motivators for the adoption of structured programming. In Dijkstra's 
words, "Widespread under-estimation of the specific difficulties of size seems to be one of the major 
underlying causes of software failure" (Dahl, 1972; Dijkstra, 1972). Small subprograms (one or two 
pages) are easier to review than longer ones. However, the limits on allowable size must also take 
into account the nature of the program and the language. In nuclear safety and control systems, a 
given code must frequently handle a multitude of sensed quantities, and the data declarations (with 
required comments) for these can by themselves amount to more than a page. The criterion for this 
base attribute is therefore that guidance on size be provided, rather than a universal numerical 
threshold. 

2.4.1.5 Minimizing Mixed Language Programming 

Mixed language programming (e.g., assembly language for interrupt handling and high-level 
languages for other processing) presents difficulties for reviewers and maintainers and is therefore 
a safety concern. When this practice cannot be avoided, the difficulties can be minimized by placing 
the "foreign" language code adjacent to the dominant language routine with which it interfaces (e.g., 
an in-line assembly compiler directive in the input processing routine associated with an interrupt) 
so that readability is enhanced. 

2.4.1.6 Minimizing Obscure or Subtle Programming Constructs 

Obscure coding constructs can generally be characterized as the use of indirect techniques to 
decrease the amount of coding or CPU processing required to achieve a result. Such coding practices 
present problems in review and maintenance and hence are a safety concern. For example shifting 
an integer to the left is equivalent to doubling its value. However, the former construct would be 
obscure if the design calls for doubling the value (i.e., it would be preferable to perform the 
multiplication); the latter construct would be obscure if the design calls for shifting the value to the 
left (i.e., it would be preferable to perform the shifting operation in the source code rather than 
multiplying by 2). Appropriate commenting can minimize the impact of obscure or marginally 
obscure coding changes (e.g., adding the value to itself as a means of doubling it). 
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2.4.1.7 Minimizing Dispersion of Related Elements 

If related elements of the code are dispersed in a program, it is necessary to refer to multiple 
locations within a source listing during reviews and maintenance. However, the specific nature of 
the dispersion varies by language. For example, some languages allow for interface specifications 
separated from the body of the code; others allow for "prototyping" for a similar purpose. In 
languages with strong data typing, it may be desirable to centralize all type declarations in a single 
file (or set of files); in object-oriented languages, it may be desirable to segregate base classes from 
derived classes. Review is facilitated and safety is enhanced if project-specific guidance is provided 
on the placement of related elements in the code. 

2.4.1.8 Minimizing Use of Literals 

Literals (i.e., an actual number or string in the source code) are more difficult to identify than names 
to which a constant value is assigned at the beginning of the module (DoD-Std-2167A, Appendix 
C). Literals impact safety because they decrease readability and complicate 
maintainability—particularly if the literal is associated with a process parameter which may be tuned 
or a conversion factor which may be changed upon recalibration of an instrument. It is far easier to 
change one value set at the beginning of a file than it is to guarantee that all literals associated with 
such a parameter have been changed completely and correctly throughout all relevant files. 

2.4.2 Data Abstraction 

Data abstraction is the combination of data and allowable operations on that data into a single entity, 
and establishment of an interface which allows access, manipulation and storage of the data only 
through the allowable operations. It is an important contributor to safety by virtue of reducing or 
eliminating potential side effects of changing variables either during runtime or in software 
maintenance activities (Parnas, 1972). This principle is associated with the following specific base 
attributes: 

• Minimizing the use of global variables 
• Minimizing the complexity of the interface defining allowable operations. 

These attributes are discussed further in the following subsections. 

2.4.2.1 Minimizing the Use of Global Variables 

Because of the potential for unintended side effects, it is desirable to limit the use of global variables 
in safety related programs (Parnas, 1990; van Schouwen, 1990; Kwan, 1990). Readability is 
enhanced if variables are set and used in the same routine. These variables can be made available to 
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other routines through established and controlled interfaces which minimize the possibility of 
unintended interactions. For the same reasons dependencies among internal stored data of different 
routines need to be avoided or controlled. 

To avoid potential safety concerns, local variables within different programs should not share the 
same storage locations (DoD-Std-2167A, Appendix C). 

2.4.2.2 Minimizing the Complexity of Interfaces 

Interfaces are a frequent cause of software failures (Thayer, 1976). Complex interfaces are difficult 
to review and maintain and are therefore not desirable in safety related programs. Characteristics 
that contribute to complexity include: 

• Large numbers of arguments used in calling routines 
• Use of terse expressions when different modes or options are used (e.g., 

arraymult (a,b,2) instead of arraymult (a,b# crossproduct)) 
• Lack of easily understood restrictions and limitations on the use of allowable operations. 

2.4.3 Functional Cohesiveness 

Functional cohesiveness refers to a clear correspondence between the functions of a program and the 
structure of its components. Functional cohesiveness has a single base attribute. 

i 

2.4.3.1 Single Purpose Function and Procedures 

Review and maintenance are facilitated when every given procedure, subprogram, or function 
implements only one task or purpose specified in the software design. Subprograms, functions, or 
procedures that perform multiple tasks should be separated and written as separate functions. A 
simple way to test if a function is a single purpose function is to check to determine if the function 
can be summarized by a sentence in the following form (Parnas, 1990): 

"verb + object(s)" 

If multiple purposes or tasks specified in the design must be grouped into a single subprogram, 
function, or procedure, then justification of the grouping should be documented. 

2.4.3.2 Single Purpose Variables 

The principle of single purpose functions should be applied to variables. A variable should be used 
for a single purpose only (Plum, 1991). 
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2.4.4 Malleability 

Malleability is the ability of a software system to accommodate changes in functional requirements 
(Parnas, 1990; van Schouwen, 1990; Kwan, 1990). Malleability extends data abstraction with the 
motivation toward isolating areas of potential change. To implement a malleable software system, 
it is necessary to identify what is expected to be constant and what is expected to be changed, and 
to isolate what is expected to be changed into easily identifiable areas that can be altered with a 
minimum of collateral changes. Malleability has a single base attribute. 

2.4.4.1 Isolation of Alterable Functions 

Review and maintenance are facilitated when functions that can be altered are isolated, so that 
changes in these do not affect other code or data. In many cases, such functions are hardware-related 
functions that need to be changed when the platform changes, the system changes, or when new 
devices are used to replace old devices. 

For example, when a new display device is used to replace an old display device, graphics-display-
related functions may need to be modified. Thus, the functions associated with the graphics 
controller should be grouped together in the same file, kept in close physical proximity, and 
organized in a manner which rninimizes changes to other modules. 

To a large extent, the isolation of alterable functions is a design issue related to data abstraction. As 
such, a detailed discussion is beyond the scope of this document. 

2.4.5 Portability 

From the perspective of safety, the benefits of portability are the adherence to standard prograrnming 
constructs that yield predictable and consistent results across different operating platforms (Witt, 
1994; Baker, 1994; Merrit, 1994). Thus, code which is reused or converted to run on a different 
platform will be easier to maintain. Attributes related to portability which have been discussed 
elsewhere include: 

• Minimizing the use of built-in functions 
• Minimizing the use of compiled libraries 
• Minimizing dynamic binding 
• Minimizing tasking 
• Minimizing asynchronous constructs (interrupts). 

The single base attribute related to portability is avoiding use of non-standard, or "enhanced" 
constructs specific to a particular compiler or a compiler in combination with the execution platform 
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(Smith, 1989; Wood, 1989). 

2.4.5.1 Isolation of Non-Standard Constructs 

Where non-standard constructs are necessary, they should be clearly identified together with the 
rationale, limitations, and version dependencies. 
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3 Ada 
This chapter discusses Ada-specific guidelines. Ada 83 (DoD-Std-1815A) rather than Ada 95 is 
discussed because at the time of the writing of this chapter, there was a limited amount of experience 
with Ada 95. In addition, there are a limited number of compilers, none of which is sufficiently 
mature to be used in safety-critical applications1. Section 3.1 identifies reliability-related attributes; 
Section 3.2 discusses robustness-related attributes; Section 3.3 discusses traceability-related 
attributes; and Section 3.4 describes maintainability-related attributes. A summary matrix is 
contained in Appendix B, together with language-specific weighting factors. These factors were 
influenced by Ada's strong typing and exception handling capabilities. 

3.1 Reliability 

The intermediate attributes of reliability related to Ada are as follows: 

• Predictability of memory utilization 
• Predictability of control flow 
• Predictability of timing. 

Ada-specific guidelines are described in the following subsections. 

3.1.1 Predictability of Memory Utilization 

Base-level attributes related to the predictability of memory utilization in Ada are as follows: 

• Minimizing dynamic memory utilization 
• Minimizing memory paging and swapping. 

Specific guidelines for these attributes are discussed in the following subsections. 

Ada 95 differs with Ada 83 in several major areas, making Ada 95 potentially more suitable over the long 
term for developing safety-critical systems. The most important improvements are (a) providing object-oriented 
features, (b) new features for more responsive task communication such as protected types for emulating the 
monitor structure, and (c) hierarchical library structuring. Where appropriate in the text, references have been made 
to some of the differences between Ada 83 and Ada 95 which affect safety. 
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3.1.1.1 Avoiding Dynamic Memory Utilization 

The generic2 guidelines apply to Ada. Dynamic memory allocation should be avoided. Errors 
resulting from dynamic memory allocation can include (SPC, 1989, pp 76,112 -113): 

1. Memory leaks that can cause the software to run out of memory. This problem is likely to 
occur in Ada since an access object (pointer) ceases to exist when its scope is exited, but the 
allocated memory it points to remains allocated. 

2. Corruption of data due to multiple pointers to the same areas. Such corruption can be 
difficult to impossible to correct or even detect. This error condition can lead to the system 
crashing, frequently due to an exception being raised at a point distant from where the data 
were corrupted. This makes tracing the cause of the crash difficult. 

The following are Ada-specific guidelines related to memory allocation. The final four guidelines 
are mitigation approaches and are relevant if dynamic memory allocation is determined to be 
unavoidable by the system designers. 

• Avoid explicit dynamic memory allocation. The Ada primitive new causes memory to be 
allocated during execution. The following Ada code is an example of the use of dynamic 
memory for a linked list: 

type Cell; 
type Link is access Cell; 
type Cell is 

record 
Value: Element; 
Next : Link; 

end record; 

L: Link := null; 
L:= new Cell; 

— initialization unnecessary 
— allocation of memory 

Avoid dynamically created tasks. Tasks should be elaborated only at system initialization. 
Dynamically created tasks also cause dynamic memory allocation in Ada. The dynamic 
memory utilization problem is aggravated in this case because the generic subprogram the 
programmer can utilize to deallocate objects in memory, Unchecked_Deallocation, does not 
apply to tasks or to objects that have tasks as components. This issue of dynamic tasks is 

It should be noted that "generic guidelines" refers to the non-language specific guidelines of Chapter 2, 
not to the Ada construct. 
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discussed further in section 3. 

Avoid recursion. Recursion also uses dynamic memory space. Therefore, recursive 
procedures or functions should not be used. Recursion depth can be large, even infinite if 
the terminating condition does not occur. An unanticipated large number of recursive calls 
can use up available memory (SPC, 1989; Hutcheon, 1992). Recursion can frequently be 
recognized by having a subprogram call within a subprogram of the same name, as seen in 
the following example. 

procedure RECURS EXAMPLE(argl: in 
argla: typel; 
arg2a: type2; 

begin 

end 

sequence of statements 
RECURS_EXAMPLE(argla=>argl 
more statements 

RECURS_EXAMPLE; 

typel 

arg2a 

arg2: in 

=> arg2); 

type2) is 

Mutual recursion involving two or more subprograms can also occur. Depending on the 
arrangement and physical location of the source code for these subprograms, mutual 
recursion can be difficult to detect from source code. For example: 

procedure P ( . . . . ) i s 
begin 

Q( ) ; 

end P; 

and 

procedure Q(....) is 
begin 

P ( ) ; 

end Q; 

Do not instantiate generic units during runtime. If generic units are used, they should be 
instantiated only during initialization (Jones, 1988). However, as will be described in the 
section on traceability (section 3.3.3), generic units are not desirable in safety significant 
software. 
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Minimize use of local large composite objects. A memory allocation problem on the stack 
can occur if large composite objects are declared as local objects of a subprogram. Avoid the 
use of dynamic arrays as in p (a r ray (< » of . . . ) . 

Minimize use of unconstrained types. Unconstrained types such as record types with 
unconstrained dynamic bound, and string types must be used with caution because of the 
impact on memory allocation. 

Use length clauses if dynamic memory allocation is necessary. If dynamic memory 
allocation is necessary in a safety application, a l ength clause reserves in advance a pool 
of specified size of dynamic memory for any allocated objects of a given datatype. To take 
full advantage of this feature, the programmer must keep track of the number of objects 
currently allocated from the pool and ensure that this number does not exceed the capacity 
of the pool. 

Provide handlers for the predefined exception STORAGE_ERROR if dynamic memory 
allocation is necessary. If dynamic memory allocation is necessary in a safety application, 
providing handlers for the STORAGE_ERROR exception allows for graceful recovery from 
the situation of ninning out of dynamic memory. Without such handlers, the exception is 
propagated to the run-time executive and will most likely result in a crash of the system. The 
handlers should be provided for all program unit bodies in which memory is dynamically 
allocated, as well as in recursive subprograms (SPC, 1989; pp 77-78). 

Explicitly handle dynamic memory deallocation if dynamic memory allocation is necessary. 
Any automatic garbage collection facility provided by a compiler should not be used because 
it may affect timing. The pragma CONTROLLED is provided so that the program can disable 
automatic garbage collection (reclamation of unused memory)3. If dynamic memory 
allocation is necessary in a safety application, the application program should take full 
control for dynamic memory allocation and deallocation. Avoid the use of dynamic arrays, 
as in Procedure P(A:array(<>) of . . . ) . 

Do not assign values of dynamically allocated access objects to other access objects. If 
dynamic memory allocation is necessary in a safety application, the application program 
should not use multiple variables pointing to the same memory location. The danger is that 
when the shared memory space is deallocated, another variable may still point to the released 
memory space unless each one is explicitly set to null by the application program. If an 
application (e.g. a linked list) necessitates such multiple accesses, it must be justified and 

3 It should be noted that according the language definition, there is no mandatory garbage collection 
requirement. It is up to the compiler implementation to provide such a facility. 
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documented. 

procedure update_X is 
type three_D_Type is 

record 
x_coord : array(l..100) of float; 
y_coord : array(l..100) of float; 
z_coord : array(l..100) of float; 

end record; 
type three_D_pointer_type is access three_D_Type; 

procedure Dispose is new Unchecked_Deallocation(object => three_D_type, 
Name => three_D_pointer_type); 

p,q : three_D_pointer_type; 
three_D_display : other_3D_type; — a 3-D subtype defined elsewhere 

begin 
p:=new three_D_pointer_type;— dynamically allocate access objects p and g 
... — p is assigned a value somewhere in the code 
q:=p; — q has been set to the value of p 

— this is the source of the problem 

Dispose(p); — p has been set to null - now q contains an illegal value 

three_D_display :=q.x_coord; 
— annunciator_display will have unintended contents. 
— program may continue execution with undetected error 

three_D_display := p.x_coord; 
— C0NSTRAINT_ERR0R exception will be generated by this statement 

end update X; 

The above example instantiates a procedure called Dispose to handle integers from the 
generic procedure Unchecked_deallocation for deallocating dynamically allocated 
memory units. It then allocates two access objects (p and q) on the stack, sets the value of 
p, sets the value of q based on p, deallocates p but leaves q pointing to inaccessible memory. 
Somewhere later in the code, the value of q is used in an assignment statement. The result 
may be technically invalid, but if it is within the constraints of the type, it will be displayed 
with no external manifestation of an error condition. On the other hand, if the explicitly 
deallocated access object (p) is used in a different assignment statement, the error will be 
detected and an exception will be raised. While neither condition is desirable, an undetected 
incorrect data value is far worse than a detected incorrect data value which causes an 
exception to be generated (and hopefully handled without causing an unacceptable system 
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state). The above example demonstrates not only the potential dangers in dynamically 
allocated variables but also the need to understand the detailed behavior of the 
Unchecked_deallocation procedure and how its use can lead to subtle errors. 
Important points of its behavior include: 

(a) After completion of its execution, the value of the given parameter is null. 
(b) If the given parameter is null, the call has no effect. 
(c) If the given parameter is not null, the memory pointed by it is returned to the 

heap. 

This last point is of the greatest significance to the above example. Because Ada has no 
runtime support such as a reference counter, it is possible to define two or more access 
objects (pointers) to a given location and free the space using only one of those access 
objects . The other access object(s) would still have an illegal access value(s) and might 
cause a hazard if used in subsequent processing. 

3.1.1.2 Minimizing Memory Paging and Swapping 

The generic guidelines are applicable on the system level. Ada itself contains no features for 
memory paging and swapping. 

3.1.2 Predictability of Control Flow 

Base level attributes related to the predictability of control flow in Ada are as follows: 

• Maximizing structure 
• Minimizing control flow complexity 
• Initializing variables before use 
• Single entry and exit points for subprograms 
• Minimizing interface ambiguities 
• Use of data typing 
• Accounting for precision and accuracy 
• Order of precedence of arithmetic, logical, and functional operators 
• Avoiding functions or procedures with side effects 
• Separating assignment from evaluation 
• Proper handling of program instrumentation 
• Controlling class library size 
• Minimizing use of dynamic binding 
• Controlling operator overloading. 

These attributes and their relevance to safety are discussed in the following subsections. 
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3.1.2.1 Maximizing Structure 

Maximizing structure means minimizing the explicit transfer-of-control statements that change the 
control flow from the basic set of sequential, conditional, and loop constructs. Most such statements 
can result in unreachable code. The following guidelines are applicable. 

• Do not use goto statements. The generic guideline on maximizing structure by avoiding 
goto statements applies to Ada. The use of gotos can obscure program flow logic. This 
statement should be used only when there is no alternative. In Ada, where certain types of 
transfer of control have been incorporated into the language under other names such as exit, 
there is no real reason to use a goto in an Ada program (Sanden, 1994). Consider the 
following example. 

<<B_Label» 

«A_Label» 

statement 1; 
goto A_Label; 
statement 2; 
statement 3; 
statement 4; 
statement 5; 
statement_6; 
statement_7; 
goto B_Label; 
statement 8; 

— unreachable code 
— unreachable code 
— unreachable code 

— unreachable code 

g Use only one exit statement per loop. At least one e x i t statement is needed in loops 
without iteration schemes (LRM, 1995). Thus, only one e x i t statement should generally 
be used for the loop within the loop or for any nested loops. 

• Use only one return statement per junction. Multiple re turn statements can make the 
meaning of a subprogram confusing. Thus, function subprograms should have only one 
return statement and procedure subprograms should either use the normal exit at the end 
of the body or have only one re turn statement if the end of the body is inaccessible, for 
example, an infinite loop just before the end of the body. 

While maximizing structure is desirable for normal program flow, different rules apply to exception 
handling as discussed in Section 3.2.2. When exceptions are raised, other considerations (e.g., 
timing, intermediate operations, etc.) dominate. The guidelines on exception handling discuss 
r a i s e statements in more detail. 
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3.1.2.2 Minimizing Control Flow Complexity 

The generic guideline applies to Ada. The language-specific guidelines for mmimizing control flow 
complexity are as follows: 

• Limit nesting levels. As noted in the generic report, there should be explicit organizational 
or project-specific limits on nesting. These limits may be determined in part with respect to 
a particular language and execution platform. The style guidelines for Ada published by the 
Software Productivity Consortium recommend a maximum nesting level of three to five 
(SPC, 1989; pp 83-84). 

• Use if. .elsif instead ofnested if.. else. Use of an i f . . e l s i f in place of 
nested i f . . e l se statements helps avoid program structural and logical errors (Barnes, 
1984; p 62), as shown in the following example: 

-- Use 
if condition_l then 
statement_l; 

elsif condition_2 then 
statement_2; 

end if; 

-- instead of 
if condition_l then 
statement_l; 

else 
if condition_2 then 
statement_2; 

end if; 
end if; 

Always provide an e lse branch to i f statements if there is a remote chance that the 
conditions specified by the other i f statements are exhaustive. 

Use case statements for multiple branches. The case statement serves as a switch for 
: multiple branches and allows one evaluation for them. It is a powerful alternative to the i f 
statement when the branch to be taken depends upon the value of a discrete expression, and 
it is preferred if more than two conditions or branches are called for in the software design. 
To avoid a syntax error, the when others construct must be included if there are any 
possible values not given in other alternatives, as seen in the following example (SPC, 1989; 
p85): 
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— Use 
case thermal_alarm is 

when core => core_thermal_alarm(sensor_value); 
when inlet => inlet_thermal_alarm(sensor_value); 
when outlet => outlet_thermal_alarm(sensor_value); 
when others => do_something; 

end case; 
— instead of 
if thermal_alarm = core then 
core_thermal_alarm(sensor_value); 

elsif thermal_alarm = inlet then 
inlet_thermal_alarm(sensor_value); 

elsif thermal_alarm = outlet then 
outlet_thermal_alarm(sensor_value); 

else 
do_something; 

end if; 

It should be noted that the case statement is not an all purpose replacement for the i f . . 
t hen . . . e l se construct. A case statement is only possible if the cases depend on the 
different values of one expression with a limited range of possible values. (In the example 
on this page, thermal_alarm is an enumerated type with a limited set of possible values.) 
In that situation, the case construct is always preferable over an i f . . t h e n . . . e l se unless 
the number of branches is small. 

3.1.2.3 Initialization of Variables before Use 

The generic guideline with respect to initialization of all variables applies to Ada. Variables should 
be initialized to some known value at the beginning of an execution cycle before using them. A 
compiler cannot be depended on to reset variables automatically (Gottfried, 1993; SPC, 1989, pp 
103-104). However, even if the compiler could be relied on to initialize values, the safety concern 
would still exist because the compiler cannot be expected to initialize all objects with suitable values. 

Ada provides a variety of syntaxes for data initialization upon elaboration of a variable as shown in 
the following example: 
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subtype Number_Of_Widgets is Natural range 0 .. 1_000; 
Accumulator : Number_Of_Widgets := 0; 
type Coefficients is array {1 .. 3, 1 .. 3) of Weights; 
Example_Coefficients : Coefficients 

:= ( ( 1.0, 0.5, 0.1), 
( 0.5, 1.0, -0.3), 
( 0.1, -0.3, 1.0) ); 

type Complex_Numbers is record 
Real_Part : Float := 0.0; 
Imaginary_Part: Float := 0.0; 

end record; 
Zero : Complex_Numbers; — Automatically initialized to(0.0, 0.0) 

— when elaborated (unreliable) 
Square_Root_Of_Minus_l : Complex_Numbers 

:= (Real_Part => 0.0, Imaginary Part => 1.0); 

type A is array (1 .. 100) of Character; 
AA :A := (others => 'x']; 

— Aggregate initialization: 
— multiple elements 
— of an array can be given initial values 
— by means of the construct ^others ==>' 

type B is array (years, months) of Integer; 
BB: B := (others => (others => 0)); 

— Without this construct, 
— it would be impractical to initialize 

a large array. 

The following are Ada-specific initialization guidelines. 

• Initialize injunction body if initialization occurs via a junction call. If initialization occurs 
via a function call, initializations should be done in a program body rather than in the 
variable declaration since the function body may not have been elaborated when the variable 
declaration was encountered (SPC, 1989; pp 103-104). 

• Restrict use of aggregate assignments for initialization of large objects. As shown in the 
above example, aggregates are a useful way of initializing large arrays. However, the 
initialization of large objects via aggregates should occur with caution. The reason for this 
guideline is that some compilers accomplish aggregate assignments by first building a 
temporary version of the object with the specified values in system memory and then copying 
the contents into the actual object. If the size of the temporary version exceeds available 
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memory, the result could be a system crash.4 In such cases, testing should be done to ensure 
that the aggregate assignment can be performed acceptably under operational conditions. An 
alternative is to perform initialization in the program unit body rather than in the objects' 
declarations for large objects. 

There are two cases in Ada where explicit initialization of a variable need not be done to comply 
with the guideline. First, all objects of access type (i.e., pointers) are automatically initialized to 
null by the compiler. Second, type definitions for records may contain default initialization values 
for all components; whenever objects of those record types are elaborated, their components are set 
to the defaults in the absence of an explicit initialization (DoD-STD-1815A; Section 3.7). 

3.1.2.4 Single Entry and Exit Points for Subprograms 

Although the generic guideline is applicable with respect to one normal entry and exit point per 
subprogram5, the guideline has limited applicability due to Ada's exception handling and tasking 
features. Ada-specific guidelines are: 

• One normal entry and exit per subprogram. Subprograms (procedures and functions) should 
have one normal (as opposed to exception) entry and one normal exit. The word re turn 
should appear exactly once in each function and not be used in a procedure. In exceptional 
cases, however, multiple exits can be used if they increase readability. 

• Limit the number of exception entry/exit points. The number of these points should be kept 
as low as possible. Each of these exception propagation exit/entry points should be 
documented clearly. The propagation of an exception raised in a subprogram to the caller 
of the subprogram should be limited or not used at all because such propagation creates an 
additional exit point for the first subprocedure and an additional entry point for the caller's 
exception handler. More points on propagation of exceptions are discussed in Section 2.2.2. 

• Avoid multiple task entry points. Each active program unit (i.e., task) may have multiple 
interaction points with other active program units. The number of these interaction point 
should be designed to minimize program complexity both within the task and the entire 
program. Additional points on tasking are described in Section 2.2. 

Such a situation actually occurred in the experience of one of the writers of this section. In an image 
processing application, a 1024 x 1024 array of pixels was initialized by an aggregate of the form ((others => 0), 
others => 0) . This caused the entire system, including the operating system and the other jobs being executed 
concurrently, to crash without any error messages. Determining the cause was complicated by the fact that the Ada 
code was syntactically and semantically correct. 

5It is more appropriate to refer to entry and exit points in program unit bodies rather than in subprograms in 
the case of the Ada language. 
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3.1.2.5 Minimizing Interface Ambiguities 

The generic guideline to minimize interface ambiguity applies to Ada. Ada automatically provides 
features that eliminate many interface errors. For example, constraint checking is performed on 
values of actual input parameters to ensure they are not out of range. Another example is that the 
indices of the first and last elements in an array or array slice-parameter are automatically passed in 
with the actual array parameter. Nevertheless, the language does not eliminate interface ambiguities. 

The following are specific guidelines: 

Specify argument modes. Arguments with procedures and entries should have their modes 
specified in their declarations rather than relying on the default mode (SPC, 1989; p 68). 
Specifically: 

procedure Quadratic(a, b, c: in Float; rootl, root2 : out Float); 

rather than: 

procedure Quadratic(a, b, c : Float; rootl, root2 : out Float); 

While the latter declaration is acceptable syntax (and in that sense, is unambiguous to the 
compiler), explicit use of modes avoids confusion to programmers and reviewers. 

Restrict use of the in out mode. The in out mode should be used only for parameters 
whose value will be changed by the procedure. It should not be specified for parameters used 
exclusively as either in or out parameters. When used in place of an in mode, it is 
possible to modify a value that should be constant unintentionally. Using in out for an 
out mode causes fewer problems, but it does obscure the intent of the parameter. This 
mode is frequently used in the case of an output parameter whose value is read inside a 
subprogram; when this situation leads to a compilation error, many programmers will change 
the mode from out to in out rather than taking the trouble to declare and use a local 
variable.6 For example, programmers will code as follows: 

6In Ada 95 reading an out mode parameter is allowed. According to the Ada 95 rationale, too many 
programmers were forgetting to copy the value of the local variable into the output parameter at the end of 
procedures. 
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procedure Find_Max 

beg: 

end 

Ln 

(In The List : 
Maximum : 

Maximum := Element_Type* first; 
for List Index in In The List1 

if In The List(List Index) 
Maximutr 

end if; 
end loop; 

Find_Max; 

in Some_Array_Type, 
in out Element_Type) is 

range loop 
> Maximum then --

L := In The List(List Index) ; 
value read here 

instead of coding: 

procedure Find_Max (In_The_List : i n Some_Array_Type; 
Maximum : out Element_Type) i s 

Local_Max : Element_Type := E lement_Type ' f i r s t ; 

begin 
for List_Index in In_The_List* range loop 

if In_The_List(List_Index) > Local_Max then 
Local_Max := In_The_List(List_Index); 

end if; 
end loop; 
Maximum := Local_Max; 

end Find Max; 

Use named parameter associations. Named parameter associations should be used by the 
calling routine for functions, procedures, and task entries whenever there are two or more 
parameters of the same type in the parameter list. Using named parameter associations 
improves readability and reliability (Booch, 1983; p 106). The following example shows the 
use of named parameter associations for a quadratic equation evaluation procedure. 
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Quadratic (a 
b 
c 
root 
root 
OK 

1 
2 

=> 
=> 
=> 
=> 
=> 
=> 

second order coefficient, 
first order coe 
constant term, 
first root, 
second root, 
status) ; 

fficient, 

Refer to the target data type rather than the pointer's type when referencing data. When data 
referenced by a pointer are to be read or modified in a subprogram and the value of the 
pointer itself is not to be used, the declaration and call of the subprogram should refer to the 
target data type rather than the pointer's data type as shown below. 

type Target_Type is array (1 100) of Component_Type; 
type Pointer_Type is access Target_Type; 

The_Data : Pointer_Type := new Target_Type'(others => 0); 

-- Better subprogram declaration 
procedure Print(The_Data : in 

-- Better subprogram call 
Print(The_Data.all); 

-- Worse subprogram declaration 
procedure Print(The_Data : in 

-- Worse subprogram call 
Print(The_Data); 

Target_Type) ,-

Pointer_Type); 

This practice removes ambiguity about which data are to be processed in a subprogram, that 
is, the data being pointed to or the pointer. For in mode parameters, this practice removes 
the possibility of modifying data meant to remain unchanged, since it is possible to modify 
data pointed to by an in mode access type parameter. The practice also allows checking for 
out-of-range data values. However, care must be taken when passing a large object by value 
to avoid memory overflows. 

Avoid aliased parameters. Aliased parameters should be avoided. They can arise from using 
the same actual parameter for more than one formal parameter (and calling both by 
reference), using overlapping array slices, referencing global variables, and using pointers 
referencing the same data for different actual parameters. Results can be dependent on 
compiler-specific implementations such as the order of evaluation of actual parameters. 
Even when called by value, passing the same actual to two formal parameters or passing a 
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global variable to a procedure is discouraged. 

3.1.2.6 Use of Data Typing 

The generic guidelines for data typing apply to Ada. Ada was made a strongly typed language in 
order to provide the potential for increased safety. Code should take advantage of this feature to the 
maximum extent possible. The following specific guidelines are related to the full use of data 
typing: 

• Constraint checking. Run-time constraint7 checking allows the detection of anomalous 
conditions. Specifically, when an object is assigned a number outside its range, then a 
CONSTRAINT_ERROR is raised. The pragma suppress disables run time constraint 
checking and should not appear in any Ada programs used to generate the safety-system 
machine code (SPC, 1989; p 102). Out-of-range values should be detected as soon as 
possible in safety- critical systems, so their point of occurrence may be localized before they 
have a chance to propagate and corrupt further calculations. 

• ■ Limit range of scalar datatypes. Scalar data types with the narrowest possible range of 
values should be used in order to detect erroneous data calculations. For example, the 
predefined subtype, Positive should be used for variables that are always greater than zero 
instead of the predefined type integer. If the upper limit of possible values for the 
variable is known, a subtype of Positive should be used. A corollary is that the predefined 
types in package Standard should be used for variable definitions only when the possible 
range of values for the variable is completely unknown or is the same as the range for a 
predefined type (SPC, 1989; p 34). 

The practice of using the most-limited bounds on ranges can lead to difficulties in the case 
of real types and subtypes. This practice may result in the raising of spurious constraint errors 
and in needless interruption of normal program execution. The following example illustrates 
this difficulty: 

7Most Ada 83 implementations provide another predefined exception, NUMERIC_ERROR, for detection 
of overflows and underflows. This run-time check also should not be suppressed. In Ada 95 the 
NUMERIC_ERROR exception is incorporated into the CONSTRAINTERROR exception (Ada 95 LRM, 1995). 
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with Trig_Functions; 

PI : constant := 3.14159265; 

subtype Angles is Float range 0.0 .. 2 * PI; 
subtype Args is Float range -1.0 .. 1.0; 

-- Spherical trigonometric function to calculate 
-- angular distance between two points 

function Angular_Distance 

Cos_Distance : Args := 0.0; 

(Side_B 
Side_C 
Angle_A 

■ Angles; 
: Angles; 
Angles) 

begin 
Cos_Distance := 

Trig_Functions.Cos(Side_B) * Trig_Functions 
Trig_Functions.Sin(Side_B) * Trig_Functions 
Trig_Functions.Cos(Angle_A); 

return Trig_Functions.Acos(Cos_Distance); 

end Angular_Distance; 

return Angles is 

.Cos (Side_ 

.Sin(Side_ 
_C) + 
_C) * 

Although mathematically correct, execution of this function will sometimes cause constraint 
errors when the two points are close together; this is because, in such cases, the 
Cos_Distance calculated may be slightly greater than 1.0, the upper limit of datatype 
args, due to limited precision. When such cases are encountered, the recourse should be 
to rework the algorithm rather than extend the bounds of the subtype(s) and thus weaken the 
benefits of constraint checking. An added test may be used to check for this condition: 
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. . . 

end 

begin 

Temp := ( 
Trig_Functions 
Trig_Functions 
Trig_Functions 

if ... then 

.Cos(Side B) * 

.Sin(Side B) * 

.Cos(Angle_A)) 
-- test 

Cos_Distance := Args(Temp); 
return Trig_Functions.Acos(Cos_ 

else 

end if; 
Angular_Distance; 

-- Flag 

Trig_Functions 
Trig_Functions 
; 
for constraint 

Distance); 

the constraint 

.Cos(Side 

.Sin(Side 

error on ' 

error 

C) + 
C) * 

remp 

Range checking in subexpressions. Some Ada 83 implementations constraint-check 
intermediate as well as final values of expressions. In the example below, a constraint error 
exception would be raised by some implementations at the point where A and B are added 
together: 

type Example_ 

A, 

A 
B 
C 

B, C 

:= 7; 
:= 5; 
:= (A 

_Type 

: Example_ 

+ B) / 2; 

is range 

.Type; 

--

0 .. 10; 

Constraint error could be raised here 

This problem has been removed from Ada 95 implementations. 

Minimize type conversions. In Ada all type conversions are explicit and may be found in the 
source code. However, the use of type conversions, and particularly of unchecked type 
conversions (a bit-for-bit copy without any checks for such problems as mismatched type 
size), is strongly discouraged. Type conversions partially negate the benefits of strong 
typing. 

Avoid use of unchecked conversions. A predefined generic library function called 
UncheckedjConver sion is provided by Ada to facilitate interaction with hardware and/or 
lower level software. However, using this facility may lead to assigning illegal value to an 
object. This is against the Ada strong typing philosophy and should not be used safety-

3-17 NUREG/CR-6463 



critical systems unless absolutely necessary. Documentation of the rationale for each 
unchecked conversion should be included in the code. 

Limit use of access objects. Programs should limit the use of objects declared as access types 
(pointers) to situations in which there are no better alternatives. In general, such indirection 
leads to confusion. The problem can be compounded with dynamic allocation and multiple 
access objects used for the same address as pointed out in section 2.1.1. 

Avoid declaring variables in package specifications. Keeping variable declarations out of 
package specifications and instead defining subprograms to access the data will result in 
greater data abstraction and less coupling. This practice can have maintainability benefits as 
well. The example below demonstrates the point by showing a part of a compiler. Both the 
package handling error messages and the package containing the code generator need to 
know the current line number. Rather than storing this in a shared variable of type 
Natural , the information is stored in a package that hides the details of how such 
information is represented and makes it available with an access routine. 

package Compilation_Status is 
type Line_Range is 1 .. 2_500_000 , 
function Source_Line_Number return 

end Compilation_Status ; 

package body Compilation_Status is 
-- define Line_Range variable 
function Source_Line_Number return 

-- define function 
end Compilation_Status ; 

with Compilation_Status ; 

package Error_Message_Processing is 
-- Handle compile-time diagnostic. 

end Error_Message_Processing ; 

with Compilation_Status ; 

package Code_Generation is 
-- Operations for code generation. 

end Code_Generation ; 

Lirie_Range ; 

Line_Range is 
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3.1.2.7 Accounting for Precision and Accuracy 

Precision and accuracy generic guidelines apply to Ada. Ada supplies many more features to control 
the precision and accuracy of calculations, than most other languages. 

The following Ada-specific guidelines apply to precision and accuracy: 

Allow for only the minimum accuracy specified in the program. Ada enables the users to 
specify the minimum accuracy of numerical types. This minimum accuracy also specifies 
the accuracy of arithmetic operations on the types. It does so in a way that depends on 
information in the type declarations rather than the characteristics of the computer running 
the program or of the compiler. Thus, a program is obtained that will run with a minimum 
guaranteed degree of accuracy on any machine for which the program can be compiled. 

When the development hardware or test hardware differs from the target hardware, it is of 
vital importance to realize that Ada guarantees minimum accuracy. Because of their 
implementation of arithmetic operations, some systems make more efficient use of the 
machine; therefore, this may provide slightly better accuracy than required by Ada. 
However, these slight differences may mask small errors that can accumulate during the 
course of a computation to give significantly incorrect results. That two different machines 
use the same number of digits in the mantissa of a floating point number does not imply they 
will have the same arithmetic properties. Therefore, only the minimum accuracy should be 
incorporated into the design and implementation. No safety-system program should depend 
on an accuracy better than the minimum (SPC, 1989; p 136). These issues must be factored 
into the design of the software. 

• Use appropriate operators for relational tests. Relational tests should use <= and >= on real 
values rather than <, >, = and /= (SPC, 1989; section 7.2.9). 

• Use Ada attributes for checking of small values. Ada attributes should be used in 
comparisons and checking for small values (SPC, 1989; section 7.2.10). For example: 

if abs(X - Y) <= FloatJType■small 
-- Test for absolute "equality" 

i£ abs(X - Y) <= abs(X) * Float_Type'epsilon 
-- Test for relative "equality" 

Use Ada attributes for checking for special values. It is important that the code test carefully 
around special values (SPC, 1989; section 7.2.11). For example, the following statement 
should be used for a test around zero: 
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i f abs(x) <= Float_Type'small -- Preferred t e s t for value of 0.0 

3.1.2.8 Order of Precedence of Arithmetic, Logical, and Functional Operators 

The generic guidelines for order of precedence apply to Ada. The following are Ada-specific 
guidelines. 

• Use parentheses. Arithmetic, logical, and other operations should use parentheses to ensure 
that the order of evaluation is explicitly stated for operators of different precedence (SPC, 
1989, pp 79 - 80). For example: 

-- Use 
Root := ((-B) 

-- instead of 
Root := (-B + 

+ Square_ _Root((B 

Square_Root(B ** 

-- Use 
C := (not A) or 

-- instead of 
C := not A or B 

B ; 

; -- may 

** 

2 ■ 

be 

2) -

- 4.0 

(4.C 

* A 

mistaken 

* A * C)) )/(2. 

* C))/(2 

for "not 

0 * A) 

(A or 

0 * 

' 

B) " 

A); 

The'reasons for using explicit parentheses is not only to avoid misinterpretation. Absence 
of parentheses may also cause the results of an expression to differ because an optimizing 
compiler may alter the order of expression evaluation for operators with the same 
precedence. Any program that depends upon a specific order of evaluation is considered 
erroneous. By erroneous, we mean that the Ada compiler" may not detect the violation, so 
the effect of running such a program is unpredictable (Booch, 1983; p 153). In the following 
example, the addition of B and C will cause a numeric overflow; therefore, it is vital that 
the subtraction be performed first. 

a) X : = A - B + C ; -- Evaluation order may be changed by 
-- optimizing compiler 

b) X := (A - B) + C; -- Evaluation order certain 

NUREG/CR-6463 3-20 



Account for full evaluation in logical expressions. In Ada, all expressions are fully 
evaluated even if the final value is known earlier. For example, to evaluate logical 
expression x AND Y, bothx andY will be evaluated even if the value of x is FALSE 
(making the evaluation of Y unnecessary). This may lead to subtle errors, if the legality of 
the evaluation of Y depends on the value of x. If the desired effect is not full evaluation 
(i.e., evaluation will stop as soon as the first not true condition is found), alternative 
constructs such as AND THEN or OR ELSE should be used. 

3.1.2.9 Avoiding Functions or Procedures with Side Effects 

Generic guidelines are applicable. Also see Subsection 3.2.2.3 for Ada-specific guidelines. 

3.1.2.10 Separating Assignment from Evaluation 

Assignment statements (e.g., extern_var := 100) should be separated from evaluation 
expressions (e.g., i f sensor_val < temp_limit). In Ada the separation can be violated when 
functions with side effects are used as part of the evaluation. In the example below, the guideline is 
violated when execution of f unc (a) sets a global variable: 

if (func(a) < templimit) then 

The generic guideline for this attribute is, therefore, satisfied when the guidelines to avoid side 
effects are followed. 

3.1.2.11 Proper Handling of Program Instrumentation 

The generic attributes apply to Ada programs. However, there are no specific Ada guidelines for this 
attribute. 

3.1.2.12 Control of Class Library Size 

This attribute is not applicable to Ada 83, however, it is applicable to Ada 95. 

3.1.2.13 Minimizing Dynamic Binding 

This attribute is not applicable to Ada 83, however, it is applicable to Ada 95. 
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3.1.2.14 Control of Operator Overloading 

The generic guidelines apply to operator overloading. Operator overloading should be controlled 
by project guidelines and the Ada specific guidelines discussed below. In Ada the following 
functions can be overloaded: 

and or xor 
= < <= > >= 
+ - & abs not 
* / mod. rem ** 

Operator overloading can be a benefit to readability and complexity by allowing a single operator 
to be useful for different data types. An example of operator overloading is shown below. The body 
of the function would check to see if the sum is less than 360.0 and greater than or equal to 0.0 and, 
if not, returns the sum modulus 360.0. 

function "+"(LEFT, RIGHT: Angles_In_Degrees) return Angles_In_Degrees; 

Ada-specific guidelines for operator overloading are as follows: 

• " Order of procedure. The code should avoid operator overloading when the inherent 
precedence of the operator is different from that desired. 

• Consistency of semantics. The code should preserve the conventional meaning of the 
operators (SPC, 1989; section 5.7.4). 

func t ion "*"(LEFT, RIGHT : Matrix) r e t u r n Matr ix ; 

Such a function should define the "*" operator consistent with the expected matrix 
multiplication function. 

3.1.3 Predictability of Timing 

An Ada-specific guideline related to timing predictability was discussed with regard to recursion 
in section 3.1.1.1. Additional related guidelines are: 
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• Minimizing the use of tasking 
• Minimizing the use of interrupt-driven processing 
• Characterization of timing for the Ada runtime environment 
• Control of memory management from the application 

These guidelines are discussed in the following sections. 

3.1.3.1 Minimizing the Use of Tasking 

The generic guidelines for tasking apply to Ada. The use of tasking in safety-critical applications 
should either be avoided or should be constrained because of the following reasons: scheduling 
policy and timing uncertainties, implementation differences, race conditions, asynchronous tasking 
problems, priority issues, and abort issues. 

Although tasking should generally be avoided in safety-critical software, there may be cases where 
it is the only reasonable solution. The following guidelines will reduce the risks associated with 
tasking identified above, but do not totally mitigate them. 

• Ensure that the concurrent software design is as simple as possible, but no simpler. That is, 
there should be no more tasks than necessary and there should be no more task 
synchronization and communication than necessary. 

• Avoid abort statements. Programs should avoid using the abort statement. The 
following is an example of an abort command: 

abort A Short Task, Temperature Tracking(3), Sensor Data Collection.all; 

Aborting a task can have many consequences, not all of which are obvious. If a task is 
aborted, then all tasks dependent on it are aborted. Furthermore subprograms and blocks 
that were called by it will also be aborted. If the task was suspended, the abort will cause 
it to appear to have been completed. Delays are canceled by aborts, and tasks are removed 
from entry queues. Accept and se l ec t statements will be left waiting for partners. 
Aborting a task in rendezvous has complex consequences that depend on the situation 
(SPC, 1989, p. 121; Barnes, 1984, p. 239). 

Avoid dynamic tasking. All tasks should be elaborated only at system initialization. 
Dynamic tasking complicates the predictability of the run-time behavior of a program for 
at least the following reasons: 

1. Allocated task objects referenced by access variables allow generation of aliases, 
that is, multiple references to the same task object. Anomalous behavior can arise 
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when references to an aborted task are made using an alias. 

2. A dynamically allocated task that is not associated with a name (i.e., a "dropped 
pointer") cannot be referenced for the purpose of making entry calls, nor can it be 
the direct target of an abort statement (SPC, 1989, pp. 76-78, 111-112). Note that 
there may exist tasks that need not be referenced, such as a task which performs 
some periodic function in the background. 

Tasks created at runtime by means of the allocator new should not be used at all for the 
following reasons: 

3. Runtime-created tasking complicates debugging, understanding, and control flow 
tracing. ' 

4. Runtime-created tasking allocates memory from the heap and can lead to an 
insufficient memory condition. 

Use delay statements only for waiting, not synchronization. Delay statements should not 
be used to set a starting time or to synchronize tasks. Synchronization and control should be 
handled through a rendezvous between tasks. The delay statement only sets a minimum 
time period, not a maximum period. For example, delay 3.0 means a delay of at least 3 
seconds. The only guarantee is that the delay will be for a minimum time period (Barnes, 
1984; p 251). Timing uncertainties are associated with differing implementations by 
compiler vendors, interactions with underlying operating systems (or real-time kernels), and 
the design of the hardware platform.8 

Minimize the number of accept and select statements. Both the number of accept and 
s e l e c t statements per task and the number of accept statements per entry should be 
minimized to the extent possible without unduly complicating internal program logic and 
complexity. The rationale for this guideline is to simplify the concurrent design (SPC, 
1989; p 119). With more accept or s e l ec t statements, the verification of the design 
and state of each calling program and each entry call causing the executing different code 
sequences dependent on the task's local state can become an involved effort. 

Avoid certain variations of select statements. Conditional entry calls, selective waits 
with e l se parts, timed entry calls, and selective waits with delay alternatives should be 
avoided because they pose a risk of race conditions (SPC, 1989; p 119). The only 
circumstance under which they should be used is when the possibility of race conditions 
can be conclusively shown not to exist. 

Ada 95 adds the function delay until 
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Use terminate alternatives with every selective wait. Multiple task exits (as opposed to 
returns) are frequently necessary to avoid deadlocks (SPC, 1989; p 122) . Every Ada 
selective wait statement not requiring an e l se part or a delay alternative should have 
a terminate . However, unnecessary or redundant terminate statements should be 
deleted from tasks to reduce possible confusion. 

Account for exception handling during task interactions.' An exception raised during a 
rendezvous (i.e., in the body of an accept statement) affects both the calling and the called 
task9. The exception should be handled either in the body of the accept statement or in the 
affected task. More discussion of exception handling is in the next section. 

Minimize use of the PRIORITY pragma. The program should not depend on the order in 
which tasks are executed or the extent to which they are interleaved, PRIORITY should 
be used only to distinguish general levels of importance. The rationale for this guideline 
is that the Ada tasking model is based on preemption and requires that tasks be 
synchronized only through the explicit means provided in the language (i.e., rendezvous, 
task dependence, and pragma SHARED). The scheduling algorithm is not defined by the 
language and may vary from time slice to preemptive priority. Some implementations 
provide several choices that a user may select for the application. It should be noted that 
this pragma may limit portability. The number of priorities may vary between 
implementations. In addition, the manner in which tasks of the same priority are handled 
may vary between implementations even if the implementations use the same general 
scheduling algorithm. 

3.1.3.2 Minimizing the Use of Interrupt-Driven Processing 

The generic guidelines for interrupt-driven processing apply to Ada. It is not generally desirable 
in safety-critical systems because it can lead to nondeterministic maximum response times and 
unanticipated system states. Use of a deterministic approach to the monitoring and control of 
multiple input sources is usually preferred. However, there may be some situations where 
interrupt-driven processing has a significant design advantage over alternatives (e.g., to handle 
the acceptance and processing of plant emergency input). The following mitigating guidelines 
apply: 

• Declare interrupt values using named constants, and isolate them from other declaration 
clauses. The actual value for an interrupt is implementation defined. The isolation of the 
interrupt value named constants will not affect performance and provides portability 

9If the rendezvous is nested, i.e. if the accept statement appears in the body of another accept 
statement, yet another task is affected. 
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between similarly supported implementations (SPC, 1989; p 145). 

• Isolate interrupt receiving tasks into implementation-dependent package bodies when 
possible. The handling of interrupt entries is not specified by the Ada Language Reference 
■ Manual (DoD-STD-1815A). They are implementation dependent; that is, specific to a 
compiler and its target machine. If the code is moved to a different implementation (which 
may happen either during the initial development or during maintenance), the interrupt-
handling features may not be supported. The reason why this guideline is qualified with 
"when possible" is that the isolation of interrupt entries creates an additional rendezvous 
that will often double the interrupt latency time. Where this is unacceptable, the interrupt 
entries must be proliferated with a resulting decrease in portability. 

• Pass the interrupt to the main tasks via a normal entry. This allows any implementation-
dependent features to be isolated from the higher level (and presumably more complex and 
worthy of preserving) software that actually handles the interrupt. 

• Do not use task entry points for interrupt processing. Task entry points should not be used 
for interrupt handling, unless the user-written low-level code is known to be safe (Jones, 
1988). 

3.1.3.3 Characterize Timing for the Ada Run-Time Environment 

The run-time environment (RTE) that is loaded together with the Ada source code into the target 
system is a key component affecting timing. The RTE is generally delivered by the compiler vendor 
and is not developed as part of the safety application. Nevertheless, a process of testing and 
validation of the RTE to ensure that it is deterministic, is functionally correct, and will satisfy timing 
requirements is an important part of the safety development process. Characterization of the Ada 
RTE for suitability in the safety application is primarily a test and verification issue which is beyond 
the scope of this document. 

3.1.3.4 Avoid Automatic Memory Management 

As noted in section 2.1, a major source of timing uncertainty is automatic garbage collection 
(memory reclamation) by the run time environment (if supported). Thus, it should be disabled in 
time-critical systems by use of the pragma control led where deterministic response time 
requirements exist. 

3.2 Robustness 

The intermediate attributes for robustness are as follows: 
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Controlled use of diversity 
Controlled use of exception handling 
Input and output checking. 

3.2.1 Controlled Use of Software Diversity 

As noted in Chapter 2, use of diverse software implementations is a design-level decision. A 
discussion of the factors affecting the use of diversity are beyond scope of this document. The 
generic attributes and guidelines for both internal and external diversity apply to software written 
in Ada. However, there are no Ada language-specific guidelines. 

3.2.2 Controlled Use of Exception Handling 

Exception handling provides for alternative execution paths to handle unexpected and abnormal 
situations that can be anticipated. The generic guidelines for exception handlers described in Chapter 
2 are applicable to Ada programs. The following sections discuss Ada-specific guidelines. 

3.2.2.1 Local Handling of Exceptions 

The generic guidelines apply. Exception handlers should be placed as close as possible to the point 
where the exception was raised. This is because exceptions can be difficult to localize, and it is often 
desirable to resume normal execution as near as possible to the point where the exception occurred 
after recovery actions are taken. (SPC, 1989; p 99). The following are Ada-specific guidelines. 

• Minimize propagation of exceptions. Where possible, exceptions should be handled in the 
subprogram in which they were raised. Automatic propagation of exceptions should be 
avoided in a safety-critical application since it is implied and obscures the program logic. 
Any exception propagation should be intentional, not by default, and should be clearly 
indicated in comments. Specific guidance on the use of exception handling should be part 
of the coding practices documentation procedures of the organization or the specific project. 

• Localize handling of predefined exceptions. The Ada LRM (DoD-STD-1815A) gives 
sufficient freedom to implementors so that in many cases a predefined exception for the 
same cause can be raised from a number of locations. Thus, if it is possible for the same 
exception to be raised at more than one point in a program unit, the exception handler for 
each raising should be different in order to localize the exception. This is shown in the 
following example. 
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procedure Same_Exception_At_Different_Points is 

Dynamic_Obj ect_A : Pointer_Type; 
Dynamic_Obj ect_B : Pointer_Type; 

begin 

begin -- isolate first occurrence of exception 

Dynamic_Object_A := new Target_Type; 

exception 

when Storage_Error => 
Text_IO.Put_Line("Heap overflow when allocating " & 

"A object"); 

end; 

begin -- isolate second occurrence of exception 

Dynamic_Object_B := new Target_Type; 

exception 

when Storage_Error => 
Text_IO.Put_Line("Heap overflow when allocating " & 

"B object"); 

end; 

end Same_Exception_At_Different_Points; 

3.2.2.2 Preservation of External Flow Control 

When an exception is raised in a called subprogram declared in a package specification and is thus 
visible to external subprograms, the particular exception handling to be done frequently depends 
upon the caller. Therefore, to preserve the flow control, all exceptions that are raised to a calling 
subprogram should be declared in the same specification as the called subprogram. This makes 
them visible to the caller (SPC, 1989; section 4.3.2), as shown in the following example. 
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package Trig_Functions is 

-- Exception raised when the combination of 
-- input to a function 
-- is invalid. 
Invalid_Arguments : Exception; 

arguments 

-- Exception raised when an unexpected and unchecked 
-- for constraint 
-- error is raised in any trig function. 
Unexpected_Constraint_Error : Exception; 

-- Function to compute the arc whose tangent 
-- The exception Invalid_Arguments is raised 
--if both input parameters 
-- are essentially zero. 

is Y/X. 

function Atan (Y : in Float; X : in Float) return Angles; 

package body Trig_Functions is 

function Atan(Y : in Float; X : in Float) return Angles is 
begin 
if abs(Y) < Float'small and then abs(X) < 

raise Invalid_Arguments; 

exception 
when Invalid_Arguments => raise; 
when Constraint_Error | Numeric_Error => 
raise Unexpected_Constraint_Error; 

end Atan; 

Float'small then 

In accordance with the guideline in the previous paragraph, unexpected occurrences of the 
predefined exceptions that may be raised are handled locally. 

3.2.2.3 Uniform Exception Handling 

When Ada code raises a defined exception, the exception processing has several courses of action: 
abandon the execution of the unit, try the operation again, use an alternative approach, repair the 
cause of the error, initiate alarms, or send messages to the operations personnel (Gall, 1975). The 
selection of which course of action to take should be determined on a uniform, project wide basis 
using the results of a safety analysis. Means of assessing and enforcing of exception handling 
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policies should exist. 

The following guidelines are suggested for uniform exception handling: 

• Clearly express and document exception handling. All exception handling should be clearly 
expressed in code and uniformly documented in the program. 

• Handle predefined exceptions. Ada has five predefined (non-user-defined) exceptions, 
CONSTRAINT_ERROR, NUMERIC_ERROR, PROGRAM_ERROR, STORAGEJERROR, and 
TASKING_ERROR. It is good practice to recognize these conditions explicitly and plan for 
their resolution in a uniform manner; even error conditions that the programmer believes 
can never arise may be caught as a predefined exception. 

• Do not raise predefined conditions explicitly. The predefined conditions should be reserved 
for their intended purpose. Exceptions that are to be raised explicitly by the application 
program should be identified using other names. 

• Handle all program-defined exceptions. If a condition raising an exception occurs, there 
should be a course of action associated with it (Booch, 1983; p 273). 

• Use exception handling for abnormal events. Exceptions are just what they are called, and 
should not be used for normal processing (SPC, 1989; p 96). Exceptions should be used 
for abnormal or unusual occurrences only. Execution of normal control sequence is 
abandoned after an exception is raised. The code should contain other provisions to handle 
normal events without the asynchronous transfer of control by an exception. 

• Minimize side effects. While some side effects may be inevitable as a result of exception 
handling, they should be minimized. Critical state data should not be changed during 
exception processing except to the extent needed to restore mainline processing to the 
system. 

One side effect of exceptions is that data in a calling program unit may be corrupted. For 
copy-in and copy-out parameters this presents no problem, as their new values are copied 
back into the original objects only upon successful completion of the called unit. For 
program units that change data objects specified by reference parameters or that are global 
variables, the situation is different. The reader should consider the example of a procedure 
that changes the values in a large array passed to it as an in out mode parameter. If an 
exception is raised after part of the array has been processed, some of the elements in the 
original array object will have been processed, and other elements will retain their original 
values.10 

Exceptions are yet another reason why global variables should not be modified in subprograms. 

NUREG/CR-6463 3-30 



In safety-critical subprograms, data that are to be updated and that are passed to and from the 
subprogram via reference should be copied into local variables of the same data type, 
updated in the local variables, and copied into the output parameter objects only upon normal 
termination. This practice involves sacrificing time and space for safety. 

Avoid use of compiler vendor-specific exceptions. No exception defined by a compiler 
vendor can be guaranteed as portable to other implementations whether or not it came from 
the same vendor. Not only may the names be different, but the ranges of conditions 
triggering the exceptions may also be different (SPC, 1989; p 144). 

Use other in exception handler definitions. All conditions associated with exception 
handling must be well defined; however, other should be used and flagged as an 
unanticipated exception condition. 

3.2.3 Input and Output Data Checking 

The generic attributes for input and output data checking are applicable to Ada. Because input and 
output data checking are handled through the same mechanisms in Ada, this section discusses them 
together. 

Ada automatically checks for certain anomalous conditions on I/O data. One such anomalous 
condition occurs when the data are out of the range of the datatype; a constraint exception would 
then be raised. Another anomalous condition detected automatically is when the index for an array 
element is out of the array's bounds. 

The file management packages provided with Ada compilers provide additional input and output 
data checking. Package Text_IO routines provide not only range checks, but also syntax checks, on 
I/O values. Packages Sequential_IO and Direct_IO check input values to ascertain if they can be 
interpreted as being of specified datatypes. 

In safety-critical systems I/O data should always be regarded as untrustworthy until proven 
otherwise. The notions that input error checking may not be applicable if the input can be trusted 
and that output checking may not be necessary if downstream input checking is performed should 
be viewed with caution. Consequently, the automatic Ada checks on input and output data should 
never be disabled. 

3.3 Traceability 

Traceability refers to attributes of safety software that support verification of correctness and 
completeness against the software design. The intermediate attributes for traceability are as follows: 

• Readability 
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• Use of built-in functions 
• Use of compiled libraries 
• Use of generics. 

Because readability is also an intermediate attribute of maintainability, it is discussed in Section 3.4. 
Ada-specific guidelines for the other attributes are discussed in the following sections. 

3.3.1 Use of Built-in Functions 

The generic guidelines have limited capability. The only built-in functions in Ada are those that are 
Ada operations. These operations may be overloaded. Because Ada does not provide an extensive 
number of built-in functions, each project builds or acquires (either through reusing or purchasing) 
additional functions. It should be noted that a separate guideline on the use of compiled libraries 
recommends that externally developed libraries be acquired as source code. 

Externally developed software should be subjected to at least the same degree of developmental 
control and verification as the project-specific code. This would include assessment of the accuracy, 
limitations, robustness, and exception handling of the functions. Test cases, procedures, and results 
of previous testing should also be maintained for these libraries. The test cases should assess 
behavior for out of bounds and marginal conditions (e.g., negative arguments on a square root 
routine, improperly terminated strings for a string copy routine, and similar conditions) in the 
specific run-time environment. 

3.3.2 Use of Compiled Libraries 

The generic guidelines related to controlled use of compiled libraries are applicable to Ada. The 
reasons for limiting or avoiding the use of compiled libraries in safety systems are as follows: 

• Lack of visibility. Libraries can be used to shield the programmer from the details of the 
lower level implementation; however, it is exactly that feature that prevents the programmer 
from knowing the accuracy, limitations, robustness, and exception handling of the built-in 
functions. Programmers and designers must consider how to handle error conditions such 
as invalid parameters, numerical instability of the calculation, non-convergence of a result, 
arithmetic overflow, and underflow. These different forms of failure may well require 
handling in different ways according to the severity of the impact of the error on the 
calculation. In compiled libraries, the error handling mechanisms may not provide the 
needed visibility to allow programmers to handle these situations (Tafvelin, 1987). 

• Inconsistency in error handling. A basic consistency data and control flow for error 
handling is necessary for developing and maintaining reliable systems. However, there is 
no guarantee that libraries will have consistent methods of handling exceptions. 
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• Difficulties during maintenance and upgrades. As software is maintained and new versions 
of compilers are acquired, libraries may become outdated. 

If compiled libraries are used, then thorough testing and error tracking are necessary as described 
in the generic guidelines. 

3.3.3 Ada Run-time Environment 

The Ada RTE plays a critical role in ensuring the timing and correct execution of the compiled Ada 
code. However, it is not directly accessible by the programmer and falls into the category of built 
in functions or compiled libraries from that perspective. The concerns related to testing, error 
tracking, documentation, and development control described in the previous two sections also hold 
true for the Ada RTE. 

3.3.4 Maintaining Traceability Between Source Code and Compiled Code 

For a safety application, it is vital to ensure that the source code in a project baseline corresponds 
to the compiled object code. Traceability between source and object code is needed to avoid the 
uncertainty of what versions of separately compiled units are included. However, the support of the 
Ada language for separate compilation can pose a challenge to this traceability. When possible, the 
entire source (with the exception of compiled libraries, see Section 3.3.2) should be compiled on one 
occasion. This is the most authoritative way to establish complete traceability between source and 
executable. 

However, it may not be possible to perform a single compilation because: 

1. The source code is too large. 

2. To support portability, implementation dependent source code is being placed in separate 
compilation units from other Ada source code. 

3. It may be desirable or necessary to incorporate externally developed components in compiled 
rather than source form. 

If separate compilation is needed the following guidelines apply: 

• Partitioning of compilation. Only those compilation units required for execution of a 
compilation undergoing compilation unit should be made visible (using a with clause) to 
each unit, i.e. the with clauses should not include superfluous compilation units (Jones, 
1988). 
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Use of tools. Tools should be acquired that maintain the libraries in a sufficiently transparent 
manner to allow such traceability without the need to compile all the source code be at one 
time. 

3.3.5 Minimizing Use of Generic Units 

The Ada language includes generic units (packages or subprograms) to enhance reusability. 
However, their use in safety systems is problematic because they obscure the traceability between 
source code and executable. They are templates, not packages or subprograms, and it is not 
immediately clear from reading the source exactly what is running in the executable code. Use of 
generic units should therefore be minimized (Sanden, 1994). 

However, generics may be necessary in Ada—particularly predefined generic units. If generics are 
used, they are subject to the following guidelines. 

• Instantiation only during initialization. This guideline was discussed in section 3.1.1 on 
predictability of memory management. 

• Use only the parameter list for transferring data. No global variables should be used to 
supplement the parameter list and used in the bodies of other subprograms. The parameter 
list should be comprehensive for all intended uses. 

• Document restrictions on parameters. The use of and restrictions on generic parameters 
should be identified and documented (Jones, 1988). 

3.4 Maintainability 

This section discusses the Ada-specific attributes of the following intermediate attributes related to 
maintainability: 

Readability 
• Data abstraction 
• Functional cohesiveness 
• Malleability 
• Portability. 

Base-level attributes and Ada-specific related guidelines are discussed in the following sections. 

3.4.1 Readability 

The following base attributes are related to readability: 
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Conformance to indentation guidelines 
Descriptive identifier names 
Comments and internal documentation 
Limitations on subprogram size 
Mimmizing mixed language programming 
Minimizing obscure or subtle programming constructs 
Minimizing dispersion of related elements 
Minimizing use of literals 
Controlled use of renaming. 

The Ada-specific guidelines associated with these attributes are discussed in the following 
subsections. It should be noted that the controlled use of renaming is an Ada-specific attribute that 
was not included in the generic guidelines. 

3.4.1.1 Conformance to Indentation Guidelines 

The generic indentation guidelines are applicable. The following additional guidelines apply: 

Data structures. Indent and align beginnings and endings of data structures. 

• Line Continuation use different levels of indentation to distinguish between indentations for 
■ statements and for line continuation (SPC, 1989, pp. 9-11; DoD-STD-2167A, App. F). 

3.4.1.2 Descriptive Identifier Names 

The guidelines developed for the generic descriptive identifier names attribute are applicable to 
Ada. The following additional guidelines apply: 

• Follow project-specific guidelines on naming. Project specific guidelines on the use of 
names for variables, type definitions, procedures, functions, records, arrays, slices, 
exceptions, constants, generic instantiations, access objects, and other identifiers should be 
developed and followed in each program. The guidelines should also address naming of 
items in different packages (if applicable), how names change based on scope, and other 
project-specific considerations. 

• Separate words. Words in compound names should be separated with underscores as 
indicated in the following example (SPC, 1989; p. 17) 
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Rads_Per_Second 
Core_Temperature 

Use underscores with larger numbers. Underscores should be used with large numbers to 
promote readabihty on numbers (SPC, 1989; p. 20). This is shown in the following example: 

type Popula t ions i s range 0 . . 10_000_000_000; 

type Social_Security_Numbers i s range 000_00_0000 . . 999_99_9999; 

• Use care in abbreviations. Abbreviations should not be used if they can be misunderstood. 
For example, Time_of_Day should be used instead of TOD (SPC, 1989; p 20). 

3.4.1.3 Comments and Internal Documentation 

The guidelines associated with the generic attributes are applicable. In addition, the following Ada-
specific guidelines apply: 

• Relate the code to higher level design considerations. Explanatory comments should not 
duplicate the Ada syntax or semantics, but should clarify the coded data structures or process 
algorithms at a more descriptive level than the code. "Comments should be technically 
correct and should address a reader who is an Ada programmer" (DoD-STD-2167A). 

• Use blank lines. Related code such as declarations, loops, blocks, cases, and exception 
handlers should be grouped, separated with blank lines, and described with Ada comments 
(DoD-STD-2167A). 

• Identify"escapes" from language restrictions: Escapes from Ada language restrictions 
(suppression of type checking, unchecked conversions, use of other languages, etc.) are 
discouraged in other portions of this chapter. However, if they are used, they should be 
clearly indicated in the comments together with rationale and impact. 

• Use comments when renaming. The scope of renaming should be indicated in comments 
physically adjacent to the renaming statements. 

• Comment exception raising and handling. Comments should be used to facilitate the tracing 
between exception raising and handling, and to provide traceability back to design 
documents where the exceptions and handlers were designed. 

• Identify dynamic memory allocation with comments. As noted earlier, dynamic memory 
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allocation is not desirable in a safety system. If used, however, there should be comments 
to identify when memory is allocated and released. 

Identify tasking with comments. As noted previously, tasking and intertasking 
communication poses many safety challenges. Comments should provide traceability to a 
design, and the design itself should clarify issues associated with timing, intertask 
communication, and avoidance of the risks associated with tasking. 

3.4.1.4 Limitations on Subprogram Size 

The guidelines associated with this generic attribute are applicable. There are no additional specific 
guidelines. 

3.4.1.5 Minimizing Mixed Language Programming 

The guidelines associated with this generic attribute are applicable. The use of machine-level11 

language or a non-Ada higher-level language should be avoided in Ada program units. The reasons 
for avoiding other languages are listed below. 

1. There is no uniform way to implement machine-level code in an Ada source program, There 
will be differences in lower-level details, such as register conventions, that would hinder 
implementation and portability. 

2. The problems with employing pragma INTERFACE are complex12. These problems include 
pragma syntax differences, conventions for linking/binding Ada to other languages, and 
mapping Ada variables to foreign language variables, among others. 

3. Other languages do not provide a means of expressing low-level machine features in a high-
level fashion as well as Ada does (Booch, 1983; p 264). 

If use of other languages cannot be avoided, it should be minimized and controlled. The following 
are Ada-specific guidelines: 

• Isolate and clearly document machine language inserts. If machine-level code inserts must 
be used to meet a project requirement, isolate the platform-specific implementations in a 
separate package. Include the commentary that a machine-level code insert is being used and 

nIn Ada the term "machine-level" language is equivalent to "assembly" language. 
12A subprogram written in another language can be called if all data transfer is via parameters and function 

results. The Interface pragma is the mechanism for achieving this. 
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state what function the insert provides and (especially) why the insert is necessary. 
Document the necessity of using machine-level code inserts by delineating what went wrong 
with the attempts to use other higher level constructs (SPC, 1989; p 146). 

• Isolate Higher-level language inserts, document the INTERFACE pragma, and account for 
interface limitations: Subprograms employing the pragma • INTERFACE should be isolated 
to an implementation-dependent (interface) package. The requirements and limitations of 

. the interface and pragma INTERFACE usage should be clearly documented (SPC, 1989; p 
146). As noted above, the conventions used by other compilers are not specified by Ada. 
Thus, validating the interface and ensuring that it is free from potential interface problems 
can be a complex undertaking. However, a thorough examination is required for safety 
significant systems. 

3.4.1.6 Minimizing Obscure or Subtle Programming Constructs 

The guidelines associated with this generic attribute are applicable. There are no additional 
language-specific guidelines. 

3.4.1.7 Minimizing Dispersion of Related Elements 

The guidelines associated with this generic attribute are applicable. There are no additional 
Ada-specific guidelines. In Ada, appropriately designed packages can minimize dispersion of related 
elements. This is so since a data structure and any subprograms operating on it can be collected in 
an information-hiding package in such a way as to give other parts of the software controlled access 
to the data exclusively via a well-defined interface. 

3.4.1.8 Minimizing Use of Literals 

The guidelines associated with this generic attribute are applicable. The following are additional 
Ada-specific guidelines: 
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Use constants instead of literals. The use of constants supports maintainability by assuring 
that all values referencing a constant are automatically changed by a single change to the 
constant declaration. The exception to this guideline is that numeric literals may be used in 
well-established formulae or conversions where such values will not change and where 
readability will be enhanced by the use of such literals (e.g., in the quadratic equation). 

Use attributes. An additional Ada-specific guideline is that Ada attributes should be used 
wherever possible in place of literals, as indicated in the following example. This practice 
facilitates the propagation of consistent changes when objects related to the constant are 
changed. 

MAX_LINE_LEN6TH : constant := 

type Lines is array (1 .. MAX_ 
Line : Lines; 

-- Use 
for Column in Line 'range loop 

132; 

_LINE_ 

if Column = Line'first then 

elsif Column = 

end if; 

-- instead of 
for Column in 1 .. 

if Column = 1 

elsif Column = 

end if; 

Line'last then 

132 loop 
then 

132 then 

_LENGTH) of Character; 

3-39 NUREG/CR-6463 



3.4.1.9 Controlled Use of Renaming 

Renaming is frequently used to reduce the length of unwieldy, fully qualified names and to make 
clear ambiguous or inappropriate names. The renamed identifier can also be an aid to understanding 
the use of a routine. However, renaming also complicates and obscures the traceability from the 
procedure or function call to the source code. This makes debugging and maintenance harder. 
Renaming of subprograms can cause unintended overloading that the designers, programmers, and 
maintainers may not realize or fully understand. 

The following example (from Mil-Std-1815A) illustrates the problem: 

function 
function 
function 

ROUGE 
ROT 
ROSSO 

return 
return 
return 

COLOR 
COLOR 
COLOR 

renames 
renames 
renames 

RED ; 
RED ; 
ROUGE ; 

The function RED has been renamed as ROUGE in the first line and ROT in the second. In the third 
line, the renaming on the first line (ROUGE) has itself been renamed to ROSSO. This renaming 
makes it difficult to understand where a problem occurs if the function RED needs to be debugged. 

The following guidelines can mitigate these problems while preserving the benefits of renaming: 

• There should be only one level of renaming. A renamed identifier should not be renamed 
a second time. 

• All renaming should be done in accordance with project-specific conventions. Project-
specific conventions should be developed for variable naming and renaming. 

Maintain a centralized list of names. A "registry" of renaming should be maintained for 
each project. The scope of each renaming should also be clearly indicated in the registry. 

3.4.1.10 Use representation clauses for bit mapping. 

In many safety systems, there is an interface to a set of hardware discrete switches that affect the 
state of the system. Such bit maps are typically stored internally as integers. However, 
representation clauses and enumeration types can be used to effectively represent this status 
information in a meaningful way, which facilitates review and also reduces the possibility of coding 
errors as the following example demonstrates. 
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Type Line_Status_Type 
(Valve_lA_0pen, 
Valve_lB_Open, 

FOR Line_Status_Type I 
(Va1ve_lA_Open 
Valve_2A_0pen 
Valve_3A_Open 
Valve_lB_Open 
Valve_2B_0pen 
Valve 3B Open 

IS 
Valve_2A_0pen, Valve_3A_0pen, 
Valve_2B_Open, Valve_3B_Open) 

JSE 
=> 2#0000_0001#, 
=> 2#0000_0010#, 
=> 2#0000_0100#, 
=> 2#0001_0000#, 
=> 2#0010_0000#, 
=> 2#0100 0000#); 

The array must be sorted in strict ascending order. It is better to use a name than a positional 
association (Cohen, 1986, p. 780). 

3.4.2 Data Abstraction 

This section discusses Ada-specific data abstraction guidelines for the following attributes: 

• Minimization of global variables 
• Minimization of the complexity of interfaces 
• Use of the Ada package for encapsulating programs and data. 

3.4.2.1 Minimization of Global Variables 

A global variable in Ada can be declared in the main.procedure or in a package specification. Unless 
the entire program is small, neither should be used. A variable that must remain in existence and 
retain its value longer than the execution of a single subprogram should be declared in a package 
body. The package specification should include those procedures and functions that operate on the 
variable in the package. Such information hiding ensures that the variables are not updated in 
unintended ways. 

3.4.2.2 Minimization of Complexity of Interfaces 

The generic guidelines apply to this attribute. There are no additional Ada-specific guidelines. 

3.4.2.3 Use of the Ada Package for Encapsulating Data and Related Programs 

The Ad®.package feature was developed to control visibility of names and access to data. As such, 
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it is a useful mechanism to prevent inadvertent alteration of data or execution by other programs. 
Some examples of appropriate use of the package construct in safety systems are contained in 
guidelines elsewhere in this chapter. A full discussion of this topic, however, is a design issue and 
beyond the scope of this document. It is covered extensively in other publications on the Ada 83 
language (Shumate, 1989; Cohen, 1986, SPC, 1989). 

The only implementation-specific guideline is that the project programming guidelines and the 
system design itself should identify standards and conventions for: 

• Defining interfaces, type definitions, and data structures (including records, arrays and 
strings) in packages 

• Organization of compilation units 

• Use of predefined compilation units (e.g., SYSTEM and STANDARD). 

3.4.3 Functional Cohesiveness 

Functional cohesion measures the degree to which a subprogram performs a single, problem-related, 
well-understood function. The generic attributes relating to (1) a single design level function per 
subprogram element and (2) each identifier having a single purpose both apply to Ada. There is no 
additional language-specific guidance. 

3.4.4 Malleability 

The generic attribute applies to Ada. There is no additional language-specific guidance. 

3.4.5 Portability 

The generic attribute applies to Ada. From the perspective of safety, the benefits of portability are 
the adherence to standard prograrnming constructs that yield predictable and consistent results across 
different operating platforms. Code that has been designed to be portable will be easier to maintain 
when it is reused or converted to run on a different platform. The general principle is avoiding use 
of nonstandard, or "enhanced", constructs specific to a particular compiler by itself or in 
combination with the target execution platform. Where nonstandard constructs are necessary, they 
should be clearly identified together with the rationale, limitations, and version dependencies (SPC, 
1989; pp. 127-155). 

Attributes related to portability, which have been discussed elsewhere, include the following: 

NUREG/CR-6463 3-42 



• Minimizing the use of built-in functions 
• Minimizing the use of machine code and foreign languages 
• Minimizing the use of compiled libraries 
• Minimizing dynamic binding 
• Minimizing tasking 
• Minimizing asynchronous constructs (interrupts). 

The following are additional language-specific guidelines: 

• Do not use busy loop to suspend execution. Aside from the fact that a busy loop wastes 
processor resources, the timing of a standard loop cannot be determined when the code is 
ported to a different compiler, different machine, or even different operating systems. For 
example: 

— Use 
delay 3.74 ; 
— Do not use 
for I in 1 
null ; 

end loop ; 

following 
6874 loop 

because of timing differences 

Also, any knowledge of the execution pattern of tasks should never be used to achieve timing 
requirements, because of the uncertainty during porting (SPC89, p. 141). 

Validate assumptions about the implementation of language features when specific 
implementation is not guaranteed or specified. For example, there may or may not be a 
correlation between SYSTEM.TICK and package CALENDAR or type DURATION. 
Although such a correlation may exist, it is not required to exist (SPC, 1989; p 141). 

Avoid the use of package SYSTEM constants except in attempting to generalize other 
machine dependent constructs. Since the values in this package are implementation 
provided, unexpected effects can result from their use (SPC, 1989; p 146). The values of the 
constants in the SYSTEM package should not be changed. 

Use only pragmas and attributes defined by the Ada Standard. The Ada LRM (Mil-Std-
1815A) defines the following pragmas: c o n t r o l l e d , e l a b o r a t e , i n l i n e , 
i n t e r f a c e , l i s t , memory_size, op t imize , pack , page , p r i o r i t y , 
s h a r e d , s t o r a g e _ u n i t , s u p p r e s s , system_name and the following attributes: 
address , base , c a l l a b l e , cons t ra ined , count , f i r s t , f i r s t _ b i t , l a s t , 
l a s t _ b i t , p o s , p r e d , r ange , s i z e , s m a l l , s t o r a g e _ s i z e , succ , 
t e r m i n a t e d , v a l , v a l u e , width . However, the Ada standard permits an 
implementor (compiler vendor) to add pragmas and attributes to exploit a particular hardware 
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architecture or software environment. Although potentially attractive, non-standard pragmas 
and attributes are not only non-portable, their limitations may not be as well understood nor 
tested as are the predefined counterparts. It should be noted that predefined pragmas and 
attributes in and of themselves may not be totally portable because of the latitude allowed 
in their interpretation by compiler implementors. 

Avoid the direct invocation of, or implementation dependence upon, an underlying host 
operating system or Ada run-time support system. Features of an implementation not 
specified in the Ada LRM will usually differ between implementations. Specific 
implementation-dependent features are not likely to be provided in other implementations. 
Even if a majority of vendors eventually provide similar features, they are unlikely to have 
identical formulations. Indeed, different vendors may use the same formulation for 
(semantically) different features. 

Minimize and isolate the use of the predefined package LOW_LEVEL_io. This package is 
intended to support direct interaction with physical devices that are usually unique to a given 
host or target environment. In addition, the data types provided to the procedures are 
implementation defined. This allows vendors to define different interfaces to an identical 
device (SPC, 1989; p 152). 

Restrict and isolate variables of type SYSTEM, ADDRESS or with the attribute ADDRESS. 
These are hardware-specific variables that should be kept in a "maintenance location" in the 
code. 

NUREG/CR-6463 3-44 



References 

International Standard ANSI/ISO/IEC-8652, Ada 95 Reference Manual, Intermetrics, Inc., 
Cambridge, MA, 1995. 

Ada 95 Rational, Intermetrics, Inc., Cambridge, MA, 1995. 

American National Standards Institute/U.S. Department of Defense, Reference Manual for the Ada 
Language, ANSI/DoD-STD-1815A, 1983. 

Barnes, J. G., Programming In Ada, Second Edition, Addison-Wesley Publishing Company, Menlo 
Park, CA, 1984. 

Booch, G., Software Engineering with Ada, California, The Benjamin Cummings Publishing 
Company, Menlo Park, CA, 1983. 

Cohen, N., Ada as a Second Language, Prentice Hall, Englewood Cliffs, NJ, 1986 

Gall, J., Systematics: How Systems Work and Especially How they Fail, The New York Times Book 
Company, New York, NY, 1975. 

Gottfried, R. and D. Naiditch, Using Ada in Trusted Systems, Proceedings of COMPASS 93, May, 
1993, National Institute of Standards and Technology, Washington, DC, 1993. 

Hutcheon, A., et al., A Study of High Integrity Ada, (UK) Ministry of Defense contract: SLS31c/73 
Language Review, Document Reference SLS31c/73-l-D, Version 2, 9 July 1992. 

Jones, S, K. Mitchell, M. J. Mardesich, et. al., BCAG Digital Avionics Ada Standard, Boeing 
Company, Document No. D6-53339, November, 1988 

Kernighan, B. and P. J. Plauger, The Elements of Programming Style, McGraw-Hill, New York, 
1974. 

Page-Jones, M., The Practical Guide to Structured System Design, Yourdon Press, Prentice-Hall, 
Englewood Cliffs, NJ, 1980. 

Pyle, I., Developing Safety System: A Guide Using Ada, Prentice Hall, Englewood Cliffs, NJ, 1991. 

Sanden, B. I., Software Systems Construction with Examples in Ada. Prentice-Hall, Englewood 

3-45 NUREG/CR-6463 



Cliffs, NJ, 1994. 

Software Productivity Consortium (SPC), Ada Quality and Style Guidelines for Professional 
Programmers, VanNostrand Reinhold, New York, NY, 1989. 

Tafvelin, S., ed, Ada Components: Libraries and Tools, Cambridge University Press, Cambridge, 
MA, 1987. 

U.S. Department of Defense, Defense Systems Software Development, DoD-STD-2167A, Appendix 
D, 1 August 1986. 

NUREG/CR-6463 3-46 



4 C and C++ 
This section discusses the safety issues of C and C++ languages in safety systems. The languages 
are discussed together because of the C heritage in C++ and because they may be used together in 
a safety application. However, the applicability of the discussion to one or both languages is clearly 
indicated in the text13. The discussion is primarily independent of the underlying execution 
platforms, that is, hardware, kernel, and/or operating system. Exceptions to this generalization are 
noted in the text. 

This chapter is organized in accordance with the framework of Chapter 2. Section 4.1 discusses 
reliability-related attributes; Section 4.2 discusses robustness-related attributes; Section 4.3 discusses 
traceability-related attributes; and Section 4.4 describes maintainability-related attributes. A 
summary matrix showing the relationship between generic and language-specific guidelines, together 
with weighting factors, is included in Appendix B. 

4.1 Reliability 

In the software context, reliability is either (1) the probability of successful execution over a defined 
interval of time and under defined conditions, or (2) the probability of successful operation upon 
demand (IEEE, 1977). The reliability of software means the ability of a system or component to 
perform its required functions under stated conditions for a specified period of time (IEEE,-1990). 
The reliability depends on the run-time predictability of the following: 

• Memory utilization 
• Control flow 
• Timing. 

C-specific guidelines derived from these generic attributes are described in the following sections. 

4.1.1 Predictability of Memory Utilization 

Unpredictable memory utilization can cause the loss of programs, instructions, and data which, in 
turn, can cause system failures. Unpredictable memory utilization can be categorized into two main 
categories: (a) violation of available memory restrictions and (b) unauthorized use of memory 
blocks. The first four base attributes refer to the first category and the remainder to the second. 

It should be noted that what is applicable to C is generally applicable to C++; however the reverse is not 
true. 
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Minimizing dynamic memory allocation 
Minimizing memory paging and swapping 
Minimizing memory usage caused by inefficient parameter passing mechanisms 
Minimizing recursive function calls 
Utilizing boundary checking for memory-related functions 
Utilizing functions with well-defined behavior 
Using wrappers for memory-related functions 
Proper array indexing. 

4.1.1.1 Minimizing Dynamic Memory Allocation 

Following guidelines are applicable to both C and C++ I 

Although dynamic memory allocation increases memory utilization efficiency, it can cause 
unpredictable memory utilization which, in turn, could result in system failure (Hatton, 1994, pl49). 
The potential problems caused by dynamic memory allocation include: 

1. Allocating memory without subsequently freeing it. 
2. Attempting to access memory that has not been allocated. 
3. Utilizing memory that has already been freed. 
4. Insufficient available memory for the dynamic memory requirements. 

Thus, dynamic memory allocation should be avoided. If dynamic memory must be used, the related 
functions should be used defensively, and the allocated memory should be explicitly released as soon 
as possible. 

Following discussion applies to C | 

In C the dynamic memory allocation and deallocation functions are cal loc, malloc, rea l loc , 
strdup, and free. In addition to the above problems, other dynamic memory allocation potential 
problems arise in C because of two reasons: (1) dynamic memory allocation functions provide 
different services depending on the values of input parameter (Maguire, 1993) and (2) dynamic 
memory management functions are not sufficiently protected against potentially incorrect input. 

The following function serves as an example: 

vo id * r e a l l o c ( v o i d *pv , s i z e _ t s i z e ) . 

The function will perform one of the following actions depending on the input (Maguire, 1993): 

(a) If the new size of the memory block is smaller than the old size, r ea l l oc releases 
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the unwanted memory at the end of the block and pv is returned unchanged; 

(b) If the new size is larger than the old size, the expanded block may be allocated at a 
new address and the contents of the original block copied to the new location. A 
pointer to the expanded block is returned, and the extended part of the block is left 
uninitialized. 

(c) If one attempts to expand a block and rea l loc cannot satisfy the request, NULL 
is returned. 

(d) If pv is NULL, then rea l loc behaves as malloc (size) and returns a pointer to 
a newly allocated block, or NULL if the request cannot be satisfied. 

(e) If the new size is 0 and pv is not NULL, then rea l loc behaves as free (pv) and 
NULL is returned. 

(f) If pv is NULL and size is 0, the result is unknown. 

Use library copy and move junctions with specific lengths. As will be discussed below, use 
of library copy and move functions with specific lengths (e.g., strncopy rather than 
strcpy) should be used. 

The following discussion applies to C++ only 

In C++, the functions to dynamically allocate and free memory are new and delete. The following 
guideline applies. 

• Ensure that all classes include a destructor. To avoid memory leaks, all classes must 
include a destructor that releases any memory allocated by the class. Constructors must 
themselves be defined in a way to avoid possible memory leaks in case of failures. Ensure 
that for all derived classes there are virtual destructors. 

4.1.1.2 Minimizing Memory Paging and Swapping 

Following guidelines are applicable to both C and C++ 

The generic guidelines apply. There are no additional language-specific guidelines. 
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4.1.1.3 Controlling Parameter Passing to Routines 

Following discussion applies to C | 

The generic guidelines apply. Of particular concern in the use of C or C++ with small 
microcontrollers is the limited stack size. Passing of many arguments or large structures may cause 
a stack overflow (particularly in microcontrollers where stack memory may be limited) that, in turn, 
would cause a system failure. The following are language-specific guidelines: 

• Limit the number and size of parameters. The ANSI/ISO C standard only guarantees 31 
parameters in one function call (section 5.2.4.1 of ANSI/ISO 9899-1990), and this 
establishes an upper limit on the number of arguments that can be passed in a call. If this 
number of parameters is limiting for the application, alternate means of passing data should 
be considered. These alternatives include the use of arrays, structures, or global variables. 
Arrays are always passed by reference (i,.e., using a pointer) and therefore, the limitation 
becomes a function of the heap space. Structures can be passed on the stack or using 
pointers. As is described in the following guideline, use of pointers is preferred for larger 
structures to minimize the possibility of a stack overflow. Global variables are also a less 
desirable means of passing data because of the undesirability of passing data by means of 
side effects. However, use of global variables may prove to be a more desirable alternative 
than using a structure or array if the variables have no well defined interrelationship. Section 
4.4 contains additional guidelines on using global variables as a means of data interchange. 

• Use pointers to conserve stack space for larger variables. In C and C++, parameters are put 
on stack when calling a subroutine. As noted above, stack memory is a limited resource, and 
overflowing the stack has unpredictable (and nearly always undesirable) results. ANSI C 
requires converting an array to a pointer when it is passed to a subroutine (Section 6.7.1, 
ANSI/ISO 9989-1990). However, C structures can also require a large amount of memory. 
Because automatic conversion to pointers is not automatically in ANSI C done for unions 
and structures, this conversion must be perform by the programmer as shown in the 
following example: 

NUREG/CR-6463 4-4 



#define SSN_LEN (12) 
#define DAYS_PER_MONTH (31) 

typedef struct employee struct 
{ 
char ssn[SSN_LEN] ; 
short dept_id; 
short working_hours[DAYS_PER_MONTH]; 
short vacation_hours; 
double vacation_ratio; 

} 
void update vacation hours(employee struct 
{ 
short i; 
short total_hours=0; 

for (i=0; i<DAYS_PER_MONTH; i++) 
total_hours += worker->working_hours[i]; 

♦worker) 

worker->vacation hours = total hours+worker>vacation ratio; 
} 
int main(int argc, char *argv[]) 

employee_struct employee; 

update_vacation_hours(&employee); /* passing the pointer */ 

} 

Dereferencing should be done inside the receiving function to mampulate the structure. 
When a pointer to a variable is passed to a function, any modifications to the variable inside 
the function are reflected in the original variable itself. 
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4.1.1.4 Minimizing Recursive Function Calls 

Following guidelines are applicable to both C and C++ | 

Recursion is a process in which a software module calls itself (IEEE, 1990). 

Although they normally generate efficient code, recursive function calls can cause unpredictable 
stack memory utilization and are sources of stack overflow. Unbounded recursive function calls 
should be avoided in safety systems. If a recursive function has to be utilized, the stack usage should 
be minimized by rninimizing both the number of parameters to the function and the automatic 
variables in the functions. 

If recursion must be used, a compiler option to check for stack overflows during runtime should be 
invoked. This option generates code with stack checking to avoid overwriting memory when stack 
overflow occurs. An explicit exception handling routine should also be written to handle the stack 
overflow condition. If the compiler does not have stack overflow checks, an upper bound on the 
number of recursive function calls should be established (e.g., a limit on the length of an array being 
sorted), which is an appropriate fraction of the space. 

4.1.1.5 Utilizing Memory-Related Functions with Boundary Checking 

Following discussion applies to C | 

Utilizing functions with boundary checking can reduce unpredictable memory usage. Functions with 
a boundary limit should be used in place of functions without such a limit. Functions with a 
boundary limit are s t rnca t , strncmp, and memmove. 

Although the functions strncpy and memcpy also have boundary limit checks, they should not be 
used in safety systems for the reasons described in sections 4.1.1.6 and 4.1.1.7. Functions without 
a boundary limit are s t r c a t , strcmp, and strcpy. Using these functions can overwrite 
memory outside the intended range of addresses. 

In the following example, s t r 2 is longer than s t r l ; therefore, the execution of the function can 
overwrite 10 bytes of memory outside s t r l . 

char s t r l [ 2 0 ] , s t r 2 [ 3 0 ] ; 

s t r c p y ( s t r l , s t r 2 ) ; 
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Variables in those locations can be unintentionally changed. The function memmove can be used 
to correct this problem, as seen below. 

#define 
#define 

STR1 
STR2_ 

LEN 
LEN 

(20) 
(30) 

char strl[STR1_LEN], str2[STR2_ 

memmove (strl, str2 , STR1_ _LEN) ; 

_LEN] ; 

The function call here limits the bytes copied to strl to be STR1_LEN, which is the size of s t r l . 
No matter what the contents of s t r2 are, it cannot write outside s t r l . 

This does not mean that the use of functions with boundary checking completely eliminates safety 
problems. Most memory management functions in C are confusing and could pose a safety risk if 
not carefully understood and protected against. As an example, consider the following function call 
(Spuler, 1994): 

strncpy(sl, s2, 20); 

This function call has a hidden danger in that s i will not have the NULL character (indicating the 
end of string) if s2 contains more that 19 characters. One possible solution is that the programmer 
can assign the NULL character to the end of si immediately after the function call. The best possible 
solution for avoiding this type of unsafe behavior is for the programmer to create a safe and specific 
function for each needed memory-related action. The following example depicts such a version of 
the strncpy function (Spuler, 1994). 

void 
{ 

} 

safe 

int i 
for 

} 
sl[ 

• 

_strncpy 

(i=0;(i<n 
Sl[i] = £ 

i] = '\0* 

(char 

-1) && 
2[i]; 

^sl, char 

(s2[i] != 

*s2, 

= '\0 

int 

' ) ; 

n) 

i++) { 

This will provide the programmer with a function that can be tested in advance. Where 
non-overlapping objects are guaranteed, the bounded forms of string library functions are safe. 
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A similar fault avoidance technique can be used for input functions such as gets as shown in the 
following example (Spuler, 1994): 

char s [5]; 
char *result; 

result = gets(s); 
if (result == NULL) { 

If the user enters more than 4 characters, gets will overwrite the memory which does not belong 
to string s. The solution is to use a function that has a specific limit on the number of characters to 
be read. For this example function, f gets provides a more desirable alternative. The programmer 
can safely use f gets (s , 5, s td in) . However, with f gets the newline (i.e., \n) will be included 
at the end of the string parameter, which should be replaced with a null character after the function 
calls. 

Following discussion applies to C++ only | 

In C++, bounds checking may be integrated into the class definition so that the low-level functions 
need not carry the overhead. This is especially true for numerical analysis routines where functions 
like the inner product are called many times. For example, if the lengths of vector arguments are 
already checked against the bound before being passed to an inner product function, there is no need 
to add bounds checking to the function. 

4.1.1.6 Use of memmove for Moving Blocks of Memory 

Following guidelines are applicable to both C and C++ | 

The memory move function memmove, should be used instead of the memory copy function 
memcpy (Plum, 1991). The reason is that the memmove function first copies the source to a 
temporary area, then copies the temporary area to the destination area. Thus, even if part of the 
source and destination overlap, the result will not be affected, and the required contents of the source 
will be copied to the destination. Where non-overlapping objects are guaranteed, the bounded forms 
of string library functions are safe. 
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4.1.1.7 Examining Memory at Power Up 

Following guidelines are applicable to both C and C++ 

For C and C++ embedded system programs, volatile memory should be examined at power up. This 
reduces the possibility of a system running on unreUable data. The program of an embedded system 
should also be checked by some type of checksum code to prevent program corruption after the 
system is delivered. 

4.1.1.8 Wrapping of Built-in Functions for Memory-Related Operations 

Following guidelines are applicable to both C and C++ 

In order to prevent problems, built-in functions should be contained within a programmer-defined 
"wrapper" function which checks for input and other exception conditions (Hatton, 1994; p. 200). 
Another solution is for the programmer to create application-specific functions for memory related 
actions such as copying memory blocks. 

Following discussion applies to C 

The following discussion provides an example for the string copy and get string functions. Although 
it was noted that use of bounded functions such as strncpy are preferable to unbounded functions 
such as s t rcpy , it is not a sufficient condition in all circumstances. In the following call: 

s t rncpy(s i , s2, 20) ; 

there is a potential problem when s2 does not have a NULL character (indicating the end of the 
string) if it contains more than 19 characters. The "wrapper" function created by the programmer 
should ensure that there is a NULL character to the end of s i immediately after the function call and 
should check for other exception conditions. Wrapping should be used for other built in functions 
suchasfgetpos, f t e l l , bsearch, qsor t , and time (Hatton, 1994; pp. 48 and 200). 

The most fundamental solution for avoiding uncertainty from potentially undefined behaviors is that 
the programmer accepts a more conservative option and creates his/her own safer and possibly 
application-specific functions for memory-related actions such as copying memory blocks. 
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A example of a programmer-defined string copy function was given in section 4.1.1.5. 

4.1.1.9 Proper Array Indexing 

Following guidelines are applicable to both C and C++ 

Automatic boundary checking in C and C++ is not as strong as in some other languages. For 
example, there is no boundary checking for an array index during runtime. If the index of an array 
is outside the array boundary, it will not be detected during runtime. In C and C++, the array index 
starts from 0 rather than 1. In an array of 100 members, the valid indices for the array are from 0 to 
99. 

The following is an example of incorrect array indexing. The two last assignment statements for the 
data_array will insert values in an area of memory which are not part of the intended array. 

#define BUF LEN (100) 
int data_array[BUF_LEN] , i; 
/* initialize buffer */ 
for (i=l; i<=BUF LEN; i++) 

data_array[i] = 0; 
data_array[BUF_LEN] = i; 

/* wrong */ 
/* wrong, BUF_LEN is outside of the array */ 

If the intent was to assign the final value of the array with a value of 0, then the following is the 
corrected code 

#define BUF LEN (100) 
int data_array[BUF_LEN], i; 

/* initialize buffer */ 
for (i=0,\ i<BUF LEN; i++) 

data_array[i] = 0; 

data_array[BUF_LEN-l] = i; 

/* start from 0, end at BUF_LEN -1 ( < not <= ) */ 
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4.1.2 Predictability of Control Flow 

The order in which statements in a program are executed is determined by the flow of control (Meek, 
1993). Predictability of control flow is the capability to determine easily and unambiguously which 
path the program will execute under specified conditions. 

The guidelines in this section are as follows: 

Maximizing structure 
Minimizing control flow complexity 
Initializing variables before use 
Single entry and exit points for subprograms 
Minimizing interface ambiguities 
Use of data typing 
Accounting for precision and accuracy 
Order of precedence of arithmetic, logical, and functional operators 
Avoiding functions or procedures with side effects 
Separating assignment from evaluation 
Proper handling of program instrumentation 
Controlling class library size 
Minimizing use of dynamic binding 
Controlling operator overloading. 
Protecting macros to reduce side effects 
Eliminating mixing signed and unsigned variables 
Enabling and heeding compiler warnings. 

The final three guidelines do not appear as generic attributes and are specific to C and C++. 

4.1.2.1 Maximizing Structure 

Following guidelines are applicable to both C and C++ | 

The generic guidelines apply. The instruction goto should be eliminated in safety systems. In 
addition, functions such as setjmp and longjmp, should also be eliminated, unless it can be guaranteed 
that the function that invoked setjmp has not terminated when longjmp is called. Since these two functions 
can jump from one subroutine location to another subroutine, they can cause more serious problems than the 
goto instruction (e.g. leaving variables unpopped in the stack). If a goto must be used, its use should be 
documented and justified. 

The use of goto should be avoided except when used to jump to code processing a common error condition 
(usually at function exit). 
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4.1.2.2 Minimizing Control Flow Complexity 

Following guidelines are applicable to both C and C++ 

The generic guidelines apply. Complicated control flow makes the program difficult to understand 
and maintain and is the source of unpredictable control. The following are specific guidelines. 

Use the switch construct. In safety systems, the switch . . . case construct should be 
used to replace multiple i f . . . e l se i f . . . e l se i f . . . statements if possible 
(Porter, 1993). In the example below, test_value is the only term used for evaluation. 

if (test 

else 

else 

else 

if 

if 

• 

_value == 0) 

(test_value == 

(test_value == 

• • 

1) 

2) 

Thus, the code could be replaced by the following: 
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switch (test value) 
{ 

} 

case 0: 

break; 

case 1: 

break; 

case 2: 

break; 

default : 

break; 

Use brackets. When utilizing i f . . . e l se statements, the code block should be bounded 
by brackets to avoid mismatches between i f and else. A mismatch example is shown 
below. 

if ( 

else 

. . . ) 
if ( . . . ) 

The programmer may have intended to match the e l s e with the second i f , which is 
quite different from the above code. By utilizing brackets, this problem could have been 
avoided. 

In safety systems, brackets should be utilized to bound all code blocks in i f . . . e l s e 
statements, as shown below. 
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i f ( 
{ 

} 
e l s e 
{ 
} 

. . . ) 

i f ( . . 
{ 
} 

. ) 

Define defaults. When utilizing the switch . . case construct, a defaul t case should 
be explicitly defined as shown in the following example. 
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#define DRAW_CIRCLE 
#define DRAW_RECTANGLE 
#define DRAWJTRIANGLE 
#define DRAW_LINE 

(1) 
(2) 
(3) 
(4) 

switch (condition) 
{ ' 

case DRAW_CIRCLE : 
/* draw circle */ 

} 

break; 

case DRAW_RECTANGLE : 
/* draw rectangle 

break; 

case DRAW_TRIANGLE : 
/* draw triangle 

break; 

case DRAW_LINE : 
/* draw line */ 

break; 

default : 
/* display 

break; 

wrong 

*/ 

*/ 

condition */ 

To avoid forgetting a break when another case statement is added, the default should have 
a break statement to terminate it (Porter, 1993). 

Check for dead code. Code that is inside the switch construct but does not belong to any 
of specified branch is unreachable or "dead" code. This type of code is usually located 
between the beginning of the switch and its first case branch. The programmer using switch 
should check the possibility of unreachable code inside switch. 
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4.1.2.3 Initialization of Variables and Pointers Before Use 

Following guidelines are applicable to both C and C++ |j 

The generic guidelines apply. All variables and pointers should be mitialized before use (Porter, 
1993; Kernighan, 1978). There are three basic types of variables in C and C++: global variables, 
static variables, and automatic variables. Although the compiler will initialize all static variables to 
zero, variables with an automatic scope will contain "garbage" before the program explicitly 
initializes them. Global variables may or may not be mitialized by the compiler. The following are 
specific guidelines: 

• Reinitialize automatic variables. In the C and C++ languages, automatic variables lose their 
locations and their values after each function return; therefore, they should be re-initialized 
before they are used again. Variables should be mitialized as soon as practical after their 
declaration. 

• Initialize global variables in separate initialization routines. Initialization of global 
variables and static variables should occur in initialization routines rather than in variable 
declarations in real-time safety systems for the following reasons: 

1. Such routines ensure that the variables are properly set during a warm reboot. Such 
rebooting is a common practice and is included in a design to prevent overflows of 
counters and timers and to ensure that systems will not get into an infinite loop. 
Warm reboots are also triggered by watchdog timers and are part of recovery from 
infinite loops and deadlocks. 

2. To ensure deterministic reinitialization times. The timing for initialization during 
declarations is unspecified in the ANSI C standard. 

• Initialize global variables only once. Global variables should be initialized once. Multiple 
initialization of global variables in different modules should not be done—even if allowed 
by the compiler and linker. 

• Do not use pointers to automatic variables outside of their scope. Pointers to automatic 
variables should not be used outside of their declared scope. The value stored in a pointer 
to an automatic variable will contain garbage outside the function scope. 

• Initialize pointers. Initialization problems can also occur in pointers. In safety systems, all 
pointer variables in C should be initialized to NULL, and all pointer variables in C++ 
language should be initialized to 0 (Plum, 1991). The pointer should then be tested for a 
valid value before being used. In C and C++, when a pointer is defined, it does not have a 
memory location associated with it. Using an uninitialized pointer will overwrite an 
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unintended portion of memory. Incorrectly overwriting memory can cause serious problems, 
including system crashes. 

An example of using an uninitialized pointer is shown below: 

long *buf_ptr; 

*buf_ptr = some_value; 

Because buf j p t r is not initialized, it will contain an undetermined value based on the 
previous use of that memory location. This undetermined value will determine where the 
value some_value will be placed. 

The correct code is as follows: 

#define some_value (13L) 
long *buf_ptr; 
long value; 

buf_ptr = Svalue; 
/* initialize the pointer */ 
*buf_ptr = some_value; 
/* assign a value */ 

Because bufjptr is initialized to point to the value, the number will be written to the 
memory location of the variable rather than to an unspecified memory location. 

The above example should be rewritten as follows: 

long *buf_ptr= 
long value; 

=NULL; 

buf_ptr = frvalue; 
/* initialize the pointer */ 

if (buf_ptr != NULL) 
/* test initialization 
*buf_ptr = 13; 

*/ 
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Ensure that the indirection operator is present for each pointer declaration. Each pointer 
should have an indirect operator (*) when it is declared (Porter, 1993). The following 
example shows how the C syntax facilitates omitting the indirection operator: 

long *member_ptr, group_ptr; /* wrong, group_ptr doesn't have 
indirect operator (*) */ 

The correct declaration is as follows14: 

long *member_j?tr; 
long *group_ptr; /* correct */ 

Use the ~ operator when initializing to all 1 's. When initializing all bits of an integer type 
to all l's, use bitwise no t 0. That is, use the following: 

all 1 variable = -0; 

If the variable type size changes from 16 to 32, it will initialize all 32 bits to 1. 

Following discussion applies to C 

C assists programmers in mitialization by providing the facility of specifying initial values along 
with declarations. However, It does not require that all objects15 be initialized (Eckel, 1995). 
Moreover, in some cases, the initialization of an object is not only to assign a specific bit-pattern 
value to the object location, but it might need taking special actions to facilitate smooth initialization 
of the object's life (e.g., allocating conesponding resources to the objects). 

The following discussion applies to C++ only 

To reduce the possibility of forgetting the indirect mark (*), it is recommended that each pointer 
declaration be written in a separate line. 

15That is, variable, structures, or arrays 
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In C++ it is possible to consider any correlated data set as an object and provide facilities for 
constructing an instance of the data set and destroying the current instance of the data set in a 
systematic way. 

4.1.2.4 Single Entry and Exit Points in Subprograms 

Following guidelines are applicable to both C and C++ | 

The generic guidelines apply. Use of single entry and exit points in functions can facilitate their 
validation checks. The programmer can easily use these two points to check the validity of input 
data entering the function and also the validity of the actions taken by the function. Multiple entry 
and exit points in subprograms introduce control flow uncertainties similar to those caused by the 
goto instruction (Plum, 1991; Kernighan, 1978). The following are specific guidelines. 

• Avoid multiple return statements. Single exit points for functions is especially important in 
C, since C does not provide return consistency checks for functions. Some compilers will 
accept a function that has one branch of the code reaching the end of the function code (i.e., 
the last bracket) without executing any return statement (Spuler, 1994). For example, in the 
following routine, the returned value is undefined if the argument is negative. 

int positive(int x) 
{ 

if(x>0) return TRUE 
else 
{ 

/* a set of statement without any return */ ) 
} 

} 

Although acceptable within the function definition of C, this routine is unacceptable from 
the perspective of safety. Having only a single exit point, which is reached by all branches, 
eliminates the possibility of mistakenly omitting one of many re turn statements. If there 
is a compelling need for multiple entry and exit points, say to avoid goto or convoluted 
control flows, all such points should be clearly documented, and a rationale provided. 
Multiple re turn statements must be clearly tagged with comments. Implicit re turn 
statements should be avoided. 

Avoiding setjmp and longjmp. The ANSI C functions, setjmp and longjmp should 
not be used in place of a normal return statement, since they can jump outside a function 
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and deviate from the normal control flow.16 An addition problem in using goto, set jmp, 
or longjmp is that the initialization of the automatic variables is not performed (ANSI/ISO 
9989-1990, section 6.1.2.4). The longjmp and setjmp should be used only for 
exception handling—and with care. 

Avoid function pointers. Although C does not allow multiple entry points, it does allow a 
pointer value to be used as the address of a function to be called. Thus C allows any address 
to be called by assigning an integer to the function pointer.17 Function pointers should be 
avoided. 

The following discussion applies to C++ only I 

• Restricting use of throw and catch. The C++catch and throw exception handling 
mechanism should be used with caution and tested thoroughly to verify the maturity and 
reliability of the compiler implementation. 

4.1.2.5 Minimizing Interface Ambiguities 

Following guidelines are applicable to both C and C++ | 

The generic guidelines apply as indicated below. Interface errors account for a large portion of 
coding errors (Chillarege, 1992; Thayer, 1976). An example of such errors is reversing the order of 
arguments when calling a subroutine. The coding style that can reduce or eliminate the probability 
of misusing an interface enhances safety. The following guidelines can reduce interface ambiguities: 

Use function prototyping (Porter, 1993; Kernighan, 1978; Hatton, 1994). The ANSI C 
standard requires function prototypes with parameter definitions which make it possible to 
perform data type checking on parameters (ANSI/ISO 9989-1990, section 6.5.4.3). If there 
are no parameters, the parameter list should be declared as void to ensure proper data type 
checking. Also when a function has no return value, its type should be declared as v o i d . 

The following example shows a function prototype for a function with a return type of 
integer and three parameters. 

16It may be acceptable to use these ANSI C functions for exception handling as discussed later in this 
report. 

However, this can be considered an unconstrained call rather than multiple entry points. 
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/ * 
int 

/* 
int 

{ 

} 

function prototype */ 
Functionl(int first_param, 

long second_j?aram, 
int third_j?aram) ; 

function definition */ 
Functionl(int first_param, 

long_second_j?aram, 
int third_j?aram) 

int return_value; 

return return_value; 

A function without a return type and parameters is shown below. 

void Function2(void); 

void Function2(void) 
{ 
} 

/* function prototype */ 

/* function definition */ 

Do not use functions that accept an indefinite number of arguments. A function with a 
variable number of arguments is difficult to verify. Moreover, the behavior of a function that 
accepts a variable number of arguments and is called without a function prototype that ends 
with an ellipsis is also undefined (Hatton, 1994; p. 50). 

Order parameters so that different data types are alternated. This practice reduces the 
chance that two adjacent parameters will be placed in an incorrect order. Judicious use of 
structures or classes may reduce the number of function arguments by grouping together 
several items of similar kind, e.g., height/ width/ length or row/ column. 

Ensure that arguments are of a compatible type with the function prototype. The behavior 
of a function called with a function prototype when the function is not defined with a 
compatible prototype is not defined in C (Hatton, 1994; p. 50). 

Avoid use of variable length argument lists. It is preferable to use default values for function 
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arguments than to use a variable number of arguments. Exceptions can be made in the case 
of p r in t f , scanf, and other similar library functions.18 

Test the validity of input arguments at the beginning of a routine and test the validity of the 
results before returning from the routine. Such testing is important for avoiding enors that 
can compromise the integrity of the system (Kernighan, 1978). An example is shown below. 

double value, 

/* 
if 

check for 
((value > 

result 
else 
{ 

} 

result; 

valid input range 
-1.0) && (value < 
= acos(value); 

/* report input 

*/ 
1. 

range error 

3)) 

*/ 

Range checking inside a function is preferred. The checking in the example above is outside 
the function acos because the function is an ANSI C library function and is provided by 
compiler manufacturers. 

Using byte alignment of compilers}9 Most C and C++ compilers allow programmers to 
determine how a variable is aligned in structures and unions. These structures and unions 
can be parameters, passed by their pointers, or can be written to files to interface with other 
programs. A consistency-of-alignment method should be included in the project software 
development guidelines. Byte alignment, which saves resources such as memory and disk 
space, should be utilized in small-scale safety systems with limited resources. Using word 
alignment or double-word alignment when required by the CPU is acceptable. 

Eliminate expressions in parameter passing to subroutines or macros. Since the order of 
evaluating parameters is unspecified in the C language (Annex G of ANSI/ISO 9989-1990), 
using expressions as parameters raises safety concerns. For example: 

short paraml, param2; 

However, see the earlier guideline on the use of wrapper functions 
19the storage of the adjacent data in the following byte (as opposed to the following word or double word). 

NUREG/CR-6463 4-22 



functionl(paraml++, param2 = paraml + 1); /* wrong */ 

The following section of code conects the problem in the above example. 

short paraml, param2; 

paraml++; 
param2 = paraml + 
functionl(paraml, 

1; 
param2); 

Eliminate Increment (++) and decrement (—) operators from macro and junction calls. 
Removing the increment and decrement operators from macros and functions eliminates the 
possibility of undefined expressions. Although they provide a more efficient way of adding 
1 or subtracting 1 to a variable, their use in argument lists raises safety concerns. They should 
only be used in isolated expressions for incrementing loop counts. Table 4-1 illustrates 
problems caused by increment and decrement operators in function calls. 
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Table 4-1. Examples of Problems Caused by Increment and Decrement Operators 
Problem 

Unspecified 
behavior 

Unspecified 
behavior 

Unintended 
change 

Problem Syntax and Corrected Syntax 

Problem Syntax: 
func t ion_ca l l ( i++); 

Corrected Syntax: 
i++; 
f u n c t i o n _ c a l l ( i ) ; 

Problem Syntax 
func t ion_ca l l ( ( i++ ) ) ; 

Corrected Syntax: 
i++; J 
f u n c t i o n _ c a l l ( i ) ; 

Problem Syntax: 
#define MAX(x, y) (x>y) ? x:y 
up_l imit = MflX(++i, j ) ; 

Corrected Syntax 
++i; 
up_l imi t = MAX(i, j ) ; 

.Comment on Problem Syntax 

Whether the variable i is increased before the 
function call or after is unspecified (Spuler, 
1994). 

The extra parentheses do not guarantee when 
the variable i is increased. The variable still 
may be increased before starting the 
function_call, or after the function is 
executed (Spuler, 1994). 

This expression will be expanded by the 
preprocessor as: 

up_limit = (++i > j ) ? ++i : j ; 

Variable i could be increased by 2. The first 
increment happens at (++i > j); the second 
one happens when the comparison is true, and 
++i is assigned to up_limit. Depending 
upon the values of i and j , i can be 
increased by 1 or 2, which is unlikely to be 
the intent of the programmer. 

Use bit masks, not bitfields. Bit fields and masks are used for reading setting status registers 
in hardware and for reporting status to other portions of the system. Bit field assignment is 
implementation defined (Section 6.5.2.1 ANSI/ISO 9989-1990). When a bit field is defined 
in a program, a compiler can assign any bit(s) to it, either higher bit(s) in a memory or lower 
bit(s). This may create interface problems when bit field variables are written to a file and 
the file is accessed by another program written in another language or compiled by another 
compiler (Porter, 1993; Hatton, 1994). Problems may also be created when the variable is 
communicated to another system. Bit field variables should not be utilized in safety systems, 
a bit mask should be instead. The following is an example of the use of bit field variables 
in which short integers are used to store the value of a send and receive flag. 
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#define BUFSIZE (1024) 
typedef struct comm struct 
{ 

short send_flag short receive_flag 
: 1; 
: l; 

unsigned char buf[BUFSIZE]; 
}; 
comm_struct comm_var; 
if 
{ 

if 
{ 
}" 

(comm_var.send_flag) 

(comm_var.receive_flag) 

The problem with this code is that should there be a need to port it to another system or 
compiler, it us unclear whether the placement of the bits will be properly interpreted by the 
CPU during runtime. A better practice is to explicitly place and check bits using a bit mask 
as shown below: 

#define BUFSIZE (1024) 
#define SEND_FLAG (0x01) 
#define RECEIVE_FLAG (0x02) 
typedef struct comm struct 
{ 

int flag; /* bit 0: 
unsigned char buf[BUFSIZE]; 

}; 
comm struct comm var; 
if (comm_var.flag 

if (comm var.flag 
{ 
} 

& SEND_FLAG) 

& RECEIVE_FLAG) 

/* 
/* 
/* 

SEND_ 

buffer size 
bit 0 */ 
bit 1 */ 

FLAG, bit 1: 

*/ 

RECEIVE_ FLAG*/ 
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4.1.2.6 Controlled Use of Data Typing 

Following guidelines are applicable to both C and C++ 

Acceptance of data that differ from those intended for use by a program can cause system failures. 
The following measures should be taken to reduce data typing errors. 

• Limit the use of implementation-dependent types. Data types whose sizes are machine- or 
compiler-dependent types should be used with caution. For C, these types are f loa t , 
char, and i n t . Unrestricted use of these data types could cause interface and portability 
problems. The utilization of these data types as Input/Output variables or as structure and 
union fields should be avoided in safety systems. Data type f loa t should be replaced by 
double and datatype char should be replaced by either signed char or unsigned 
char. In many cases, data type i n t should be replaced by short i n t or long i n t 
if the actual size of these types are known. This data type is used in many built-in function 
and procedure calls, as well as in externally developed libraries. Thus, it is not possible to 
eliminate i n t from safety-critical code. However, i n t should be used with care, and all 
occurrences should be clearly documented. When possible, variables should be declared as 
short or long (which are of known size for all machines with a given word length), and 
then cast to the required i n t type for interfacing. Though popular, the data type i n t is 
not machine- or compiler-independent. If the lengths of implementation-dependent (integer 
or floating point) types have an impact on the operation of the software, this must be 
documented. 

• Minimize the use of type conversions and eliminate implicit or automated type conversions. 
In addition to the general guideline to limit the number of explicit conversions, a tighter 
restriction should be placed on conversions of pointers. Use of one pointer should not cast 
a different type of pointer (Plum, 1991). 

• Avoid the use of mixed-mode operations. Operations using multiple data types should be 
avoided. If such operations are necessary, they should be clearly identified and described 
using prominent comments in the source code. Explicit casts should be used if practical in 
order to make the designer's intentions clear. 

The following example demonstrates the potential problems: 

t d e f i n e BUF_ 
s i g n e d c h a r 
i n t s c a l e , 

_SIZE 
c o u n t , 
r e s u l t ; 

(32) 
i n_buf [BUF_ S I Z E ] ; 

The reader should note the recommended restrictions on the use of int in the previous paragraph 
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count = 
scale = 
result 

in 
2; 
= 2 

_buf [0] ; 

* count * scale; 

Since the range of a signed char type is from -128 to 127, the expression can generate 
unexpected results. For example, when count is 127,2 * count is 254 which is -2 as a 
signed char variable. The result is -4 after -2 * scale , which is different from the 
expected 2* 127* 2 or 508. 

The following are two possible corrections: 

Correction 1: Changing the variable type 

#define BUF SIZE (32) 
signed char in_buf[BUF_SIZE]; 
int count, scale, result; 

count = (int) in_buf[0]; 
result = 2 * count * scale; 

/* count is int now */ 

Correction 2: Casting the variable type 

#define 
signed 

BUF SIZE 
char count, 

int scale, result; 

count = 
result 

in buf[0]; 

(32) 
in_buf[BUF_SIZE]; 

= 2 * (int)count * scale; 

The first conection approach (changing the variable type) is prefened since it reduces the 
type conversion when the variable count is used in multiple places. 

Use a single data type in evaluations and relational operations. Expressions involving 
arithmetic evaluations or relational operations should have either a single data type or the 
proper set of data types for which conversion difficulties are rninimized (Porter, 1993). This 
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guideline is related to the above discussion on minimization of mixed-mode operations. 

Avoid the use of typedef s for unsized arrays. Although legal, such constructs are obscure 
badly supported, and enor-prone (Hatton, 1994, p. 75). 

Avoid multiple declarations of one identifier with several types. Even if multiple declarations 
result in no compiler enors, they may be a source of confusion or even of undefined 
behavior. 

Avoid mixing signed and unsigned variables. Mixing signed and unsigned variables in 
arithmetic and logical operations raises safety concerns and should be avoided in safety 
systems. Explicit casts should be used if practical in order to make the designer's intentions 
clear. Mixing signed and unsigned variables in arithmetic and logical operations can create 
unexpected results (Porter, 1993). A hexadecimal number FFFF is -1 in a signed 16-bit 
integer and is 65535 in an unsigned 16-bit integer. This difference can change the outcome 
of a comparison and the result of an arithmetic operation. Mixing signed and unsigned 
variables in arithmetic operations can also create overflow problems. Table 4-2 illustrates 
two problems with mixing signed and unsigned variables. 
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Table 4-2. Problems in Mixing Signed and Unsigned Variables 
Problem 

Comparison 
problem 

Division 
problem 

Problem Syntax 

in t i ; 
unsigned in t u i ; 
i - - 1 ; 
ui = 2; 
i f (i > ui ) 

{ 
/ * do A * / 
} 

else 
{ 
/ * do B * / 
} 

in t i , resul t ; 
unsigned in t u i ; 

i = - 1 ; 
ui = 2; 
resul t = i / u i ; 

Comment on Problem Syntax 

When comparing a signed variable with an unsigned 
variable, the compiler will automatically convert the 
signed value to an unsigned value. The result is just 
the opposite of what the programmer intended to do. 
In this example, variable u i needs to be cast as a 
signed integer. In some other cases, the signed 
variables need to be cast as unsigned variables. 
Sometimes, both variables need to be cast as a long 
integer. A signed 16-bit variable can be cast as an 
unsigned variable only when its value is greater than or 
equal to zero (nonnegative number), and an unsigned 
16-bit variable can be cast as a signed variable only 
when its value is less than hexadecimal 7fff or decimal 
32767. 

When there is a signed and an unsigned variable in a 
division, the compiler will automatically convert the 
signed value into an unsigned value. The value -1 will 
be interpreted as 65535. The result is 32767, not the 
expected 0. To solve this problem, the unsigned 
variable u i needs to be cast as a signed variable. In 
some other cases, casting the unsigned i n t to 
signed may not be correct. The proper solution is to 
eliminate mixing signed and unsigned variables in 
division operations. 

Limit use of indirect addressing. Validation of indirectly addressed data should be performed 
prior to setting or using it to ensure the conectness of the accessed locations. Use of void 
pointers should be limited. 

Do not declare the same identifier for multiple incompatible types. The behavior of a 
program using a data type or a function with incompatible types is not defined (Hatton, 1994; 
p. 49). 
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4.1.2.7 Precision and Accuracy 

Following guidelines are applicable to both C and C++ | 

Safety related software must provide adequate precision and accuracy for the intended application 
(IEEE Std-7-4.3.2-1993). At the same time, the software must also tolerate the inconsistencies 
emerging from operations on floating point numbers. The following are specific guidelines for C 
and C++. 

• Use double precision. Data type double should be used for floating point variables in 
safety systems. As noted earlier, the f loa t data type should not be used because it may not 
provide adequate precision and accuracy and because it limits portability. 

• Account for floating point properties in relational operations. The equality comparisons on 
floating-point numbers should be avoided in safety systems since the machine representation 
of floating-point numbers may lack precision and may have a small residual enor. Inequality 
comparisons should be utilized and equality comparisons should be avoided on floating-point 
numbers (Porter, 1993; Kernighan, 1978). 

The following example demonstrates the potential problems. 

double value; /* temporary variable for re turn value */ 

if (value == 0.0) 
.{ 

/* calculate something */ 
} 

The condition value == o. o in the above example is likely to be false because of rounding 
enors, even if the value is expected to be zero. The condition should be modified as follows: 

#define FLOATING_POINT_TOLERANCE (0.00001) 
if( (value < (0.0 + FLOATING_POINT_TOLERANCE)) &fc 

(value > (0.0 - FLOATING_POINT_TOLERANCE))) 
{ 

/* calculate something */ 
} 
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Account for truncation in integer operations. If a floating-point arithmetic operation can 
generate truncation and rounding enors, integer arithmetic may generate such enors more 
often. Integer truncation enors are generated by division. In C and C++ languages, the 
results of integer divisions are always truncated (e.g. 5/3 = 1). If a result is negative, even 
the method of truncation is implementation dependent. The result of - 5/3 can be -2 or - 1 , 
depending upon the compiler. The truncation method that a compiler uses may not be the 
same as the truncation method that a developer or a reviewer assumes is being used. 
Truncation enors can cause safety concerns when the results with truncation are used in 
comparisons and conditions for control decisions. Therefore, a rounding-off technique 
should be utilized. A typical rounding-off method is to perform the division in double, add 
0.5 to the result, and cast the result back to an integer, as seen in the following example. 

long 
long 
long 

int 
int 
int 

result = 

result; 
total_energy ; 
stations; 

(long int) ((double) total_ _energy / (double) stations + 0 .5); 

However, this rounding off method may apply to positive results only. Whether it applies 
to negative results will depend on the combination of how the compiler handles the division 
and how a developer wants the rounding off to be performed. The negative results may 
require subtracting 0.5 instead of adding 0.5 for rounding off. 

Account for optimization. Within the rules of precedence, order of evaluation of 
sub-expressions in C is implementation-defined. This may lead to unexpected results in the 
presence of optimized code being generated by the compiler. This is especially an issue with 
floating point computations. A compiler might replace ((1.0+x)-x) with 1.0 at compile time, 
when the floating point rounding enor is what the program is trying to compute. Note that 
the above optimization is guaranteed to always be conect for integer types. 

Ensure that arithmetic conversion produces a result that can be represented in the space 
provided. When conversion or casting is necessary, care must be taken to ensure that enough 
memory space is available. For example, if an integer floating-point expression is cast down 
or converted to a shorter data type, care must be taken to ensure that the value is 
representable in the shorter type (Hatton 1994, pp. 55 and 56). 
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4.1.2.8 Use of Parentheses Rather Than Default Order of Precedence 

Following guidelines are applicable to both C and C++ j 

Generic guidelines apply. The default order of precedence of arithmetic, logical, and other 
operations varies between languages. Developers and reviewers may make inconect precedence 
assumptions when explicit precedence relations are not used, particularly in complex expressions 
(Kemighan, 1986). Also, an overloading operator in C++ may change the precedence. (Section 
4.1.2.13 for a related discussion.). The following are specific guidelines. 

• Use parentheses in bitwise operators. In the C and C++ languages, bitwise operators have 
lower precedence than logical operators. Parentheses must be utilized in comparisons and 
conditions that have bitwise operators. For example: 

if 
/* 

((I 
do 

& 0x01) = 
something 

== (j 
*/ 

0x02)) 

Use parentheses in comparisons and conditions. Parentheses must also be utilized in 
comparisons and conditions that have assignment operators (Plum, 1991) because 
assignment operators have lower precedence than logical operators. This is shown in the 
following example. 

/ * read a key from keyboard */ 
i f ((key = g e t c h O ) == FTJNCTTON_KEYS) 
key = ge t chO ; 

Use parentheses in macros. Parentheses can be used to protect macros to reduce side effects. 
Using macros can make code more readable and can reduce repetitive code. However, 
without proper parentheses, macros can introduce side effects, as shown below. 
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#define square(x) 

int delta; 
int sqr; 

sqr = square(3+delta) ; 

X * X 

/* problem */ 

The preprocessor will expand the above expression as: 

sqr = 3 + del ta * 3 + de l ta ; 

which is equivalent to: 

sqr = 3 + (delta * 3) + delta; 

This is completely different from the square of 3 + de l t a . The problem shown in the 
example is that the macro square (x) is not protected. To ensure that a macro is fully 
protected, the expression should be parenthesized as follows: 

#define square(x) ((x) * (x)) 

In some cases, use of parentheses may result in loweij readability. If parentheses are 
excessive, then macros should not be used and alternative forms should be employed to 
achieve readability. 

Ensure that the values of expressions do not depend on the order of evaluation. As noted 
above, within the rules of precedence, order of evaluation of sub-expressions in C/C++ is 
implementation-defined. Unlike some other languages, for example, FORTRAN, parentheses 
in C/C++ only override precedence, and have no other effect on order of evaluation. Where 
order of evaluation is critical, for example, in floating point computations, expressions 
should be broken up into multiple statements, since the end of a statement is a sequence point 
in C/C++, and the ordering of sequence points is guaranteed to be preserved. 

4-33 NUREG/CR-6463 



Any expression potentially having side-effects, e.g., containing a function evaluation, should 
not depend upon order of evaluation. Generally speaking, integer expressions without 
side-effects are independent of order of evaluation. Both C and C++ use "short-circuiting" 
(Spuler, 1994) in the evaluation of logical expressions. That is, as soon as the final value of 
an expression is determined (for example, a zero value in an AND expression is 
encountered), the remaining sub-expressions are not evaluated. Other unevaluated parts of 
the expression are ignored. Although short-circuiting increases the efficiency of the 
evaluation procedure, it may have unexpected results if not used carefully as illustrated in 
the following example: 

i f (x < y && (ch=getchar()) != EOF) 
{ 

} 

4.1.2.9 Avoiding Functions or Procedures with Side Effects 

Generic guidelines are applicable. 

4.1.2.10 Separating Assignment from Evaluation 

Following guidelines are applicable to both C and C++ 

Generic guidelines apply to C and C++. The following are language-specific guidelines. 

• Separate relational and assignment operators. The assignment operator is one equal sign, 
"="; the relational operator is a double equal sign " ==". An assignment statement, such as 
assign_this = value should be separated from an evaluation expression such as 
i f (vaiuel — vaiue2) (Porter, 1993). The following two valid statements (in both C 
and C++) illustrate the potential problem: 
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/* 

/ * 

Example 
while 
{ 
} 

Example 
while 
{ 
} 

1 */ 
(evaluation = 1) 
valuel == value2; 

2 */ 
(evaluation == 1) 
valuel = value2; 

Example 1 causes an infinite loop in the program because the evaluation occurring 
immediately after the while is always true. 

If it is not possible to avoid separation of assignment and evaluation statements, the following 
mitigating measures should be used: 

1. Parenthesize any embedded assignment in an evaluation expression. 

2. . Ensure that the order of evaluation does not affect the value of the assignment statement. 
This includes accounting for the "short circuit" evaluation mechanism used in C and C++. 

4.1.2.11 Proper Handling of Program Instrumentation 

Following guidelines are applicable to both C and C++ 

Generic guidelines apply. Program instrumentation collects and outputs certain internal state values 
of a program during execution and allows the developer to ascertain that particular aspects of the 
specification have been conectly implemented (Liao, 1991). 
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4.1.2.12 Control of Class Library Size 

The following discussion applies to C++ only 

Generic guidelines apply to C++. There are two specific guidelines. 

• Limitation of class library size. Limiting the library size minimizes the chance of a system 
becoming unmanageable or having large performance penalties because it has too many 
classes and objects (Cuthill, 1993). 

Avoiding multiple inheritance. Multiple inheritance should not be used in safety systems 
(Porter, 1993) because of ambiguities (Cargill, 1992) and maintenance problems (Hatten, 
1994). An example of ambiguity is shown below: 

class 
{ 

}; 
class 
{ 

}; 
class 
{ 

}; 

file_base 

protected: 
void Init(); 

io_port 

public: 
void Initialization 
{ 

InitO; 
} 

private: 
void Init(); 

file_io: public file_base, public io_j?ort 

public: 
file io() 
{ 

InitO; // ambiguous 
} 
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This ambiguity may be detected by some compilers, but it may not be detected by others. 

4.1.2.13 Minimizing Use Of Dynamic Binding 

The following discussion applies to C++ only 

The generic guidelines apply. Binding denotes the association of a variable with a class. Dynamic 
binding allows the name/class association to be defened until the object designated by the name is 
created at runtime. The unpredictability of the name/class association creates safety concerns, 
reduces the predictability of the runtime behavior of an object oriented program, and complicates 
debugging, understanding, and traceability. 

4.1.2.14 Control of Operator Overloading 

The following discussion applies to C++ only 

Generic guidelines apply to C++. Operator overloading can improve readability and reduce 
complexity by allowing an object behavior to be used for different data types. However, overloading 
can also be problematic from the perspective of predictability because the precedence of one operator 
may not be consistent (as will be described below). When using operator overloading, the following 
guidelines should be followed (Porter, 1993): 

• The meaning of an overloaded operator should be natural, not clever (Cargill, 1992. 
Binkley, 1995). It is generally recognized that there are advantages to localizing related 
elements in a single module. If any of the operators for a class are redefined, the operator's 
original meaning should be preserved. That is, if addition operator + is redefined for a class, 
the operator should still have the sense of adding something to the class instance. This is a 
case where operator overloading is useful for achieving uniformity across data types. 

• Operation order should be ensured by parentheses (Porter, 1993; Kemighan, 1978). When 
performing floating-point arithmetic, bitwise exclusive OR operator A may be redefined as 
an exponentiation operator. However, a bitwise exclusive OR operator has different 
precedence than an exponentiation operator.21 When a floating-point exponentiation operator 
is overloaded to a bitwise exclusive OR operator, it changes the precedence of such operators 
for exponentiation, as seen in the following example. 

A bitwise exclusive OR operator has lower precedence than an addition operator while an 
exponentiation operator has higher precedence than an addition operator. 
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double 

basel = 
base2 = 
sum_of_ 

basel, 

= 3.0; 
= 4.0; 
squares 

base2, sum_ 

= baselA2 

_°f_ 

0 + 

squares; 

base2A2 
~ 
0; 

Since an addition operator has higher precedence than a bitwise exclusive OR 
operator, the compiler will evaluate the expression as: 

sum_of_squares = (base l A (2 .0+base2) A 2 .0 ) ; 

which is different from the expected result of 25.0. To get the conect results, parentheses 
should be used to keep the precedence of the exponentiation operator, as indicated by the 
following: 

basel = 3.0; 
base2 = 4.0; 
sum_of_squares = (basel*2.0) + (base2^2.0); 

Explicitly define class operators. Since the default constructor, copy constructor, destructor, 
and the operators operators, operators:, and operator<comma> all have default 
meanings, they should be explicitly defined in every class. To avoid unwanted implicit calls 
to these functions, declare them private (Binkley, 1995). 

Ensure consistency of pointer operators. For a class that defines the operators operator->, 
operator*, and opera tor! ] , ensure the equivalences between p->m, (*p) .m, and 
p[0] .m . Otherwise this will avoid unexpected enors when programmers assume the 
equivalence (Binkley, 1995). 

Ensure consistency of increment operators. For a class that defines the operators 
operator*, operator=+, operator++, and operator++ ( in t ) , ensure the equivalence 
of x=x+l, x+=l, and ++x and their relationship to x++. Note that the use of++ is generally 
discouraged (Binkley, 1995). 
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4.1.2.15 Enable and Heed Compiler Warnings 

Following guidelines are applicable to both C and C++ | 

Both C and C++ are complex enough that programmers should employ all available mechanisms to 
create a safe programs. Although relying on compilers alone is not a useful practice, warnings 
produced by compilers are a valuable source of information on abnormal and potentially dangerous 
parts of the program. All optional compiler warning should be enabled. Every warning messages 
should be analyzed carefully. 

4.1.3 Predictability of Timing 

Predictability of timing is crucial in a safety system used in real time control (Kopetz, 1993; 
Leveson, 1994). Some related guidelines were discussed in the previous subsections including: 

• Control of class library size (section 4.1.2.12) 
• Minimizing dynamic binding (section 4.1.2.13) 
• Control of operator overloading (section 4.1.2.13). 

Two additional guidelines are: 

• Minimizing the use of tasking 
• Minimizing the use of interrupt-driven processing. 

These additional guidelines are discussed below. 

4.1.3.1 Minimizing the Use of Tasking 

Following guidelines are applicable to both C and C++ | 

Although multitasking provides an attractive model for concunent processing, its use is undesirable 
in safety systems for the following reasons: 

1. Multitasking creates uncertainties in execution, timing, and resource utilization. 

2. C and C++ do not support multitasking. Their standard library functions may not be 
reentrant functions (ANSI 9984-1990, section 5.2.3). Using those functions in 
multitasking environments may therefore cause unanticipated results. 
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Tasking requires compelling justification. 

4.1.3.2 Minimizing the Use of Interrupt Driven Processing 

Following guidelines are applicable to both C and C++ | 

Using interrupt-driven processing to handle the acceptance and processing of plant and operator 
input can reduce average response time, but usually leads to nondeterministic maximum response 
times. If an interrupt-driven processing has to be used, the processing time within interrupt service 
routine should be minimized. 

When interrupt driven processing must be used, the following guidelines mitigate the associated risk: 

• Limit interrupt processing. The code and processing time within the interrapt service routine 
should be minimized. Any data checking and data processing should be done after the 
interrupt processing. Typically, a circular buffer can be used to store the incoming data 
(buffers should be large enough to avoid data overruns). 

Limit junction calls. Function calls within interrupt service routines should be minimized, 
and only reentrant functions should be called by interrupt service routines. ANSI/ISO C 
standard does not guarantee any standard library functions to be reentrant (ANSI/ISO 9989-
1990, section 5.2.3). 

For example: 

/* data buffer size */ 
#define BUFSIZE (2048) 

/* Buffer index wrap around mask. This wraparound method works only when 
the buffer size is a power of 2 */ 
#define BUF_INDEX_MASK (BUFSIZE - 1) 

/* COM port address */ 
#define COM_PORT_ADDR (0x2f8) 

/* COM port interrupt vector address */ 
#define COM_ISR_ADDR (12) 

/* time out in 2 second */ 
#define TIMEOUT LIMIT (2*CLOCK PER SECOND) 
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/* local variables */ 
static int data_in_index; 
static unsigned char data_buf[BUFSIZE]; 

/* local function prototype(s) */ 
static void Init(void); 
static interrupt new_com_isr(void); 

/* 
Description: This function initializes the COM port, interrupt 

vector, and buffer index variables. 
input var: none 
output_var: none 
return: none 
global var: 

*/ 
static void Init(void) 
{ 

data_in_index = 0; 

/* other initialization */ 
} 

/* 
Description : This function is called when there is an RS232 (COM 

port) interrupt. It reads a byte from the COM port and 
saves it in the data buffer. 

input var: none 
output var: none 
return val: none 
global var: data_buf -- new data is save int the buffer 

data_in_index -- used and modified. 
*/ 

static interrupt new_com_isr(void) { 
data_buf[data_in_index++] = inp(C0M_P0RT_ADDR); 
data_in_index &= BUF_INDEX_MASK; 
} 

main () 
{ 

int return code = 0; 
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} 

interrupt orig_com_isr; 
cloct_t last_time; 

/* save the original interrupt service routine address */ 
orig_com_isr = get_vector(C0M_ISR_ADDR); 
data_out_index = 0; 
InitO ; 

/* set new interrupt service routine */ 
set_vector(new_com_isr); 

last_time = clock (); 
while ((clock() - last time) <= TIMEOUT LIMIT) 
{ 

if (data in index != data out index) 
{ 

/* process new data */ 
data = data_buf[data_out_index++]; 
data_out_index &= BUF_INDEX_MASK; 

/* update time out count */ 
last time = clock(); 

} 
} 
/* restore original interrupt service routine */ 
set_vector(orig_com_isr); 

/* exit this program */ 
return return_code; 

Interrupt routines may be required to handle inputs from external devices, but such routines should 
be kept as short and simple as possible. Masking of interrupts, nested interrupts, and interrupt 
processing in general all cause non-deterministic behavior. Also, some form of locking or mutual 
exclusion may be required when using interrupts. 

4.2 Robustness 

Robustness refers to the capability of the software to survive off-normal or other unanticipated 
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conditions, or the degree to which a system or component can function conectiy in the presence of 
invalid inputs or stressful environmental conditions (IEEE, 1990). Since unanticipated events can 
happen during an accident or excursion, it is vital for a safety system to survive an accident and 
continue working. This section discusses the following topics related to robustness: 

• Controlled use of software diversity 
• Controlled use of exception handling 
• Input and output checking. 

4.2.1 Controlled Use of Software Diversity 

Following guidelines are applicable to both C and C++ 

The generic guidelines apply to both internal and external diversity. There are no additional 
language-specific guidelines. 

4.2.2 Controlled Use of Exception Handling 

An exception is an event that causes suspension of normal program execution (TEEE, 1990). 
Exception handling deals with abnormal system states and input data (TEEE, 1993). This section 
discusses guidelines related to the following attributes: 

• Local handling exceptions 
• Preservation of external control flow 
• Uniformity of exception handling. 

4.2.2.1 Local Handling of Exceptions 

Following guidelines are applicable to both C and C++ 

The generic guidelines apply. Exceptions should be handled locally. 

Propagation of exceptions through several levels of a program can cause the precise nature of the 
exception to be misinterpreted at the place where the exception handling is implemented. This cause 
of system failure can be avoided if exceptions are handled locally. This section describes suggested 
approaches ito local handling of the following types of exceptions: addressing, data, input/output, 
overflow/underflow, operation, and protection. 

• Addressing exceptions. Addressing exceptions can be caused by an uninitialized or 
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improperly set pointer. For example, an uninitialized static pointer will have NULL as its 
value. Writing to the uninitialized pointer will overwrite system memory which can cause 
catastrophic system failure. There is no way to recover from such a condition. Hence, 
addressing exceptions must be prevented as described in section 4.1.1. 

Data exceptions. Data exceptions can be data-domain enors or data-range enors. Both 
categories can occur when calling a library function. After calls to any mathematics 
functions in the standard library, the variable errno, which is declared in the e r ro r . h 
file, should be checked for possible data exceptions. 

Input/output exceptions. Input/output exceptions can be related to files. After a function call 
to open a file (fopen). or to seek a location in a file (fseek), the result should be 
checked to verify if the function call is successful. Function fopen can fail when the file 
does not exist or when the file open mode and the file attributes do not match (e.g., to open 
a file in write mode, but the file is read only). Function fseek will fail if the specified 
location does not occur in the file. If the function call fails, the program should not continue 
without handling the exception condition related to the failure. 

Before closing a file, the program should verify whether the file is cunently open to avoid 
accidentally closing another stream. If the file is not cunently open, the file pointer is NULL, 
and a catastrophic failure may occur. For example, NULL can be interpreted as stream 
number 0 which is the keyboard in MS-DOS. Closing a NULL pointer can lock up the 
keyboard and disable the user interface. When the system requires a user input, it cannot 
receive it because the keyboard is locked. The system cannot do anything until it is reset. 

An input/output exception handling example is shown below: 

#define DATA_FILE "safety.dat" 
#define OPEN_FILE_ERROR "ERROR==>cannot open file %s 

FILE *fp; 

fp = fopen(DATA_FILE, "w+t"); 
if ( fp == NULL) 
{ 

/* report file open error */ 
cprintf(OPEN_FILE_ERROR, DATA_FILE); 

/* exception handling */ 

} 
else 
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{ 
} 

/* if the file is opened, 
if (fp != NULL) 

fclose(fp); 

close it */ 

• Overflow and underflow exceptions. Some overflow and underflow exceptions can also be 
checked by examining the variable enor, especially after calling a mathematics library 
function. Without checking the variable enor, the result cannot be assumed to be conect. 
One of the most common such exceptions is divide by zero. To avoid this condition, the 
denominator should be verified as being nonzero before a division is be performed. 

• Operation exceptions. Operation exceptions can be race condition, data or address bus busy, 
device busy, device idle, or lack of memory. A timer with an expiration time (deadline) is 
a technique to handle operation exceptions. For example, there should be a deadline or "time 
out" when the system is waiting for a response from a remote station. The action after the 
time-out should be well defined. 

• Protection exceptions. A protection exception is an abnormal event caused by system locks 
on shared resources such as files. An example is that an application is trying to open a file 
while the file is locked by another application. When such an exception happens, a retries 
should be performed up to a predefined limit. The likelihood of such an exception can be 
reduced by opening files only when they are needed, locking only required records rather 
than the entire file, or opening a file in the conect mode (i.e. do not open read-write mode 
when the operation only requires a file read). 

If it is not possible to place exception handling locally, thorough testing and analysis is necessary 
to verify the proper behavior of the program in the exception state. 

4.2.2.2 Preservation of External Control Flow 

Following guidelines are applicable to both C and C++ | 

Generic guidelines apply. Interraption of control flow external to the routine in which the exception 
was raised creates uncertainty in the execution subsequent to the exception handling. Safety is 
enhanced by preservation of control flow external to the module responsible for the exception. 
When an exception occurs, the external control flow should be preserved. This requires the module 
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not only to handle the exception internally, but also to set flags. These flags are used for external 
communication. If it is not possible to preserve external control flow, then thorough testing and 
analysis should be used to verify behavior. 

Asynchronous exceptions can only be handled by catching signals. The effect of handling the 
exception in this way can be localized to the module containing the handler, and flags can be used 
to communicate the enor to other modules. Additional related comments on the use of 
setjmp/longjmp in enor handling are in section 4.1.2.1. 

4.2.2.3 Uniformity of Exception Handling 

Following guidelines are applicable to both C and C++ 

Generic guidelines apply. Exceptions should be handled uniformly. Section 4.2.2.1 described the 
likely types of exceptions to be encountered in C and C++ and how they can be handled locally. The 
following are additional language-specific guidelines on handling exceptions uniformly. 

• Rely on signals and traps rather than operating system features for handling of exceptions. 
Some commercial real-time operating systems that may be incorporated into safety systems 
have additional support for exception handling. However, in order to ensure uniform and 
predictable handling of exceptions, these operating system features should be used only as 
a last resort in safety systems. It is preferable that signals and traps related to exceptions be 
intercepted and handled by the safety software unless the exception handling standard and 
methods of an operating system are well documented and understood. 

• Use throw and catch in favor of set jmp and longjmp in C++. C uses setjmp and 
longjmp in the Standard C library for exception handling purposes. The problem with 
these functions is that it is virtually impossible to recover effectively from a complicated 
exception condition (Plauger, 1995). However, C++ provides a cleaner exception-handling 
mechanism using the throw, catch mechanism (Plauger, 1995). C++ programmers should 
make use of this uniform exception-handling mechanism, although compiler 
implementations may need to be validated. 

4.2.3 Input and Output Checking 

Following guidelines are applicable to both C and C++ 

Generic guidelines apply. A specific guideline relating to the use of pointers for input or output 
operations. 
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Checkpointers before use. Pointers should be checked before use to ensure that the location 
from which data are being read is valid. Such checking is shown in the following example: 

FILE *fp; 

fp = (FILE *) NULL; 

fp = fopen( ... ); 

if (fp != (FILE *) NULL) 
{ 
} 
if (fp != (FILE *) NULL) 
{ 

fclose(fp); 
fp = (FILE *) NULL; 

} 

/* define a pointer */ 

/* initialize the pointer */ 

/* assign the pointer */ 

/* check the pointer */ 

/* check the pointer */ 

/* clear the pointer */ 

4.3 Traceability 

Traceability refers to attributes of safety software that support verification of conectness and 
completeness as compared to the software design. The intermediate attributes for traceability are 
as follows: 

Readability 
Minimizing use of built-in functions 
Minimizing use of compiled libraries 
Utilizing version contiol tools 
Utilizing comments and internal documentation 

Because readability is also an intermediate attribute of maintainability, it is discussed in Section 4.4. 
C and C++ specific guidelines for the latter two attributes are discussed below. 
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4.3.1 Minimizing the Use of Built-in Functions 

Following guidelines are applicable to both C and C++ 

The generic guidelines apply. C and C++ include built-in functions, sometimes called intrinsic 
functions (Koeman, 1995) for frequently used programming tasks in order to maximize programmer 
productivity. 

The use of those functions raises safety concerns for the following reasons: 

1. The requirements for developing those built-in functions may not be the same as those of the 
safety systems. 

2. The input and output data validation and exception handling may not be the same as that 
needed in safety systems. 

3. The number of built-in functions may vary from one compiler to another. A function 
supported by one compiler may not be supported by another compiler. For example, 
compilers for embedded systems generally do not support all ANSI C standard functions. 

Because of these concerns, the use of built-in functions should be minimized. When built-in 
functions are used, their use should be supported with documented testing and tracking of anomalies. 
Although the built-in functions should be minimized in safety systems, it may not be possible to 
eliminate all built-in functions because a language is not complete without those functions and some 
task may not be able to be performed. When built-in functions are used, only functions in ANSI C 
Standard should be called. Wrapper functions should be used for potentially problematic standard 
functions (Hatton, 1994). 

4.3.2 Minimizing the Use of Compiled Libraries 

Following guidelines are applicable to both C and C++ I 

The generic guidelines apply. Compiled libraries can be supplied by compiler vendors or third 
parties to support input/output operations or mathematical operations which are not defined 
constructs within the basic language. All concerns discussed in sections 4.3.1 and 4.4.1 also apply 
to compiled libraries. Like built-in functions, the use of compiled libraries should be minimized. 
In addition, libraries provided by commercially oriented vendors may not have been developed with 
the same safety standards as the project for which they are used. The following are additional 
language-specific guidelines. 
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Ensure that names in externally developed libraries are distinct from those in the compiler 
or those developed within the project. Functions with the same names but different 
purposes—or even the same purpose and different characteristics—can cause unintended 
behavior. 

Document all cases of dynamic binding to externally developed libraries. As was noted in 
section 4.1, dynamic binding should generally be avoided in safety systems. However, if 
dynamic binding with an externally developed library is needed in a safety function, all 
should be justified and documented. Each use should be supported with documented testing 
and tracking of anomalies. 

Ensure that development and runtime shared libraries are identical. Shared libraries, i.e. 
those which exist on the target machine and are linked at run time, should be used only if 
they are guaranteed to be identical to libraries on the developer's machine. 

4.3.3 Utilizing Version Control Tools 

Following guidelines are applicable to both C and C++ | 

All C and C++ software should be kept under configuration management utilizing version control 
tools. Version control tools ask the author to document the changes when he/she makes changes, 
thereby rninimizing the possibility of interface enors due to incompatible versions. A good version 
control package also provides a comparison utility that allows a user to compare the changes between 
source files of any two versions. 

4.4 Maintainability 

This section discusses the C and C++ specific attributes of the following intermediate attributes 
related to maintainability: 

Readability 
Data abstraction 
Functional cohesiveness 
Malleability 
Portability. 

Base-level attributes and specific C and C++ guidelines are discussed in the following sections. 
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4.4.1 Readability 

Readability allows software to be understood by qualified development personnel other than the 
author. Readability is an important characteristic of programs, as almost all programs are modified 
or debugged by someone other than the original author at some time during the life of the program. 
Although readability should in large measure be based on project-specific guidelines, there project-
independent issues that should be addressed. These issues and related guidelines are discussed in 
the following subsections. 

4.4.1.1 Conformance to Indentation Guidelines 

Following guidelines are applicable to both C and C++ 

The generic guidelines apply. Appropriate indentation facilitates the identification of declarations, 
control flows, nonexecutable comments, and other components of source code. Spaces are prefened 
to tabs for indentation since tabs may have different spaces on different file editors or printers. 
Indentation guidelines are as follows: 

• Programming blocks should be bounded with brackets. 
Comments should have the same indentation as the objects being described. 

• Branching constructs (i.e., i f . . . e l se . . . ; and switch . . . case,) 
should be indented. 

• Looping blocks (i.e., for , while, and do . . . while) should be indented. 
Automatic variables should be indented. 

• Compiler directives should be indented. 

The following example shows a function with recommended indentation: 
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top level -->main() 
{ 

/* loop variable */ 
second level > int i; 

/* sub-block */ 
for (i=0; i<MAX_L00PS; i++) 
{ 

third level > if (...) 
{ 

fourth level >while (...) 
{ 

fifth level > ... 
} 

} 
} 

second level > switch 
{ 

t h i r d l e v e l > . . . 
} 

} 
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4.4.1.2 Descriptive Identifier Names 

Following guidelines are applicable to both C and C++ 

The generic guidelines apply. The names of variables, routines, macros, and labels should be 
descriptive and closely related to the entities that are represented. Short and cryptic names should 
be avoided. The single additional guideline relates to variable names. Differences between variables 
with related names should occur early within the name (e.g. level2_sensor rather than 
sensor_level2). Although the ANSI/ISO C standard only guarantees the number of significant 
characters for an internal identifier and macro names to be 32, the number of significant characters 
for an external identifier should be limited to 6 (ANSI/ISO 9989-1990, section 5.2.4.21). 

4.4.1.3 Comments and Internal Documentation 

Following guidelines are applicable to both C and C++ I 

The generic guidelines apply. Inadequate comments impede review and maintenance (Kemighan, 
1978). The commenting guidelines in Chapter 2 are relevant. The following are additional guidelines 
for internal documentation: 

• A routine should have a header that describes the input and output variables, the return type 
of the routine, the meaning of the return value if there is a return value, referenced and 
modified global variables, and an explanation of any arithmetic equations and algorithms in 
the routine. It should also document the modules it accesses. 

• Comments should be used where subtle prograrnming tricks are used or where critical steps 
are executed. 

• Nested comments should not be used. When a block of code is no longer used, it should be 
removed from the source code to avoid confusion to developers and reviewers. For instance 
#if (0) . . . #endif should be used to temporarily comment-out a block of code (Porter 
1993). Some compilers have an option that allows nested comments. This option should not 
be enabled in safety-system development. 

• Use care in mixing comment delimiter styles. Some C compilers allow C++ style comment 
"//". When using it in C language, cautions should be taken. A code with ("/* // This is a 
comment */") may work with C compilers, but it may not work with C++ compilers. 

• The end brackets of loops and if blocks should be tagged with comments. 
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4.4.1.4 Limitations on Subprogram Size 

Following guidelines are applicable to both C and C++ | 

The generic guidelines apply. Subroutines should be limited in size, depending largely on project 
guidelines. The ANSI/ISO C standard limits are 127 identifiers within the block scope declared in 
a block and 31 parameters in a function definition (ANSI/ISO 9989-1990, section 5.2.4.2.1). 
Subroutines in C must not exceed these limits. 

4.4.1.5 Minimizing Mixed Language Programming 

Following guidelines are applicable to both C and C++ | 

The generic guidelines have limited applicability. It may be acceptable, necessary, or desirable to mix 
C and C++ programs. However, other types of mixed language prograrnming are a safety concern 
because (1) they present difficulties for reviewers and maintainers and (2) they cause interface enors 
because of different calling conventions and different data representations. 

When this practice cannot be avoided, risks can be mitigated by the following measures: 

• Physical proximity. Placing the "foreign" language code adjacent to the dominant language 
routine with which it interfaces. 

• Use of the asm directive. The asm directive should be used where possible to include 
assembly code in C. Where separate assembly code must be used, macros should be defined 
to hide calling convention details. 

4.4.1.6Minimizing Obscure or Subtle Programming Constructs 

Following guidelines are applicable to both C and C++ | 

The generic guidelines apply. Obscure or subtle programming can generally be characterized as the 
use of indirect techniques to decrease the amount of coding or processing time required to achieve 
a result. Such coding practices present problems in review and maintenance and hence are a safety 
concern. 

The guidelines for minimizing obscure or subtle prograrnming are (Kemighan, 1978): 

a) Write clearly; do not be too clever, 
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b) Make it conect before making it faster, 
c) Make it clear before making it faster, and 
d) Do not sacrifice clarity for efficiency. 

When obscure code cannot be avoided (e.g., due to timing or memory constraints), comments should 
minimize the impact. The following are specific guidelines for C and C++ 

Following discussion applies to C 

Avoid use of the ?: operator. The ?: operator is another form of the if-then-else 
statement. The ?: operator makes the code more difficult to read should be avoided in favor 
of the more conventional if-then-else construct. 

Use table-driven alternatives when appropriate. The following is an example to determine 
the next state of a state-machine with the following state-transition: 0->l, l ->0, 2->3, 
3->4, and finally 4->2 (Maguire, 1993). The following three equivalent code fragments 
illustrate the effect of chosen language features in the safety and simplicity of the code: 

/* option 1 : use of ?: */ 
((x<=l)?(x?0:l) : (x==4)?2:(x+1)) 

/* option 2 : use of nested if */ 
if(x<=l) 
{ 

if(x!=0) 
x=0; 

else 
x=l; } 

else 
{ 

if(x==4) 
X=2; 

else 
x=x+l; 

} 

/* option 3 : use of table-driven selection */ 

static const nextvalue[]=(1,0,3,4,2) 

x = nextvalue[x]; 
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The following discussion applies to C++ only | 

Avoid using default parameters to combine junctions. For example, the use of the single 
function lookup (char *name, i n t code=-l)— where the value of code determines 
whether lookup should fail if name is not found — may not be clear to the reviewer. The 
more appropriate way is to define a new function for this purpose. Note that use of default 
parameters is acceptable in general (Binkley, 1995). 

Avoid complex expressions inside a condition. For example, i f (i&mask==0) is equivalent 
to i f (i& (mask==0)) and not to i f ((i&mask)) ==0). In this case the reviewer is 
expected to remember the operator precedences to verify the intent of the programmer. 
Replace it with long masked_i=i&mask; i f (masked_i==0) (Binkley, 1995). 

Maximize the use of the scope resolution operator. The scope resolution operator : : should 
be used to indicate explicitly which of a collection of functions or variables is being used. 
This includes globals accessed as : : global_yariable (Binkley, 1995). 

Avoid pointers to members. They unnecessarily compUcate the code. Use virtual functions or 
redesign (Binkley, 1995). 

Use the virtual keyword wherever necessary. For a C++ member function declared in a base 
class the keyword virtual should be used explicitly in the declaration of the function and all 
declarations and definitions of the functions in each derived class (Binkley, 1995). 

4.4.1.7 Minimizing Dispersion of Related Elements 

Following guidelines are applicable to both C and C++ | 

The generic guidelines apply. If related elements of the code are dispersed in a program, this makes 
it necessary to refer to multiple locations within a source listing in reviewmg or modifying the source 
code. The following are specific guidelines 

• Place include directives at the beginning of each program. #include compiler 
. directives for header or other files should be located at the beginning of each program. If it 

is necessary to include files in the middle of a program, this must be clearly tagged with a 
comment. 
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Place all external function prototypes in physical proximity. External function prototyping 
should be in one place, e.g., a header file. Prototypes should not be in each individual file 
where the function is referenced. For functions with static scope, the prototypes should be 
in the same module where they are defined and used, and the function should be declared as 
static. 

The following discussion applies to C++ only | 

• Segregate base from derived classes. In C++, it is desirable to segregate base classes from 
derived classes. 

4.4.1.8 Minimizing Use of Literals 

Following guidelines are applicable to both C and C++ | 

Literals, also called hard-coded numbers or hard-coded strings, are more difficult to identify than 
names to which a constant value or a string is assigned at the beginning of the module. Safety systems 
should utilize symbolic values (using the const identifier or if necessary, #def ine) instead of 
literals that have some extrinsic meaning or that may be changed in the future. The following specific 
guidelines apply: 

• Parentheses. In safety systems, all expressions for #def ine should be place in parentheses, 
even for a single number. The reason for using parentheses on a single number is that 
#def ine value may be changed later to an expression and consistency is always desired. 
It makes systems maintenance easier. As mentioned earlier, defining a variable with the 
const identifier is preferable to #def ine. 

• Enumeration. When there are several sequential integer numbers, enumeration constants are 
prefened to separate #def ine statements (Porter, 1993). Enumeration makes it easier to 
modify when a new number needs to be inserted to the sequence. 

For example, in the following statements: 

#define templ_sensor (10) 
#define flowl_sensor (11) 
#define flow2 sensor (12) 

The equivalent enumeration constants are: 
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enum 
{ 

}; 

instrument labels 

templ_ 
flowl 
flow2 

sensor 
sensor 
sensor 

= 10, 

To add an additional temperature sensor before flowl_sensor, all the numbers after 
templ_sensor need to be changed in the #def ine statements. However when using 
enumeration only one change is needed: inserting the new label between templ_sensor and 
flowl sensor. 

The new code will be: 

#define templ_sensor 
#define temp2_sensor 
#define flowl sensor 
#define flow2_sensor 

(10) 
(11) 
(12) 
(13) 

/* add new operation */ 
/* 11 changed to 12 */ 
/* 12 changed to 13 */ 

The equivalent enumeration constants are: 

enum 
{ 

}; 

instrument labels 

templ_sensor = 10, 
temp2_sensor, 
flowl_sensor, 
flow2 sensor 

/* this is the only change */ 

If literals are used, comments should be associated to facilitate search and replace efforts. 

4-57 NUREG/CR-6463 



4.4.2 Data Abstraction 

Data abstraction is the combination of data and allowable operations on that data into a single entity, 
and establishment of an interface which allows access, manipulation, and storage of the data only 
through the allowable operations. 

4.4.2.1 Minimizing the Use of Global Variables 

Following discussion applies to C | 

Generic guidelines apply to C. Because of the potential for unintended side effects, use of global 
variables in safety related programs should be limited (Pamas, 1990). Readability is enhanced when 
variables are declared, set, and used in the same routine. If global variables are to be used, the 
following language-specific guidelines can mitigate the associated safety concerns. 

• Keep global variables and associated junctions in the same file. If a limited number of 
functions need to share a certain variable, those functions can be included in the same file and 
the shared variable given file scope. 

• ' Declare global variables in one header file. When a global variable has to be used, it should 
be declared in one header file. There should not be multiple reference extern declarations 
for a variable. The following example shows how multiple references create maintenance 
problems and safety concerns: 

static int i; 
main() 
{ 

extern int i; 
{ 

extern int i; /* Scope? */ 
} 

} 

Initialize global variables in one place. As noted earlier, global variable initialization should 
occur in exactly one place in the program. 
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4.4.2.2 Minimizing the Complexity of Interfaces 

Following guidelines are applicable to both C and C++ | 

The generic guidelines apply. Interfaces are a frequent cause of software failures (Thayer, 1976). 
Complex interfaces are difficult to review and maintain and are therefore not desirable in safety-
related programs. The following are specific guidelines: 

• Limit the number of parameters. In the C and C++ languages, the number of parameters of 
a function or a macro should be minimized. Large numbers of parameters can make 
interfacing complex. 

• Use structures. When there many parameters and some of those parameters are related, they 
should be defined in a structure, and a pointer to the structure should be passed as a parameter 

' to reduce stack usage. 

• Avoid expressions in parameter lists. Since the order of parameters being evaluated is 
unspecified in the ANSI C standard, the expressions should be eliminated in parameter 
passing to a subroutine or a macro, as shown in the following example: 

calculate_area(length=2, width=length+2); 

Because the second parameter, "width," may be evaluated first when the routine is called, it 
may produce an unintended result. A possible conection for the above function call is: 

length = 2; 
width = length + 2; 
calculate_area(length, width); 

4.4.3 Functional Cohesiveness 

Cohesiveness is the manner and degree to which the tasks performed by a single software module are 
related to one another (IEEE, 1990). Functional cohesiveness refers to a clear conespondence 
between the functions of a program and the structure of its components. 
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Following guidelines are applicable to both C and C++ I 

The generic guidelines apply to C and C++. Review and maintenance are when a given function 
implements only one well understood purpose. 

Following discussion applies to C++ only | 

The rationale for the design of class libraries should be obvious and related to the objective. Objects 
defined in C++ should have a single identifiable purpose. Specific guidance is a design level issue 
which is beyond the scope of this document. 

4.4.4 Malleability 

Following guidelines are applicable to both C and C++ I lg guidelines are appi 

MaUeability is the ability of a software system to accommodate changes in functional requirements 
(Pamas, 1990). Malleability extends data abstraction with the motivation toward isolating areas of 
potential change. The generic guidelines apply to both C and C++. There are no additional language-
specific guidelines. 

4.4.5 Portability 

Portability is the ease with which a system or component can be transfened from one hardware or 
software environment to another (IEEE, 1990). From the perspective of safety, the benefits of 
portability are the adherence to standard prograrnming constructs that yield predictable and consistent 
results across different operating platforms (Witt, 1994). Thus, code that is reused or converted to 
run on a different platform will be easier to maintain and will be more exhaustively tested. 

The following portability-related guidelines relevant to C and C++ have been discussed previously: 

Minimizing the use of built-in functions (section 4.3.1) 
Minimizing the use of compiled libraries (section 4.3.2) 
Minimizing interface ambiguities (section 4.1.2.5) 
Minimizing dynamic binding (section 4.1.2.12) 
Minimizing the use of tasking (section 4.1.3.1) 

lg the use of interrupt driven-processing (section 4.1.3.2). 
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The following additional specific guidelines will be discussed in this section: 

• Minimizing anonymous data types 
• Avoiding reserved words and keywords 
• Minimizing hardware dependencies. 

4.4.5.1 Minimizing Platform-Dependent Data Types. 

Following guidelines are applicable to both C and C++ | 

This topic has been partially discussed in previously (section 4.1.2.6 Use of Data Typing). 
Implementation-dependent data types may create problems across different platforms or compilers. 
The related guideline discussed in that section is the use of the integer and floating point data types. 
A typical example of this data type is i n t , which is 16 bits in some compilers and 32 bits in others. 

4.4.5.2 Avoiding Reserved Words 

Following guidelines are applicable to both C and C++ I 

The following are portability-related guidelines on the use of reserved words in C and C++: 

• Avoid underscores. Identifiers with starting underscore or underscores should not be used. 
According to the ANSI C standard ((ANSI 9989-1990), section 7.1.3) all identifiers that begin 
with an underscore and either an uppercase letter or another underscore are always reserved 
for any use. Identifiers that begin with an underscore are reserved for use as identifiers with 
file scope in both the ordinary identifier and tag name spaces. Identifiers starting with double 
underscores LIKE_THIS and identifiers starting with an underscore and followed by an 
upper case letter _SUCH_AS_THIS are reserved words. Identifiers starting with an underscore 
_ l i k e _ t h i s are reserved for file scope variables. C++ reserves identifiers with double 
underscores for implementation and libraries. Using identifiers with starting underscore and 
double underscores can cause unspecified results if they are reserved words (such identifiers 
can also cause unspecified results later even if they are not reserved words for the cunent 
revision of the compiler). 

• Avoid use of C++ keywords even though that language is not used. C programmers should 
avoid using names that are keywords in C++ since C programs may later be converted to C++ 
programs. Examples are catch, c l a s s , de l e t e , f r iend, i n l i n e , new, 
operator , p r iva t e , protected, publ ic , template, t h i s , throw, t r y , 
and v i r t ua l . 
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• Do not use the names of functions in the standard library. The names of the functions in the 
standard library should be treated as reserved words (Plum, 1991). 

4.4.5.3 Minimizing Hardware Dependencies 

Following guidelines are applicable to both C and C++ 

Define hardware-dependent address symbolically. In a control system, it may be possible to 
avoid directly accessing hardware by means of a vendor supplied device driver. However, 
it may be necessary or desirable for the safety system software to directly interface to the 
hardware for the purposes of traceability. If writing to hardware is necessary, the addresses 
should be clearly documented and defined in a manner that minimizes the possibility of 
change enors. This may be using symbolically as defined earlier in this section (or by means 
of class definitions (in C++) for potential future changes. 

Use volatile attribute for data items that are mapped to hardware. Data items that are 
mapped to actual hardware must have the v o l a t i l e attribute. This attribute ensures that 
the compiler will not use optimization and leave the value in a CPU register, but will read it 
from the memory location each time it is set or used (Harbison, 1987, p. 265). The rationale 
for the use of volatile is that the value may have changed since the last time it was set or used 
by the CPU (e.g., a bit set to busy subsequently was set to not busy). When such an item is 
referenced, its pointer should be a pointer-to-volatile. 

Avoid the use of bit fields. Bit fields are dependent on the compiler and the "little-endian/big-
endian" nature of the CPU. They should therefore not be used. Shifting and masking should 
be used instead. Additional guidelines on the use of bit masks in place of bit fields are found 
in section 4.1.2.5. 

Do not measure time intervals by counting clock cycles. Generating delays by counting clock 
cycles should also be avoided since the timing of a clock cycle can will differ on a different 
platform. 
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5 PLC Ladder Logic 
This chapter discusses use of Programmable Logic Controller (PLC) Ladder Logic in safety systems. 
The chapter is organized in accordance with the framework of Chapter 2. Section 5.1 discusses 
reliability-related attributes of PLC Ladder Logic; Section 5.2 discusses robustness-related attributes 
of Ladder Logic; Section 5.3 discusses traceability-related attributes; and Section 5.4 describes 
maintainability-related attributes. A summary matrix showing the relationship between generic and 
language specific guidelines, together with weighting factors, is included in Appendix B. Language-
specific weighting factors were based on the special nature of the language with its industrial contiol 
and hardware orientation together with limited data types. 

At present, Ladder Logic is the principal problem solving (application) language for PLCs22. 
Although programming considerations are largely common, the variety of PLC models and the 
absence of a single standard that unambiguously defines Ladder Logic complicate the issue of 
defining some guidelines and providing examples. Most of the programming examples in this 
chapter and Appendix A use the Allen Bradley PLC-5 variety of Ladder Logic. However, the use of 
this PLC as an example should neither be interpreted as an endorsement or criticism of that product 
line. 

5.1 Reliability 

The reliability of a PLC Ladder Logic program means its ability to perform its required functions 
under stated conditions for a specified period of time (IEEE, 1990). Reliability depends on the 
runtime predictability of the following: 

• Memory utilization 
• Control flow 
• Timing. 

PLC Ladder Logic-specific guidelines are described in the following sections. 

5.1.1 Predictability of Memory Utilization 

The key element in predictability of memory utilization is to avoid the use of dynamic memory 
allocation. However, PLC Ladder Logic does not specifically allow for dynamic memory allocation. 
In general, memory required by the program is static at runtime. For each variable that the program 

A PLC is a special purpose computer for industrial control applications. More complete descriptions of 
both PLCs and the Ladder Logic programming language are provided in Appendix A. 
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uses, there is a specified memory location in a data table file. Each program is stored in a program 
file whose size is determined during compilation or translation. Thus, the generic guidelines are not 
relevant for Ladder Logic programs. 

The only memory allocation that is not defined prior to runtime is memory utilization by the 
"operating system" (PLC firmware) for stack and queue purposes. However, this memory allocation 
is beyond the scope of the PLC Ladder Logic controller. In general, stack allocation should not be 
a cause of program crashes due to restrictions imposed by the Ladder Logic programming 
environment. In some PLC models these restrictions are limits on the number of parameters passed 
to a subroutine or on nesting levels, in other PLC models, other controls are used. The intent of these 
is to prevent the PLC programmer from causing failures due to memory management problems. 

5.1.2 Predictability of Control Flow 

Predictabihty of control flow is the capability to determine easily and unambiguously what path (i.e., 
which set of branches and in what order) the program will execute under specified conditions. This 
subsection discusses guidelines related to the following attributes: 

• Maximizing structure 
• Minimizing control flow complexity 
• Initializing variables before use 
• Single entry and exit points for subprograms 
• Minimizing interface ambiguities 
• Use of data typing 
• Accounting for precision and accuracy 
• Order of precedence of arithmetic, logical, and functional operators 
• Avoiding functions or procedures with side effects 
• Separating assignment from evaluation 
• Proper handling of program instrumentation 
• Controlling class library size 
• Minimizing use of dynamic binding 
• Controlling operator overloading. 

5.1.2.1 Maximizing Structure 

The generic guidelines apply. Use of goto or equivalent statements resulting in an unstructured shift 
of execution from one branch of a program to another should be avoided because such programs are 
difficult to trace and understand. 

Ladder Logic language allows the programmer to use goto statements. In Ladder Logic language, 
there is no mechanism to force the programmer to develop a structured program. A sample use of 
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the goto (JMP) command is shown in Figure 5-1. Whether goto statements should be banned in a 
project depends on the characteristics of the selected PLC. Some versions of Ladder Logic allow the 
maximization of structure by the use of block stractured code and calls to subroutines. When 
available, these constructs should be utilized. 

However, not all PLC Ladder Logic 
implementations support subroutines, 
especially in smaller models. Fewer still 
support parameter passing to subroutines or 
subroutines with local memory. In the case 
of a PLC without subroutine support, the 
jump to label illustrated in Figure 5-1 may 
be the only mechanisms available to provide 
control flow over program segments. 

If goto statements are used, it is necessary to Figure 5-1 Use of goto. 
justify why such statements are needed and 
why alternative prograrnming methods could 
not be used. The following specific guidelines are applicable if the goto (or JMP) is used: 

• Use watchdog timers or scan counters with backward jumps. The PLC does not limit 
direction, so that the program can jump backwards. This backward movement could result 
in an internal watchdog timer expiration, causing the PLC to enter a fault state. This is 
another reason to require a timer or a scan counter to protect the integrity of the program (see 
guidelines below). 

• Ensure that data initialization has occurred before making the jump. Since logic between the 
JMP and the LBL instructions are not scanned by the PLC, data table words and bits can be 
left in an non-initialized state. This could breach a safety-critical application. 

5.1.2.2 Minimizing Control Flow Complexity 

The generic guidelines are applicable. The control flow in Ladder Logic is controlled by "if. .then" 
structures, making it is easy to predict run-time behavior of a single statement. Even a relatively 
complex control flow structure, as shown in Figure 4.2, is reviewable in PLC Ladder Logic. 
However, it is not always so easy to predict behavior on the program level, when many rungs are 
involved. A further complication is the complexity/feature set of the specific Ladder Logic 
implementation being used. There are significant differences in various models of PLCs. 

The specific guidelines related to control-flow are as follows: 

• Decomposition. The Ladder Logic program should be subdivided into cohesive subroutines. 
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Nesting level limits. Care should be taken to ensure that nesting levels are not excessive. The 
maximum nesting level may be defined on a project-specific basis. For some PLCs, there is 
a limit on the maximum number of levels. 

Figure 5-2 Sample of "complex" control stracture. 

Limitation for use other than Booleanfunctions. PLC Ladder Logic should be limited to its 
primary intended purpose, i.e., interlocks and other Boolean applications. The above diagram 
is a good example of how Ladder Logic used in such a manner can be quite clear and easy to 
understand, even when expressing a complex boolean relationship. The same cannot be said 
for the use of Ladder Logic for mathematical functions or other purposes. In such cases, the 
code can be more complex and difficult to understand. If Ladder Logic is needed for such 
code, extensive documentation is necessary to make its purpose clear in a production system. 

Impact of the underlying PLC data base. Predictability of the behavior of entire PLC 
programs depends not only on the Ladder Logic program itself but also on the interaction with 
the PLC data base. It is not unusual for PLC programs to consist of dozens of rungs of logic 
applied to a single global variable base. There is a significant potential for programming 
enors. Proper and strict management of this variable base, or PLC memory map, and 
adherence to a methodology for using these variables are required for the safe programming 
of PLCs. These guidelines are discussed later. 
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5.1.2.3 Initialization of Variables Before Use 

Proper variable initialization is critical for Ladder Logic programs. However, the generic guideline 
is applicable in a manner somewhat different from other high-level languages because of the 
differences in which initialization must occur in different Ladder Logic implementations. The 
following are specific guidelines. 

• Initialization of variables in Ladder Logic programs. Where supported, variables should be 
mitialized in the Ladder Logic code. Explicit mitialization of variables in Ladder Logic, or 
any of the other PLC Languages, is one of the requirements of the IEC 1131-3 PLC Language 
Specification. Unfortunately, few if any cunently available PLC systems support this concept 
at the source code level. It is anticipated that the feature will become more common in future 
implementations. 

• Initialization at program load time. Many, but not all, PLC development environments allow 
the programmer to set initial values for PLC variables, which are then subsequently uploaded 
to the PLC. Others simply initialize the variable pools to zero. Both the PLC programmer 
and auditor should be aware of how the particular PLC system chosen for a safety-critical 
application operates in this regard, which should be noted in the PLC program documentation. 
Relying on the development environment to upload initial values of variables does not 
automatically ensure that all variables were conectiy mitialized. Also, the programmer 
normally has the capability to initialize the data table files manually, not through explicit 
assignment in the Ladder Logic program. 

• Initialization at power up. Initialization should be performed every time the system is 
powered up, restarts operation, or recovers from a failure. An mitialization subprogram can 
handle all the program mitialization issues, not only variables, when the PLC is turned into 
RUN mode. This procedure is recommended unless other means for ensuring conect 
initialization are in place. 

The following is an example of initializing some words to an explicit value (e.g, the boiling 
point of a liquid) into the calculation: 

|._ | | 

Move 
Source: 
Dest: 

-MOV 
232 N7:10 
232 
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Another example is the executive program that calls an mitialization subroutine shown in 
Figure 5-3. Many PLCs have a mechanism similar to the SYSTEM_INITLAL shown in the 
figure: a flag from the operating system signals the first scan of the PLC. Some PLCs further 
distinguish this first scan as a either a Cold Start, when mitialization of variables may be 
necessary, or a Warm Start, in which all variables have successfully retained their values since 
the. PLC was powered down. Specific mitialization actions are required in these 
circumstances, depending on the application. However, critical variables should be explicitly 
initialized in the program in a start up scan subroutine. 

Accountingfor mode changes. Initialization may also be a concern when an operator changes 
the mode of operation. The program should not rely on assumed prior conditions to initialize 
after a mode change. 

5.1.2.4 Single Entry and Exit Points in Subprograms 

The generic guidelines apply. Ladder Logic implementations supporting subroutines generally allow 
only a single entry point to those subroutines. When the program jumps to such a subroutine, the 
entry point will always be the first rung. However, Ladder Logic allows the use of multiple exits by 
placing a RETURN rung at different locations along the execution path. An example of multiple 
exits is shown in Figure 5-4; an equivalent program with a single exit is also presented. It should be 
noted that the end of program statement acts as a RETURN rung so that it is not necessary to 
explicitly include one. When passing parameters, however, the program needs the RETURN 
statement complete with the parameter return address. 

In the case of a PLC system without explicit subroutine support, it is even more critical that all 
subprograms (implemented with JMP to label) have a single entry and exit point. Not only will this 
simplify understanding of the program, but it will also contribute to conect operation. On many PLC 
systems, overlapping or nested JMP commands could cause counter-intuitive and difficult-to-
understand results at run time. 

Guidelines for a single exit requirement can be established in the programming manual. Use of 
multiple exit points may be justified by the developer by showing that a single exit causes more 
problems than it fixes. When using multiple exit points, it is necessary to ensure that the state of the 
data tables will be unambiguously known at all exit points. 
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File #2 MAIN Proj:XXXXXXXX Page:YYY 14:46 12/07/94 

SUBROUTINE: MAIN - REVISION 1 

On the first scan of the program, INITIALIZE subroutine is called 
to set all programmable parameters. It sets the variable SYSTEM_INITIAL 
high for one additional scan. READ STATUS subroutine is called 
to provide the required information to INITIALIZE subroutine. 

SUBROUTINE: INITIALIZE 

INPUTS: N 1 4 : l 
N 1 4 : l / 5 
N 1 4 : l / 6 
N 1 4 : l / 7 

SYSTM_STAT_WORD 
INFORMATION1 
INFORMATION 
INFORMATIONS 

RETURN: 

N14:l/10 SYSTEM_INITIAL 
S:l/15 PLC-5 performing First Scan 

N14:1 SYSTM_STAT_WORD 
N14:l/10 SYSTEM_INITIAL 
N14:l/12 A_OR_B_LOGIC 
N14:2 CABINET_NUMBER 
N14:3/0 LMP TST PROCESS 

A masked move is used to pass the first 8 bits of word N14:0 to word 
N14:l SYSTM_STAT_WORD. This is to prevent overwriting other status 
bits that are stored in N14:l. 

PLC-5 
performing 
First 
Program Scan 

S:l/15 
READ_STATUS 

-JSR 

SYSTEM_INITIAL 
N14:l/10 
H r-

JUMP TO SUBROUTINE 
FILE #: U:25 
INPUT PAR: 
RETURN PAR: N14:0 
RETURN PAR: N14:4 

SYSTM_STAT_WORD 
—MVM 
-I MASKED MOVE 
SOURCE: N14:0 

0 
MASK: OOFFh 

OOFFh 
DEST: N14:l 

0 

INITIALIZE_SBR 
JSR 

HJUMP TO SUBROUTINE 
FILE #: U:15 
INPUT PAR 
INPUT PAR 
RETURN PAR 
RETURN PAR 
RETURN PAR 

N 1 4 : l 
S : l 

N 1 4 : l 
N14:2 
N14:3 

Figure 5-3 Use of an initialization subroutine. 
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—SBR 
SUBROUTINE 
INPUT PAR: N10:0 
INPUT PAR: N10:l 

INPUTJL 
N10:0/0 

OUTPUT 
N10:4/0 

( ) 
-RET-

RETURN () 
RETURN PAR: N10:4 

INPUT_2 
N10:l/0 

OUTPUT 
N10:5/0 

( ) 
-RET-

RETURN () 
RETURN PAR: N10:5 

-[END] — 

ALTERNATIVE SINGLE EXIT PROGRAM 

-SBR-
SUBROUTINE 
INPUT PAR: N10:0 
INPUT PAR: N10:l 

INPUT_1 
N10:0/0 

OUTPUT 
N10:4/0 

( ) 

INPUT_1 INPUT_2 
N10:0/0 N10:l/0 

— I / I 1 I — 
OUTPUT 
N10:4/0 

( ) 

-RET-
RETURN () 
RETURN PAR: N10:4 

-[END]-

Figure 5-4 Ladder Logic multiple RETURN. 
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5.1.2.5 Minimization of Interface Ambiguities 

The generic guidelines have limited applicability. Interface enors account for a significant portion 
of coding enors. Unfortunately, Ladder Logic has limited support for avoiding such enors. The 
following are specific measures that can be used: 

• Validity checking: The prefened approach is testing for the validity of input arguments 
before they are passed to the data table addresses used by the subroutine. Typically, such 
validity checking would be a range check done in the rung previous to the subroutine jump 
(JSR) call. As an alternative, it can be done at the beginning of the subroutine. In the 
example in Figure 5-4, each input parameter is in the range [0,1], but is stored as a 16-bit 
integer. A validity test is required to verify if the actual input is limited to the valid range. 

• Comments. Internal comments and documentation of interfaces are important to avoid 
interface ambiguities and enors. 

• Type Checking. Type checking can be used to detect some basic types of interface 
incompatibilities. However, it is the least effective since most variables are integers. 

5.1.2.6 Use of Data Typing 

The generic guidelines have limited applicability. In general, most Ladder Logic implementations 
are weakly typed. It is therefore not possible to gain the advantages of strong data typing. The 
following are specific guidelines. 

• Ensure that the data table properly accounts for variable types. The data tables must be 
constructed to account for the differing lengths and storage characteristics of data types. For 
example, in the TSX PLC line sold by AEG/Schneider, identifiers W3, DW3, and FW3 all 
refer to the same location in memory, but are treated as a 16-bit integer, a 32 bit integer (in 
conjunction with the next location, W4), or a 32-bit floating point value (again with W4) 
respectively. Care must be taken, in the event that DW3 is used as a 32 bit integer, that 
neither W3 nor W4 is used as 16-bit integers elsewhere in the program, as this would result 
in corrupted data. Data types supported by the Allen Bradley PLC5 line are floating point, 
integer, binary, BCD/HEX, and ASCII. A problem can exist in certain instructions where the 
result of a calculation is incompatible with the resulting data table constructs, such as a 
negative integer being written into a BCD (or decimal) data table area. In this case, the data 
would be stored inconectly, which could result in a latent failure that would be manifested 
subsequently. However, should the number being written into the resulting word be too large 
in quantity, and a file type instruction is being used, the risk exists that the PLC will fault 
(typically, a 'BAD OPERAND' fault would occur) immediately. 
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Ensure that type conversion will not result in an error. For example, a floating point word/file 
transfer to an integer data type will result in rounding, and in fact, some floating point words 
may be truncated. 

Develop project-specific guidelines. The nature and extent of data typing varies from PLC 
implementation to implementation. It is therefore imperative that project-specific guidelines 
on the use of available data types and appropriate safeguards be developed. These guidelines 
should reflect specific PLC characteristics, and compliance with these guidelines should be 
monitored. 

5.1.2.7 Precision and Accuracy 

The general guidelines are applicable. The specific guideline is to ensure that the accuracy required 
by the algorithm is supported. Most Ladder Logic programs handle integer and bit variables. 
Algorithms that require floating point arithmetic must be analyzed on a case by case basis to verify 
that the processor and language provide the accuracy required by the algorithm. 

5.1.2.8 Order of Precedence of Arithmetic, Logical, and Functional Operators 

Ladder Logic implementations vary in how they handle order of precedence in arithmetic and logical 
expressions. Many implementations perform arithmetic operations by means of dedicated ADD, 
SUBTRACT, MULTIPLY and DIVIDE blocks, etc, as illustrated in the Allen-Bradley and Modicon 
example programs illustrated here. These blocks only accept a predetermined number of parameters, 
and so order of precedence is not an issue in systems of this type. 

Other PLC systems do allow complex mathematical statements by means of'operation blocks' or 
compute and transfer (CPT) blocks. Here, the order of precedence of arithmetic operators can be an 
issue. Unfortunately, there is no consensus among PLC implementations of this type as to the order 
of precedence of arithmetic operators. Hence, the liberal use of parenthesis (when available) is 
recommended to force the desired execution order. An example follows: 

10,0 r OPERATE n 

r , , {_ :i_: Jl 
I I 

: 1 : (W1+W2/W3)*(W53(W3))/W34->W34 

The operate block in this Ladder Logic example contains the complex expression footnoted as :1:. 
In the case of the Allen Bradley PLC5 controller, a complex expression in a COMPUTE (CPT) block 
instruction can also be entered. As an example, a unit conversion could be done in one CPT block 
[(N7:0*2) - 32]. Again, parentheses are needed. Order of evaluation of expressions on systems that 
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support this type of construct will vary by make and manufacturer. In this instance, order of 
evaluation of the calculations was explicitly indicated by the use of parentheses. Both the 
programmer and the auditor should be aware of what the requirements are for the specific PLC 
system used. 

Order of execution of logical elements is controlled by the Ladder Logic network itself. Whereas all 
Ladder Logic implementations execute each network of Ladder Logic sequentially, the order of 
execution of each network of logic varies from implementation to implementation. The specific 
nature of the PLC system used in a safety-critical application must be explicitly known by both the 
programmer and auditor. Use of Ladder Logic constructs that depend for their conect operation upon 
the specific nature of the Ladder Logic network execution order should be avoided. 

5.1.2.9 Avoiding Functions or Procedures with Side Effects 

Generic guidelines are applicable. 

5.1.2.10 Separating Assignment from Evaluation 

Some Ladder Logic implementations do not allow external assignment or even expression evaluation 
as part of conditional statements. On these systems, conditional statements are restricted to simple 
variable comparisons, and the generic guidelines do not apply. 

However, expression evaluation within comparison blocks is allowed on many PLC systems. For 
example, on the Allen Bradley PLC5, the CMP instruction accepts expressions for data comparisons. 
The Modicon 984 line has no separate compare instruction, but utilizes a side effect of the subtract 
block to implement comparison functions. On these systems, it is not possible to separate assignment 
from evaluation of conditional statements. 

In such cases, the specific guidelines are as follows: 

• Use buffer variables or output coils. A conditional statement in a PLC requiring an 
assignment should use a designated dummy variable as a buffer. This variable is used for no 
purpose other than as a memory buffer for unwanted assignments. This practice is easily 
auditable, and prevents confusion of assignment and evaluation of conditionals. Many (but 
not all) PLCs require that each network of Ladder Logic contain an output coil, even though 
the boolean result of the network is meaningless in the context of the application. 

• Develop project-specific guidelines for separating assignment from evaluation. The features 
and functionality of the PLC system used for a safety critical application regarding the 
separation of assignment from evaluation should be documented and conformance should be 
monitored. 
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5.1.2.11 Proper Handling of Program Instrumentation 

The generic guidelines described in Chapter 2 are applicable. The following are specific guidelines. 

• Do not perform on-line modification. Most PLCs provide a facility that allows the 
modification of the PLC program while the PLC is executing that program. The operational 
consequences of utilizing this feature during operation can be quite dangerous. First, a 
programmer could accidentally introduce enors into a running PLC program by using this 
feature. Secondly, the added communications load on the PLC processor during the program 
change transfer could also result in delays that prevent needed actions from happening in 
time. 

• Do not activate on-line monitoring facilities for time critical operations. There should be no 
use of debuggers, instrumentation, or monitors during PLC operation of time-critical 
functions unless such monitoring is part of the baseline design and its impact on timing has 
been accounted for. If such monitoring is necessary, it should be done in an off-line mode or 
using a simulator/emulator. If operations are not time critical, then on-line monitoring may 
be performed, but with caution and only under conditions where it can be guaranteed that 
monitoring of non-time-critical functions will not affect time-critical functions. 

5.1.2.12 Control of Class Library Size 

Ladder Logic does not support classes and objects. Therefore, the generic guidelines are not 
applicable. 

5.1.2.13 Minimizing Dynamic Binding 

Ladder Logic does not support dynamic binding. All structures must be defined by the programmer 
before compilation. Therefore, the generic guidelines are not applicable. 

5.1.2.14 Control of Operator Overloading 

The generic guidelines are not applicable. Ladder Logic prohibits operator overloading and does not 
support polymorphism. 
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5.1.3 Predictability of Timing 

Predictability of timing is crucial in a safety system used in real-time control. Timing-specific 
concerns relevant to PLCs include: 

• Minimizmg the use of tasking 
• Minimize the use of interrupt-driven processing 
• Input/output timing 
• Avoidance of self-modifying code 

5.1.3.1 Minimizing the Use of Tasking 

While some PLC systems do not support multitasking in any form, many support it either implicitly 
or explicitly. Implicit multitasking occurs where only one Ladder Logic program can be run, but the 
firmware manages handling the Ladder Logic program scan, remote I/O scan, block data transfers, 
and other communications asynchronously (i.e., each as an independent task). Limited multitasking 
allows the PLC programmer to create a timed interrapt, a distinct Ladder Logic program (or section 
of Ladder Logic code) designated to be executed at fixed intervals (usually expressed in msec), 
regardless of the state of the main program. Other PLCs have complete multitasking capabilities, 
with each task having a defined periodicity and separate I/O scan. 

The generic guidelines on minimizing the use of tasking apply at the application level. Where 
multitasking is supported, caution and prudence must be exercised. The decision of whether or not 
to use explicit multitasking (i.e., the simultaneous running of multiple Ladder Logic programs in a 
single PLC) should not be taken lightly. Multitasking is an attractive programming model and may 
be simpler at the application level than coding a single task to perform the same functions. However, 
worst case execution times, latencies, and coordination of data access may introduce uncertainties 
that are unacceptable in safety applications. System-level alternatives, such as the use of multiple 
PLC's should be considered if design of a single task is unduly complex. 

Specific guidelines for PLC multitasking are as follows: 

• Account for processing capacity. The PLC program must limit PLC CPU utilization and 
provide generous margins to account for variation. CPU bandwidth usage should be explicitly 
calculated and shown to be within specified margins. The results of these calculations should 
be included in the PLC documentation along with the periodicities of the various tasks 
derived from them. Manufacturer's guidelines for CPU bandwidth utilization should be 
striptly followed. For implicit multitasking, the Ladder Logic application should allow a 
sufficient margin for PLC firmware overhead tasks and for variations in scan times due to 
hardware latencies. Where explicit multitasking is used, margins must also include variations 
in the application tasks. For example, a 10 msec timed interrupt task may normally execute 
in one msec. However, under some cases, 10 msec might be required. This situation will 
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prevent other applications and system overhead tasks from being executed, which will cause 
a PLC failure. Worst-case conditions must be defined, and measurements of execution times 
under these conditions for each task must be made. If it is not possible to characterize such 
worst case conditions authoritatively, multitasking should not be used. 

Account for concurrent access to global variables. Another safety related issue in regard to 
multitasking in PLCs is that, in many cases, each task accesses the same global variable base 
rather than a separate variable base for each task. The potential for prograrnming enors when 
global variables can be accessed at different periodicities is significant. For example, an input 
that is updated by a 500 msec auxiliary task can be directly referenced by a 10 msec fast task. 
Both of these tasks can read or write to the same internal bits and words. The PLC memory 
map must be carefully designed, documented, and verified to ensure that concunent data 
access has been properly implemented. If it is not possible to model and represent this 
concunent access authoritatively, multitasking in conjunction with a global database should 
not be used. 

5.1.3.2 Minimizing the Use of Interrupt-Driven Processing 

Ladder logic programs in themselves are not normally implemented using an interrapt driven 
architecture. However, they do exist within an interrupt driven runtime environment. The indirect 
impact of interrapt driven processing must be considered in the design of the Ladder Logic 
application. The following guidelines apply: 

• Account for interrupts in critical response times. PLC response times can be affected by 
timer interrapts, local input interrapts, I/O scan interrupts, and other event-driven interrupts. 
Such interrapt processing may not be under the control of the application programmer. 
However, since this adds execution time and overhead time (for stack maintenance, etc.) to 
the overall system response, it must be considered where response times are critical. This 
issue is further discussed in the following section on I/O timing. 

• Use of interrupts for exception handling and recovery. Interrupt-driven processing can be an 
asset to safety when used to recover from processor hangs (via a watchdog timer) or more 
general processor failures (via a fault routine). These issues are discussed in Section 4.2. 

5.1.3.3 Input and Output Timing 

The programmer must ensure that the order of program execution is such that variables are updated 
prior to their use and that the values of inputs or the result of the previous step are current. Timing 
issues that should be verified in an audit or review of a real-time PLC system depend strongly on 
factors specific to the methods used by various PLC operating systems for scanning the real world 
I/O. Generally speaking, these methods can be classed into four categories: 
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1) PLC has no separate I/O scan - I/O is updated as required by each rung of 
Ladder Logic ("Immediate I/O update"). 

2) PLC I/O scan occurs asynchronously from Ladder Logic scan ("Asynchronous"). 
This allows values of inputs to change during the course of a single Ladder Logic 
scan. 

3) PLC I/O scan occurs asynchronously from Ladder Logic scan, but input and 
output values are "captured" in a buffer to eliminate the possibility of variance during 
the Ladder Logic scan ("Captured Asynchronous"). 

4) PLC I/O scan is fully synchronous with the Ladder Logic scan ("Synchronous"). 

In addition, PLC systems vary widely in the delay time (i.e., latency) between when an event related 
to a sensor occurs and when it is seen by the Ladder Logic system. Similarly, there is a latency 
between when an actuator is commanded by the Ladder Logic program and the actual activation. 
These delay times are influenced by: 

• The type of sensor signal used 
• The input modules' input filter delay 
• The I/O scan type mentioned above 
• The data rate between the PLC processor and its I/O racks. 

Thus, the PLC program design and documentation should explicitly address the I/O impact of 
response time. Timing issues that may need to be reviewed include: 

• Accounting for multiple scans of the same variable. In a multitasking software system, an 
input variable might be read by segments of the program in different scans on PLC systems 
that allow this (e.g., Immediate I/O and Asynchronous I/O types). 

• Accountingfor the effect of hardware-induced latency of input and output signals. This delay 
and its characteristics should be known (i.e., measured) arid documented as part of the PLC 
program documentation. 

• Accountingfor the effect of sensor induced latency. Sensors themselves have different 
response times in differing states. For example, if a proximity switch has a latent response 
time on both sides (blocked and not blocked), then the software constructs need to be 
cognizant of this delay, especially when this data is used in conjunction with other data and 
certain prograrnming methodologies such as one shots. 

• Accountingfor the effect of I/O data rates. Input/output data rates can vary from less than 
38.4 kilobits per second (KBPS) to greater than 12 megabits per second (MBPS). 
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Synchronization of replicated PLCs. Multiple PLCs in safety systems might be used in 
redundant configurations based on hot backup (dual redundant) m out of n voting or median 
selection (for triple redundancy and higher). Some of these applications might require that the 
programs executed on different PLCs be synchronized. If this is indeed the case, care should 
be taken to ensure selection of a redundant PLC system that supports the desired degree of 
synchronization. Hot backup, or triply redundant, PLCs have varying types of 
synchronization, ranging from none to twice per PLC scan as well as explicit synchronization 
of PLC program execution and variable pool data after the execution of each network of 
Ladder Logic. As the PLC programmer has little or no control over the synchronization 
algorithms used, the usage of synchronization of Ladder Logic programs on PLCs of this type 
is not a direct application-level issue. However, the strengths and limitations of the 
redundancy management and synchronization design should be well documented and 
understood. The impact in the design should be explicitly documented, and a rigorous testing 
program (also beyond the scope of this document) need to be considered. 

5.1.3.4 Avoidance of Self-Modifying Code 

Most Ladder Logic implementations do not provide any features that allow the program to modify 
itself. However, modification of run time environment parameters is possible. The following specific 
guidelines ,apply to these parameters: 

• No changes to system configuration parameters. System configuration parameters 
should be accessed only by the appropriate routines. This can be verified by the use 
of cross reference tables generated by the programming tool to determine which 
subroutines are accessing the configuration variables. However, cross reference 
information WILL NOT show usage of data table areas accessed by indirect and 
indexed addressing prograrnming techniques. Configuration parameters depend on the 
specific processor used and should be identified in the design documents. 

• No changes to task periodicities or running tasks. If multitasking is to be used, there 
should be no changes to task periodicity, even if it is possible to modify these 
periodicities from the application program. Some PLCs also allow other types of 
control over PLC operation, e.g., stopping the PLC program execution or 
stopping/starting individual tasks. These features should not be utilized in safety 
critical systems. 

5.2 Robustness 

Robustness refers to the capability of the software to survive abnormal or other unanticipated 
conditions. The intermediate attributes of robustness are: 
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• Transparency of functional diversity 
• Controlled Use of Exception Handling 
• Input and Output Checking 
• Enor Containment. 

These are discussed in the following sections. 

5.2.1 Transparency of Functional Diversity 

There are no specific guidelines for functional diversity. The generic guidelines apply. 

5.2.2 Exception Handling 

The generic guidelines are not directly applicable due to the unique software architecture of PLCs and 
the interaction with the hardware. The following are specific guidelines for exception handling 
supported by PLCs: 

• Use of system status information for recovery 
• Accounting for shutdown behavior 
• Use of watchdog timers. 

These are described below. 

5.2.2.1 Use of System Status Information for Recovery 

When available, system status information should be used as part of the detection and recovery 
process. The nature and extent of the PLC system status momtoring varies among manufacturers and 
models. Some PLCs provide Ladder Logic software commands which output status bits that indicate 
abnormal conditions of execution (not restricted to hardware faults). Examples of these problems 
are arithmetic overflow, full communication queues, bad addresses, and program assembly enors. 
These bits can be used by the Ladder Logic program to initiate exception handling similar to that for 
hardware faults. Most PLCs immediately shut down if a RAM memory checksum enor or other seri
ous system enor occurs, thereby eliminating the need for a status bit for this condition. Figure 5-5 
shows a momtoring routine in an Allen Bradley PLC-5 that checks the status of enor bits and 
annunciates to the operator that the system experiences problems. The information can also be used 
by the programmer to write an exception handling routine which either handles the problem or directs 
the Ladder Logic application program to a predefined state, such as shutting down the controlled 
system. 

Specific guidelines for use of system status information are: 
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Completeness. All relevant information should be used to detect and determine the 
appropriate recovery action. 

Correctness. The recovery action should be appropriate for the condition. 

Observability. The Ladder Logic program should annunciate and log the condition. 
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PLC-5 LADDER LOGISTICS Report header (c) ICOM Inc. 1987-1991 
PLC-5 Ladder Listing 

File #43 ANNUNC_1 Proj:XXXXXXXX Page:YYY 10:55 12/08/94 
SUBROUTINE: ANNUNCIATOR REVISION 0 
INPUTS: N43:0 

N43:0/l 
N43:0/2 
N43:0/10 
N43:0/ll 
N43:l 
N43:l/0 
N43:l/1 
N43:2 
N43:2/0 
N43:2/l 
N43:2/2 
N43:2/3 

SYST_STAT_WORD 
PRIME_PS_OK 
SECOND_PS_OK 
SYSTEM_INITIAL 
POLL_TIMEOUT 
STATUS_WORD_0 
S_CARRY 
S_OVER_UNDR_FLW 
STATUS_W0RD_1 
S_RAM_CHECKSUM 
S_RUN_MODE 
S_PROG_MODE 
S TEST MODE 

N43:2/5 
N43:2/6 
N43:2/7 
N43:2/8 
N43:2/9 
N43:2/ll 
N43:3 ■ 
N43:3/ll 
N43:3/12 
N43:3/13 
N43:3/14 
N43:3/15 

S_DOWNLD_ENABLD 
S_TST_EDIT_MODE 
S_REM_POSITION 
S_FORCE_PRE SENT 
S_FORCE_ENABLED 
S_PER_ONLIN_PRG 
STATUS_W0RD_2 
S_ADDRESS_1 
S_ADDRESS_2 
S_LOAD_FRM_EPRM 
S_RAM_BACKUP 
S MEM PROTECT 

PROCESSING: ANNUNCIATOR receives the status information listed above 
and calculates output bits which are forced high if any 
abnormal condition is detected. The ANNUNCIATOR word is 
packed and returned to RUN subroutine to be passed to the 
Plant Computer and Annunciator. This subroutine 
checks for non-critical/soft failures that do not affect the 
performance of the system, but notify the operator that 
the system requires maintenance. 

ANNUNCIAT_1_SBR ANNUNCIATOR 
-SBR 1 i CLR 

-| SUBROUTINE 
INPUT PAR: 
INPUT PAR: 
INPUT PAR: 
INPUT PAR: 

N43:0 
N 4 3 : l 
N43:2 
N43:3 

CLEAR 
DEST: N43; 

Pack ANNUNCIATOR word to be passed to the Plant Computer. 
PRIME_PS_OK 

N43:0/l 
l/h 

PRIME_PS_ERR 
N 4 3 : 4 / l 

- ( ) ■ 

SECOND_PS_OK 
N43:0/2 

H/h 
SECOND_PS_ERR 

N 4 3 : 4 / 2 
-( )-

SYSTEM_INITIAL 
N43:0/10 

POLLJTIMEOUT 
N43:0/ll 
H h 

SYSTEM_INITIAL 
N43:4/3 

( ) 
_POLL_TIMEOUT 

N43:4/4 
■ ( ) • 

S_CARRY 
N43:l/0 

ARITHMETIC_ERR 
N43:4/5 

S_OVER_UNDR_FLW 
N43:l/1 

-( )-

S_RAM_CHECKSUM 
N43:2/0 

1 I 
RAM_CHCKSUM_ERR 

N43:4/6 
( ) 

Figure 5-5 Health momtoring routine sample program. 
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S RUN_M0DE 
N43:2/l 
1/1-

10 

11 

12 

13 

14 

S_PR0G_M0DE 
N43:2/2 

1 I 
S_TEST_MODE 

N43:2/3 
1 I 

S_DOWNLD_ENABLD 
N43:2/5 

S_TST_EDIT_MODE 
N43:2/6 

PLC_MODE_ERR 
N43:4/7 
( ) 

S_REM_P0SITI0N 
N43:2/7 
1 1 

S_FORCE_PRESENT 
N43:2/8 

PLC_REM_POSITON 
N43:4/8 
( ) 

FORCES_PRESENT 
N43:4/9 
( ) 

S_FORCE_ENABLED 
N43:2/9 

1 I 
S_PER_ONLIN_PRG 

N43:2/ll 
■ h 

FORCES_ENABLED 
N43:4/10 
( ) 

S ADDRESSJL 
~N43:3 /11 

PERF_ONLIN_PROG 
N43:4/ll 

( ) 

S_ADDRESS_2 
N43:3/12 

1/| 
S_LOAD_FRM_EPRM 

N43:3/13 
1/| 

S_RAM_BACKUP 
N43:3/14 
1/1 

S_MEM_PROTECT 
N43:3/15 

BCKPLN_SWCH_ERR 
N43:4/12 

( ) 

RETURN: N43:4 
N43:4/l 
N43:4/2 
N43:4/3 
N43:4/4 
N43:4/5 
N43:4/6 
N43:4/7 
N43:4/8 
N43:4/9 
N43:4/10 
N43:4/ll 
N43:4/12 

ANNUNCIATOR 
PRIME_PS_ERR 
SECOND_PS_ERR 
_SYSTEM_INITIAL 
_POLL_TIMEOUT 
ARITHMETIC_ERR 
RAM_CHCKSUM_ERR 
PLC_MODE_ERR 
PLC_REM_POSITON 
FORCESJPRESENT 
FORCES_ENABLED 
PERF_ONLIN_PROG 
BCKPLN SWCH ERR ANNUNC_1_RET 

RET 
RETURN () 
RETURN PAR: N43:4 

-[END] — 

Figure 5-5 Health momtoring routine sample program (continued). 
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5.2.2.2 Accountingfor Shutdown Behavior 

The Ladder Logic program should properly account for PLC behavior at shutdown. Generally, all 
outputs turn off, but this is not always true. The PLC system is designed so that such a shutdown 
places the system in a fail-safe condition. 

Some PLCs have the capability to run a designated Ladder Logic subroutine which the processor 
automatically executes when it encounters a condition that will cause execution of the main Ladder 
Logic routine to stop. In the PLC5, this subroutine is called a "fault routine". It allows the designer 
to decide on the appropriate action, including shutting down the system in a safe manner. An 
example of a simple fault routine is shown in Figure 5-6. The routine annunciates to the operator that 
the system is experiencing problems and brings the system to a halt. Another example, shown in 
Figure 5-7, clears the major fault enor bits and restarts operation by forcing the PLC to perform a 
startup procedure. Should the fault still exist, then the fault word will be set to reflect this, and the 
fault routine will be executed again. It may be desirable to limit the number of times the fault routine 
runs in some cases. 

The following specific guidelines apply to exception handling fault routines: 

• Completeness. The fault routine cannot be relied on to detect all instances of program 
crashes. Additional provisions that may be required by the specific safety requirements of the 
application for PLC major faults must be specified. 

• Observability. The fault routine should annunciate and log the condition. The execution of 
the fault routine should not be masked. 

• Validity checking. The conditions under which the fault routine is running may have 
corrupted program memory, data files, or I/O. The fault routine must ensure the validity of 
its environment before proceeding to execute. 

• Fail safe properties in the absence of the fault routine. The fault routine cannot be relied 
upon to operate under every major failure condition. The PLC may be so disabled that this 
is not possible. Thus, the system design should ensure a safe state in the absence of the 
successful execution of the fault routine. 
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File #47 FAULT Proj:XXXXXXXX Page:165 10:12 12/08/94 

SUBROUTINE: FAULT FILE - REVISION 0 

GLOBAL OUTPUTS: 0:030/16 

The FAULT ROUTINE File # is set in the INITIALIZE subroutine. 
This is done by moving the integer 47 (N7:12) into the status 
word S:29. The FAULT file implements the following actions: 
1) Unlatch the STATUS (alarm condition) and use an IOT 

instruction to write the output immediately. 

STATUS 
0:030/16 

(U) 
Use Immediate Output (IOT) instructions to force the status outputs 
immediately. 

30 
•[IOT]-
•[END]-

Figure 5-6 Fault routine that alarms and halts sample program. 
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File #47 FAULT Proj:XXXXXXXX Page:165 10:12 12/08/94 

FAULT FILE 

The FAULT file will complete the following: 

1) Unlatch annunciator (alarm conditions) and use an IOT 
instruction to write the output immediately. 

2) Force every bit of the Major Fault Flag, S:ll, to 0 in an 
attempt to clear the fault. 

3) Latch S:l/15 PLC Performing First Program Scan. This will force 
MAIN program to call retart. 

Not in Service 
Alarm 

0:001/00 
(U) 
0AN 

Force every bit of the Major Fault Flag word, S:ll, to 0. This 
will attempt to clear any major faults so that operational 
scanning may continue. 

Status Word 11 
MAJOR_FAULT_FLG 
i MVM 
MASKED MOVE 
SOURCE: 
MASK: 

DEST: 

0 
0 

OFFFFh 
FFFFh 
S:ll 

0 

The PLC First Program Scan is forced high. 
PLC-5 
performming 
First 
Program Scan 

S:l/15 
(L) 

Write Annunciators immediately. 
1 

- [ I O T ] -

OAN 
■[END] — 

Figure 5-7 Fault routine that restarts operation (sample program). 

5.2.2.3 Watchdog Timer 

The PLC system provides an internal watchdog interval timer which is either fixed or set by the 
program (depending on PLC manufacturer). The fixed watchdog timer is typically utilized to protect 
against a stopped or hung CPU. The timer expiration will shut down the PLC explicitly. The 
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software-based watchdog timer is typically utilized to protect against excessive scan times caused by 
infinite loops and related failure modes. If under program control, the timer interval should be set 
during initialization. If the program scan time exceeds this value, the interval timer expires. Once 
the timer interval expires, the PLC halts and declares an enor condition. This provides a mechanism 
for identifying each scan during which the program exceeds its expected execution time. 

Both the Ladder Logic program and the system design should contain provisions to recover from the 
timer expiration condition. Ladder Logic provisions include prograrnming the fault routine to handle 
the watchdog timer fault bit. System design measures can include an external watchdog timer, 
independent of the PLC, that will handle the fault (e.g., by alarming) in case the PLC crashes and 
cannot execute the fault routine. The external timer is a second line of defense in the event of a 
failure of the Ladder Logic recovery. 

5.2.3 Enor Containment 

The generic guideline has limited applicability. Depending on the capabilities of the PLC, it may be 
possible to separate local variables from global variables that provide one line of defense. The second 
line of defense is data validation when variables are passed among ladder logic routines, or when 
input or output occurs. This was discussed earlier under avoiding interface ambiguities. 

5.3 Traceability 

Attributes specifically related to traceability include the use of built-in functions and compiled 
program libraries. 

5.3.1 Use of Built-in Functions 

The generic guideline applies. Ladder Logic includes built-in function blocks for frequently used 
functions. Ladder Logic applications rely on the PLC operating system and the supported function 
set. 

The robustness of the PLC operating systems is a function of the quality of the development process. 
Generally speaking, PLC operating systems are produced under strict software quality controls, and 
are extensively tested. The quality and integrity of operating systems must be affirmed by the 
commercial grade dedication process that qualifies the use of the PLC in safety-related applications. 

The function set is defined by the PLC manufacturer and these functions are implemented by the PLC 
firmware. The quality and integrity of these built-in functions must be affirmed by the commercial 
grade dedication process that qualifies the use of the PLC in safety-related applications. The built-in 
functions provided by the PLC are usually simple building blocks and do not obscure the traceability 
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between the code and the design specification. 

5.3.2 Use of Compiled Libraries 

The generic guideline applies. Compiled libraries should be used with caution. Some PLCs support 
external libraries as optional function blocks written in C or PL/M. In the case of Allen Bradley PLC-
5, they are called "custom application routines" or CARs. They perform functions such as mass flow 
control. These routines are 68000 native code, which the PLC 5 executes. Data is passed back and 
forth via the PLC data table. Add-on libraries may also be written in Ladder Logic, available from 
the manufacturer and other vendors. The following specific guidelines apply: 

• Accountingfor interfacing and integration issues. Where functions from these libraries are 
used, special care must be taken to review the integration of these functions into the PLC 
Ladder Logic program, such as unintended side effects. 

• Development process. The same testing, validation, documentation, and visibility into the 
development process must be applied to the function blocks as the Ladder Logic software 
resident on the parent PLC. 

• Assessing accuracy and robustness. The accuracy and robustness of the libraries must be 
understood as part of the dedication process. This understanding can generally be gained 
through testing. However, if source code is unavailable, the testing of necessity must be at 
the functional or "black box" level. Careful judgement in assessing the results of such testing 
is necessary. 

• Timing issues. The latency in passing data to the routines and receiving data from the routines 
must be understood and documented. 

Coprocessors offered by some PLC manufacturers are related to compiled libraries. Coprocessors 
are separate processing boards installed in PLCs that accept conventional programming languages 
such as C or BASIC. The software programs written in these languages and executed on a different 
processor can be used by the ladder logic as function blocks. When coprocessors are used, the 
following additional guidelines apply: 

• Accountingfor interface and integration issues. As was the case with compiled libraries, 
special care must be taken to review the integration of coprocessors into Ladder Logic, 
particularly with respect to the use of memory and for unintended side effects. Additional 
issues are the extent to which hardware enor checking is incorporated when data are passed 
across a bus or via direct memory transfers. Additional validity checks in software may be 
necessary. These considerations should be documented. 
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Development process. As was the case for compiled libraries, the same testing, validation, 
documentation, and visibility into the development process must be applied to the function 
blocks resident in coprocessors as the software resident on the primary PLC. 

Failure behavior and robustness. The coprocessor hardware platform should have the same 
hardware failure behavior robustness as the "parent" PLC. If not, the software design should 
account for the differences. 

5.4 Maintainability 

The software maintainability lower-level attributes in this section are limited to those affecting safety. 
These include the following: 

Readability 
Abstraction 
Functional cohesiveness 
Malleability 
Portability. 

5.4.1 Readability 

The generic guidelines apply. Readability is essential for review and maintenance of PLC Ladder 
Logic safety systems. The graphical notation of Ladder Logic can facilitate understanding the 
operation of a single Ladder Logic network. Understanding a complete Ladder Logic program, 
however, requires the reader to understand the interactions between many Ladder Logic networks 
operating on a global variable database. In many cases, the interaction occurs between Ladder Logic 
networks that are pages apart in the documentation. Thus, the programs and databases must be 
structured to facilitate understanding by individuals other than those who wrote the code. The 
following specific guidelines apply: 

Overview documents. Since there is no ladder logic overview function, the review of any 
program for readability should include a general overview document. A program flow chart 
can be used to document control flow. Documentation should not just explain the purpose of 
each network but the purpose of each section of PLC program. The documentation must be 
maintained together with the code as changes are made. 

• Documentation of PLC data files. An important component of documentation readability 
concerns the documentation of usage of data files — particularly if they are global — with 
a data flow description among the data tables. 
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5.4.1.1 Notation 

The generic guidelines are not applicable. Ladder logic notation is determined by the characteristics 
of the specific programming package used. This notation is not readily modifiable by the end user. 

5.4.1.2 Conformance to Indentation Guidelines 

The guidelines are not applicable to Ladder Logic. 

5.4.1.3 Descriptive Identifier Names 

Ladder Logic supports the use of descriptive identifiers or tagnames, with lengths between 7 and 32 
characters being common. In addition to the identifier, each variable can be described by an address 
description. A typical address description has 5 lines of 15 characters each. 

The following are specific guidelines: 

• Inputs and outputs. The identifiers should be as similar as possible to the names used 
externally (e.g., P&ID numbers). Use of the same variable name for different purposes is not 
allowed in Ladder Logic. 

• Consistency with project notation. Ladder Logic names should be consistent with design 
documents. , 

5.4.1.4 Comments and Internal Documentation 

The generic guidelines apply. Ladder Logic supports internal documentation by means of "rung 
descriptions" and "section headers." 

The following are specific guidelines: 

• Revision level. An important internal documentation feature is the revision level. In some 
PLCs, if the revision level is recorded as a comment, it will be disassociated from the code 
when it is downloaded to the PLC. To avoid configuration management problems in such 
systems, it is recommended that the revision level be recorded as part of the program itself 
by storing it in memory as a variable. Figure 4.3 is an example which shows the subroutine 
version marked as a comment (not the prefened practice in this case) and not as a memory 
location. 
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Interfaces. Detailed and unambiguous descriptions of subroutine interfaces and functions are 
another important documentation feature that should be verified. As shown in Figure 4.3, 
each subroutine should have a detailed description of the input parameters, global variables 
(if any), the processing performed by the subroutine, output parameters returned, effect on 
global variables, and side effects (if any). 

Calling hierarchy. The level of documentation required for incorporation in the program 
depends on the complexity of the program/subroutine and on the description provided in other 
accompanying documents such as the software design description. Two important issues to 
be documented are (1) the hierarchy of subroutines and who is calling whom, and (2) the flow 
of data and information among subroutines. These two items, especially the second one, are 
important to understand the system and enable independent review. Some programming 
shells provide a database and cross references of all data-table variables used by the program. 
The designer or an auditor can use these tables to track the flow of information. 

5.4.1.5 Limitations on Subprogram Size 

The generic guidelines apply. Due to the limited number of Ladder Logic rungs that can fit on a 
single page of documentation, limiting the size of subprograms is important. It is difficult for a 
program auditor to follow operation of any program over more than a few pages. However, Ladder 
Logic as a language does not enforce any limitations on subroutine size. Moreover, some PLCs only 
support the division of programs via JMP to label instructions as there is no subroutine support. 
Thus, decisions on program size limitations are dependent on the properties of the individual Ladder 
Logic implementation and the project needs. The following are specific guidelines: 

• Use subroutines and subprograms. For Ladder Logic implementations supporting 
subroutines and nesting, there should be a limit on the maximum number of rungs per routine. 
Even for PLCs without subroutine capabilities, it should be possible to subdivide the 
application into a set of manageably sized subprograms. (The distinction is that after a 
subroutine is executed, control is transfened back to the calling program without an explicit 
JMP statement). An upper limit might be 50 rungs, but even limits as low as 10 rungs may 
be appropriate where visibility is important. 

• Avoid arbitrary program division. The basis for subdividing programs should be by function, 
resporisibility, or class of data. This guideline is related to functional cohesiveness described 
below. 

5.4.1.6 Minimize Mixed Language Programming 

The guidelines on mimmizing mixed language programs are partially applicable. IEC 1131-3 
compliant systems support mixed language programming among the five defined languages in the 
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IEC 1131-3 specification. The reason why there are five languages is that each has strengths and 
weaknesses. Ladder Logic, for example is an excellent tool for expressing Boolean relationships 
between entities, as in an alarming function. However, it is not as clear as Sequential Function Charts 
(SFCs) for sequencing operations, nor is it as readable as Stractured Text (ST) for complex 
mathematical operations. 

Thus, readability and maintainability of PLC programs are enhanced when each of these languages, 
if available, are utilized for their strengths. However, a judicious balance must be struck. The 
following are specific guidelines: 

• Ensure that proper tools are within the development organization. Such tools include 
compilers, debuggers, cross reference generators, testing, and documentation aids. A multiple 
language safety application should not be contemplated without adequate support for 
maintenance and enhancements for all languages used in the applications. 

• Use each language according to its strengths. Mixed languages should be used because the 
resulting application is easier to maintain or more robust.' Additional languages should not 
be introduced gratuitously into a safety application. Justification for the use of each 
additional language should be included in the documentation. 

5.4.1.7 Minimize Obscure or Subtle Programming Constructs 

Each make and model of PLC supports a number of obscure and sometimes counter-intuitive 
programming constructs in their Ladder Logic implementations. These are normally peculiar to 
specific implementations. There should be project guidelines relating to the specific characteristics 
of the PLC. It may be advisable to consult the manufacturer's technical support organization to 
obtain such information. The following are guidelines common to multiple PLCs (however, they may 
not be applicable to all PLCs): 

• Avoid use of overlapping JMP to label statements or to labels that precede the JMP in the 
code. Different systems will execute overlapping or backwards jumps differently, and 
sometimes in unpredictable ways. 

• Minimize indirect addressing. Although program constructs can be more concise using these 
addressing techniques, the addresses and functionality presented are not obvious. Without 
the proper tools and documentation, however, the underlying logic could be overlooked. 
Such indirect addressing should be used sparingly and with adequate documentation. 

• Use indexed addressing for repeated elements only. Indexed addressing should be used 
where there are repeating elements (e.g., thermocouples on a single hot leg). They should not 
be used for grouping elements with diverse meanings (e.g., a temporary storage variable at 
one location, the value of a sensor at the second, etc.). 
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5.4.1.8 Minimize Dispersion of Related Elements 

In general, PLC programs are stored by their development environments as a single file or group of 
files. This precludes the dispersion of related elements among several files from being an issue with 
the majority of PLC implementations. 

However, there are PLC systems that do not conform to this general statement. When dealing with 
a system of this type, it is important that logically related elements of the program remain in a single 
file so as to minimize any confusion in locating and understanding them. 

5.4.1.9 Minimize Use of Literals 

The generic guideline is partially applicable. Most, but not all, Ladder Logic implementations 
support an area of the global variable pool that is writable by the development environment but not 
by the PLC program itself. The actual nature of these "Constant" variables (to use the IEC 1131-3 
nomenclature) varies from implementation to implementation. When available, the use of variables 
from this constant pool is prefened to the use of literals. However, Constant variables may not be 
available on all PLC systems; in such systems, literals are necessary. 

5.4.2 Data Abstraction 

This principle depends on the following specific base attributes: 

• Modularity 
• Information hiding 
• Minimizing the use of global variables 
• Minimizing the complexity of the interface and defining allowable operations. 

PLC Ladder Logic does not provide the advanced features of object-oriented languages, such as C++, 
to support abstraction. However, Ladder Logic provides some tools that can help achieve abstraction. 

5.4.2.1 Modularity 

The generic guidelines are applicable. Some Ladder Logic implementations support modularity 
through the subroutine stracture; however, the language does not enforce use of subroutines and 
design of cohesive functions. Even in the absence of this supporting language features, all Ladder 
Logic programs should be organized as a number of distinct subprograms, each with a particular 
function, dedicated variable area, and each fully documented. Passing of information between these 
subprograms should be accomplished via a well documented and consistent methodology (guidelines 

NUREG/CR-6463 5-30 



are discussed under global variables). 

In the event that subroutines are not available on the PLC system chosen for a particular project, the 
Ladder Logic program should be ananged into a series of subprograms, each with a particular 
function, in order to enhance the understanding of the program. ■ 

5.4.2.2 Information Hiding 

The generic guidelines apply to those Ladder Logic implementations that support the concept of 
information hiding through the use of local variables that no other subroutine can access or alter. 
The Ladder Logic program should be designed to use parameter passing to subroutines through 
formal parameter interfaces. Even if the parameter is a global variable that is visible inside the 
subroutine, it should be passed to the subroutine as a parameter. 

For PLCs that do not allow subroutine parameter passing or local variables (at the time of this 
writing, most do not), information hiding through formal parameters cannot be supported. However, 
as described in the next section, there are techniques using the global PLC data tables that can be 
used. 

5.4.2.3 Minimizing the Use of Global Variables 

The generic guidelines apply only to those PLCs and implementations of ladder logic that support 
local variables. Global variables can be accessed from any part of the Ladder Logic program. Thus, 
they can cause side effects or unintended behavior through deliberate or inadvertent modification by 
various programmers working on different parts of the program. Local variables should be separated 
from global variables for those Ladder Logic implementations that support local variables. In most 
PLC systems, local variables are static memory locations, that is, they maintain their value after the 
subroutine returns. However, support for local variables is not common in cunent PLC Ladder Logic 
implementations; most cunently use a single global variable pool. The following guidelines apply 
to the management of the global data memory area when local areas are not supported: 

• Separate variables by usage. Usage of variables within this pool can be controlled by the 
PLC programmer to separate the handling of local and global variables. This can be achieved 
by setting aside distinct areas of memory for use only by single PLC subprograms (i.e., local 
memory areas). Passing of variables to and from subprograms should be accomplished by 
"transfer" variables used for this purpose only. The method for such transfers should be 
consistent in all of the application subprograms. 

• Use transfer variables. Interface to subroutines on PLCs that do not support parameter 
passing is via the use of global variables. It is recommended that, on systems of this type, that 
specific variables be explicitly designated for the input and output parameters associated with 
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• each PLC subprogram. 

• Use support tools and documentation for global memory areas. A careful examination of the 
PLC memory map, with the aid of the cross-reference features normally found in the PLC 
program development environment, is mandatory to ensure safe PLC programming. The exact 
features, layout, and composition of a PLC cross-reference listing vary between PLC 
programming packages. For example, ICOM software has a feature that applies local/global 
flags to data table files. (It is not part of the PLC firmware, and does not serve any purpose 
when using another programming software package.) In general, these listings show which 
PLC variables are being used, in what part of the program they are being used, and whether 
they are being read from or written to. 

• Ensure proper index variable bounds. Some PLCs support treating the variable pool (or a 
section of it) as a large anay and allow indexing into this anay. Expressions using this 
indexing should be carefully audited to ensure that the index value remains within the value 
of the anay under all circumstances. 

5.4.2.4 Minimizing Interface Complexity 

The specific guidelines related to interface complexity are the same as the transfer variable, global 
memory area partitioning, and documentation guidelines discussed above. 

5.4.3 Functional Cohesiveness 

The generic guidelines apply. Every subprogram should have one clearly discemable purpose with 
input and output parameters related to that purpose. Two or more different functions should not be 
combined in a single subprogram. 

5.4.4 Malleability 

Malleability is the ability of a software system to accommodate changes in functional requirements. 
Ladder Logic allows programmers to create code which is hard to change. However, the guidelines 
related to modularity, minimizing obscurity, interfacing, global memory management, and portability 
can be used to achieve malleability. 

NUREG/CR-6463 5-32 



5.4.5 Portability 

Portability is a safety concern required by the need to minimize changes when replacing or upgrading 
equipment. The features, functionality, syntax and semantics of the various implementations of 
Ladder Logic for PLCs and PLC-like systems vary widely, more so than any of the other languages 
considered in this report. It is difficult, therefore, to make sweeping statements about safety-related 
aspects of portability. Nevertheless, over the plant life, it is unlikely that the same runtime 
environment will be supported since every vendor only supports its own equipment and upward 
compatibility (i.e., programs executed on an older processor will also execute on the newer processor 
ladder) is not always provided. When new processors are introduced, the instruction set is usually so 
different that the application should be re-written anyway to take advantage of the new firmware. The 
objective of maximizing portability is to reduce the likelihood that changes will introduce dangerous 
faults. 

Unfortunately, conforming to the IEC 1131-3 standard at present will not guarantee portability. 
Cunently, this standard is vague in many areas where PLCs vary. Moreover, not all PLC 
manufacturers have committed to supporting the standard even in its cunent form. However, as has 
happened in other areas of computing, pressure for standardization will grow. As this occurs, 
conforming to an extended IEC 1131-3 standard will enhance portability. 

Although portability of the Ladder Logic program itself may not be possible, the design and approach 
can be made portable. Candidate areas for such unified approaches are common PLC functions 
including: 

• Analog programming 
• Alarm handling 
• Fault/exception handling 
• Operator interface 

Closed loop control programming 
• Variable frequency drive interfacing 
• Computer communications 
• Data logging. 

A consistent approach to these areas will provide common code and will result in greater portability 
to new runtime platforms. 

5.5 Security 

Security in this context refers to the protection of computer software from accidental or malicious 
access, modification, or destraction. The discussion in this section is restricted to security measures 
associated with the Ladder Logic language and its associated program development environment. 
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The main concern of security when handling PLC systems is that an unauthorized person might gain 
access to the program and: 

• Change the program or the data in the PLC memory 
• Change the PLC configuration 
• Download a wrong program 
• Leave the system in the wrong "mode" after maintenance 
• Force inputs and/or outputs. 

Security concerns are particularly acute when program or hardware maintenance is performed. The 
key issues are password protection and physical access. The latter is not a language feature, but it 
is mentioned here because the PLC environment is vulnerable to security infringements by improper 
change of ROM components. 

Software maintenance on a PLC can be performed either by connecting an external PC to the PLC, 
or from a user interface station that might run a Supervisory Control and Data Acquisition (SCADA) 
package that interfaces with the PLC. The nature and level of this type of password protection vary 
from PLC programming package to PLC prograrnming package. In some cases, the interfacing 
software packages provide password protection with multiple levels of access rights that allow people 
with different skills and authority to perform only the functions for which they are authorized. Other 
PLC systems come with keys and locks that only allow modification of the PLC program after the 
key is inserted. However, PLC programming packages have no security provisions whatsoever. 

The auditor should verify that the design requires minimum operator access to software. Whenever 
operator access is necessary, the system should be designed to include security measures in the 
application proper, rather than relying exclusively on interfacing software. 

Some PLCs have implemented a security system which is part of the PLC firmware. This will limit 
interaction with the PLC memory contents based upon access rights (Allen Bradley, 1991). Because 
it is firmware-based, the passwords are also resident in the memory of the PLC. If this feature is to 
be exploited, the runtime software package used to develop the ladder logic must support it. 
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6 Sequential Function Charts 

PLC Sequential Function Chart (SFC) programs do not resemble traditional high-level languages. 
Instead, SFCs are program stracture tools that present a visualization of the underlying control flow. 
The SFC structure includes both steps and transitions; each step and transition is implemented in an 
underlying IEC 1131 language (ladder logic, stractured text, instruction lists, or functional block 
diagrams). The charts provide a higher level of abstraction that hides lower level details handled in 
the underlying languages. An introduction and basic description of SFCs in the context of IEC 1131 
is contained in Appendix A.3. As noted in that section, SFCs are best used in applications where the 
execution can be partitioned into distinct steps. 

This chapter discusses the applicability of the generic attributes to PLC SFCs. The chapter is 
organized in accordance with the framework of Chapter 2. Section 6.1 discusses reliability-related 
attributes of SFCs; Section 6.2 discusses robustness-related attributes of SFCs; Section 6.3 discusses 
traceability-related attributes; and Section 6.4 describes maintainability-related attributes. A 
summary matrix showing the relationship between generic and language-specific guidelines, together 
with weighting factors, is included in Appendix B. Language-specific weighting factors were based 
on the limited nature of the language, which has no variables, data types, or subroutines. 

6.1 Reliability 

Reliability is either (1) ability to perform the required functions under stated conditions for a specified 
period of time (IEEE, 1990) or (2) the probability of successful operation upon demand (EEEE, 1977; 
p. 584). The reliability of an SFC program depends on the run-time predictability of the following: 

• Memory utilization 
• Control flow 

Timing. 

SFC-specific guidelines derived from these generic attributes are described in the following sections. 

6.1.1 Predictability of Memory Utilization 

SFC programs do not directly allocate memory. Thus, the generic guidelines are not applicable at the 
SFC level. However, they are applicable at the underlying language level. The previous chapter has 
a discussion of these issues for Ladder Logic. 
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6.1.2 Predictability of Control Flow 

Predictability of control flow is the capability to determine easily and unambiguously what path (i.e., 
which set of branches and in what order) the program will execute under specified conditions. 
Related base attributes are: 

Maximizing stracture 
Minimizing control flow complexity 
Initializing variables before use 
Single entry and exit points for subprograms 
Minimizing interface ambiguities 
Use of data typing 
Accounting for precision and accuracy 
Order of precedence of arithmetic, logical, and functional operators 
Avoiding functions or procedures with side effects 
Separating assignment from evaluation 
Proper handling of program instrumentation 
Controlling class library size 
Minimizing use of dynamic binding 
Controlling operator overloading. 

Guidelines related to predictability of control flow for SFCs are discussed in this section. 

6.1.2.1 Maximizing Structure 

The generic guidelines are applicable. Use of goto statements or equivalent execution control 
statements that result in an unstractured shift of execution from one branch of a program to another 
are difficult to trace and understand. Although SFCs allow the programmer to use goto statements, 
they should not be used in safety-critical apphcations with one exception: handling out-of-sequence 
events in an abnormal situation. This situation was discussed in Section 5.2. 

6.1.2.2 Minimizing Control Flow Complexity 

The generic guidelines are applicable. Although SFCs have a limited syntax, it is possible to create 
SFCs that are quite complex. Hence, the following guidelines: 

• Limit the number of parallel paths. The number of parallel paths at the beginning and end 
of a logic zone should normally be limited to seven (Hughes, 1989; p. 178). 

• Limit use of SFC to sequential operations. Use of SFCs in non-sequential applications (e.g., 
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state machines) will result in a large number of directed links and divergence of sequence 
selections, resulting in an overly complex SFC. This should be avoided. 

Use of Macro-steps as a means of simplifying the appearance of SFCs was discussed in Section 5.4. 

6.1.2.3 Initializing Variables Before Use 

SFCs do not handle mitialization because they do not have variables. Thus, the generic guideline is 
not directly applicable at the SFC code level, but is applicable at other levels. The following are 
specific guidelines: 

• Accountingfor initialization as part of the program design: SFC-specific variables, when 
they exist, are typically mitialized and maintained by the PLC system, and so there are no 
application program mitialization issues concerning them. These variables are maintained 
in the same data table, using the same data types that the PLC uses. Thus, initializing 
variables used in the languages that define the step actions and the transition conditions is an 
issue. The SFC Initial Step is an appropriate place for code that performs this mitialization 

• Initialization of process steps and transitions: Within each process step and transition, 
initialization issues are associated with the lower level IEC 1131 language (e.g., Ladder 
Logic). 

6.1.2.4 Single Entry and Exit Points for Subprograms 

The generic guideline is applicable. The SFC grammar allows only single entry and exit points (called 
transitions) from each process step. Macro-Steps, as well, may only have single entry and exit points. 
However, it should be noted that the control language in e£.ch one; of the process steps or transitions 
may involve multiple entry points . The previous chapter discusses these issues for Ladder-Logic. 

6.1.2.5 Minimizing Interface Ambiguities 

SFC does not support any interfaces. However, there is an issue of interfaces between steps with 
respect to latching bits. In order to have a bit stay on between steps, the bit has to be latched since 
all non-retentive bits are reset in the post scan. However, latching bits can cause a problem during 
mitialization as well as during runtime if the bits are not reset immediately23. The specific guideline 
is therefore to avoid use of latching bits. 

An incident that occurred to one reviewer is that a main motor bit was latched 'ON'. When a circuit 
breaker tripped, the motor came on immediately because the bit was not reset explicitly. This condition could have 
caused a major accident. 
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6.1.2.6 Use of Data Typing 

The generic guideline is applicable to the underlying languages, not to SFCs themselves. Some SFC 
implementations do not have variables (Allen Bradley, 1989); therefore, there are no data types. 
Other SFC implementations have variables associated with each step. In one such system, each step 
has a step bit (XO, XI, etc.) that is on when that particular step is active. Each step may also have a 
step timer (X0,V, XI,V, etc.) that indicates the length of time that step has been active. However, 
the data types of these step-associated variables are fixed. 

However, the underlying IEC 1131-3 languages do have varying degrees of support for data typing. 
For example, as was described in the previous chapter, PLC Ladder Logic provides few data types. 
The specific guideline with respect to SFC programs is to use data types to the maximum extent 
possible. 

6.1.2.7 Accounting for Precision and Accuracy 

Some SFC implementations do not have variables; therefore, the guidelines are not applicable for 
SFCs. However, the guidelines are applicable for the languages used within each step. 

6.1.2.8 Order of Precedence of Arithmetic, Logical, and Functional Operators 

The mail issue regarding order of precedence in SFC is what occurs when multiple transitions in a 
divergence of sequence selection are evaluated as true simultaneously (i.e. on the same PLC scan). 
Depending on how the SFC is implemented, the leftmost sequence may be selected, or all valid 
sequences may be selected. 

All transition conditions involved in a divergence of selection sequence should be programmed to 
be mutually exclusive in order to exclude the possibility of multiple transitions involved in such a 
stracture being evaluated as true simultaneously. This is actually a requirement of the IEC 848 SFC 
standard. 

However, the guidelines are applicable for the underlying IEC 1131 languages used within each step. 
If Ladder Logic is used within a step, the applicable guidelines are found in the previous chapter. 

6.1.2.9 Avoiding Functions or Procedures with Side Effects 

Generic guidelines are applicable. 

NUREG/CR-6463 6-4 



6.1.2.10 Separating Assignment from Evaluation 

As noted above, SFCs vary in their support for variables and assignment; therefore, the guidelines 
are not applicable for SFCs. However, the guidelines are applicable for the underlying IEC 1131 
languages used within each step. If Ladder Logic is used within a step, the applicable guidelines are 
found in the previous chapter. 

6.1.2.11 Proper Handling of Program Instrumentation 

Program instrumentation generally depends on the programming support environment for the PLC 
and not on the SFC itself; therefore, the generic guidelines are largely inapplicable. However, the 
guidelines1 are applicable for the underlying IEC 1131 languages used within each step. For ladder 
logic, the issue of program instrumentation discussed in the previous chapter (Section 5.1.2.11) are 
applicable. 

As mentioned above, some SFC implementations have variables associated with the execution state 
and execution time of steps. These variables are a form of instrumentation. Tracking usage of these 
variables, as well as all others in the PLC, is a major aspect of ensuring PLC program safety. 

6.1.2.12 Controlling Class Library Size 

Neither SFC nor the underlying IEC 1131 languages support classes and objects; therefore, the 
generic guidelines are not applicable. 

6.1.2.13 Minimizing Dynamic Binding 

Neither SFC nor the underlying EEC 1131 languages allow dynamic binding. All structures must be 
defined by the programmer before compilation. The generic guidelines do not apply. 

6.1.2.14 Controlling Operator Overloading 

Neither SFC nor the underlying IEC 1131 languages allow operator overloading or polymorphism. 
The generic guidelines are not applicable. 

6.1.3 Predictability of Timing 

Predictability of timing is crucial in a safety system used in real-time control. This section discusses 
SFC-specific issues related to: 
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• Minimizing tasking 
• Minimizing .interrupt processing 
• Divergence of sequences 
• Simultaneous sequences 
• Accounting for scans and post scans. 

6.1.3.1 Minimizing the Use of Tasking 

At the source code level, SFC does not support multitasking; therefore, the generic guidelines are not 
applicable. However, it should be noted that the operating system in the PLC firmware may include 
a multitasking kernel which may support execution of multiple independent SFCs. Such multiple 
independent SFCs should be avoided in safety applications. 

6.1.3.2 Minimizing the Use of Interrupt Driven Processing 

The generic guidelines have limited applicability. SFCs themselves do not support interrupts. 
Should a condition occur which requires immediate attention, the SFC program cannot service the 
request due to the sequential nature of execution. This issue is discussed further in the section on 
exception handling. 

It should be noted, however, that the firmware or runtime environment program associated with the 
SFC might use interrapts. It is therefore necessary to demonstrate that the system/software can meet 
all of its timing and safety function requirements under the most demanding conditions of interrupt 
occunence. 

6.1.3.3 Divergence of Sequence 

The following are specific guidelines for divergence of sequence A divergence of sequence selection 
is represented in SFC by a single horizontal line under a step, followed by multiple parallel 
transitions. Appendix A explains divergence of sequence. 

• Define mutually exclusive transition conditions. All transition conditions involved in a 
divergence of selection sequence should be programmed to be mutually exclusive in order to 
explicitly exclude the possibility of multiple transitions involved in such a structure being 
evaluated as true simultaneously. This prograrnming style is mandated by the IEC 848 SFC 
standard. 

• Ensure convergence of sequence following divergence of sequence. Any divergence of 
sequence selection must eventually be followed by a convergence of sequences, where the 
alternate sequence paths reunite. This should be checked by the auditor, as well, although 

NUREG/CR-6463 6-6 



most SFC editors enforce this. 

Account for limits on the number of transitions. Limits on the number of transitions that can 
be placed in a divergence of sequence selection vary from implementation to implementation. 
These limits should be accounted for in the design. 

6.1.3.4 Simultaneous Sequences 

In the event that multiple transition conditions evaluate as trae simultaneously (i.e., on the same PLC 
scan), different implementations of SFC will result in different behavior. 

Avoid dependence on execution order. On some systems, the leftmost branch is selected; on 
others, all of the sequences following trae transition conditions are selected. Therefore, it 
is considered poor programming practice to have the proper operation of a simultaneous 
sequence depend upon the order of processing of active steps in these sequences within a 
single scan. The PLC program auditor should check for this. 

• Use simultaneous sequences only where synchronization is required. Simultaneous 
sequences are used when parallel processes need to be synchronized at their beginning and 
their ending. Where asynchronous sequences that do not require this kind of synchronization 
are desired, they should be coded as independent SFC Charts. 

6.1.3.5 Accounting for Post-Scan Timing 

Post-scan timing is unique to the SFC language. After a trae transition, the processor scans a step 
once more to reset all timer instructions and other variables and controls (Hughes, 1989; p. 178). 
This extra step is called the post-scan. The new active step is scanned for the first time only during 
the next scan. The following are specific guidelines related to this characteristic of SFCs: 

• Post-scan timing requirements. The time required for the post-scan should be characterized 
and shown to be in accordance with the safety requirements of the PLC and overall safety 
system. 

• No timers in transitions. The processor never postscans a transition program file. Therefore, 
timers should not be set in a transition because they will not be reset. 

6.2 Robustness 

Robustness refers to the capability of the program to survive off-normal or other unanticipated 
conditions. This section discusses guidelines on functional diversity and exception handling. 
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6.2.1 Transparency of Functional Diversity 

SFCs are well suited to implementing diverse algorithms or implementations given that the need for 
such diversity has been established. An AND path can force several different process steps to 
evaluate the same condition. An additional step can vote. An OR path can be used to cause a 
transition if it is desired to program a system such that any number of diverse parallel algorithms 
cause the transition. The following are specific guidelines: 

• Order of execution. The design should account for the safety impact of the order of execution 
of diverse process steps. The ordering on the SFC should reflect the intention of the design. 

• Interfaces. The safety system design should account for all local and global variables 
necessary to support replicated processing in transition files. As part of the implementation, 
it should be verified that no variables in transition files will be initialized or overwritten. 

6.2.2 Exception Handling 

The level, nature, and functionality of SFC exception handling varies significantly among SFC 
implementations. Exception handling functionality in SFC ranges from none at all, through 
activation of a designated fault sequence under certain conditions, to the ability to completely 
override the activation status of an SFC chart under contiol of portions of the PLC program not in 
the SFC (Allen-Bradley, 1989; PLC Direct, 1994; Telemecahnique, 1994). It is necessary for project 
and PLC SFC-specific guidelines to be created for exception handling to account for these specific 
characteristics. 

Although there are significant variations, the following guidelines apply to most SFC 
implementations: 

• Use of GOTO or JMP statements to handle the interruption of control flow. Sequential 
function charts do not support interrapt processing due to the sequential nature of execution. 
Thus, should an abnormal condition or exception occur which requires immediate attention, 
SFCs do not allow servicing of the request. GOTO or JMP statements can provide a method 
of handling this abnormal asynchronous condition. For example, should a mixing sequence 
not be completed because a valve failed to open, the mixer contents would have to be 
dumped. Due to the sequential nature of SFC, it is not possible to exit the cunent transition 
and start executing the dumping step without using JMPs or GOTOs. Although JMP or 
GOTO statements can be used for this purpose, their use for normal control flow should be 
minimized. 

• Avoiding conflicts. It must be determined that the two events, tiansition and exception-
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handling, do not conflict with each other. 

Behavior of the exception-handling mechanism during a process step. The exact behavior 
of process steps interrupted by fault routines should be characterized and shown to be in 
accordance with the safety requirements of the PLC and overall safety system. For example, 
a fault routine may not interrapt a process step unless initiated by the PLC. This behavior 
must be understood explicitly. 

Behavior of the exception handling mechanism during a transition. The exact behavior of 
transitions interrupted by PLC fault routines should be characterized and shown to be in 
accordance with the safety requirements of the PLC and overall safety system. The transition 
and exception handling mechanism must be evaluated as to whether they conflict with each 
other. 

Restart behavior. Care must be taken in design for power up and fault recovery conditions. 
The exact behavior of SFC restart after an exception should be characterized and shown to 
be in accordance with the safety requirements of the PLC and overall safety system. For 
example, pre-scan and post-scan firmware logic employed when using SFCs only operates 
when the step is entered and exited. The SFC reset instruction can be used to shut a system 
down, however, there is no control for orderly shutdown should a fault occur. This behavior 
may not be acceptable in a safety application. 

6.2.3 Input and Output Checking 

Data corraption in a process step or transition can have serious consequences if allowed to propagate 
to other process steps. SFCs do not have explicit input and output checking mechanisms. However, 
the generic guidelines apply to the underlying program steps and tiansitions. 

The specific guideline is that input and output checking (enor containment) should be handled at the 
language level and not at the SFC level. The likelihood of enor propagation can be reduced if a 
process step uses reasonableness checks prior to setting variables used by other steps. Similarly, the 
possibility of enor propagation is reduced and safety is enhanced if a module using values set by 
another module performs checks on acceptability before operating on these variables. When the 
checks indicate that some assertions have been violated, exception handling can be used to bring the 
system to a state defined in the higher level design. Specific guidelines for PLC ladder logic were 
described in the previous Chapter. 

6-9 NUREG/CR-6463 



6.3 Traceability 

Traceability refers to attributes of safety software which support verification of conectness and 
completeness compared with the software design. The intermediate attributes for traceability are: 

• Readability 
• Minimizing use of built-in functions, 
• Minimizing use of compiled libraries. 

Because readability is also an intermediate attribute of maintainability, it is discussed in the next 
section. The following paragraphs discuss the latter two attributes. 

6.3.1 Use of Built-in Functions 

The SFC language does not explicitly support built-in functions. However, the underlying IEC 1131 
languages used in process steps and transitions do support such functions. The use of built-in 
functions raises safety concerns for the following reasons: 

• The requirements for built-in functions may not be the same as those for developing safety 
systems. 

• The exception handling of the built-in function may not be as well characterized as portions 
explicitly developed for the safety system. 

• The specific built-in functions may vary from one PLC platform to another thereby raising 
portability and maintainability concerns. 

Because of these concerns, the use of built-in functions should be minimized. When built-in 
functions are used, the developers should conduct thorough testing and develop a means for tracking 
enors. The details and acceptance criteria of such a testing and verification program are beyond the 
scope of this document. 

6.3.2 Use of Compiled Libraries 

SFC does not support the use of external libraries. However, its runtime environment does consist 
of libraries of compiled components the underlying languages may also support compiled libraries. 
The concerns in the previous section also apply to compiled libraries. When compiled libraries are 
used, the developers should conduct thorough testing and develop a means for tracking enors. The 
details and acceptance criteria of such a testing and verification program are beyond the scope of this 
document. 
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6.4 Maintainability 

This section discusses safety-related maintainability attributes for SFCs. These include: 

Readability 
Data abstraction 
Functional cohesiveness 
Malleability 
Portability. 

6.4.1 Readability 

Readability allows software to be understood by qualified development personnel other than the 
original developer. Readability is essential for safety because it facilitates reviews and reduces the 
likelihood of enors during maintenance. 

SFC was specifically designed as a notation for representing a sequence of operations. As such, it 
fits a developer's cognitive model of machine sequencing. Thus, SFC programs for sequencing 
operations are readable. In general, the SFC construct adds an additional level of abstraction to the 
prograrmning language. 

The following specific guidelines are related to readability: 

Conformance to indentation guidelines 
Descriptive identifier names 
Comments and internal documentation 
Limitations on subprogram size 
Minimizing mixed language programming 
Minimizing obscure or subtle programming constructs 
Minimizing dispersion of related elements 
Minimizing use of literals 
Controlled use of macro-steps. 

6.4.1.1 Conformance to Indentation Guidelines 

Because of the structure and notation of SFC, indentation guidelines are not applicable. 
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6.4.1.2 Descriptive Identifier Names 

The generic guidelines are applicable. Many SFC systems allow the naming of steps and transitions. 
Identifiers are used to label the steps and transitions of the SFC. Each identifier refers to a program 
file containing a process step or transition. The identifiers should be defined so that they provide 
adequate information on the nature and content of each file. Specific guidelines should be developed 
for each system and project, and the project-specific guidelines should be followed in the actual SFC 
programs. 

6.4.1.3 Comments and Internal Documentation 

The generic guidelines apply. The following are specific guidelines: 

• Descriptions of steps. Clear and unambiguous descriptions of process steps need to be 
provided. These descriptions should include the processing performed by the step, timers set 
and reset, and other operations. The description should be, in accordance with the design, 
traceable to higher-level requirements and design documents. 

• Description of interfaces. The interfaces for each step and transition should be described in 
the preamble. This description should include a complete identification of the input 
parameters, global variables (and any side effects), and output parameters. These descriptions 
should be traceable to higher level design documents. 

• Description of transition conditions. The transition conditions should be clearly stated. All 
input variables and global variables should be identified. These descriptions should be 
traceable to higher-level design documents. 

6.4.1.4 Limitations on Subprogram Size 

The generic guidelines are applicable. SFC implementations vary in the limitations on the amount 
of code that can be in a single step. These limitations range from a single network of Ladder Logic 
to no limit whatsoever (other than memory capacity of the PLC). The following are specific 
guidelines: 

• Limitation of a single step to a single function. The code in a single step should be limited 
to performing a single action. Since each SFC step is typically a subroutine using a PLC 
supported language, the rule for subroutines should apply to steps - one function which is 
clearly definable. Multiple actions in a step are to be discouraged. 

• Limitation on transitions to a single expression. SFC transition conditions are limited to a 
single expression. 
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6.4.1.5 Minimization of Mixed Language Programming 

The generic guidelines are not applicable. Each of the IEC1131-3 programming languages for PLCs 
is specific to a particular aspect of the control problem domain. PLC programs that are simple have 
lower incidence of prograrnming enors, and are more maintainable than those that use the EEC 1131-3 
languages for their intended purposes. 

The following are specific guidelines on the use of SFCs in a mixed IEC 1131-3 language 
application: 

• Use SFC for sequencing. SFC is specifically intended for the programming of machine 
sequences. The SFC notation for this purpose is clearer than Ladder Logic or Stractured 
Text. 

• Do not use SFC for interlocking or evaluation of logical relationships. Ladder Logic is well 
suited for interlocking and other apphcations requiring evaluation of Boolean relationships. 
SFC is not suited for this purpose. 

• Do not use SFC for mathematical operations or evaluation of mathematical relationships. 
Structured text excels over SFC, Ladder Logic, or function blocks for mathematical 
relationships. 

6.4.1.6 Minimize Obscure or Subtle Programming Constructs 

The guidelines associated with this generic attribute have limited applicability. The following are 
specific guidelines: 

• Avoid nesting of subroutines within an SFC step. An SFC step suggests that a certain PLC 
subroutine will be executed at that step. When the end of program statement or RET 
statement is executed for that subroutine, the transition file is then checked, and the flow 
continues from there. Calling nested subroutines of any language from within the called SFC 
step is obscure because of the assumption that an SFC step is one subroutine. 

• Do not use SFC constructs that are not related to sequencing. SFC as a language is intended 
for the prograrnming of control sequences. There are some SFC constructs that allow other 
uses for SFC. These constructs should be avoided. 

• Avoid backward directed links in parallel paths. This is demonstrated in the following SFC 
construct (which should be avoided). The transition condition labeled V, when active, allows 
the re-activation of step 0. This can lead to multiple steps in the same sequence being active 
simultaneously. SFC programs that allow this can be difficult to program and maintain. 
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6.4.1.7 Minimize Dispersion of Related Elements 

The guidelines associated with this generic attribute are appUcable. Dispersion can be an issue with 
SFC because of its graphical organization. Few details are presented at the SFC level, and specific 
variables associated actions are contained within many step and transition files. A further degree of 
dispersion can occur because a step can be organized as several subroutines, each of which could be 
in a separate file. Project-specific guidelines on how to stracture SFC programs to minimize the 
dispersion of safety-critical components should be developed and adhered to during development. 

6.4.1.8 Minimize Use of Literals 

The generic guidelines are not applicable because the SFC language does not include literals. Use 
of literals can occur in the underlying EEC 1131 languages. Specific guidance for PLC ladder logic 
is contained in the previous chapter. 
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6.4.1.9 Controlled Use of Macro-Steps 

Macro-steps (nested SFCs), when available in the SFC implementation, can enhance readability by 
combining several smaller steps and transitions into a single larger step. However, the misuse of 
macro-steps can make SFC programs difficult to understand. Macro-step use should be controlled 
by project guidelines to ensure that undue complexity is not hidden through excessive use of such 
nesting. 

6.4.2 Data Abstraction 

As described in Chapter 1, data abstraction is the combination of data and allowable operations on 
that data into a single entity, and the establishment of an interface which allows access, manipulation, 
and storage of the data only through the allowable operations. It reduces or eliminates the potential 
side effects of changing variables either during runtime or in software maintenance activities (Pamas, 
1972). SFC programs provide an abstraction of the control sequence to be executed by the PLC. 
This section includes guidelines on: 

• Minimizing the use of global variables 
• Minimizing the complexity of the interface defining allowable operations. 

These attributes are discussed further in the following subsections. 

6.4.2.1 Minimizing the Use of Global Variables 

The generic guidelines have limited applicability because many PLCs allow only global variables. 
Nevertheless, as noted previously, there are some implementations which do support a distinction 
between local and global variables. If local variables are supported by the underlying language of the 
process step or transition, they should be used for all internal operations. 

6.4.2.2 Minimization of the Complexity of Interfaces 

The generic guidelines are applicable. The primary interface issues are in the interaction between 
process steps and transition files. These must be addressed through the underlying IEC 1131 
languages. 

6.4.3 Functional Cohesiveness 

The generic guidelines are applicable. The following are specific guidelines. 
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• A single function for each step. Every step should have one clearly discemable purpose 
related to the time in which it should be executed. Two or more different steps should not be 
combined in a single step if they handle different functions or processes. 

• Use macro-steps for related junctions. When there are several related functions that are to 
be performed in series, macro-steps can be used. 

6.4.4 Malleability 

Malleability is the ability of a software system to accommodate changes in functional requirements. 
To implement a malleable software system, it is necessary first to identify what is expected to be 
constant and what is expected to be changed, and then to segregate what is expected to be changed 
into easily identifiable areas where alterations can be made with a rninimum of collateral changes. 
The segregation into steps provides some malleability. 

6.4.5 Portability 

The advent of IEC-1131 software standards will create a common platform and a standardized 
approach. However, this will be breached by hardware vendors trying to add extensions which only 
they can interpret. This extensibility can be useful for an application, but useless in the desire for 
standardization. 

Only EEC 1131-3 compliant SFC systems should be used. Without the use of IEC 1131-3 constraints, 
an SFC will NOT be portable between platforms. The implementations of SFC are varied. For 
example, European implementations, or GRAFCET, (Blanchard, 1985) differ from domestic 
implementations. Allen-Bradley's SFC is not a complete implementation of the IEC 1131 standard; 
it also has unique features (Allen-Bradley, 1989). 
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7 Pascal 
This chapter describes guidelines for the application of Pascal in safety systems and is organized in 
accordance with the framework of Chapter 2. Section 7.1 discusses reliability-related attributes; 
Section 7.2 discusses robustness-related attributes; Section 7.3 discusses traceability-related 
attributes; and Section 7.4 describes maintainability-related attributes. A summary matrix showing 
the relationship between generic and language-specific guidelines, together with weighting factors, 
is included in Appendix B. 

Although Pascal was standardized by the EEEE 770 and ANSI X3 J9 committees and is documented 
by several standards (NIST, 1985), the language has several major variants. The most sigmficant of 
these is Pascal developed by Borland International Corp. running under versions of the Microsoft 
MS-DOS and Windows operating systems (Microsoft, 1992; Borland, 1991). These are of 
significance for this report because of their cunent and potential continued use as platforms for 
testing Class IE equipment. Guidelines that are specific to these latter variants are indicated as such 
in this chapter. 

Language-specific weighting factors were based on the key characteristic of Pascal designed for 
safety, that is, strong data typing. Other factors were determined to be neutral from this perspective. 
Recursion and interrapt handling through the run-time environment are felt to be important in the 
negative sense; their use should be constrained and limited. 

7.1 Reliability 

This section discusses specific guidelines associated with intermediate attributes related to reliability. 
The intermediate attributes are as follows: 

Predictability of memory utilization 
• Predictability of control flow 
• Predictability of timing. 

These attributes are discussed in the following sections. 

7.1.1 Predictability of Memory Utilization 

Base-level attributes related to the predictability of memory utilization in Pascal are as follows: 

• Avoiding dynamic memory allocation 
• Minimizing memory paging and swapping 
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• Avoiding recursion 
• Use of handles with pointers 
• Avoiding the use of direct memory access. 

Specific guidelines for these base attributes are discussed in the following subsections. It should be 
noted that the final three guidelines are applicable to Pascal but are not included in the generic 
guidelines. The final two guidelines are specific to Borland Pascal. 

7.1.1.1 Avoiding Dynamic Memory Allocation 

The generic guideline on avoiding dynamic memory allocation is applicable to Pascal. Dynamic 
memory allocation should be avoided in safety systems written in Pascal. 

The strong typing of ANSI Standard Pascal makes each anay type with different bound a distinct 
type. This can make handling variable-length data items, such as strings, a problem. Kemighan 
(Kemighan, 1981) has pointed out that the way around this problem is to ensure that all strings of a 
program are set to strings of predetermined lengths, with an associated string type for each length. 
In a safety system, this approach is preferable to an alternative approach using dynamic memory 
allocation. This issue is discussed further in the section on data typing. 

The use of dynamic memory can be detected through the Pascal statements containing new (to 
allocate), dispose (to free memory), and the Pascal pointer (A). An alternative form is 
GetMem/PreeMem. It should be noted that these two methods do not allocate memory on the heap 
in the same way. The use of these functions interchangeably could conceivably destroy the heap 
thereby losing all the data and crashing the computer (Borland, 1991). Care must be taken to avoid 
"dangling pointers," i.e., pointers to space which has been freed or deallocated. 

If dynamic memory allocation is necessary in a safety appUcation, the application program should not 
use multiple variables pointing to the same memory location. The danger is that when the shared 
memory space is deallocated, another variable may still point to the released memory space unless 
each one is explicitly set to null by the application program. If an application (e.g. a linked list) 
necessitates such multiple accesses, it must be justified and documented. 

The foUowing is an example of dynamic memory allocation using Borland Pascal 7.0: 
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{ Example 1 } 
{ declaration } 

VAR StrPtr : ASTRING; 
GenPtr : POINTER; 

{ Then, that string pointer is allocated space within the program} 

New(StrPtr); 

{ The string pointer is copied to the general one } 

GenPtr : = StrPtr; 

{ Example 2 } 
{ The program assigns this value to an ARRAY of variant records. 

One of the elements of the record is of type POINTER: } 

TYPE YYSType = record case Integer of 
1: ( yylnteger : Integer); 
2: ( yyPointer : Pointer); 

end; 

If dynamic memory use is essential, the software should always release dynamic memory as soon as 
possible. 

7.1.1.2 Minimizing Memory Paging and Swapping 

The generic guideline on nunimizing paging and swapping is applicable to Pascal programs. There 
are no Pascal-specific guidelines. 

7.1.1.3 Avoiding Recursion 

This guideline is not generic; however, it is appUcable to Pascal. Recursive programs should not be 
used in safety systems unless it can be definitively shown that there is always a terminating condition 
within a deterministic time and number of iterations, and that the memory will not be exceeded at the 
maximum level of recursion. The number of recursions can be large, even infinite, because the 
terminating condition may not occur. 

There are two types of recursion in Pascal: self-recursion and mutual recursion. Self-recursion can 
be recognized by having a procedure call within a procedure of the same name. In mutual recursion, 
two routines call each other. In the following example, functions A and B will call each other until 
some termination criterion is met (unspecified in this example). Mutual recursion is rarely detected 
by compilers. 
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function B(x : integer) 
function A(y : integer) 
begin 

... B(I) ... 
end ; 
function B(x : integer) 
begin 

... A(j) ... 
end ; 

: char ; forward ; 
: char ; 

: char ; 

7.1.1.4 Use of Handles with Pointers 

The following guideline is applicable to Borland Pascal. 

If pointers must be used, handles should be used whenever possible. Handles allow memory 
management to recapture and compact free memory24. The memory block should be locked to protect 
moveable blocks and should be unlocked as soon as possible thereafter. When data in a moveable 
block needs to be changed, locking the block while the change is being made and then unlocking the 
block protects the data. When a block is locked the block cannot be moved. Once the block has been 
unlocked, memory management can then move the blocks for compaction. If the handle is not 
unlocked in a timely manner, memory management is unnecessarily hampered. 

This guideline is illustrated in the following example (Borland, 1991). 

ItemGlobalHandle := GlobalLock(GlobalHandle) ; 
ItemGlobalHandleA[0] := 255 ; {Process data 

using ItemGlobalHandle} 
GlobalUnlock(ItemGlobalHandle) ; 
if ((DataRecord.bitOptions or DDE_Release) <> 0 ) then 

GlobalFree(ItemGlobalHandle); 
end ; 

Improper locking and unlocking of handles or failure to lock handles is a frequent source of enors 
in Macintosh programming, which uses dynamic relocation and compaction of memory. 

7.1.1.5 Avoid Use of Direct Memory Access 

The following guideline is applicable to Borland Pascal under Windows and in Protected Mode 

Compacting memory is a design issue that must be handled with care. 
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Under DOS. 

Direct memory access should not be used except in situations where hardware devices have memory-
mapped control registers that must be read or written. Although Borland Pascal permits access to 
memory directly, this is not a safe practice under Windows at any time. Windows should manage 
memory issues or the programs may crash (Borland, 1991). Protected mode does not allow direct 
addressing. Instead, memory selectors should be used. 

If direct memory access has to be used, it should be encapsulated, where possible, to avoid enors. 

7.1.2 Predictability of Control Flow 

This section discusses base-level attributes related to the predictability of memory utilization in 
Pascal. These guidelines are 

• Maximizing stracture 
• Minimizing control flow complexity 
• Initializing variables before use 
• Single entry and exit points for subprograms 
• Minimizing interface ambiguities 
• Use of data typing 
• Accounting for precision and accuracy 
• Order of precedence of arithmetic, logical, and functional operators 
• Avoiding functions or procedures with side effects 
• Separating assignment from evaluation 
• Proper handling of program instrumentation 
• Controlling class library size 
• Minimizing use of dynamic binding 
• Controlling operator overloading. 

These attributes and their relevance to safety are discussed in the following sections. It should be 
noted that the avoiding-side-effects guideline is applicable to Pascal but not included in the generic 
guidelines. 

7.1.2.1 Maximizing Structure 

The generic guideline on maximizing stracture applies to Pascal. Maximizing structure means not 
using gotos (jumps in program control). Three language-specific guidelines are related to goto 
statements, i f . . . e l se i f statements, and case statements. 
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Avoid goto statements except as early exits from loops. The use of goto clouds the structure 
of the code in that it can obscure program flow logic and result in unreachable code. The 
following is an example25 of a fragment of a Pascal program containing goto statements 
resulting in unreachable code. 

B_Label: 

A Label: 

statement_l; 
goto A_Label; 
statement 2; 
statement 3; 
statement 4; 
statement_5; 
statement 6; 
statement_7; 
goto B_Label; 
statement_8; 

{unreachable code} 
{unreachable code} 
{unreachable code} 

{unreachable code} 

The rationale for the early loop exit exception to this guideline can be seen in the following 
example. In Pascal the loops can be labeled in order to clarify the meaning of multiple loops 
and the code structure. In the following example the_f i r s t_loop and inner_mos t_loop 
are loop names. 

25 This rather trivial example is only included for the purpose of illustration. 
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label 
after_ 

: the_first_loop, after_the_ 
_inner_most_loop ; 

the_first_loop : 
for i := 100 downto 1 do 
begin 

for alpha := 1 to 26 do 

end 
after_ 

begin 
for numbers := 5 to 11 do 

begin 
the_inner_most_loop: 
for steps := 1 to 10 

begin 

if sample <= 10e-6 

first_loop, the_ 

do 

and bc_flag 
then goto after_the_first_loop 

if bc_flag or not op_flag 
then goto after_inner_most_loop ; 

end ; {the_inner_most_loop} 
{loop name for 

after_inner_most_loop : 
end ; 

end ; 
; {the_first_loop} 
_the_first_loop : i := 1 ; 

readability} 
j := 5 ; 

{loop name 

_inner_most_ 

'" 

for 

loop, 

readability} 

It should be noted that standard Pascal allows only integers as labels, while Borland Pascal 
has an extension to the language that also allows character strings as labels (Jensen, 1974; 
Borland, 1991). It should also be noted that Borland Pascal 7.0 uses the keywords break and 
continue, so that gotos with these constructs are not necessary. 

Use ofif... else if and case statements. The use of i f . . . e l s e i f is shown in the 
following example: 
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if condition 1 then 
statement_l ; 

else if condition 2 
statement_2 ; 

else if condition 3 
statement_3 ; 

else 
statement_4 ; 

then 

then 

The final e lse statement allows the handling of conditions not anticipated in the first three 
conditions; it also serves as a default. This construct should be used in all situations even if 
it can be guaranteed that the conditions specified by the other e l se i f statements are 
exhaustive. 

The case statement serves as a switch for multiple branches and allows one evaluation for 
the multiple branches. It is an alternative to the i f statement under the circumstances that 
all conditions within the case statement are exhaustive (Jensen, 1974, p 31; Grogono 1983, 
p 161). It is a run-time enor (of unspecified behavior) if the case selector does not equal one 
of the case conditions. Some implementations of Pascal allow for a default selector, e.g., 
otherwise. However, if a default selector is used, the program is non-portable. 

case thermal al 
core 
inlet 
outlet 

end ; 

arm of 
: core thermal alarm(sensor value) ; 
: inlet thermal alarm(sensor value) ; 
: outlet thermal alarm(sensor value) ; 

7.1.2.2 Minimizing Control Flow Complexity 

The generic guideline with respect to nesting levels applies to Pascal. Specifically, control flow 
complexity results from the use of too many nested levels of branching or looping. As noted in the 
generic report, there should be explicit organizational or project-specific limits on nesting. There are 
no specific guidelines with respect to Pascal. 

7.1.2.3 Initializing Variables before Use 

The generic guideline with respect to initialization of all variables applies to Pascal. Run-time 
predictability requires that memory storage areas set aside for process data be set to known values 
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prior to being accessed (i.e., set and used). Variables should be initialized to some known value at 
the beginning of an execution cycle before they are used. In Pascal all pointers must be mitialized 
to NIL. 

The key characteristic of Pascal associated with this guideline is the lack of compile time 
initialization. The lack of compile time mitialization means that variables must be mitialized 
explicitly by assignment statements. Because mitialization occurs at the beginning of the program, 
initialized variables must be visible at the highest level of the calling hierarchy. The result is that 
most variables to be initialized will have global scope (Kemighan, 1981). This is problematic 
because excessive use of global variables conflicts with the data abstraction and visibility guidelines 
described below. 

The following guideline is applicable to Borland Pascal 

When using separately compiled units with shared variables, mitialization should occur in one and 
only one place. 

7.1.2.4 Single Entry and Exit Points for Subprograms 

The generic guidelines apply to Pascal. Standard Pascal is a block-stractured language in which 
procedures and functions are defined by begin and end statements. This guideline is enforced by the 
language (ANSI, 1983; p 66). 

The following guideline is applicable to Borland Pascal 

Borland Pascal provides the capability for multiple exit points. This capability should generally not 
be used in safety-critical systems. When multiple exit points are unavoidable, the rationale should 
be documented; and return value assignments must precede every exit point. 
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{ In standard Pascal, acceptable } 
function F: Boolean; 
begin 
if condition 
then F:=true; 
else 
begin 

F: = 
end 

end; 

{ Borland Pascal (and some others), alternative form, not acceptable in 
safety system } 

function F: Boolean; 
begin 
if condition then 
begin 
F:=true; exit; { first exit } 

end; 

F: = 
end; { second exit } 

7.1.2.5 Minimizing Interface Ambiguities 

The generic guideline with respect to interface ambiguity minimization applies to Pascal. Interface 
ambiguities minimization can occur in both functions and procedures. The following additional 
guideline applies: 

• Alternate data types in subroutine formal argument lists. Inadvertent switching of parameters 
of the same type can be avoided by not listing the same types in consecutive order when 
possible, as shown in the following example. 

process_sensor_data(sensor_id 
value : string[255], 
calib_date : integer, 
calib_tech : string) 

integer, 
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7.1.2.6 Data Typing 

The generic guidelines for data typing apply to Pascal. Pascal is a strongly typed language, and the 
code should take advantage of this feature to the maximum extent possible. The following are 
specific guidelines. 

• Use subtypes. When defining data types, it is generally good practice to use subtypes of the 
predefined types to define the range explicitly, thus bounding the enors. When an object is 
assigned a number outside its range, a run-time enor is raised (Jensen, 1974; Grogono 1983). 
The limits on data types should not be excessively constrained, forcing an unnecessary enor 
to be generated. 

• Minimize the use of implicit type conversions. All type conversions in Pascal are implicit. 
Therefore, the programmer and the reviewer must be vigilant for these unannounced 
conversions. An example with string assignments where the receiving string (right hand side 
of an assignment statement) is a different size than the assigned string (left hand side). 

The following is an example showing implicit type conversions in equations: 

i : integer ; 
r : real ; 

r := i + r ; 

i := i + r ; 

{implicit conversion from integer to 
real -- allowed} 
{illegal} 

Pascal ensures that expressions involving arithmetic evaluations or relational operations have a 
single data type or the proper set of datatypes for which conversion difficulties are minimized. 
It is not possible to assign the result of a r ea l expression to an in teger variable (Grogono, 
1983, p. 37). 

• Limit the use of indirection (pointers). Limiting the use of indirection, such as anay 
indices and access types, in Pascal to situations where there are no other reasonable 
implementation alternatives and performing validation on indirectly addressed data prior 
to setting or use, ensure the conectness of the accessed locations. 

7.1.2.7 Accountingfor Precision and Accuracy 

Precision and accuracy generic guidelines apply to Pascal. Precision and accuracy issues include 
the meaning and use of fixed point and floating point numbers, round off-enors, type declarations 
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and digital accuracy, and portability. The accuracy and precision necessary are a function of the 
project requirements in concert with the computer, the compiler, the hardware, the sensors, the 
observability and the control requirements. The issues raised must be factored into the design of 
the software. These are discussed in the generic guideline chapter of this report. 

Within the rules of precedence, order of evaluation of expressions in Pascal is 
implementation-defined. This may lead to unexpected results in the presence of optimized code 
being generated by the compUer. This is especially an issue with floating point computations. A 
compiler might replace ((L0+x)-x) with 1.0 at compile time, when the floating point rounding 
enor is what the program is trying to compute (note that the above optimization is always 
guaranteed to be conect for integer types). 

7.1.2.8 Order of Precedence of Arithmetic, Logical, and Functional Operators 

The generic guidelines for order of precedence apply to Pascal. The default order of precedence 
of such operations as left to right with exponentiation, multiplication, and addition should not be 
depended on. Hence, the following specific guidelines: 

• Use parentheses. Arithmetic, logical, and other operations should use parentheses or 
other mechanisms for ensuring that the order of evaluation of operations is explicitly 
stated. 

• An expression should not depend on the order of evaluation. The Pascal standard permits 
operands of an expression to be evaluated differently from the left to right order in which 
they are written. For example, in the statement: 

i := F(J) d iv G(J) ; 

where F and G are functions of type Integer, G may be evaluated before F, since this 
enables the compiler to produce better code. If F and G have side effects, in particular, 
changing the value of J, (perhaps inadvertent — as described in the next section), the 
order of execution may have an effect that the programmer had not intended and that may 
lead to a subtle and difficult to find the bug (Borland, 1991; p 241). 

7.1.2.9 Avoiding Functions or Procedures with Side Effects 

Generic guidelines are applicable. The following specific guideline applies to Pascal: 

Global variables should not be set or changed by procedures and functions for which that variable 
is global in scope. This means using local variables within functions and subroutines for variables 
that should not be visible outside the function or procedure, and using the var only for those 

NUREG/CR-6463 7-12 



variables that the procedure should be changing. 

7.1.2.10 Separating Assignment from Evaluation 

The generic attributes apply to Pascal programs. Since there is no embedded assignment operator 
for expressions in base Pascal, embedded assignment can only occur via side-effect producing 
functions, which were discussed in Section 2.1.2.9. 

7.1.2.11 Proper Handling of Program Instrumentation 

The generic guidelines are applicable to standard Pascal. Borland Pascal and Turbo Pascal have 
extensive instrumentation capabilities that can be implemented transparently in the source code 
using the debugger supplied by the company. The additional guideline is to ensure that compiler 
switches are set in a manner that does not disable debugging, such as $D-. 

7.1.2.12 Controlling Class Library Size 

The generic guidelines for this attribute are applicable to Borland Pascal but not to ANSI standard 
Pascal, which is not object oriented. 

7.1.2.13 Minimizing Use of Dynamic Binding 

The generic guidelines for this attribute are applicable to Borland Pascal but not to ANSI standard 
Pascal, which is not object oriented. The following specific guideline applies. 

Dynamic binding and methods should be avoided if possible?6 The rationale for this guideline 
is that dynamic binding forms unpredictable relationships which are hard to debug and difficult 
to test for all possible configurations. If a class declares or inherits any virtual methods, then 
variables of that type must be initialized through a constructor call before any call to a virtual 
method. Thus, any object type that declares or inherits any virtual methods must also declare or 
inherit at least one constructor method. 

Dynamic method calls are dispatched at run time, as opposed to virtual methods whose invocation 
is known at compile time. For all other purposes, a dynamic method can be considered equivalent 

Methods are functions and procedures that are used to manipulate and retrieve data from the data objects in 
the methods' class. Methods are by default static, but can, with the exception of constructor methods, be made virtual 
through the inclusion of a virtual directive in the method declaration. The compiler resolves the calls to static methods at 
compile time, whereas calls to virtual methods are resolved at run time. The latter is sometimes referred to as late 
binding or dynamic binding. 
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to a virtual method. An object is instantiated, or created through the declaration of a variable or 
typed constant, or by applying the standard procedure new to a pointer variable of an object type. 
It is important to note that assignment to an instance of an object type does not entail mitialization 
of the instance. 

The foUowing are examples of constructors: 

constructor Field.Copy(var F : Field) ; 
begin 

Self := F ; 
end ; 
constructor Field.Init(FX,FY, FLen : Integer ; FName 
begin 

X := FX ; 
Y := FY ; 
Len := FLen ,-
GetMem(Name, Length(FName) + 1 ) ; 
Name*" := FName ; 

end ; 
constructor StrField.Init(FX,FY,FLen: Integer; FName 
begin 

Field.Init(FX, FY, FLen, FName) ; 
GetMem(Value, Len) ; 
Value* := '' ; 

end ; 

: String) ; 

: String) ; 

The following are examples of destructors: 

destructor Fielc 
begin 

FreeMem(Name, 
end ; 

I.Done : 

Length(NameA) + 1 ) ; 

destructor StrField.Done ; 
begin 

FreeMem (Value, 
Field.Done ; 

end ,-

Len) ; 

Dynamic binding uses the heap and is therefore susceptible to the same types of memory 
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problems described in Section 7.1.1.1, Avoiding Dynamic Memory Allocation. Therefore, as 
with pointers, dynamic memory should be avoided if possible. All cases requiring dynamic 
binding should be documented and justified. 

7.1.2.14 Controlling Operator Overloading 

Pascal does not have operator overloading features; therefore, the guideline is not applicable. 

7.1.3 Predictability of Timing 

Predictability of timing is cracial in a safety system used in real-time control. Concerns over 
object-oriented base attributes discussed in the previous sections (e.g., package library size, 
dynamic binding, and operator overloading) also apply to timing. In addition, specific concerns 
related to interrupts are discussed in Section 7.1.3.2. 

7.1.3.1 Minimizing the Use of Tasking 

Pascal does not have tasking features; therefore, the generic guidelines are not applicable. 

7.1.3.2 Minimizing the Use of Interrupt Driven Processing 

The generic guidelines for interrupt-driven processing apply to Pascal. It is not generally 
desirable in safety-critical systems because it can lead to nondeterministic maximum response 
times and can lead to unanticipated system states. Use of a deterministic approach to the 
momtoring and control of multiple input sources is normally prefened. However, there may be 
some situations where interrupt-driven processing has a significant design advantage over 
alternatives, for example, to handle the acceptance and processing of plant input. When interrapt 
service routines are needed, only the minimum processing needed to buffer the input should be 
performed by the interrupt driver. AU non-time-critical processing (e.g. units conversions) should 
occur in the main line code. 

The following is the form of an interrapt handler in Borland Pascal under MS-DOS on Intel 
processors: 
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procedure IntHandler(Flags, 
ES, BP : Word); 

interrupt ; 
begin 

end ; 

CA, IP, AX, BX, CX, DX, SI, DI, 

Interrupt routines must be designed with care. Masking of interrapts, nested interrupts, and 
interrupt processing in general can all cause non-deterministic behavior. Also, some form of 
locking or mutual exclusion may be required when using interrupts. 

In case of code that directly accesses hardware, it must be noted that Pascal lacks the volatile 
attribute, so it is not possible to guarantee that memory accesses are not deleted and that they 
occur in the specified order. 

7.2 Robustness 

Robustness refers to the capability of the software to survive off-normal or other unanticipated 
conditions. The intermediate attributes for robustness are as follows: 

• Controlled use of diversity 
• Controlled use of exception handling 
• Input and output checking. 

This section describes Pascal-specific guidelines for the base-level attributes of software diversity 
and exception handling. 

7.2.1 Transparency of Functional Diversity 

There are no Pascal-specific guidelines for functional diversity. The generic guidelines apply. 

7.2.2 Exception Handling 

Standard Pascal does not have exception handling. Therefore, this guideline is not applicable. 
Borland Pascal has specific types of enor handling, which are not as general as full exception 
handling. The following guidelines apply to Borland Pascal: 

• Exit handling. Exit handling can be used to recognize run-time enors explicitly and plan 
for their resolution, and for post-mortem analysis. Borland Pascal provides a method of 
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declaring run-time enors and of building the appropriate exit handling code. This is exit 
handling, not exception handling. It is considered good practice to recognize these 
conditions explicitly and plan for their resolution. 

procedure TestExit ; 
var 
ExitSave : Pointer ; 

procedure MyExit ; 
far ; 
begin 
ExitSave := ExitProc ; 

end ; 

begin 
ExitSave := ExitProc ; 
ExitProc := ©MyExit ; 

end ; 

{Always restore old vector first} 

Use of IOresult. The built-in function IOresult returns MS-DOS enor codes when 
performing input and output operations through the operating system. This function is 
used with input/output checking disabled (the $1 compiler directive). Under these 
circumstances, use of IOresult (for input and output made through the operating system) 
can result in more robust code. For example, in the following code fragment, the 
procedure FilelOCheck would caU the IOresult built-in function, determine whether the 
file-open was successful, and take appropriate action, such as bypassing a routine and 
informing the operator, if it was not successful (Borland, 1991). 

{$1-} 
Assign(F, 
Reset(F): 

{disable 
Filename); 

FilelOCheck; 

I/O Checking } 

It should be noted that input/output checking should normally be enabled. If it is disabled, 
as in the example above, an enor checking routine should be performed immediately after 
the operation. 
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7.2.3 Input and Output Data Checking 

The generic attributes for input and output data checking are applicable to Pascal. 

7.3 Traceability 

Traceability refers to attributes of safety software that support verification of conectness and 
completeness compared with the software design. The intermediate attributes for traceability are 

• Readability 
• Use of built-in functions 
• Use of compiled libraries. 

Because readability is also an intermediate attribute of maintainability, it is discussed in Section 
7.4. Pascal-specific guidelines for the latter two attributes are discussed in the following 
subsections. 

7.3.1 Controlling Use of Built-in Functions 

The generic guidelines on the use of built-in functions apply to Pascal. Pascal functions defined 
in the standard are portable to other compilers. The distinction between built-in functions and 
intrinsics that may be implemented inline by the compiler is not always self-evident. Some 
"functions," e.g., ord, are really intrinsics. Some, such as sqrt, are really library functions. 

The use of some buUt-in functions may be necessary or expedient. The decision is a design-level 
issue that is beyond the scope of this report. However, for functions determined to be desirable 
for inclusion in safety systems, the testing and related generic guidelines apply. An example of 
a function whose behavior should be tested and understood because it is not uniform across 
compilers is mod (modulo) (Grogono, 1983; p. 36). 

7.3.2 Use of Compiled Libraries 

The following guidance is specific to Borland Pascal 

The generic guidance relating to limiting the use of compiled libraries is applicable to Pascal. 
Although there is no reference to compiled libraries in the Pascal language specification (ANSI, 
1983), Borland Pascal has extensive support for compiled libraries and for dynamic linked 
libraries, which are part of the Microsoft Windows operating environment. 

Borland Pascal units are program modules that make it possible to perform separate compilation. 
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A unit can contain code, data, type, and/or constant declarations, and can use other units. The unit 
has a public section called interface and a private section called implementation (Borland, 1991). 
Units are necessary because of a 64K code segment limit (Borland, 1991). However, because they 
are compiled separately, they do not have the same visibility rules as text-based files, which are 
included prior to compilation. Thus, global types, variables, and definitions must be compiled 
into a separate global-level unit. Beneficial uses of units (even if not essential) include providing 
common and enforceable data type declarations and module initialization. Constant definitions 
enhance safety and are not a violation of the guideline. Units can also be used to include well-
tested and trusted libraries from the development organization. However, units used to include 
externally developed code and dynamic link libraries should be niinimized. 

Units can be recognized by the reserved word "unit" appearing at the beginning of the Pascal 
source code. The following is an example program that uses a precompiled unit called Mathfunc. 

program calculate 
{$R MATHFUNC} 
uses Mathfunc; 
type 

The following is the beginning of the source code unit for the Mathfunc unit. 

unit Mathfunc; 
interface 
function add (X, Y ) : 
function multiply (X, 

implementation 
function add... 
function multiply... 

real 
Y) : real; 

In addition to precompiled units written in Pascal, it is also possible to link in code written in 
other languages, such as C, in Windows Dynamic Linked Libraries (DLLs) in a separate 
compilation unit called a library. This unit is identified by a reserved word "library" at the 
beginning of the source file. The functions which may be accessed by another routine can be 
recognized by the reserved word "export." The following is an example: 

library Mathfunc; 
function Power(x,y: 
begin 

real): 

Power:=Exp(y*ln(x)); 

Real ; export; 
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end; 

{ more functions here } 

That a routine uses such library functions can be determined through the word "external." The 
foUowing is an example of "external." 

unit Mathfunc; 
const Place: integer := 21; 
interface 
function add (X, Y): real; 
function multiply (X, Y): real; 

implementation 
function add; external 'Mathfunc' 

function multiply... 

index Place; {assuming this is the 21st 
Function in the library } 

There are several different types of libraries that could be used, depending on whether the 
appUcation is running under MS-DOS only or MS-DOS and Windows; additional libraries may 
be used for object classes shipped with the language (appUcable to both the MS-DOS and Turbo 
versions). The decision as to which libraries are necessary and which are expedient is a design-
level issue that is beyond the scope of this report. However, for libraries determined to be 
desirable for inclusion in safety systems, the testing, configuration control, and related guidelines 
apply. 

7.4 Maintainability 

This section discusses the Pascal-specific attributes of the following intermediate attributes related 
to maintainability: 

• Readability 
• Data abstraction 
• Functional cohesiveness 
• Malleability 
• Portability. 

Base-level attributes and Pascal-specific guidelines are discussed in the following sections. 
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7.4.1 Readability 

The following base attributes are related to readability: 

• Conformance to indentation guidelines 
• Descriptive identifier names 
• Comments and internal documentation 
• Limitations on subprogram size 
• Minimizing mixed language programming 
• Minimizing obscure or subtle prograrnming constructs 
• Minimizing dispersion of related elements 
• Minimizing use of literals. 

The Pascal-specific guidelines associated with these attributes are discussed in the following 
subsections. 

7.4.1.1 Conformance to Indentation Guidelines 

The guidelines developed for the generic indentation attribute are applicable to Pascal. 

7.4.1.2 Descriptive Identifier Names 

The guidelines developed for the generic descriptive identifier names attribute are applicable to 
Pascal. The following additional guidelines apply: 

• Separate words in compound names with underscores. 

Rads_Per_Second 
Core_Temperature 

• Choose names that are as self-documenting as possible. 

• When separate compilation units exist, utilize prefixes. (The following guidance is 
specific to Borland Pascal.) Where there are multiple modules, it is possible to have a 
convention specifying that every export from a module have an identical descriptive prefix 
on the name. This allows a person reading the code to see immediately where a particular 
imported function, procedure, or variable came from. 
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7.4.1.3 Comments and Internal Documentation 

The guidelines associated with the generic attributes are applicable. 

7.4.1.4 Limitations on Subprogram Size 

There are no Pascal-specific guidelmes. The guidelines associated with the generic attributes are 
applicable. 

7.4.1.5 Minimizing Mixed Language Programming 

There are no Pascal-specific guidelines. Since there is no separate compilation in ANSI standard 
Pascal, there can be no mixed language programming. The guidelines associated with the generic 
attributes are therefore not applicable. 

However, in Borland Pascal, separate compilation is supported and use of mixed language 
prograrnming is, therefore possible (although non-portable). Since, generally speaking, there are 
differences in calling conventions and datatypes between languages, mixed languages should be 
used with caution, if at all. 

7.4.1.6 Minimizing Obscure or Subtle Programming Constructs 

There are no Pascal-specific guidelines. The guidelines associated with the generic attributes are 
applicable. The guidelines on side effects, global variables, and order of evaluation are also 
related. 

7.4.1.7 Minimizing Dispersion of Related Elements 

The guidelines associated with the generic attributes are applicable. In addition, when elements 
are dispersed throughout the code, it is hard to check, validate, and maintain the code. 

The following guideline is specific to Borland Pascal. 

Use compilation units to group related elements. Pascal has a strict order in which it 
accepts declarations (i.e., label, const, type, var, procedure and function declarations, 
and finally the main procedure). Thus, it is difficult to keep the declaration, mitialization, 
and use of types and variables close together in large programs in standard Pascal 
(Kemighan, 1981). However, where separate compUation is supported, related variables 
and procedures can be kept in separately compiled units. 
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7.4.1.8 Minimizing Use of Literals 

The guidelines associated with the generic attributes are applicable. In addition, the following 
Pascal specific guidelines apply: 

• Use constants for numeric literals. The use of numeric literals as hard coded constants, 

Area := 3.14159265*sqr(radius) ; 

instead of constant identifiers such as, 

cons t 
p i : r e a l := 3.14159265 ; 

decreases readability and complicates maintainability, particularly if the literal is associated 
with a process parameter which may be tuned or a conversion factor which may be changed 
upon recalibration of an instrument. It is far easier to change one value set at the beginning 
of a source code file than it is to guarantee that all literals associated with such a parameter 
have been changed completely and conectiy throughout all relevant source code files. When 
constants are not used, uniform comments should be associated with each constant to 
facilitate search and replace operations. 

7.4.2 Data Abstraction 

Data abstraction is the combination of data and allowable operations-on that data into a single 
entity, and the establishment of an interface which allows access, manipulation and storage of the 
data only through the allowable operations. This principle results in the following specific base 
attributes: 

• Minimization of the use of global variables. 

7.4.2.1 Minimization of the Use of Global Variables 

The guidelines associated with the generic attributes are partially applicable. Standard Pascal 
does not support external variables (local variables whose values persist in memory after the 
execution of the routine has ended). Thus, any values which are necessary in the next invocation 
of a function or procedure must be maintained at a higher scope. Moreover, as pointed out earlier, 
variables which must be initialized early in program execution of necessity must be visible at a 
relatively high position in the program hierarchy. Finally, there are appropriate uses for global 
variables, i.e., maintaining the state of data that must be accessed by many functions. The 
alternative is to pass such values as parameters which increases the complexity of the function 
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interfaces. 

Nevertheless, global variables obscure the passage of data between subprograms and defeat the 
benefits of data abstraction. They are a primary mechanism for side effects and the resultant 
subtle bugs. Thus, a balance must be struck between the characteristics of Pascal, which tend to 
encourage use of global variables (related to initialization and persistence of variables), and the 
principles of data abstraction. 

7.4.2.2 Minimization of Complexity of Interfaces 

The generic guidelines are applicable to Pascal. No language-specific attributes apply. 

7.4.3 Malleability 

The generic guidelines apply. Malleability is the ability of a software system to accommodate 
changes in functional requirements (Witt, 1994). Malleability extends data abstraction with the 
motivation toward isolating areas of potential change. To implement a malleable software 
system, it is necessary to identify what is expected to be constant and what is expected to be 
changed, and to isolate what is expected to be changed into easily identifiable areas where 
alterations can be made with a minimum of collateral changes. 

7.4.4 Functional Cohesiveness 

The generic guidelines are applicable. No additional guidelines apply. 

7.4.5 Portability 

The generic guidelines have limited applicability. From the perspective of safety, the benefits of 
portability are the adherence to standard prograrnming constructs that yield predictable and 
consistent results across different operating platforms (Witt, 1994). However, the limitations of 
the standard base Pascal language make it difficult to write real time control programs without 
extensions. Some of the difficulties were discussed in this chapter (no external variables, no 
separate compilation units, no default ("otherwise") in a case construct, etc.). As a result, almost 
aU Pascal compilers have language extensions to varying degrees. Thus, portability is difficult to 
achieve in Pascal. 
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8. PL/M 
This chapter discusses guidelines for the application of PL/M in safety systems. This chapter is 
organized in accordance with the framework of Chapter 2. Section 8.1 discusses reliability-
related attributes; Section 8.2 discusses robustness-related attributes; Section 8.3 discusses 
traceability-related attributes; and Section 8.4 describes maintainability-related attributes. 
Appendix A.4 provides additional information on the language including its history and variations 
across different processors. A summary matrix showing the relationship between generic and 
language-specific guidelines, together with weighting factors, is included in Appendix B. 

Intel Corp., the company which originally sponsored development and promoted the use of PL/M, 
discontinued support of their last PL/M compiler (PL/M-386) in December 1994. Since then, the 
use of PL/M in real-time control systems has diminished, and the number of programmers with 
proficiency in this language is also declining. Thus, conservative use of the language and its 
features is advisable in development of safety-related applications. 

8.1 Reliability 

Reliability implies that the software executes to completion, produces expected results, and that 
the output is within the required response time. Other attributes of reliability are as follows: 

• Predictability of memory utilization 
• Predictability of control flow 
• Predictability of timing. 

Further discussion on the relevance of these attributes as they relate to safe use of PL/M is found 
in the sections below. 

8.1.1 Predictability of Memory Utilization 

PL/M and the supporting development environment provide compUe-time features for enforcing 
the predictability of memory utilization. These features do not depend upon run-time support 
portions of the compiler. 

Unlike most other computer architectures, Intel's PL/M software development environment 
encourages the separation of data and instructions into distinct contiguous segments (Intel, 1990; 
Intel, 1992). The PL/M compiler generates relocatable object modules in which the various types 
of memory are kept separated. At program link time, all program instructions are collected and 
stacked together, followed by data constants, read-write variables, and stack allocation 

8-1 NUREG/CR-6463 



information. 

After linking, Intel requires one last step before the program module is made executable in 
devices with nonvolatile RAM. The last step, known as Locate, maps the various collected 
memory segments by type into their final absolute memory addresses. All program instructions 
are mapped into a ROM segment, or an EEPROM segment where they remain nonvolatile until 
reprogrammed. RAM variables and the system stack are likewise mapped into an address space 
containing the read-write memories. The Locate step is not required where PL/M programs are 
being used with an operating system in volatile RAM. A loader performs the locate function in 
these cases. 

8.1.1.1 Minimizing Dynamic Memory Allocation 

The generic guideline applies. The PL/M language does not have built-in functions equivalent 
to the C a l l o c and malloc, which dynamically allocate RAM at run-time. Any dynamic 
allocation of RAM must be explicitly handled by the PL/M programmer. Such allocation is 
nevertheless discouraged and should be identifiable as part of a review. 

8.1.1.2 Minimizing Memory Paging and Swapping 

The generic guideline applies. In embedded systems where the bulk of PL/M has been used, the 
concepts of memory paging or process swapping are not likely to be used. In such systems, 
generally all programs reside in fixed read-only memory. Likewise, sufficient read/write data 
memory should be designed into a system. Removable or moving magnetic media are usually 
only used for data collection, momtoring, and secondary storage. 

If memory paging and process swapping are proposed for use in an embedded safety system, the 
design should be reviewed and reconsidered in light of the above. 

8.1.1.3 Minimizing Memory Bank Switching and Shadow Memory 

The PL/M linker and locator programs can be manipulated to produce sections of binary code that 
have the same address space as other program modules, usually by means of a hardware bank-
switching mechanism devised by the system hardware designers. This mechanism is commonly 
used in smaller micro-controller architectures (limited to 64k) when the complete address space 
has been consumed. 

Use of hardware bank-switching, and its associated software housekeeping, should be avoided 
if at all possible because it is a source of unreliability. Great care must be taken to ensure that 

NUREG/CR-6463 8-2 



program and data code is where it is thought to be. Interrapts and exceptions may cause the 
vectoring of the program to an address page that has been switched out of working memory. 

8.1.2 Predictability of Contiol Flow 

Control flow defines the order in which statements in a program are executed. Control statements 
determine sequential execution of code, conditional branching, iteration and looping, and 
procedure invocation (Meek, 1993). A predictable control flow allows an unambiguous 
assessment of how the program will execute under specified conditions. Attributes related to safe 
control flow include the following: 

• Maximizing structure 
• Minimizing control flow complexity 
• Initializing variables before use 
• Single entry and exit points for subprograms 
• Minimizing interface ambiguities 
• Use of data typing 
• Accounting for precision and accuracy 
• Order of precedence of arithmetic, logical, and functional operators 
• Avoiding functions or procedures with side effects 
• Separating assignment from evaluation 
• Proper handling of program instrumentation 
• Controlling class library size 
• Minimizing use of dynamic binding 
• Controlling operator overloading. 

These attributes and their relevance to safety are discussed in the following sections. 

8.1.2.1 Maximizing Structure 

The generic guideline applies. The PL/M language supports structured programming. Although 
PL/M does have a goto statement, in almost all cases a structured prograrnming construct can 
be found to replace or eliminate it. Structure is maximized by eliminating goto statements and 
using appropriate block stractured code instead. The PL/M constructs of DO . . CASE, DO . . WHILE, 
iterative DO and I F . , THEN . . ELSE permit branching with a defined return without introducing 
the uncertainty of control flow associated with the goto statement. 

Guidelines, recommendations, and examples for enhancing a safe program using PL/M's 
structured constructs are provided below. 
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DO..END Blocks. The simple DO.. END statement pair is a building block of structured 
programming. The DO block in PL/M is sometimes confused with the active DO statements 
described below. The following example of a simple DO block is provided to clarify 
program blocks: 

DC-

END; 

Statement 1 
Statement 2 
Statement 3 

Statement n 

DO CASE Blocks. The DO CASE statement in PL/M is a simpler construct than the CASE 
or SWITCH statement found in other languages and it must be used with care. The main 
problem with the PL/M CASE statement is that it is unbounded. It is quite easy to generate 
an out-of-bounds CASE value that will then branch into inconect code. The code segment 
in the example below will produce unexpected and possibly disastrous results if ETEST 
is not in the range of 0 to 4. 

ETEST = 5; 
DO CASE ETEST; 

TEST = TEST + 1; 
TEST = TEST * TEST; 
; 
TEST = TEST - 1; 
CALL NOTEST; 

END; /* End of DO CASE ETEST 

/* 
/* 
/* 
/* 
/* 
*/ 

case 0 
case 1 
case 2 
case 3 
case 4 

*/ 
*/ 
(null stmt)*/ 
*/ 
*/ 

The reason for this construct is that the PL/M compiler generates an anay of addresses 
(pointers) for each of the cases defined. Each address in the anay points to a section of 
code for the particular CASE element. At the end of each code element, an absolute branch 
statement takes the code to the next statement after the DO CASE. If evaluation of the 
CASE index results in an out-of-range value, that inconect value attempts to access a 
pointer to a nonexistent anay element fetching a pointer to "garbage". Left unbound by 
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the I F . . . THEN . . . ELSE statement, the DO CASE would subsequently perform a "wild" 
branch to the location pointed to by the enoneous pointer. 

In contrast, other languages have a bounded CASE-like statement. The SWITCH 
statement in C, for example, will yield a default statement, or act as a null statement if 
the evaluated switch index does not match a vaUd case statement. For programmers with 
a background in C who are about to embark on a PL/M project, this statement may be a 
source of potential problems. 

This shortcoming of PL/M can be conected by containing the DO CASE statement within 
a condition (i.e., an IF statement) that checks whether the DO CASE index is within the 
valid range. In the following example, if ETEST is negative or greater than 4, the ELSE 
clause will catch and handle the exception. The DO CASE statement will be ignored when 
ETEST is out of range. 

IF (ETEST >= 0) AND (ETEST < 
THEN DO CASE ETEST; 

TEST = TEST + 1; 
TEST = TEST * TEST; 
; 
TEST = TEST - 1; 
CALL NOTEST; 

END; 

5) 

ELSE CALL TEST_NUMBER_EXCEPTION 

/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

Confine cases to [0. 
case 0 */ 
case 1 */ 
case 2 (null stmt)*/ 
case 3 */ 
case 4 */ 
End of DO CASE ETEST 
handle exception */ 

4]*/ 

*/ 

■An alternative to this construct is to limit the use of the DO CASE statement to binary 
(i.e., true/false) conditions. 

DO WHILE Blocks and IF Statement. Relational comparisons normally result in OFFH 
being set for TRUE and OOH being set for a FALSE condition, DO WHILE only looks at 
the least significant bit to determine TRUE (=XXXXXXXIB) or FALSE (=XXXXXXXOB) 
condition. This may cause confusion when using both the DO WHILE statement and the 
IF statement as shown in the following examples 

Improper assumptions: OOH is FALSE; 01H..0FFH is TRUE 
OOH is FALSE; OFFH is TRUE; 
01H..0FEH undefined. 
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Correct assumption: xxxxxxxOB is FALSE; xxxxxxxlB is TRUE. 

Procedure Activation. In PL/M, there are three ways in which a procedure can be 
activated. In the first two a procedure is invoked by name, and there is no problem (in 
these forms the parameter list is optional): 

CALL name [{parameter l i s t ) ] ; /* untyped procedure form 
*/ 
name [{parameter list)]; /* typed procedure form 
*/ 

A third type of procedure invocation is possible: by location. This method contains risks, 
as the compiler does not fully check the number of parameters passed, nor does it provide 
automatic type conversion for these parameters. The invocation form for call by location 
is as follows: 

CALL location[.member-identifier] [{parameter list)]; 

The location value can be a stracture reference, but it cannot be subscripted. Use of the 
call-by-location method of invocation is not recommended. If this style must be used, 
detailed attention must be given to the parameter list. Since both type conversion and 
parameter checking occur at compile time, checking these constructs can prevent 

• problems. 

goto Statement. The goto statement should be avoided because it leads to unstractured 
code. Programming teams should be challenged to develop a complete software program 
without using a single goto statement. There is almost always a way to stracture code so 
that a goto statement is not needed, goto statements sometimes crop up when a 
programmer becomes frustrated with the handling of exception or enor handling code. 
Generally, it is better to handle enors and exceptions locally rather than to branch out of 
the middle of the block. Exception handling is further discussed below. 

Comments /*... */. The method in which PL/M implements comments can sometimes 
cause problems. In certain cases, unmatched comment pairs inadvertently "comment out" 
sections of source code statements. If this occurs in code segments that are infrequently 
used, such as safety handling exceptions, the fault can go unnoticed for a long period of 
time. In the following example, statement2 has been inadvertently commented out by the 
missing terminator of statementl. The compiler will not object as it is only scanning for 
the next comment terminator »*/". 
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statementl; /* This i s a comment about t h e s e . . . 
statement2; /* . . . t h r e e statements and how statement 2 . . . */ 
statement3; /* . . . has been accidentally commented out. */ 

In the PL/M-80 and PL/M-86 compiler, unbalanced comment pairs are not caught and 
flagged by the compiler when they occur at the end of a compiled module. In the 
following case, statement3 does not produce code because it is inadvertently commented 
out. The compiler also does not object and does not produce a warning or enor. In this 
case, we have a compiler weakness or shortcoming that does not object to unbalanced 
comment delimiter pairs. 

statementl; 
statement2: 
statement3; 

END; 

/* This is a comment about these... 
/* ...three statements and how statement 3.. 
/* ...has been accidentally commented out. 

*/ 

8.1.2.2 Minimizing Control Flow Complexity 

All generic guidelines under this heading apply to PL/M. "Excessive nesting can usually be 
avoided by the use of functions, subroutines, or CASE statements in place of in-line branches. 
Guidelines specifying a limit on the nesting levels should be included in the project's 
programming handbook. 

8.1.2.3 Initialization of Variables Before Use 

The generic guideline applies in PL/M. In embedded systems, uninitialized variables can often 
be the source of latent software bugs. 

In PL/M, the variables mitialized prior to execution are part of the CONSTANT segment and are 
normally stored with the CODE segment. If a variable requires an initial value, but is not a 
constant, then it must be initialized by the software. PL/M compilers do not contain built-in 
facilities to provide initialization of variables automatically. The compiler will help partition the 
code into data segments, but the user must write the code to move the data from a ROM segment 
into a RAM segment to initialize it at run time. The reason is that most PL/M applications do not 
run under a standard operating system, which would normally handle the initialization on program 
loading. 

8-7 NUREG/CR-6463 



Certain debugging tools can mask mitialization problems during development. In-circuit emulator 
systems may test and initialize emulation memory as part of the power-up sequence. Hence, when 
a user program executes in the emulation environment, every variable has unknowingly been 
mitialized to a known value (usually zero). When this same debugged code is moved to the actual 
operating platform, the RAM values will likely be random. This condition can result in latent 
flaws with safety significance — particularly in rarely used exception and enor handling code. 

One method of avoiding the above condition is to clear all RAM areas to zero intentionally and 
explicitly as part of the software mitialization process. In embedded systems, the software often 
performs some self-test on the hardware system well before the main program is entered. The 
pseudocode shown in the example below illustiates how PL/M startup code can provide proper 
"housekeeping" before beginning to execute. 

Power$On$RESET: 
/* Gain control of the System */ 

Disable Interrupts; 
Bring all peripherals to known state; 
Perform system self-tests; 

/* Setup operating environment */ 
Set up interrupt vectors; 
Initialize peripheral devices; 
Clear all RAM to zeros; 
Initialize program RAM variables; 
Enable appropriate interrupts; 

Main$Program$Loop: /* Drop into Main Program */ 
Statement 1; 

8.1.2.4 Single Entry and Exit Points in Subprograms 

The generic guideline applies in PL/M. Multiple entry and exit points in a subprogram introduce 
uncertainties in the control flow similar to the use of goto statements. Contiol flow predictability 
is enhanced when there is only a single entry point, and a single exit point from a subprogram. 
Because predictability of execution flow is important to safety, multiple entry points in 
procedures or functions should not be used even if the language supports them. 

• No calls to locations. When PL/M procedures are invoked by name, they can only have 
one entry point, which is the name assigned to the procedure itself. However, PL/M also 
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allows a call to a location. This is dangerous as the compiler will not guarantee that the 
destination location is even a procedure or that it has a valid RETURN statement. Repeated 
invocations to this enant location will continue to PUSH data onto the system stack without 
a conesponding POP of the same data off the stack on exit. The result will be a system 
crash as the stack grows out of bounds. 

The example below illustiates how a second entry point can be dangerously assigned to 
a procedure. 

DO$IT$ALL: 

DO$SOME: 

PROCEDURE 
S ta t emen t^ 

S ta t emen t^ 

RETURN; 

(A, 
1 ; 

k ; 

B) 

/* 

'• 

L a b e l e n t r y p o i n t */ 

For safety related reasons, it is recommended that the procedure call-by-location not be 
used. A better method to accomplish the above is shown below. Here, two procedures are 
defined instead of one with multiple entry points. Both procedures now have only one 
entry point and one exit point. 

DO$SOME: 

DO$IT$ALL: 

PROCEDURE 
S t a t e m e n t _ l ; 

S t a t e m e n t n ; 
RETURN; 

PROCEDURE (A, B ) ; 
S t a t e m e n t _ l ; 

CALL DO$SOME; 
RETURN; 
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8.1.2.5 Minimizing Interface Ambiguities 

Interface enors in argument lists and messages passed to other program entities account for many 
coding enors. These enors may appear syntactically conect to the compiler and hence go 
unnoticed until runtime. An example of such an enor is reversing the order of arguments when 
caUing a procedure. Unfortunately, PL/M offers limited safeguards to prevent such problems (i.e., 
a linker check for the number and type of parameters). 

The following specific guidelines apply: 

• Use templates during code development. A template can provide a useful mechanism for 
preventing argument list enors. In the example below, each procedure when written 
includes a calling sequence template stored as a comment in the procedure's header block. 
Each time a procedure invocation is to be coded, the programmer should COPY the calling 
template (three lines in the following example) and PASTE it where the invocation should 
occur. The comment delimiters are then removed, and the associated parameters become 
part of the program. Once the invocation has been coded, the remaining commented 
declaration lines can be deleted. By having all of the information at hand at the coding 
point, the programmer does not risk guessing at the parameter specifications. Templates 
should also be built for system procedures and buUt-in functions. The following example 
shows a procedure CALL template: 

/ * * * * * * * * * + * + • * * * + + * * * * * * * * * * * * * * * * * * + * * * * * * * * * * * * * + * * * * * * * * * * * * * * * / 
/* Calling Template: */ 

/* CALL FIRE$LASER (CHANNEL, DURATION, POWER$LEVEL) ,- */ 
/* DECLARE CHANNEL BYTE; */ 
/* DECLARE DURATION, POWER$LEVEL REAL; */ 

/* */ 
/*++********************************+**************•***********»***/ 
FIRE$LASER: PROCEDURE (CHANNEL, DURATION, POWER$LEVEL); 

DECLARE CHANNEL BYTE; 
DECLARE DURATION, POWER$LEVEL REAL; 

• Parameter Validity Checking. In any language, including PL/M, active checks can be 
placed in the code to ensure that proper parameters have been passed. In the 
FIRE$LASER example below, checks can be placed at the beginning of the procedure to 
ensure that all parameters passed are valid. A compound IF statement is used to verify 
data before the actual procedure logic is invoked in the following example. 
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FIRE$LASER: PROCEDURE (CHANNEL, DURATION, POWER$LEVEL); 
DECLARE CHANNEL BYTE; 
DECLARE DURATION, POWER$LEVEL REAL; 
DECLARE DURATION$LOW LITERALLY '0.0' 
DECLARE DURATION$HI LITERALLY '3.0'; 
DECLARE POWER$LOW LITERALLY '0.0',-
DECLARE POWER$HI LITERALLY '100.0'; 

IF ( ((CHANNEL = 1) OR (CHANNEL 
AND ((DURATION > DURATION$LOW) 

; /* 
/* 
/* 
/* 

Minimize literals in 
...code by declaring. 
...them centralized.. 
...in the header. 

= 2)) 
AND 

AND ((POWER$LEVEL) > POWER$LOW AND 
) THEN DO; 

... /* Code to fire the 
END; 

END; /* End Of FIRE$LASER */ 

Laser 

..*/ 
•*/ 
*/ 
*/ 

(DURATION < DURATION$HI) ) 
(POWER$LEVEL < POWER$HI)) 

*/ 

In areas of safety-critical applications, this overhead is justified to ensure that parameters 
passed are within acceptable range. Although these parameters may have been checked 
elsewhere, these checks add an extra level of safety if some of the calling code is modified 
inconectly during maintenance in the future. 

8.1.2.6 Use of Data Typing 

The generic guideline applies. Acceptance of data that is different from that intended for use by 
a subprogram or procedure can cause failures. The PL/M language provides for simple data 
typing of variables and constants. In PL/M the data types are fixed and predefined. Simple data 
typing provides for memory length and simple data pattern format checking. Thus, the data types 
BYTE and unsigned char or WORD and in t can occupy the same number of bits, but have 
different meanings when being evaluated. For example, WORD is 0...65535, but i n t is 
-32768.32767. 

In PL/M, only the constant data type is checked for a maximum and minimum range. This is only 
to ensure that the compiler can properly fit the data value into the specified data type. No user-
specified range check is made. Strong Data Typing, which allows a user not only to specify a data 
type but also to place valid range bounds on that data type, is not supported. 

Specific guidelines are as follows: 

• Actively check all mathematical and index values prior to use. As PL/M does not 
support strong data typing, this must be implemented manuaUy. Calculated values 
should be checked for their potential to overflow or underflow. Index values 
should be checked to ensure that they do not attempt to access out-of-bound anay 
or matrix elements. Memory pointers should also be checked to ensure that they 
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point to valid memory areas. 

Avoid automatic or implicit type conversions. For clarity, readability, and 
comprehension, explicit type conversions should be used. 

Avoid mixed mode operations. Mixed mode operations should also be avoided for 
the same reasons as stated above. 

Limit the use of indirection with indices, pointers, and based variables to 
situations where no other reasonable alternatives exist. Validation should be 
performed on indirectly addressed data to ensure conectness of the accessed 
locations. 

Add explicit range checking. Adding explicit data checking when the data has not 
been validated previously can be prudent. In the example below, the variable 
DURATION is verified by the procedure CHECK$DURATION to ensure that its 
value is within a valid range. Line 34 of this example uses a compound I f 
statement to ensure that all laser parameters are in range before allowing the laser 
instrument to fire. The ELSE clause of this same statement on line 36 locally 
handles the case of one of these parameters being out of range. 
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1 
2 
3 
4 
5 
6 
7 
8 

9 
10 
11 
12 
13 
14 
15 
16 

17 
18 
19 
20 
21 
22 
23 
24 
25 

26 
27 
28 
29 
30 
31 
32 
33 
34 

35 
36 
37 
38 

END OF 

1 
1 
1 
2 
2 
2 
2 

2 
2 
2 
1 
2 
2 
2 
2 

2 
2 
2 
1 
2 
2 
2 
2 
2 

2 
2 
2 
1 
2 
1 
2 
2 
2 

3 
3 
2 
1 

PL/M-

STRONG$DATA$TYPE: DC-

DECLARE TRUE LITERALLY 'OFFH'; 
DECLARE FALSE LITERALLY 'NOT TRUE'; 

CHECK$DURATION: PROCEDURE (DURATION) BYTE; 
DECLARE CHK$FLAG BYTE, DURATION WORD; 
DECLARE DURATION$LOW LITERALLY '0'; 
DECLARE DURATION$HI LITERALLY '3'; 

IF ((DURATION > DURATION$LOW) AND 
(DURATION < DURATION$HI)) 

THEN CHK$FLAG = TRUE; 
ELSE CHK$FLAG = FALSE; 
RETURN (CHK$FLAG); 

END CHECK$DURATION; /* End of Procedure */ 

CHECK$POWER$LEVEL: PROCEDURE (POWER$LEVEL) BYTE; 
DECLARE CHK$FLAG BYTE, POWER$LEVEL WORD; 
DECLARE POWER$LOW LITERALLY '0'; 
DECLARE POWER$HI LITERALLY '100'; 

IF ((POWER$LEVEL > POWER$LOW) AND 
(POWER$LEVEL < POWER$HI)) 

THEN CHK$FLAG = TRUE; 
ELSE CHK$FLAG = FALSE; 
RETURN (CHK$FLAG); 

END CHECK$POWER$LEVEL; /* End of Procedure */ 

CHECK$CHANNELS: PROCEDURE (CHANNEL) BYTE; 
DECLARE (CHK$FLAG, CHANNEL) BYTE; 
DECLARE CHAN$A LITERALLY '3'; 
DECLARE CHAN$B LITERALLY '23'; 
DECLARE CHAN$C LITERALLY '19'; 
IF ((CHANNEL = CHAN$A) OR 

(CHANNEL = CHAN$B) OR 
(CHANNEL = CHAN$C)) 
THEN CHK$FLAG = TRUE; 

ELSE CHK$FLAG = FALSE; 
RETURN (CHK$FLAG); 

END CHECK$CHANNELS; /* End of Procedure */ 

LASER$SETUP$EXCEPTION: PROCEDURE; 
/* ...exception handling code here... */ 

END LASER$SETUP$EXCEPTION; 

FIRE$LASER: PROCEDURE (CHANNEL, DURATION, POWER$LEVEL); 
DECLARE CHANNEL BYTE; 
DECLARE (DURATION, POWER$LEVEL) WORD; 

IF ( (CHECK$CHANNELS(CHANNEL) ) 
AND (CHECK$DURATION (DURATION) ) 
AND (CHECK$POWER$LEVEL(POWER$LEVEL) ) 

) THEN DO; 
/* ... Code to fire the laser */ 

END; 
ELSE CALL LASER$SETUP$EXCEPTION; /* handle exception 

END FIRE$LASER; /* End of FIRE$LASER */ 
END STRONG$DATA$TYPE; /* End of Program */ 

-386 COMPILATION 

*/ 

8-13 NUREG/CR-6463 



8.1.2.7 Precision and Accuracy 

The generic guideline applies. The software application must provide adequate precision and 
accuracy for the intended safety application. Safety concerns are raised when the declared 
precision of floating point variables is not supported by analysis, particularly when small 
differences between large values are calculated. The following are specific guidelines: 

» Account for different hardware. The same data types, when used by different compilers, 
may have different precision. For instance, the data type WORD is a 16-bit number in 
PL/M-86 and PL/M-286, but becomes a 32-bit number in PL/M-386. Likewise DWORD 
is a 32-bit number in PL/M-86/286 and a 64-bit number in PL/M-386. 

• Account for optimization in floating point computations. Unexpected results can occur 
during compiler code optimization. This is especially an issue with floating point 
computations. A compiler might replace ((1.0+x) -x) with 1.0 at compile time, when 
the floating point rounding enor is what the program is trying to compute. Note that the 
above optimization is always guaranteed to be conect for integer types. 

• Verify numeric precision in ported code. In porting code containing calculations, the 
range of precision of the datatypes should be investigated and verified. This is particularly 
trae when porting code downward to a less powerful platform. Even though the data types 
may be syntactically equivalent, their precision may be inadequate for the function to be 
ported. 

• Express precision in terms of numeric ranges. Comment block procedures with precise 
numeric ranges (rather than data types) are shown in the following example. 

/* Designed for the 
DECLARE 
DECLARE 
DECLARE 

PL/M-
DELTA$VOLTS WORD; 
VOLT$l HWORD; 
LED$V BYTE; 

-386 
/* 
/* 
/* 

platform. 
Range: 
Range: 
Range: 

0. 
0. 
0. 

. (2** 

. {2** 

.255 
•32)-
-16)-

-1 
-1 

*/ 
*/ 
*/ 
*/ 

If the code in this example were to be run on both an 80286 and an 8086-based platform, 
the values for DELTA$VOLTS and VOLT$ l would have be changed from WORD to DWORD, 
, and from HWORD to WORD, respectively, in order to maintain the same mathematical 
• precision. This becomes a simpler task if the intended data range has been expressed in 
comments by the original designer of the procedure, such as in the example shown below. 
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/* Designed 
DECLARE 
DECLARE 
DECLARE 

for the PL/M-
DELTA$VOLTS DWORD; 
V0LT$1 
LED$V 

WORD; 
BYTE; 

-86 
/* 
/* 
/* 

or 286 
Range: 
Range: 
Range: 

platforms. 
0. 
0. 
0. 
.(2**32) 
.(2**16) 
.255 

-1 
-1 

*/ 
*/ 
*/ 
*/ 

In the above example, expressing the variable only by data type leaves the issue of 
changing the data type ambiguous. Without this information, the programmer 
inadvertently or unknowingly may leave DELTA$VOLTS as data type WORD in the porting 
process. 

8.1.2.8 Use of Parentheses Rather than Default Order Precedence 

The generic guideline applies. The default order of precedence of arithmetic, logical, and other 
operations varies among languages. Developers or reviewers may make inconect precedence 
assumptions when explicit parentheses are not used. In moving between languages with similar 
statement definitions such as "C" and PL/M, developers and reviewers are particularly vulnerable 
to these wrong assumptions about order of operations. 

The explicit use of parentheses and other mechanisms for ensuring a clear statement of the order 
of evaluation of operations should be used. In some cases, complex statements should be broken 
down into two or three simple statements to enhance clarity and readability and to ensure that the 
compiler properly evaluates the statement expressions. This is particularly the case in floating 
point computations when compiler optimization is used. Such expressions should be broken up 
into multiple statements because the ordering of statements is usually preserved, even by 
optimizing compilers. 

8. 1.2.9 Avoiding Functions or Procedures with Side Effects 

Generic guidelines are applicable. 

8.1.2.10 Separating Assignment from Evaluation 

Separation of assignment statements from the evaluation of expressions is particularly important 
in PL/M because the syntax defines two meanings for the token "=" (equal sign). The equals sign 
can represent the logical relational operator "equals," or it can represent the assignment of a value 
to a variable. PL/M attempts to compensate for this by defining an embedded assignment token 
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of": =" (colon, equals). The latter is explained below. Embedded assignment can also occur by 
invoking a typed procedure within an expression. 

Embedded assignment statements should be separated from the evaluation of expressions. The 
PL/M language documentation (Intel, 1990) explicitly states that: 

"...the rules of PL/M do not specify the order in which 
subexpressions or operands are evaluated. When an embedded 
assignment changes the value of a variable that also appears 
elsewhere in the same expression, the results cannot be 
guaranteed." 

Intel does not guarantee the order in which the following ambiguous expression will be 
evaluated. In addition, the compiler may even interpret the statement differently in various levels 
of compiler optimization. The expression: 

A = (X:=X+4) + Y*Y + X; 

could result in A being assigned either of the following: 

(X+4) + Y*Y + (X+4); 
(X+4) + Y*Y + X; 

The ambiguity can be removed by separating out the embedded assignment statement, and 
recoding explicitly as the programmer intended it to be: 

X = X + 4 ; 

A l = X + Y*Y + X; 

X = X + 4 ; 

A2 = X + Y*Y + (X-4) ; 

or , 

In summary, safety concerns dictate that assignments be separated from evaluation in order to 
avoid ambiguity and to improve readability of the code. Modem compilers do well in constructing 
optimized code. The inclusion of a large number of terms in an expression in source code 
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statement rarely results in more efficient machine code than the same logic broken out into two 
or more lines of code. 

8.1.2.11 Proper Handling of Program Instrumentation 

The generic guideline applies. Program instrumentation is used to collect and output certain 
internal state values of a program during execution. Program instrumentation is one method that 
allows a developer to check that particular aspects of a specification have been conectiy 
implemented (Liao, 1991). Use of program instrumentation is often the only method for observing 
the operation of systems containing proprietary and/or protected operating systems. Fortunately 
for the vast majority of PL/M users, nonintiusive real-time methods of obtaining the same 
information exist through use of the in-circuit emulator development tool. 

In-circuit emulators (ICE) allow detailed data about a program's execution to be collected in a 
non-invasive manner while the program executes in real-time. Since no code is necessarily added 
to the program, the program being executed under the ICE unit can be the exact code to be run 
in the final system. 

If an ICE system;is not available, or for some reason program instrumentation appears preferable, 
the following guidelines and recommendations are offered: 

• . Minimize run-time perturbations. Instrumentation that interferes with the normal 
execution flow and timing rhythms is undesirable in safety applications because it will 
change the normal operation pattern of the program. Less intrusive methods should be 
employed, such as collecting data in memory and later processing them in a background 
task. 

• Instrumentation source code should remain visible. PL/M does not provide any compiler 
features that generate hidden or concealed code for a "debug" mode of operation. 
Compiler directives may be used, however, to compile program instrumentation 
conditionally into the code. This is generally acceptable if the two models do not depart 
as discussed above. 

• Conform to software instrumentation and test guidelines. Program review is facilitated 
and safety enhanced if instrumentation and test procedures are described in the project-
specific handbook. Program instrumentation and test are often detailed in a separate test 
specification. These test specifications should describe the program instrumentation and 
its scope in detail. 
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8.1.2.12 Control of Class Library Size 

The generic guideline does not apply. Because PL/M is an older language, it does not contain 
any of the features or concepts related to object-oriented methods, including classes, inheritance, 
operator overloading, and polymorphism. Object-oriented characteristics can be enhanced by 
controlling limits on subprogram and module sizes. 

8.1.2.13 Minimizing Dynamic Binding 

PL/M does not support dynamic binding of code segments. As PL/M is primarily an embedded 
language that executes from nonvolatile ROM, the dynamic binding of code during run time is 
not supported. However, bank switching, which is a hardware form of dynamic binding, 
sometimes appears. Hence, the following specific guideline for this issue. 

The PL/M object code linkers and locate programs do allow for the generation of overlay or 
shadow ROM code (see section 8.1.1.2) by the use of hardware bank switching techniques. These 
represent a risk and should therefore be eliminated. Bank switching is difficult to test and debug, 
particularly in the areas of fault and interrapt handling. 

Most cases of bank switching appear in modifications to a system when the complete address 
space becomes full. From a safety standpoint, bank-switching is never worth the risk and effort. 
It is preferable to upgrade the hardware to the next microcomputer architecture containing a larger 
memory address space. 

8.1.2.14 Control of Operator Overloading 

The generic guideline does not apply. The PL/M language does not support the concepts of 
polymorphism or operator overloading. 

8.1.2.15 Compiler Optimization and Hardware Flags 

PL/M-86 and later compilers are capable of performing extensive optimizations on the object 
code generated by earlier passes of the compiler. Such optimization changes the exact sequence 
of machine code produced from a given sequence of PL/M source statement. 

One of the impacts is that the microprocessor hardware flags cannot be predicted or determined 
for any given point in a program. As an apparent carry-over from the early unoptimized PL/M-80 
compiler, the language provides built-in functions that attempt to return the cunent value of the 
hardware flags. These built-in functions should be used with caution if used at all. They are listed 
in the following table. 
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Table 8-1 Optimization and Hardware Flags. 
Hardware flag bits 
Carry-rotation 
functions 
Decimal adjust 
function 
Hardware register 
Arithmetic operators 

CARRY, SIGN, ZERO, PARITY 
SCL, SCR 

DEC 

FLAGS 
PLUS, MINUS 

Functions that use these hardware flags should be programmed in assembly language so that 
predictable contiol can be achieved. It is also recommended that, where wananted, a library of 
these functions be developed in one module so that they might be isolated and better maintained. 

8.1.3 Predictability of Timing 

Predictability of timing is cracial in a safety system used in real time contiol (Kopetz, 1993; 
Leveson, 1992). Response to asynchronous interrapt inputs must be predictable to ensure that 
safety-related procedures are allowed to complete execution within their precise window of time 
according to specification. In addition, output values must be computed and prepared according 
to precise timing requirements. 

8.1.3.1 Minimizing the Use of Tasking 

Tasking is undesirable in safety systems unless there is a compelling justification. The PL/M 
language does not provide any language facility for implementing concunent processing. Intel 
does, however, provide a compatible real-time operating system kernel known as iRMX. 

If an operating system kernel such as Intel iRMX is used, it should be provided with complete 
source code. Although the user documentation for such a system may be extensive, developers 
need to have access to all aspects of this controlling code to avoid safety-related problems that 
may be hidden from view. 

8.1.3.2 Minimizing the Use oflnterrupt-Driven Processing 

Use of interrapts to handle the acceptance and processing of plant and operator inputs can reduce 
average response times. It also usually leads to nondeterministic "maximum response times. 
Improper use of interrapt-driven processing has been implicated in at least one fatal accident 
(Leveson, 1992). Documents and standards related to digital system safety generally discourage 
or prohibit the use of interrapt-driven processing to facilitate analysis of synchronization and run
time behavior and to avoid the nondeterministic response times inherent in interrupt-driven 
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processmg. 

However, use of interrapts may be necessary to capture asynchronous data within a certain 
deadline. Not doing so may allow the external data to change or become overrun with other new 
data. The following specific guidelines are applicable. 

• Interrupt handlers should be as short and simple as possible. The processing associated 
interrapts should be minimized. The interrapt handler should only access, queue, and flag 
data for processing at a later time. There should be only a single path of execution with 
no delays or waiting involved. 

• Avoid nested interrupts. Nested interrapts should not be permitted in safety systems. 

• The interrupt handler should not set or otherwise alter shared data. In general, the 
interrapt handler should write data into a dedicated memory area or buffer. However, if 
the handler must access shared data, some form of locking or mutual exclusion may be 
required when using interrapts. 

The foUowing is a descriptive example of an interrapt driven system. This basic design has been 
used in a number of successful biomedical and process control instruments. A hardware timer 
provides a system "heartbeat" of 30 ms. This heart beat time is arbitrarily chosen and could be set 
to any reasonable time-slice interval. 
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Every 30 ms the timer interrupts the background task and performs any time 
critical tasks. The interrupt duty cycle is designed to not exceed 50 percent. 

Hardware signals are latched and generate a level two interrupt. Interrupt 
handlers are designed to be low in overhead. They execute as a fast "store, 
flag, and return." In other words, on interrupt they: 

Fetch the waiting input data, 
Store it in a queue, 
Set a data available flag, and 
return to processing. 

This approach eliminates the use of interrupt processing and yet acknowledges 
asynchronous input data quickly. 

Every 30 ms the level one timer interrupts. The level one task then performs 
the following: 

• Checks critical areas of the system for validity. 
• Looks for new queued input data. 
• Calculates any new controlled output values. 
• Outputs new values (if any). 
• Returns from Interrupt. 

When interrupt processing has been completed, the system returns to background 
processing. Tasks that are not time critical are continuously processed in 
a priority order in this task. Examples include writing data to a display 
buffer, storing data in a data cartridge and similar tasks. 

Tasking has been minimized in this system. In addition, and most important, the tasking that does 
exist is explicitly controUed; it is not delegated to a black box operating system kernel. Interrapts 
are used as necessary to capture (but not process) real-time events. They then terminate as rapidly 
as possible. The timer-interrupt routine is efficient enough to complete all of its tasks within 15 
ms. 

8.2 Robustness 

Robustness (or survivability) refers to the capabiUty of the software to continue execution during 
abnormal or other unanticipated conditions. Robustness is an important safety system attribute 
because unanticipated events can occur during an accident or excursion. The ability of the 
software to continue momtoring and controlling under such circumstances is vital. The 
intermediate attributes for robustness are as follows: 
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Controlled use of software diversity 
• Controlled use of exception handling 
• Input and output checking. 

These attributes and their relevance to safety are discussed in the following sections. 

8.2.1 Controlled Use of Software Diversity 

The decision to employ diverse software implementations is a design-level function. The PL/M 
languages offer no features that require more than the generic concerns under this heading. 

8.2.2 Controlled Use of Exception Handling 

Exception handling deals with abnormal system states and input data. Exception handling 
provisions in some languages facUitate the estabUshment of alternate execution paths in the event 
ofoonditions that, although unexpected, result in states that can be defined in advance. Problems 
can arise in the use of exception raising and handling, however, because execution flow during 
exception conditions is often difficult to trace. 

Attributes that pertain to safe exception handling include the following: 

Local handling of exceptions 
• Preservation of external control flow 

Uniformity of exception handling. 

PL/M has no native facilities that support exception handling. Synchronous exceptions can be 
handled locaUy, but asynchronous ones may require an interrapt or trap handler to process them. 
Asynchronous exceptions can only be handled by interrupt or trap handlers. The effect of 
handling the exception in this way can be localized to the module containing the handler, and 
flags can be used to communicate the enor to other modules. Sometimes polling can be used to 
turn an asynchronous condition into a synchronous one. 

8.2.3 Input and Output Checking 

Input and output data should be validated before being used. Corraption of data, whether due to 
a transient failure of a sensor, a flipped memory bit, or an invalid calculation, can have serious 
consequences on subsequent processing if the enor is aUowed to propagate. PL/M does not offer 
any specific language features to accomplish this checking. However, data can be validated as 
part of the application software as shown in the following example. 
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The example incorporates both input/output checking and local exception handling. This 
procedure checks and confines the input and output data to specific ranges. In addition, the 
exceptions raised from data being out of range are handled by a local procedure. 

Lines 6 through 18 in the example are nested local procedures that perform input and output data 
checking. Also, the procedure HANDLE$EXCEPTIONS provides a local facility for handling the 
exceptions encountered in this procedure. 

The reason for using a procedure to accomplish this is that procedures provide isolation and 
localization of the exception code. They also increase readabflity which promotes review and 
maintenance. Although not shown in this example, the complete limits and default values for the 
input and output data should be explicitly defined within the local procedure with a series of 
DECLARE.. .LITERALLYstatements. 

Use of this format also provides some of the positive attributes of data abstraction and 
encapsulation. All data and procedures necessary to handle data I/O checking and exceptions are 
contained within procedure CALCULATE$VELOCITY. 

On line 20 of the example, the data input values are checked and adjusted. If any are out of range, 
an exception can be raised that will be handled later in the procedure. Between lines 20 and 21, 
the full calculation of velocity wiU occur. Line 23 then checks the results of the computations and 
adjusts them before making the data available as output from this procedure. 

During execution of this procedure, data input and output exception flags may have been raised 
by either local procedures IN$ CHECK or OUT$ CHECK. Perhaps further processing of these noted 
exceptions is necessary. A message may have to be sent to another module warning of a possible 
degradation of the system. This might be done in local procedure HANDLE$EXCEPTIONS. 

If necessary in the design, an exception flag can be returned from the typed procedure 
CALCULATE$VELOCITY. 
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10 
11 
12 
13 

2 
3 
3 
3 

/ • i t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / 
3 1 CALCULATE?VELOCITY: PROCEDURE (CHAN$1, CHAN$2, TIME) BYTE; 
4 2 DECLARE (CHAN$1, CHAN$2, TIME) REAL; 
5 2 DECLARE V$EXCEPT BYTE; 

/* Local Procedure: IN$CHECK */ 
/* Checks that input data is within valid range. */ 
/* Substitutes Max/Min data for out of range data ... */ 
/* .. so that calculations can continue. */ 
/•A****************************************************/ 

6 2 IN$CHECK: PROCEDURE BYTE; 
7 3 DECLARE I$EXCEPT BYTE; 

/* ... other statements ... */ 
8 3 RETURN (I$EXCEPT); 
9 3 END IN$CHECK; 

/* Local Procedure: OUT$CHECK */ 
/* Checks that output data is within valid range. */ 
/* Adjusts as necessary so that computation and... */ 
/* ... control can continue as normal. */ 
OUT$CHECK: PROCEDURE BYTE; 

DECLARE 0$EXCEPT BYTE; 
/* ... other statements ... */ 

RETURN (0$EXCEPT); 
END 0UT$CHECK; 

/* Local Procedure: HANDLE$EXCEPTIONS */ 
/* ...code to handle the out-of-data-range exception */ 
/* ...locally so that calculations can continue. */ 

HANDLE$EXCEPTIONS: PROCEDURE BYTE; 
DECLARE C$EXCEPT BYTE; 

/* ... Handle local exceptions here ... */ 
C$EXCEPT = FALSE; 
RETURN (C$EXCEPT); 

END HANDLE$EXCEPTIONS; 

19 2 DECLARE (EXCEPT?IN, EXCEPT$OUT) BYTE; 
20 2 EXCEPT$IN = IN$CHECK; /* Check data about to be used */ 

/* ...Perform all processing of data here... */ 
/* ... other statements ... */ 

21 2 EXCEPT$OUT = OUT$CHECK; /* Check data just computed */ 
V$EXCEPT = TRUE; 
IF (EXCEPT$IN OR EXCEPT$OUT)THEN V$EXCEPT = HANDLE$EXCEPTIONS; 
RETURN (V$EXCEPT); /* exception flags can also be... */ . 

/* ...returned to caller if desired. */ 
END CALCULATE$VELOCITY; 

14 
15 
16 
17 
18 

2 
3 
3 
3 
3 

22 
23 
24 
25 

2 
2 
2 
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The above design preserved the flow of the control logic while handling any exceptions. No goto 
statements have been used to branch to other outside exception handling code, thus transferring 
flow to another control path. 

8.3 Traceability 

As defined earlier, tiaceability refers to attributes that support and allow verification of 
conectness and completeness when compared to the software design specifications. The 
intermediate attributes for tiaceability are as follows: 

• Readability 
• Use of built-in functions 
• Use of compiled libraries. 

Readability is an intermediate attribute shared by traceability and maintainability; it is discussed 
under that heading in Section 8.4 below. The latter two attributes and the PL/M features relevant 
to safety are discussed in the following section. 

8.3.1 Use of Built-in Functions 

Generic guidelines apply to PL/M. Concerns over the use of built-in functions can be addressed 
by controlling the use of built-in functions through organizational or project-specific guidelines. 
Regression test cases make it possible to establish conformance with expected results for new 
releases of compilers and runtime libraries. Therefore, regression test cases, procedures, and 
results of previous testing for allowable built-in functions should be maintained. Test cases 
should assess behavior for out-of-bounds and marginal conditions in the specific runtime 
environment. Examples of these conditions include negative arguments on square root functions 
and improperly terminated strings. The built-in functions included with PL/M-386 are shown 
below. 

LENGTH, LAST, SIZE 
DOUBLE, REAL, FLOAT, FIX 
ABS, IABS 
CHARINT, SHORTINT, INTEGER 
Rotate (ROL, ROR) 
Arith Shift (SAL, SAR) 
Compare (CMPB, CMPHW) 
String Mismatch (SKIP) 
Set String (SETB, SETW) 
Find Bit (SCANBIT) 
Lock Set (LOCKSET) 
CAUSE?INTERRUPT 
CARRY, SIGN, ZERO, PARITY 
Decimal Adjust (DEC) 
INPUT, OUTPUT 
GET$REAL$ERROR 

LOW, HIGH 
INT, SIGNED, UNSIGN 
BYTE, WORD, HWORD 
SELECTOR, OFFSET, POINTER 
Log Shift (SHR, SHL) 
Move (MOVB, MOVW, MOVHW) 
Find (FINDB, FINDW) 
Translate String (XLAT) 
Copy Bit (MOVBIT) 
Time Delay (TIME) 
Interrupt ENABLE, DISABLE 
HALT 
PLUS, MINUS 
STACKPTR, STACKBASE 
SET$REAL$MODE 
WAIT$FOR$INTERRUPT 
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8.3.2 Use of Compiled Libraries 

The generic guidelines apply to PL/M. CompUed libraries are routines written and compiled by 
a group or organization, usually outside and removed from the current development group. 
Compiled libraries are often sold by third-party providers and are available only in object-code 
format with detailed calling and usage documentation. For the most part they are documented 
"black boxes" with their internal methodologies and algorithms hidden. Concerns for such 
libraries are similar to those for built-in functions. 

8.4 Maintainability 

Attention given to maintainability issues in program design makes it easier and safer to make 
changes to the program. These issues reduce the likelihood of enors inadvertently being 
introduced during the change or upgrade process. Addressing these issues at design time is really 
an investment in the future robustness of the program. 

The following attributes are related to maintainability as it affects safety: 

• Readability. These are attributes of the software that facilitate the understanding of 
the software by project personnel. 

• Data Abstraction. This is the extent to which the code is partitioned and modularized 
so that the collateral impact and probability of unintended side effects due to software 
changes are minimized. 

• Functional Cohesiveness. This is the appropriate aUocation of design-level functions 
to software elements in the code (i.e., one procedure, one function). 

• Malleability. This is the extent to which areas of potential change are isolated from 
the rest of the code. 

• Portability. The major safety impact is the avoidance of nonstandard functions. 

These attributes are discussed in detail in the sections below. 

8.4.1 Readability 

The attribute of good readability allows the software to be understood by qualified personnel 
other than the original author of the code. Readable source code adds to the documentation of the 
program itself (self-documenting). Studies have shown that manual code reading is more effective 
than stractural testing or functional testing for finding code faults (McGarry, 1992). Therefore, 
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it seems that good readability will enhance the probability of locating faulty or weak code that 
could cause faUures in operation or problems during maintenance. The following attributes make 
source code more readable: 

• Conformance to indentation guidelines 
• Use of descriptive identifier names 
• Comments and internal documentation 
• Limitations on subprogram size 
• Minimizing mixed language programming 
• Minimizing obscure or subtle prograrnming constructs 
• Minimizing dispersion of related elements 
• Minimizing the use of literals. 

PL/M aspects of these attributes are discussed below. 

8.4.1.1 Conformance to Indentation Guidelines 

Appropriate indentation facilitates the identification of declarations, contiol flows, nonexecutable 
comments, and other components of source code. Indentation guidelines are generally part of a 
project specification, organizational style, or standards document. In the paragraphs below, 
indentation issues, guidelines, and recommendations are discussed as they pertain to PL/M 
program blocks and control flow blocks. 

• Program blocks. Program blocks separate sequences of statements. In PL/M, the DO 
and END statements define the limits of a program block. In PL/M, program blocks 
can be nested. Each program block, therefore, provides a natural method of expressing 
the program logic by indenting. It is recommended that, for clarity and understanding, 
the program segments and blocks be indented consistently throughout the program. 

• Control flow blocks. Program control statements of DO . . .WHILE, DO CASE, 
iterative DO, and I F . . . THEN . . . ELSE also provide natural indentation segments. 

8.4.1.2 Descriptive Identifier Names 

The generic guidelines apply. , an identifier is the name of a variable, procedure, symbolic 
constant, or statement (label). Identifiers can be up to 31 characters long. The first character must 
be alphabetic, and the remainder may be either alpha or numeric.11 There is no distinction 

This applies to early versions of PL/M such as PLM-80. Later versions also allow the underscore 
character and either alpha, numeric, or the underscore as the first character. 
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between upper and lower case letters. The "$" (dollar sign) can be used to improve readability; 
it is not evaluated by the compiler as an identifier. An identifier containing a dollar sign is 
equivalent to the same identifier without the dollar sign. 

The following are language-specific guidelines: 

• Distinguish procedure and variable names. Variable names should be distinguished from 
procedure names by some convention (this can be project-specific). It is often convenient 
to give a hierarchy number to a module in addition to a name. The hierarchy number is 
used primarily for documentation purposes and with the prefix/suffix notation. Use of an 
identifier prefix (or suffix) allows information about the identifier to be attached or 
carried. 

• Loop variables should be given some standard nomenclature. As these variables are often 
local counters and have no other meaning except their local use as a counter or index, 
programmers may be tempted to choose any nondescript name that comes to mind. A 
standard nomenclature, as in lines 5 and 6, allows these variables to be identified readily. 

• Label data from an external source. In general, data that is received from an external 
source, such as a sensor or data port, should have a name descriptive of that source. 
VIBRATION$X, VIBRATION$Y, VIBRATION$Z is a better descriptive label than 
IO$PORT$I, IO$PORT$17, and IO$PORT$23. The declaration of these might be as 
shown below. 

DECLARE VIBRATION$X BYTE; /* X-axis vibration component from Port 01H */ 
DECLARE VIBRATION$Y BYTE; /* Y-axis vibration component from Port 017H */ 
DECLARE VIBRATION$Z BYTE; /* Z-axis vibration component from Port 023H */ 

Avoid reserved words or words similar to existing reserved word. PL/M, being an older 
language, does not support features such as overloading and pre-compiled headers. 
Reserved words or even identifiers containing reserved words should never be used as 
identifiers. It is best to give wide berth to identifiers similar to reserved words. These 
identifiers may become reserved words in the course of the code's lifetime due to 
compiler changes. 

8.4.1.3 Comments and Internal Documentation 

Weak or lacking internal program documentation and comments raise safety concerns. Sparse, 
incomplete, or outdated program comments can impede code review and mislead those 
performing program modification and maintenance. 
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Comments are important elements of safety software that should be maintained with each revision 
of the source code, no matter how minor the change. 

Although the concerns with comments in PL/M are essentially generic language ones, the 
following example may be helpful to reviewers in judging the adequacy of comments in the target 
of their review This example shows basic information about the module as well as where 
additional information can be found. Note how the comments indicate that the outline of the 
software documentation has been designed and space has been allocated in section 4.2.2 for 
detailed documentation of this module. 

RANGING$LASER: DO; /* Module */ 
/************************************************* 
/* Module 4.2: RANGING$LASER 
/* Revision #: 2.2 
/* Revision Date: December 12, 1993 
/* Revised by: Sally Newprogrammer, Approved by: Sarah Boss 
/* 
/* Function: This module contains all of the software functions 
/* necessary to initialize, aim, arm, and fire the 
/* main system ranging laser unit. All routines, data, 
/* and declarations necessary to operate the laser are 
/* contained in this module. 
/* 
/* Documentation: This module is documented in further detail in 
/* section 4.2.2 of "ABC Systems Software Manual" 
/* 3-100422 Rev C (December 1993) 
/* 
/* Include Files: File LASER.EQU should be included in any 
/* external module which uses the procedures 
/* contained within. 
/* 
/* Associated Hardware: Apex 150 Ranging Laser #43-4568-01A 
/* 
/* Module author: John C. Programmer 

/* Original Date: January 14, 1983 

.... statements ... 

END; /* End of Module RANGING$LASER */ 

In the above example, the complete module has been encapsulated; therefore the only outside 
references are contained in the include file named "LASER.EQU." Other modules may not be so 
self-contained and may require other types of header information. For instance, utility subroutines 
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or procedures are often used many places in a program. Routines such as BCD$TO$BINARY, 
DISPLAY$TIME, etc. often have a "WHERE USED :" comment section in their header block. 

The following example illustiates a comment header block for procedures. The function is 
described nanatively. The inputs are described in real measure units. The range of valid 
arguments is also shown. Since this is a utility subroutine, the locations where it is used 
throughout the program are shown. 
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/* Procedure: AIM$LASER (X, Y, Z) BYTE PUBLIC; 
/* Revision Date: December 1, 1992 
/* Revised by: Sally Newprogrammer, Approved by: Sarah Boss 
/* 
/* Function: This procedure physically aims the laser unit base 
/* on coordinate input information X, Y, and Z. Servo 
/* information is calculated, and the servos activated 
/* by calling private procedure SET$SERV0 located in 
/* • this module. If the status return for the servo 
/* operation is OK, a TRUE indication is returned to 
/* the Calling program. 
/* 
/* Inputs: Coordinates are in units of millimeters passed as real values. 
/* Precision must be to three decimal places. Valid ranges are 
/* as follows: 
/* X: 0.000 .. 100.000 
/* Y: 0.000 .. 24.750 
/* Z: 0.000 .. 75.000 
/* 
/* Where used: INIT.PLM: INIT$LASER 
/* MAIN.PLM: GET$RANGE, DEACTIVATE$LASER 
/* TEST.PLM: TEST$1, TEST$5, TEST$19 
/* 
/* Documentation: Section 8.2.9 of "ABC Systems Software Manual" 
/* 3-100422 Rev C (December 1993) 
/* 
/* Module author: John C. Programmer 
/* Original Date: January 14, 1983 

AIM$LASER: PROCEDURE (X, Y, Z) BYTE PUBLIC-
DECLARE (SX, SY, SZ, STATUS) BYTE; 
DECLARE (X,Y,Z) REAL; 

SX = SET$SERV0 (CHANNEL$1, X); /* Return status of servo move */ 

SY = SET$SERV0 (CHANNEL$2, Y); 
SZ = SET$SERV0 (CHANNEL$3, Z); 
/* ...other statements... */ 
RETURN (STATUS); /* Combined status of servos */ 

END; 

END AIM$LASER; /* End of AIM$LASER Procedure */ 
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Other items that might be included in comment header blocks and in line comment blocks include 
the following: 

• Performance requirements for the procedure 
• Unusual external interfaces and associated information 
• Enor handling and exception behavior and related information 
• Inputs and outputs of the module and their range of values 
• References to appropriate design documentation and charts 
• Purpose and expected results of blocks of in-line code 
• Expected results at branching junctures within a code segment 
• Expected actions and results of exception code 
• DetaUed in-line comments explaining unusual constructs and deviations from normal 

program practices. 

8.4.1.4 Limitations on Subprogram Size 

Only generic guidelines apply. 

8.4.1.5 Minimizing Mixed Language Programming 

The generic guidelines apply. Generally speaking, mixing prograrnming languages is a source 
of enor because of different calling conventions, register usage, and data representations. None 
of the Intel PL/M languages support in-line assembly language coding. 

However, mixed language coding and linking is sometimes necessary. When functions must be 
developed in a second language, they should be isolated and designed as loosely coupled as 
possible. If at all possible, parameters should be passed to the routine rather than accessed as a 
global entity. 

Where separate assembly code must be used, macros should be defined to hide calling convention 
details. 

8.4.1.6 Minimizing Obscure or Subtle Programming Constructs 

The generic guidelines apply. Obscure or subtle coding techniques should be avoided if at all 
possible. If they cannot be avoided and justification for their use exists, they should be isolated 
and well commented. An example follows: 
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/* NON-STANDARD CODE FOLLOWS */ 
/* The following code is used to increase performance by using */ 
/* a left shift by 3 to replace a multiply by 8. */ 
/* */ 
OPERANDI = SHL (OPERANDI, 3); /* OPERANDI = OPERANDI * 8 */ 
/* End of Non-Standard Code Section * 

In this example, the code is clearly marked as nonstandard code. The sunounding comments 
describe exactly what the code is attempting to accomplish. The end of the code block is also 
clearly marked. 

8.4.1.7 Minimizing Dispersion of Related Elements 

When related elements of code are dispersed in a program, it is necessary to refer to multiple 
locations within the source listings during reviews and maintenance. Review is facilitated and 
safety is enhanced if project-specific guidance is provided on the placement of related elements 
in the code. Since the PL/M language is not complex, most cases of code dispersion occur with 
the use of the DECLARE statement and general utility procedures. 

Control dispersion of DECLARE statements. The DECLARE . . . LITERALLY 
statement is often used to give more meaningful names to numeric constants. These 
descriptive names are then used throughout the program to enhance readability. Therefore, 
they should be placed in a source-code file to be included in all program modules. All of 
these values are then localized to one file making them easier to change. Compiler 
directives can then be set as desired in each module, either to print or not to print the 
contents of this include file. 

Similarly, the DECLARE . . . EXTERNAL statement is used to declare a data type (and 
length) for a variable or constant declared to be PUBLIC elsewhere. For procedures 
which are dispersed throughout the program — such as those called from the main 
program — a separate file of external declarations should be maintained and included in 
files as needed. Some degree of control over these dispersed elements is thus maintained. 
An exception to this is discussed in the paragraph below. 
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• Dispersion of general utility procedures. Procedures that are general to the program and 
used throughout to provide some minor function are refened to as general utility 
procedures. These procedures are similar in nature to the built-in functions. General utility 
procedures should be grouped together in one or more modules. For code review or 
maintenance purposes, all of these routines will then be conveniently located in one 
listing. As a further convenience in identifying these general subroutines, they may be 
prefixed with a lower case character as in: u$BCD$TO$BINARY, or s$MULT$32 (see 
also Section 8.4.1.2). 

The general utilities module(s) should maintain an $ INCLUDE file of external 
declarations for these publicly declared routines. This file should be included in any 
module that calls or invokes any of these general procedures. Thus, dispersion of these 
declarations is localized to one source-file module. 

• Use of headerfilesfor imports and exports. Header files should be used to group module 
exports. Imports should only use header files. 

In summary, code element dispersion should be rninimized where possible by proper grouping 
and use of included files. These $ INCLUDE files should have adequate header comment 
documentation describing the purpose of the include file and where each element is used. 

8.4.1.8 Minimizing the Use of Literals 

The generic guidelines apply. Use of literals in the PL/M source code impacts safety because it 
decreases readability and complicates the maintainability of code. Use of literals often causes 
different representations of the same value to be dispersed throughout one or more program 
modules. It is far easier to change one set of values located at the beginning of a file, or included 
with the file with an $ INCLUDE statement, than to guarantee that aU literal values associated with 
an item have been successfully located and properly changed. 

Literals are often used by programmers because they show an actual value which is easier to use 
during debug time. This often occurs when a certain bit pattern must be passed to a hardware port 
to accomplish some I/O task, such as turning an LED indicator on or off. This code may be 
convenient for a brief time while hardware and software team members debug a hardware unit. 
This convenience is short lived, however, as the following two examples illustrate. 

The first example below shows a section of code that is intended to turn on an LED indicator and 
later turn it off. During a coding session, it is relatively easy for a programmer to glean 
information from an electrical schematic diagram quickly, then directly code this information into 
the program. Suppose later that some change has been made to the hardware requiring all of the 
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code associated with this LED to be modified. Using a text editor search for "OUTPUT(3)" 
would not find the second occunence, which is coded as "OUTPUT(03H)." 

OUTPUT(3) = 00000100B; /* Turn power LED on */ 

OUTPUT (03H) = OFBH; /* Turn power LED off */ 

The next example shows a better method of handling the above situation with literals. PL/M has 
a DECLARE... LITERALLY statement that allows literals to be assigned to a label. In this example 
all literal data are grouped together in one place, and all of the commands and data associated with 
that I/O device are defined. Should a change be made later to the hardware system, all of the 
necessary software changes can be accomplished by changing just three DECLARE... LITERALLY 
lines of code. 

/* Commands and 
DECLARE PWR$LED 
DECLARE LED$ON 
DECLARE LED$OFF 

OUTPUT(PWR$LED) 

OUTPUT(PWR$LED) 

data for Power 
LITERALLY '03H 
LITERALLY '04H 
LITERALLY 'NOT 

= LED$ON; 

= LED$OFF; 

LED device */ 

LED$ON'; 

In addition, the code is more readable and somewhat self-documenting. In larger programs, the 
declaration of these literals would probably occur in a file that would be included with the 
INCLUDE compiler control statement. The sequence for the example above might appear as 
follows: 
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$INCLUDE (I0DEFS 
*/ 

OUTPUT(PWR$LED) = 

OUTPUT(PWR$LED) = 

PLM) /* Commands 

= LED$ON; 

= LED$OFF; 

and data for Power LED device 

Literals that are exported by a module should be grouped in the module's header file. 

8.4.2 Data Abstiaction 

Data abstraction involves combining both the data and the allowable operation on that data 
(procedures or functions) into a single entity. Furthermore, data abstraction calls for the 
establishment of an interface that allows access to, manipulation of, and storage of the data only 
through allowable operations. Data abstraction is an important contributor to safety in that it 
reduces or eliminates the side effects of variables being changed inappropriately during run time 
or inadvertently or inconectly changed during software maintenance. 

The PL/M language pre-dates the cunent concepts of data abstraction. Hence, PL/M does not have 
any built-in mechanisms for implementing data abstiaction directly. However, it will also be 
shown that the PL/M program module can provide an appropriate and acceptable container for 
data abstiaction as discussed in Section 8.4.3. 

8.4.2.1 Minimizing the Use of Global Variables 

The generic guidelines apply. It is desirable to limit the scope of variables in safety-related 
programs. Variables that are made available to all program segments increase the potential for 
unintended side effects. However, global variables may be the simplest way to represent some 
sort of global state or other data that must be accessed by most or all functions." The alternative 
is to pass the variable as a parameter, which increases the complexity of the procedure and 
function interfaces. Global variables may also be necessary to share data from separately 
compiled modules. 

The following are specific guidelines related to global variables. 

• Initialization of global variables. All global variables used in a program should be 
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initialized in exactly one place. 

Imports and exports from separately compiled modules. All exports from a module 
should be explicitly global, and eveiything else should be made local to the module by 
being explicitly declared static. Exports from a particular module should be specified in 
one and only one header file. All importing modules should use the header file. They 
should not import variables, functions or procedures independently from the header file 
by using externals. Headers should use prototypes unless there is a good reason not to, in 
which case, the reason should be documented. 

Use macros for local variables in emulators, simulators, and debuggers. In-circuit 
emulator (ICE) tools, debuggers, and simulators complicate use of local variables because 
of the length of their identifiers. One such emulator, the Intel I2ICE system, uses a naming 
convention as follows: 

[: module . -name. ] [procedure-name. ] [var iab le -name][expr [ , expr ] ] 

However, it is also possible to construct a temporary macro which would reference this 
variable with just one or two characters while debugging this code section. 

8.4.2.2 Minimizing Interface Complexity 

The generic guidelines apply. Interfaces between procedures, functions, and program modules 
are often a source of software failures. If an interface becomes too complicated, it will be difficult 
to review, understand, and maintain. Complex interfaces are not desirable in a safety-related 
program and should be avoided. Specific guidelines include the following: 

• Limit the number of arguments used in the calling program. Requirements for a large 
number of arguments can cause confusion and enors in a safety-related program. If a 
programmer must set up a large number of parameters to invoke a procedure, some of the 
choices may not be properly thought out. It is better to have a programmer understand the 
meaning of the parameters than to require that they be blindly and rotely specified. 

Procedures that require a number of arguments may be indicative of a design in which 
excessive functionality has been allocated. A better design may be two or more smaller 
procedures, each of which accomplishes a nanower task. The example in the section on 
data abstraction illustiates this point by showing how one or more method procedures 
allows a user to understand more clearly how laser ranging data are obtained. This method 
requires the programmer to think through how the instrument obtains ranging data. 
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• Do not use ambiguous or terse expressions. Use of meaningless expressions for modes 
or options can confuse the programmer. Both of the example procedure invocations below 
will accomplish the same results. However, the second form is better because it 
immediately provides information on the parameters. A person reading and checking code 
is more likely to question the conectness of a parameter choice in the second invocation 
than in the first. 

(1) CALL FIRE$LASER (2, 3.0, 1000); 

(2) CALL FIRE$LASER (CHANNEL$1, MSEC$3, ONE$WATT); 

• Explicitly state restrictions and limitations. Lack of easily understood restrictions and 
limitations on the use of allowable operations can also complicate an interface. The above 
example can be expanded to remove ambiguities about parameter usage and limitations. 
In the following example, a table of valid parameter settings for invoking the 
FIRE$LASER procedure is provided. In this example, we assume that the laser 
manufacturer only recommends these settings for this model. By declaring a list of valid 
settings, an improper invocation of the procedure is less likely. 

/* VALID PARAMETER SETTINGS FOR THIS LASER 

/* There are only 3 Laser channels defined 
DEFINE 
DEFINE 
DEFINE 

CHANNEL$1 LITERALLY '1'; 
CHANNEL$2 LITERALLY 12'; 
CHANNEL$3 LITERALLY *3'; 

UNIT */ 

for 

/* There are 5 power settings defined for this 
DEFINE 
DEFINE 
DEFINE 
DEFINE 
DEFINE 

/* The 
DEFINE 

ZERO$WATT LITERALLY '0'; 
QUARTER$WATT LITERALLY ,249'; 
HALF$WATT LITERALLY *502'; 
THREE$QTR$WATT LITERALLY ,754'; 
ONE$WATT LITERALLY '998'; 

pulse width should always be set to 
MSEC$3 LITERALLY '2998'; 

this instrument */ 

instrument 

3 milliseconds 

*/ 

*/ 

6*. 4.2.3 Use Modules to Facilitate Data Abstraction 
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PL/M modules can be used to enhance maintainability through limiting data visibility and 
achieving a measure of data abstraction in PL/M. The foUowing example of a laser ranging 
instrument demonstrates this concept. To use the laser ranging instrument, the calling program 
need only turn on the instrument, aim the instrument through an allowable range, and activate and 
receive the range data. The methods used to obtain the range data are hidden from the calling 
program. The calling program cannot misuse the instrument by tinkering with the laser power 
levels and pulse durations. In addition, the calling program can aim the laser unit only through 
a valid domain of coordinates. 

The laser functions are coUected in a separate source module. In doing so, the procedures that are 
public and available to the code outside of this module are controlled. Procedures not declared 
EXTERNAL will remain hidden and private to this module. No other code except the laser 
control code will be placed in this source module. In the example below, lines 3 through 11 define 
the cunent constant parameters for the laser instrument. If these values change in the future, due 
to hardware modifications, they can be easily modified. Line 12 has local variables that contain 
the cunent power settings and pulse duration times for the instrument. The variables are local to 
this module and cannot be "seen" or used by other routines outside this module, that is, these 
variables are hidden or encapsulated within this module. 
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13 
14 
15 

16 
17 

18 
19 

20 
21 

1 
2 
2 

2 
2 

1 
2 

2 
2 

1 RANGINGSLASER: DO; /* Module */ 

2 /* Private Procedures & Data */ 

3 1 DECLARE 2ER0$WATT LITERALLY "S"; /* Zero watt = S counts */ 
4 1 DECLARE ONE$HATT LITERALLY '123'; /* One watt - 123 counts ♦/ 
5 1 DECLARE MSEC$0 LITERALLY '0'; /* 0 milliSec */ 
6 1 DECLARE MSEC$3 LITERALLY '3000'; /* 3000 uSec = 3 milliSec */ 
7 1 DECLARE ON LITERALLY '0FFH'; 
8 1 DECLARE OFF LITERALLY '00H'; 
9 1 DECLARE Tl LITERALLY '23H'; 

10 1 DECLARE T2 LITERALLY '41H'; 
11 1 DECLARE T3 LITERALLY '84H'; 

12 1 DECLARE (L$POWER, L$D0RATION) REAL; 

SETSSERVO: PROCEDURE (CHAM, AMOUNT) BYTE; 
DECLARE AMOUNT REAL; 
DECLARE (CHAN, STATUS) BYTE; 

/* ...other statements... */ 
/* check for valid coordinates */ 

RETURN (STATUS); 
END; /* SETSSERVO */ 

FIRE$LASER: PROCEDURE BYTE; 
DECLARE STATUS BYTB; 

/* ...other statements... */ 
RETURN (STATUS); 

END; 

/* Public Procedures & Data */ 

OPERATE$LASER: PROCEDURE (ON$OFF) PUBLIC-
DECLARE ON$OFF BYTE; 

IF (ONSOFF = ON) THEN 
DO; 

LSFOHER - ONESHATT; 
LSDURATION = MSECS3; 

END; 
ELSE 

DO; 
LSPOWBR • ZEROSWATT; 
L$DURATION » MSECS0; 

END; 
/* other statements */ 
END; 

AIMSLASER: PROCEDURE (X. Y, Z) BYTE PUBLIC-
DECLARE (SX, SY, Si, STATUS) BYTE; 
DECLARE (X,Y,Z) REAL; 

SX = SETSSERVO (1, X) ,-
SY > SETSSERVO (2, Y ) ; 
SZ n SETSSERVO (3, Z); 

/* ...other statements... */ 
RETURN (STATUS) ; 

END; 

GBTSRANGE: PROCEDURE REAL PUBLIC-
DECLARE RANGE REAL; 

IF (FIRESLASER) THEN 
DO; 

/* ...Calculate RANGE... */ 
END; 

ELSE RANGE - 0; /* Error */ 
RETURN (RANGE); 

END; 

EXCEPTION$LASER: PROCEDURE EXTERNAL; 
/* ...handle laser exception here... */ 

END EXCEPTIONSLASER; 

END; /* End of RangingSLaser Module */ 

END OF PL/M COMPILATION 

22 
23 

24 
25 
26 
27 
28 

29 
30 
31 
32 

1 
2 

2 
2 
3 
3 
3 

2 
3 
3 
3 

34 
35 
36 

37 
38 
39 

40 
41 

42 
43 

44 
45 

46 
47 
48 
49 

50 

51 

52 

1 
2 
2 

2 
2 
2 

2 
2 

1 
2 

2 
2 

3 
2 
2 
2 

1 

1 

1 

NUREG/CR-6463 8-40 



Lines 13 through 21 in the example contain two support procedures that are used only by the 
procedures contained within this source module. The two procedures FIRE$LASER and 
SET$SERVO are hidden from other code outside this module and are thus protected from being 
used by other code outside this module. Thus the laser can neither be aimed in an inappropriate 
direction nor inadvertently fired. Lines 22 through 51 of the example shown are public 
procedures. These are the methods available to code outside this module that allow the data to be 
properly manipulated and the laser instrument to be used safely. 

Thus module RANGING$LASER is the closest we can come to generating a software object in 
PL/M. We have forced a procedural language in a disciplined manner to behave like and produce 
some of the benefits of, an object-oriented language. The short main program in the following 
example demonstrates how this object will work. The main program is defined on line 1 of the 
example. Lines 2 through 11 declare and define the external procedures located publicly within 
module RANGING$ LASER. These are the only procedures (methods) available to the main program 
to manipulate and operate the laser instrument. Lines 14 and 15 define the meaning of ON and 
OFF commands to the laser. These could be placed in a common INCLUDE file in a larger 
program. Line 16 defines a set of directional coordinates for the laser, and line 17 is a variable to 
contain the distance data received from the instrument. 

The laser can now be properly manipulated. It can acquire range data safely by using the code 
in lines 18 through 24. Simply, if the coordinates of the target are valid, as determined by method 
AIM$LASER returning TRUE, the code within the I F . . . THEN clause will execute, turn the laser 
ON, fire the laser and obtain range data, and turn the laser unit OFF . If the coordinates are invalid, 
the enor exception handler EXCEPTlON$LASER is called to conect, notify, or otherwise handle 
the enoneous situation. 

The code in this main program has no way of inadvertently changing the laser power levels and 
pulse duration times. 
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PL/M 

1 

2 

3 
4 
5 

6 
7 
8 

9 
10 
11 

12 
13 

14 
15 
16 
17 

18 
19 
20 

*/ 
21 

*/ 
22 

*/ 
23 
24 

*/ 

25 

COMPILATION OF MODULE MAINPROGRAM 

1 
2 
2 

1 
2 
2 

1 
2 
2 

1 
2 

1 
1 
1 
1 

1 
1 
2 

2 

2 

2 
1 

1 

END OF PL/M 

MAIN$PROGRAM: DO; /* Main Program Module */ 

/* Declare External Procedures */ 

OPERATE$LASER: PROCEDURE (ON$OFF) EXTERNAL 
DECLARE ON$OFF BYTE; 

END OPERATE$LASER; 

AIM$LASER: PROCEDURE (X, Y, Z) BYTE EXTERNAL; 
DECLARE (X,Y,Z) REAL; 

END AIM$LASER; 

GET$RANGE: PROCEDURE REAL EXTERNAL; 
DECLARE RANGE REAL; 

END GET$RANGE; 

. EXCEPTION$LASER: PROCEDURE EXTERNAL; 
END EXCEPTION$LASER; 

/* Main Program Segment */ 

DECLARE ON LITERALLY 'OFFH'; 
DECLARE OFF LITERALLY 'OOH'; 
DECLARE (XI, Yl, Zl) REAL INITIAL (4.1, 5.7, -6.1); 
DECLARE DISTANCE REAL; 

IF (AIM$LASER (XI, Yl, Zl)) THEN 
DO; 

CALL OPERATE$LASER (ON); /* Turn on laser unit 

DISTANCE = GET$RANGE; /* Fire & get range value 

CALL OPERATE$LASER (OFF); /* Turn off laser unit 

END; 
ELSE CALL EXCEPTION$LASER; /* or handle exception 

END; /* End of Main Program Module */ 

COMPILATION 
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8.4.3 Functional Cohesiveness 

There should be a clear conespondence between the function of a program and the stracture of 
its components. Review and maintenance of program codes are facilitated when every function 
is implemented in a procedure and when that procedure implements only one function. 

As a guideline for using PL/M in safety-oriented systems, it is further recommended that program 
modules contain only procedures of like functions. Each PL/M module can limit the scope of 
variables and procedures within that module. The following is an example of a recommended 
stracture: 

M0DULE$1: DO; 
/* Global Declarations 
PR0CEDURE$1A: 
END; 
PR0CEDURE$1B: 
END; 

END; 
M0DULE$2: DO; 

/* Global Declarations 
PR0CEDURE$2A: 
END; 
PR0CEDURE$2B: 
END; 

END; 

for M0DULE$1 

for M0DULE$2 

*/ 

*/ 

Each module above can contain one or more related functions or methods. The scope of the 
variables and procedures defined in each module is limited to that module unless it is explicitly 
defined as PUBLIC. Therefore, each PL/M module can cohesively contain related procedures and 
variables, and it can make available to functions outside of this module only those entities that 
are explicitly declared as PUBLIC. This concept is also discussed in the section on data 
abstraction. 

8.4.4 Malleability 

Malleability is a measure of the ease with which a software system can accommodate changes 
in its function. Malleability depends upon data abstraction, encapsulation, and cohesiveness built 
into the program. It extends those attributes in order to isolate and identify areas of potential 
change. Most of these issues have already been discussed. Two topics that may be of interest to 
reviewers are covered below. 
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8.4.4.1 Isolation of Alterable Functions 

PL/M functions that are likely to be altered should be placed in separate DO; -END; modules 
within the source code file to which they belong. Potentially alterable functions should, in most 
cases, remain in the same module with related functions and code. Attempts to place all 
potentially alterable functions in one file may result in a collection of unrelated procedures that 
only have alterability in common. Such attempts may destroy the cohesiveness and data 
abstraction attributes designed into the system. Functions likely to be altered should be isolated 
and marked as such with comments within the module in which they were designed. 

8.4.4.2 Isolation of Hardware-Specific Functions 

Another area of possible change and alterability in embedded systems is hardware-specific 
functions, such as those specific to a peripheral device or a model of an attached instrument. If, 
during maintenance, a different or upgraded peripheral device replaces an existing device, the 
change over will be easier and safer if the code is localized to a subset of modules or functions. 

It is recommended that code for these peripheral devices be written in the form of device drivers, 
and that they be loosely coupled to the remainder of the system. The associated CALLs to these 
device drivers should remain transparent so that the calling code is not impacted by a change in 
the device driver code. 

8.4.5 Portability 

The benefits of portability are that programming constructs yield predictable and consistent 
results across different operating platforms. Thus, code that is to be reused or converted to run 
on a different platform will be easier to maintain. Attributes related to portability discussed 
elsewhere in this report include the following: 

• Minimizing the use of built-in functions 
• Minimizing the use of compiled libraries 
• Minimizing dynamic binding 
• Minimize tasking 
• Minimize asynchronous constructs such as interrupts. 

PL/M code is processor specific, and thus has inherently limited portability. Also, it is an 
obsolescent language, and any new applications should plan for migration to another language 
(see Appendix A.4). 
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APPENDIX A. Language Descriptions 

This Appendix contains brief descriptions of the languages, run-time environments, and 
programming platforms12 that are widely used in the industrial computing environment but are 
less known in the larger software development community. The intention of this appendix is to 
provide an introduction and overview of the issues. References at the end of the Appendix section 
provide more detailed information. 

Section A.l discusses Programmable Logic Controllers (PLCs). Section A.2 discusses PLC 
ladder logic, their most widely used programming language. Section A.3 discusses IEC 1131 
Sequential Function Charts (SFCs), whose main significance is to allow Ladder Logic to be 
combined with other languages recognized by the IEC 1131 standard. Section A.4 discusses 
PL/M and some of the issues associated with Intel RMX, the operating system that supplements 
the prograrnming language. 

l2As will be discussed in this Appendix, it is sometimes difficult to'distinguish between the language, 
development environment, and run-time environment. 
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A.1 PLC Description 

A Programmable Logic Controller (PLC) is an industrial computer specialized for real time 
applications. The PLC is an integrated system containing a processor, power supply, input 
modules, output modules and special purpose modules. Input modules interface with plant 
equipment and convert the field signals to logic levels for the processor to read. The processor 
uses these input to solve the logic in the application software (Ladder Logic), and to perform 
contiol functions. Output modules transmit the signals via an interface with the plant equipment. 
In addition there are special modules for communication with other computers, specialized 
dedicated functions, and conventional high level language co-processors. 

PLC vendors provide the software tools necessary to program the system. The PLC has 
specialized instructions implementing control functions such as logic, PID, and numerical 
operation. Prograrnming is done on a PC using a programming language that in most cases is 
Ladder Logic, but other options are also available. After the application program is completed 
it is downloaded to the PLC memory for execution. The PLC also provides software packages 
for operator interface (HMI) and supervisory control and data acquisition (SCADA), to be used 
on engineering stations interfacing the PLC. 

A. 1.1 Prograrnming Environment 

The diagram in Figure A-l graphically depicts the use of PLC programming environment to 
develop and execute the application software (which is most usually implemented in Ladder 
Logic). The programming environment is composed of a "shell" that enables the programmer 
to develop the application software using functions supported by the processor hardware and 
firmware. This "shell" acts as: 

: • Programmer interface (editor) 
• File manager to store and retrieve programs and data 
• Commumcation interface with the PLC to download/upload programs 
• Documentation and reporting tool 
• On-line momtoring of application program. • 

The application software itself is contained in a binary file executable on the PLC. This file may 
be either edited (development process), or downloaded to the PLC processor to run (execution 
process). Once loaded into the PLC memory, the application software is executed by the PLC 
whenever it is in the "RUN" mode. 

The structure of the binary file is specified by the PLC manufacturer. It can be viewed as a 
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database file that defines the exact state of the PLC program and data. This model of the binary 
file is useful for the discussion of the prograrnming "shell" given below. 

r R I N A R Y 
FILE 

LADDER LOGIC 
(APPLICATION SOFTWARE) 

/ 
/ 

/ 

SUPPLEMENT 
FILE 

ALD/ 
:S 

O-AB/ VSE 

LADDER LOGIC PROJECT DATABASE 

Figure A-l General description of a PLC software environment. 

A. 1.2 Runtime Environment 

The PLC runtime environment is firmware which provides the operating system services and 
library functions associated with the PLC. In the RUN mode, the PLC firmware runs as real-time 
executive which processes the (Ladder Logic) instructions that have been loaded into the program 
RAM area. The program runs in a continuous loop which consists of the foUowing major phases: 

• Input read and output write scan 
Housekeeping 

• Program scan (logic solve). 

These are described in the following subsections and depicted in Figure A-2. 

PROGRAMMING! 
SHELL 

PLC PROCESSOR 

t 
PRINTED 

LADDER LOGIC 
REPORT 
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Figure A-2 Real time execution of PLC program. 

A. 1.1.1 Input Read and Output Write Scan 

During the input/output (I/O) scan, the processor updates its internal input and output buffers with 
data being read from or written to local or remote I/O devices. Local I/O devices are the input and 
output cards residing in the same physical chassis as the PLC processor. Remote I/O devices 
reside external to this chassis and are communicated with the processor's Peer Communications 
Interface port13. 

I/O data for input and output cards used in the application are maintained in input and output 
image tables. Typically the PLC will organize the I/O image tables. This means that the inputs 
which are present will read into an area in memory. The program will write into another area of 

13In some PLCS, remote I/O devices communicate over a remote I/O link, not the Peer Communications 
Interface port which is reserved for inter-processor communications. 
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memory which is used to represent the outputs. It can be said that the input image table is 
representative of 'how the inputs are perceived', and the output image table is 'the desired state' 
of the outputs. These tables are accessible to the Ladder Logic program as data files. During the 
I/O scan, data read from input cards are placed in appropriate locations in the input image table. 
At the same time, output data written to the output image table by the Ladder Logic are 
transfened to the appropriate output cards14. 

A. 1.1.2 Housekeeping 

Following the I/O scan, the PLC performs what is refened to as "housekeeping." This portion of 
the program cycle is used by the real-time executive to maintain and update its own internal state. 

A. 1.1.3 Program Scan 

The program scan is the portion of the overaU cycle where Ladder Logic instructions of the user's 
application software are executed. Here, the embedded firmware program operates on the 
portions of memory (RAM) that have been loaded previously with the application software from 
the binary file. 

Program files contain the actual instructions to be executed. Data files are used to maintain 
program variables and other data structures required by the logic. It is the responsibility of the 
firmware program to properly decode and execute instructions in the program files. The program 
must also properly update the contents of the data files based on these instructions. 

Detailed information about the specific Allen Bradley PLC firmware selected for description in 
the report can be found in the references (Allen Bradley, 1991a). 

A.2 PLC Ladder Logic Language Description 

Ladder Logic is an instruction set to provide services of real time, I/O, user interface, and similar 
services. These services are associated with the special requirements of the PLC applications 
domain. Because Ladder Logic is targeted toward special applications it provides features that 
are compatible with real-time contiol application requirements. These features when used 
conectiy and appropriately can contribute to the safe operation of the program. 

The origins of Ladder Logic or the Relay Ladder Logic notation which was first introduced to 

In some PLCs, the output image table data is written to the outputs all at once, and this occurs AFTER 
the completion of a full program scan. 
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represent combinations of contacts and coils of relays using specific notation. These 
combinations implemented logical functions (e.g., AND or OR). The introduction of PLCs 
transformed Ladder Logic from a hardware design notation to a high level language, specialized 
for process and logic control. The Ladder Logic language, in the case of the PLC, is not the 
traditional limited Ladder Logic implemented with relays, but an advanced language supported 
by the numerical capabilities of the processor, while the Ladder Logic notation serves only a 
graphical user interface. Ladder Logic supports all types of programming structures from 
advanced subroutines, parameter passing, loops, mathematical functions, proportional plus 
integral plus derivative (PID) controllers, I/O calls, timers, and any other features of a high-level 
language. Although changed from their original purpose and implementation, cunent forms of 
Ladder Logic are still similar to relay logic, allowing electrical engineering personnel who have 
tiaditionaUy have been in charge of factory automation to review and understand the code. This 
is an important advantage throughout the development process. 

Ladder Logic is not a formally defined programming language. Each manufacturer has its own 
variation of Ladder Logic. In addition, many of the features associated with programming the 
PLC are not features of Ladder Logic itself, but the prograrnming environment, the "shell," and 
the firmware mentioned above. The variety of ladder logic implementations is due to the strong 
coupling between software and hardware dictated by the requirements of the industrial contiol 
applications domain. 

A.2.1 Elements of Ladder Logic 

Ladder Logic programs consist of the following types of elements (TEC, 1993): 

• Power rails: Ladder Logic networks are delimited on the left and right by vertical lines 
known as left and right power rails, respectively. The right power rail may be explicit or 
implied. 

• Link elements and states: Links indicate power flow in the rungs of the Ladder Logic 
diagram. A link element may be horizontal or vertical. A horizontal link transmits the 
state of the element to its immediate left to the element to its immediate right. The state 
of an element can be either ON or OFF. A vertical link intersects with one or more 
horizontal links on each side and its state is the inclusive OR of the states of the horizontal 
links on its left. This state is transmitted to all horizontal links attached to the vertical link 
on its right. 

• Contacts: A contact is an element which imparts a state to the horizontal link on its right 
side equal to the AND of the state of the horizontal link on its left side with an appropriate 
function. A contact does not modify the value of the associated Boolean variable. There 
are four types of contacts as described in Table A-l. 
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Coils: A coil copies the state of the link on its left to the link on its right without 
modification, and stores an appropriate function of the state or tiansition of the left link 
into the associated Boolean variable. There are nine types of coils as described in Table 
A-2. 

Functions and junction blocks: A function is a program unit which, when executed, 
yields exactly one result. A function block may yield more than one result. Internal 
variable of a function or function block are not accessible to users of the function. In 
Ladder Logic, at least one Boolean input and one Boolean output is shown for each 
function block to allow for power flow through the block. 

Table A-l. Contacts 

Static Contacts 

— 1 1-

~ l / | -

Normally open contact 
A normally open contact is one for which the state of its left link is copied 
to the right link only if the associated Boolean variable is ON. 

Normally closed contact 
A normally closed contact is one for which the state of its left link is 
copied to the right link only if the associated Boolean variable is OFF. 

Transition-Sensing Contacts 
_ _ | P | _ 

~ - | N | -

Positive transition-sensing contact 
A positive transition-sensing contact is one for which the state of the right 
link is ON only if a tiansition from OFF to ON is sensed when the left link 
is ON. 

Negative transition-sensing contact 
A negative-transition sensing contact is one for which the state of the right 
link is ON only if a tiansition from ON to OFF is sensed when the left link 
is ON. 
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Table A-2. Coils 

Momentary Coils 

1 

2 

- - ( 
) - -

*** 

( / ) — 

Regular Coil 
The state of the left link is copied to the associated Boolean variable 
and to the right link. 

Negated coil 
The state of the left link is copied to the right link. The inverse of the 
state of the right link is copied to the associated Boolean variable. 

Latched Coils 

3 

4 

(S) — 

(R) — 

SET Gatch) coil 
The associated Boolean variable is set to the ON state when the left 
link is in the ON state, and remains set until reset by a RESET coil. 

RESET (unlatch) coil 
The associated Boolean variable is set to the OFF state when the left 
link is in the ON state, and remains reset until set by a SET coil. 

Retentive Coils* 

5 

6 

7 

*** 

(M) — 

(SM)-

(RM)-

Retentive (memory) coil 

SET retentive (memory) coil 

RESET retentive (memory) coil 

Transition-Sensing Coils 

8 

(P) — 

Positive transition-sensing coil 
The state of the associated Boolean variable is ON from one 
evaluation of this element to the next when a transition of the left link 
from OFF to ON is sensed. The state of the left link is always copied 
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( N ) ~ 

Negative transition-sensing coU 
The state of the associated Boolean variable is ON from one 
evaluation of this element to the next when a transition of the left link 
from ON to OFF is sensed. The state of the left link is always copied 
to the right link. 

* The action of Coils 5,6, and 7 is identical to that of Coils 1,3, and 4, respectively, except that the 
associated Boolean variable is automatically declared to be in retentive memory without the use of the VAR 
RETAIN declaration. 

A.2.2 PLC Ladder Logic Example 

(if) 

Kl 
If input Kl is closed 

or 
logic bit is set (=1) 

(then) 

( ) 
K2 

energize output K2 
or 

set logic bit K2 =1 

Figure A-3 Ladder logic "rung" with IF/THEN configuration. 

Ladder Logic language provides a unique representation for computer programs. In ladder logic 
each line of code is graphically displayed as a "rung" of a ladder. The top rung instructions 
are performed first and then each consecutive rung instructions are performed in their 
respective sequence. As shown in Figure A-3, each rung consists of an 
IF(input)/THEN(output) decision. The left half of the rung contains a condition that must be 
trae for any output instructions) on the right half of the rung to be performed. If the left side 
of the rung does not contain a condition, the output instruction on the right side is performed 
continuously. 

A problem with ladder logic program structure is the potential for unintended behavior. This 
can be shown even in the simple example above using the distinction between retentive and non-
retentive output instructions. A non-retentive output wUl reset or turn off. A retentive output 
wiU remain in its last state. Although Logic rungs are logic elements and need to be logically 
true in order to execute the output (or outputs) on that rung, should the rung NOT be logically 
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true, then the output could stUl perform an action if the output is retentive. 
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Figure A-4 is another example 
which presents the 
implementation of two-out-of-
three (2oo3) voting in Ladder 
Logic. The first "rung", 
numbered 0, implements the 
2oo3 voting in Ladder Logic. 
Any two of the tree inputs being 
ON will the two contacts in one 
of the three parallel paths and 
energize the coil labeled 
ACTUAL_INPUT. 

The value of ACTUAL_INPUT 
is defined by: 

+ 
+ 

AC T T J A L _ I N P U T 
( INPUT_1*INPUT_2) 
( INPUT_2 *INPUT_3) 
(INPUT_1*INPUT_3) 

where: 
* = AND operand 
+ = OR operand 

Rungs 1 and 2 of the subroutine 
are for annunciation only. The 
coil in rung 1 is energized if the 
three inputs are either all ON or 
all OFF. Rung 2 identifies the 
input which differs from the 
other two if all three are not 
identical. Note that all six 
permutations of the three inputs 
are present in rung 2. Rung 3 
simply outputs the results 
generated by the previous rungs. 

HSUBROUTINE 
INPUT PAR 
INPUT PAR 
INPOT PAR 

SUBROUTINE: NAME REV 0 10/28/93 

INPUTS: N10:0/0 INPUT_1 
N10:1/0 INPUT_2 
N10:2/0 INPDT_3 

FUNCTION: Three system inputs are received by the SBR instruction and 
used to calculate the output based on 2-out-of-3 voting. 
The subroutine also indicates if all input are identical. 

Calculate 
input state. 
2_0UT_0F_3_SUBR INPUT_1 INPUT_2 ACTOAI._INPUT 

SBR 1 N10:0/0 N10:l/0 N10:3/0 

-\ I 1 I—I < >-N10:0 
N 1 0 : l 
N10:2 

INPUT_2 INPUT_3 
N10:l/0 N10:2/0 
' I 1 I — 

INPUT_1 INPUT_3 
N10:0/0 N10:2/0 

If all three inputs are not the same value, set INPTS_TDENTICAL low. 

INPTS_IDENTICAL 
N10:4/0 
( ) 

INPUT_1 INPUT_2 INPUT.3 
N10:0/0 N10:l/0 N10:2/0 

— 1 I 1 I 1 I — 
INPUT.! INPUT_2 INPUT_3 

N 1 0 : 0 / 0 N 1 0 : l / 0 1110:2/0 

-H/l l/l 1/" 
If the inputs are not identical, check which input does not match. 
INPTS_IDENTICAL 

N10:4/0 I/I 
INPUT_1 INPUT_2 INPUT.3 
N10:0/0 N10:l/0 N10.-2/0 
— l / l 1 I 1 h -
INPUT.1 INPUT_2 INPUT_3 
N10:0/0 N10:l/0 N10:2/0 
" " l/l 1/' 

INPUT_1 INPUT_2 INPUT.3 
N10:0/0 N10:l/0 N10:2/0 

— I I l/l 1 I — 
INPDT_1 INPUT_2 INPUT_3 
N10:0/0 N10:l/0 N10:2/0 

"/I 1 I 1/' 
INPUT.1 MPUT_2 INPUT_3 
N10:0/0 N10:l/0 N10:2/0 

— \ I 1 I l/h-
INPUT.1 INPUT.2 INPUT.3 
N10:0/0 N10:l/0 N10:2/0 
-H/l l/l 1 h-

INPUT_l_ERROR 
N10:5/0 
( ) 

INPUT_2_BRROR 
N10:5/l ( ) 

INPUT_3_ERROR 
N10:S/2 ( ) 

OUTPUTS: N10:3/0 ACTUAL.INPUT 
N10:4/0 INPTS IDENTICAL 

N10:5 INPT_ERROR_CODE 
N10:5/0 INPUT_1_ERR0R 
N10:S/1 INPUTJ2~ERR0R 
N10:5/2 INPUT_3~BRR0R 

2_0UT_0F_3_RET 
I RET 
RETURN () 
RETURN PAR 
RETURN PAR 
RETURN PAR 

N10:3 
N10:4 
N10:5 

-[END]-

Figure A-4 Example of Ladder Logic. 

A.2.3 General Description - Ladder Logic Programming Shell 

As noted above, the ladder logic application development environment, or prograrnming "shell" 
provides functions for the development of the Ladder Logic application software. This shell 
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features are a key factor in the development, testing, and verification of ladder logic programs and 
include: 

• Ladder Logic editing 

• On-line communication with PLC processor for: 

- Uploading/downloading Ladder Logic files to processors memory 
- On-line Ladder Logic editing of program in processors memory 
- Real-time momtoring of PLC status for debugging 

• Generation of printed Ladder Logic reports. 

A development platform is used to run the Ladder Logic programming shell and maintain the 
Ladder Logic files. (In most cases the platform used is an IBM PC/AT compatible.) The shell 
commumcates from the development platform to the PLC via a specialized hardware 
communications link. At no time does any shell software run on the target PLC processor. 

Editing of the Ladder Logic may be performed in either an OFF-LINE or an ON-LINE mode. 
In both cases, the shell software converts the binary Ladder Logic information into a graphic 
screen display that may be modified by the user. Changes made to the Ladder Logic in the OFF
LINE mode are saved in the binary file. In the ON-LINE mode, changes are made directly to the 
PLC program/data memory via a Uve commumcations link. (Changes made in this manner must 
subsequently be uploaded from the PLC if they are to be saved in the binary file for configuration 
management purposes.) 

The programming shell software maintains a number of supplemental files in addition to the 
binary file to form a complete Ladder Logic project database. These files primarily contain 
symboUc and comment information used strictly to aid the user in the development process. They 
have no impact on the data structures contained in the binary file or the PLC memory. 

The on-line communication capability of the prograrnming shell is required to move Ladder Logic 
(appUcation software binary file) information between the PLC processor and the development 
platform, where the user interface resides. As mentioned above, this feature can be used to edit 
Ladder Logic15. It can also be used to download a Ladder Logic program residing in the binary 
file to the PLC or to upload a binary from the PLC to file. 

Run-time debugging is another function performed using the on-line communication feature. 

15This may possible in the PLC memory directly. However, some PLC's require that a copy of the 
program on the hard disk or operator interface computer be identical to the PLC's memory. Changes are made 
to the disk or offline copy. Once completed, the shell software interacts with the PLC, gaps memory and inserts 
the new/changed rung. 
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Here, various "windows" into the PLC memory can be set up to view memory contents updated 
dynamically as the processor is running the appUcation software. A "histogram" function, which 
can record the changes to a particular memory location over time to a log file, is also available. 

Generation of printed Ladder Logic reports is the final key function of the programming shell 
software that is required for the development of the Ladder Logic application software. The 
printed report is the output of a conversion from the binary Ladder Logic data files to a human-
readable text format. The accuracy of this conversion is critical because it provides the only 
written documentation of application as resident within the PLC. 

A.2.4 Ladder Logic Modularization 

JSR 
Hie #10 

ftss Rrantters 
Kcei\e Rramters 

R-ogram (Hie #10) 

(ftceivs Fferarnters) 

Some Ladder Logic provides the feature of 
subroutines. These are Ladder Logic 
programs that can be called by another 
program. When a subroutine is called, 
control is transfened to the subroutine, until 
encountering a RETURN command16, which 
transfers contiol to the next rung. Each 
subroutine is stored in a different file. With 
each subroutine it is possible to associate 
unique files of local variables17. Subroutines 
can also access all the global variables 
defined in the program. Figure A-5 shows 
the mechanism of calling a subroutine in Figure A-5 Subroutine calling in Ladder Logic. 
Ladder Logic. In this example the "main" 
program in file #2 calls a subroutine in file #10. 

SER 

Logic 

JEE-

16, Or END OF PROGRAM statement 
17Not all PLCs support local variables 
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-SBR 
H SUBROUTINE 
INPUT PAR: N10:0 
INPUT PAR: N10:l 
INPUT PAR: N10:2 

-RET-
RETURN {) 
RETURN PAR: N10:3 
RETURN PAR: N10:4 
RETURN PAR: N10:5 

-[END] — 
Figure A-6 Subroutine interface (parameter passing). 

Encapsulation is defined as a technique of isolating a system function within a module and 
providing a precise specification for the module (Allen Bradley, 1991a). Some Ladder Logic 
languages provide an interface between the calling program and the subroutine. The subroutine 
call specifies which parameters should be passed to the subroutine, and which parameters are 
returned by the subroutine. For example, Figure A-6 shows a subroutine that accepts three input 
parameters words (N10:0, N10:l, and Nl 0:2), and returns three output parameters words 
(N10:3, N10:3, and N10:5). 

The caUing instruction, shown in Figure A-7, passes the parameter stored in N9:2 to N10:0, N9:3 
toN10:l, and N9:5toNlO:2. The subroutine returns parameter N10:3 toN9:ll, N10:4 
t0N9:13, andN10:5 tON9:14. 

I—JSR-
JUMP TO SUBROUTINE 
INPUT PAR 
INPUT PAR 
INPUT PAR 
RETURN PAR 
RETURN PAR 
RETURN PAR 

N9:2 
N9:3 
N9:5 
N 9 : l l 
N9:13 
N9:14 

Figure A-7 Subroutine call interface (parameter passing). 
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A.3 Description of Sequential Function Charts 

This section describes SFCs and is included to provide basic information for readers not familiar 
with the IEC 1131 standard. The first section discusses SFCs in the context of the IEC 1131 
standards (IEC1131-1, IEC 1131-3). The second section discusses SFC structures and syntax. 

A.3.1 Sequential Function Charts in the Context of IEC 1131 

IEC 1131 defines the requirements for Programmable Controllers (PCs), known in the United 
States as PLCs. IEC 1131, Part 3, specifies the semantics and syntax of a unified suite of 
programming languages for PLCs. Textual languages consist of a defined set of characters, rules 
for combining characters with one another to form words or other expressions; and the assignment 
of meaning to some of the words or expressions. There are two textual languages defined in the 
standard: 

• Instruction List (IL). Instruction List is a textual programming language using instructions 
for representing the application program for a PLC. IL is a low-level language, and may 
be considered as a standard Assembly Language for PLCs. 

Structured Text (ST). Stractured text is a textual programming language using 
assignment, sub-program control, and selection and iteration statements to represent the 
application program for a PLC. ST, as distinguished from IL, is the high-level text-based 
language for PLCs. Much of its syntax is derived from Pascal. 

Graphical languages are based upon graphical representation, that is, lines, boxes and text. 
Appropriate quantities flow along lines between elements according to well defines rules. Ladder 
logic is an example of a graphical language. Function Block Diagram is another programming 
language that uses block diagrams to represent specific relations among inputs and outputs. The 
application program is composed by interconnecting the function block diagrams. 

A.3.2 SFC Structure and Syntax 

SFC is not a language but a structuring tool for the organization of programs. SFC elements 
provide a means of partitioning a program into a set of "steps" and "transitions." Each step is 
associated with a set of operations that are performed while this step is active.. Under certain 
conditions a transition becomes active, the cunent step is not executed anymore, and another step 
is executed. The SFC helps to modularize programs that can be broken into exclusive steps, each 
step executed under different conditions. 

In sequential function chart programs, steps and transitions are ananged in series and parallel 
paths, and they are numbered with the file numbers that contain their ladder logic. The 
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programmable controller scans the logic of a step repeatedly until its tiansition logic goes trae. 
Then the program scan moves to the next step or steps, and the previously active step is turned 
off. 

At a high level of abstraction, without considering the detail, SFCs are similar to subroutines. 
Benefits of using SFC for prograrnming PLCs include: 

• SFC, as a dedicated sequencing language, has a closer cognitive fit than any of the other 
PLC languages to the types of sequencing operations commonly performed by PLCs. 
This makes reading and writing SFC programs simpler than programs written solely in 
Ladder Logic. 

• , As the machine sequence is represented directly by the SFC program, both machine and 
prograrnming problems are typically easier to find and conect. 

• As inactive SFC steps and transitions are not scanned by the PLC program, the program 
scan time of the PLC is typically reduced. 

The actual code executed in a Step or Transition can be written in Ladder Logic, IL, ST, Function 
Block, or, in some PLCs, SFC. In the case where a Step's actions are written in SFC, that step 
is refened to as a macro-step. The necessity for specifying the actions of a Step and a 
Transition's condition in a language other than SFC is why SFC is sometimes described as a 
meta-language. SFC is, however, a sequencing language in its own right. 

An example sequential function chart program is shown in Figure A-8 (Hughes, 1989) to explain 
the symbols used in a typical program. The top of the program contains a start block to define the 
beginning of the program. The next block is the initial step, where the programmable controller 
starts function chart execution and returns to this step from the end Of program unless directed 
otherwise by the program logic. This block is identified by a double-sided box. 
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OR PATH 

009 

005 

START 

002 

INITIAL 

003 

PROCESS STEP A 

007 

PROCESS STEP B 

010 

006 

004 

PROCESS STEP D 

A k i r > n i T l l 

PROCESS STEP C 

001 

END 

008 

Figure A-8. Example of Sequential Function Chart 

As noted above, the step block is the function chart's basic unit and contains ladder logic for each 
independent stage of the process or machine operation. It is identified by a single-sided box. 

The transition is the logic condition that the processor checks after completing the active step. 
When the tiansition logic is true, the step preceding the tiansition is disabled, and the step 
following it becomes active. The tiansition is normally a single logic rung, identified by a short 
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horizontal line below its conesponding stop (see Figure A-8). 

The OR (divergence of sequence) path is identified by a single horizontal line at the beginning 
and end of a logic zone. The processor selects one of several parallel paths depending on which 
tiansition goes true first. Normally, the number of parallel paths is limited to seven. 

The AND (simultaneous sequence) path is identified by a horizontal double line at the beginning 
and end of a zone. The processor can normally execute up to seven paths at the same time. 

The following sections provide additional details on each of these constructs. 

A.3.2.1 SFC Steps 

A step represents a situation in which the behavior of a program follows a set of rules defined by 
the associated actions of the step. A step can be either active or inactive. An active step is 
executed (scanned). An inactive step is not executed (not scanned). At any given moment a 
program might have more than one active step. A step can be seen as a subroutine that is called 
when the active condition occurs. The call to the subroutine is avoided when the inactive 
condition occurs. At any given time the state of the program is defined by the response of the 
active steps to their respective inputs. 

Each step is identified by a label and has a program that invokes the actions performed by the 
step. Steps are represented as boxes containing an identifying number. A Step must always be 
followed by a tiansition. 

A.3.2.2 SFC Transitions 

A Transition represents the condition whereby control passes from steps preceding the tiansition, 
to one or more successor steps. When a transition is trae it causes the exit from the preceding step 
and entry into the following step. The transition is represented by a horizontal line across the 
vertical link. Each tiansition has an associated tiansition condition which is the result of the 
evaluation of a boolean expression. The IEC standard states that it shall be an enor if any side 
effect (such as the assignment of a value to a variable other than the transition name) occurs 
during the evaluation of a transition condition. Most PLC SFC implementations expressly prevent 
this from occurring, however, even if a particular implementation allows side effects in transition 
expression execution, this type of programming construct should be strictly avoided. Every 
Transition must be followed by a Step. 
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A.3.2.3 SFC Actions 

Zero or more actions can be associated with each step. A step that has zero actions should be 
considered as having a WAIT function, that is, waiting for a successor tiansition condition to 
become trae. 

A.3.2.4 SFC Contiol Stractures 

The contiol stractures used in Sequential Function Charts include Divergence of Sequence 
Selection, Simultaneous Sequences, and Directed Links. 

• Divergence of Sequence Selection: A Divergence of Sequence is described by the case 
where a single Step has multiple, alternate, Transition conditions and associated 
sequences following it. When the Step is active, all of these Transition conditions are 
scanned by the PLC. The first of these to become trae 'selects' the single sequence that 
will be followed subsequently. 

• Simultaneous Sequences: Simultaneous Sequences are used when a number of parallel 
machine sequences need to be started and stopped simultaneously. A Simultaneous 
Sequence is represented by a double horizontal line foUowing a Transition, and followed 
by several Steps. The number of Steps aUowed to foUow a Simultaneous Sequence is 
an implementation dependent issue. Different implementations of SFC will scan the 
active steps in a Simultaneous Sequence in different orders. Therefore, it is considered 
poor programming practice to have the proper operation of a Simultaneous Sequence 
depend upon the order of processing of active steps in these sequences within a single 
scan. The PLC program auditor should explicitly check for this. Simultaneous Sequences 
are used when parallel processes need to be expUcitly synchronized at their beginning and 
their ending. Where asynchronous sequences that do not require this kind of 
synchronization are desired, they should be coded as independent SFC Charts. 

Directed Link: The Directed Link is used to move control from one portion of a SFC 
program to another. It has two forms. The first, is as a continuous line with anows 
indicated the direction of contiol flow. The second form uses a 'goto' anow and an 
associated 'label' in place of the continuous line. In this form, each goto has a single 
unique label to receive the control flow. Directed Links cannot be used to jump into, out 
of, or between paths of a simultaneous sequence. 
Each SFC program must contain at least one Directed Link, to return contiol flow back 
to the designated Initial Step. 

Figure A-9 is an example of an SFC program that uses Divergence of Sequence Selection, 
Simultaneous Sequences, and Directed Links. This example concerns the operation of a traffic 
light, with normal operation during high traffic hours, and blinking lights after midnight. The 
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Divergence of Sequence Selection selects between these two modes based on the time of day: 
a daytime mode with the familiar Red, Green, Yellow sequence, and a late night mode where 
blinking yellow or red lights are substituted for this sequence. The Simultaneous Sequence is 
used to start the East/West sequence of lights at the same time as the North/South sequence, and 
to ensure that they end at the same time, so that the action of these two sequences remains 
synchronized (important for traffic control applications). The directed link is shown leading 
from the last process step back to the beginning of the application. 
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Figure A-9. Sequential Chart for Traffic Light 

A Divergence of Sequence selection occurs under Step 10, as indicated by a single horizontal line. 
The two Transitions involved in the Divergence of Sequence Selection are programmed to be 
mutually exclusive, by the time of day. The Sequence including Steps 11 through 16 is an 
example of simultaneous sequences, with one sequence for the East/West lights (Steps 14,15,and 
16), and one sequence for the North/South Lights (Steps 11,12, and 13). This Simultaneous 
Sequence is indicated by a double horizontal line at both the beginning and ending of the 
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construct, as specified in IEC standards 1131-3 and 848. 

The transition under Step 13 is a 5 second timer, which begins activation when ALL of the final 
steps in the preceding Simultaneous Sequence (in this case, 13 and 16) are active. This is stan
dard behavior for the transition condition immediately following the end of a Simultaneous 
Sequence - the tiansition is only executed when ALL of the prior Steps are active. 

Steps 17 and 18, which are only active between midnight and 6:00 AM because of the preceding 
divergence of sequence selection, blink red lights on the North/South sides, and yellow lights on 
the East/West side for 0.3 seconds apiece. Finally, the directed link returns contiol of program 
flow to the initial Step, Step 10. As one of the transitions under Step 10 will ALWAYS be trae, 
the small amount of time spent in Step 10 does not affect proper operation of the traffic light. 

A.4 PL/M Language Description 

This appendix section discusses the PL/M programming language. The first section describes its 
history, the second describes how executable code is generated, the third section contains a top-
level description of the language itself, and the final section provides additional language-specific 
recommendations on the project level. 

A.4.1 Language History 

The Programming Language for Microcomputers (PL/M) was introduced in 1976 by the Intel 
Corporation. It was introduced to provide a higher-level language for their 8-bit, 8080 
microprocessor. PL/M was modeled after IBM's popular PL/1 stractured programming language. 
At that time BASIC and FORTRAN V were the dominant popular higher-level languages. PL/M 
was the first block-stractured language available for microcomputers and encouraged the use of 
structured programming techniques developed and promoted by the IBM Corporation, and others 
such as E. Dijkstia and C.A.R Hoare. 

Intel developed the PL/M Language, compiler, linker, and simulator as a proprietary language. 
They did not seek to standardize the language. 

PL/M has evolved with and in support of the Intel microprocessor product line. The following 
table is a partial list of PL/M compilers: 
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Table A-3. PL/M Compilers 
Processor 

8080/8085/Z80 

8051/8052 

8096/80196 
8086/80186 

80286 
80386/80486 

Compiler 
Intel PL/M-80 
BSO Tasking 80/PL 
Intel PL/M-51 
BSO Tasking 8051 PL/M 
Intel PL/M-96 
Intel PL/M-86 
BSO Tasking 80/PL 
Intel PL/M-286 
Intel PL/M-386 

Status 
In public domain 
Available 
Discontinued 
Available 
Discontinued 
Discontinued 3/94 
Available 
Discontinued 3/94 
Discontinued 12/94 

A.4.2 Generation of Executable PL/M Programs 

PL/M compilers translate source code into relocatable object modules. These modules can then 
be combined with other modules coded in PL/M, assembly language, or other higher-level 
languages. The compilers provide listing outputs, enor messages, and a number of compiler 
controls that aid in developing and debugging programs. 

To complete a software program, the object modules developed are combined with any necessary 
support libraries using a Linkage Editor program such as LINK86, BND286, or BND386. The 
resulting program is still in relocatable format and requires one last step to make it executable 
ready. 

A Locate program transforms the relocatable program module into a program with absolute 
addresses. This locator program properly divides the program into EPROM / ROM sections and 
into RAM data memory sections. The locator also assigns the system STACK address. After the 
program modules are combined and located, the program can be debugged using an ic-circuit 
emulator system (such as ICE-386), or a software debugger such as DB86 or DB386. L/M is a 
data typed language. The compiler does data-type compatibility checking during compilation to 
help detect logic enors in programs. 

A.4.3 Language Overview 

Unlike ANSI standard languages such as "C," the syntax and semantics of certain areas of PL/M 
vary according to the processor intended for use. PL/M can be grouped into families that have 
similar attributes. For example, PL/M-80, PL/M-86, and PL/M-96 are somewhat similar; and an 
upgrade chapter is provided in the manuals. PL/M-286 and PL/M-386 are also similar. However, 
PL/M-51 for the 8051/8052 microcontroller family is different from the those mentioned 
previously. 
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All of the PL/M languages maintain the same control stracture elements. The major areas in 
which each PL/M compiler seems to differ are: data types, addressing mechanisms, interrupt 
structures, I/O schemes, and hardware flags. 

A.4.3.1 PL/M Program Stracture 

PL/M is a block structured language. Every statement in a PL/M program is a part of at least one 
block. A block is a well-defined group of statements that begin with a DO statement or a 
PROCEDURE declaration statement, and end with an END statement. 

Every PL/M program consists of one or more modules, each containing one or more DO-END 
blocks. Each program module must begin with a labeled DO statement and end with an END 
statement. A module DO-END block can contain other nested DO-END blocks; however, it cannot 
itself be contained or nested inside of another block. 

Between the DO and END statements there are other PL/M statements that provide the makeup of 
the program logic. These PL/M statements are said to be a part of the conesponding DO-END 
block that sunounds it. DO-END blocks can be nested inside each other within the module block. 

The second type of block in a PL/M program is the Procedure Definition Block. This block begins 
with a procedure definition statement (PROCEDURE) and ends with an END statement. Like the 
DO-END block, other PL/M statements can be placed within the procedure block to form 
procedure program logic. 

In PL/M, procedure blocks can be nested. This feature allows PL/M to keep support procedures 
local and hidden from other procedures and code blocks outside the containing procedure. 

A.4.3.2 Data Types 

In the PL/M-80 compiler, there were only two data types defined: BYTE (unsigned 8-bit), and 
ADDRESS (a 16-bit unsigned value), ADDRESS values were store in high-byte, low-byte reverse 
order according to the 8080 architecture. These data types conesponded with the register data 
width of the basic 8080/8085 microprocessor. 

As PL/M evolved, more data types were added according to the new processors. PL/M-86 added 
datatypes of WORD, INTEGER, REAL, and POINTER. Datatype ADDRESS became synonymous 
with WORD for compatibility, and use of WORD was encouraged over ADDRESS . 

PL/M-286 and 386 further added new data types including OFFSET and SELECTOR. Data types 
often became confusing as WORD was a 16-bit number in PL/M-286, but became a 32-bit number 
in PL/M-386. Data-type mapping compiler controls of $WORD!6 and $WORD32 were introduced 
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in an attempt to provide some basic data-type compatibility for the 80x86 processor family. 

A.4.3.3 Addressing Mechanisms 

Addressing in PL/M-80 was rather straightforward and simple. In the 80x86 processors and 
above, keeping the segmented address mechanisms hidden from the user became a problem. In 
using pointers, the user had to deal with SELECTORS and OFFSETS and their differences 
between processors. Use of these addressing mechanisms required detailed attention, as they all 
differed among the 8086, 80286, and the 80386. 

A.4.3.4 Interrupt Stractures, I/O Schemes, and Flags 

Depending upon the compiler and processor being supported, interrupt causing / handling 
functions were added. PL/M-86 defines methods for setting up interrapt vectors for the 8086. 
PL/M-286/386 defines an Interrapt Descriptor Table for handling interrupts in 80286/80386 
applications. In general, the handling of interrapts are not tiansparent and compatible. They must 
be given specialized attention for each processor. I/O schemes also differ according to processor 
family-some confined to 8-bits only while others allow multi-byte I/O. 

Hardware flags such as SIGN, CARRY, and numerous others are also hardware dependent. They 
are often contained entities which vary in width from 8-bits to 32-bits. Bit assignments for like 
flags are not necessarily found in the same order between processors. 

A.4.4 General Guidelines for Using PL/M 

PL/M is a language that has experienced a decline in use and popularity in the industry over the 
past few years. As a result, those cunently using or those intending to use PL/M should be aware 
of this trend in the industry. Part of the reason for the decline may be the proprietary nature of the 
language; it is not supported by any outside standards committees such as ANSI or the IEEE. 

In the late 1980s and early 1990s, "C", Ada, and other more advanced languages became popular. 
Market pressures, in conjunction with the popularity of the new languages, gradually caused Intel 
to phase out and diminish support for the PL/M language set. The user should be aware of this 
trend when choosing to make long-term plans to use and support products with PL/M. 
Recommendations and guidelines are discussed in the sections below. 
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A.4.4.1 An Almost Obsolete Language 

The PL/M language has sparse support among SW tool vendors. This fact should be weighed 
carefully by organizations desiring to use or continue using this language. Although some third-
party vendors may continue supporting PL/M into the future as part of their product line, no 
vendor focuses on providing PL/M as its prime or flagship product. 

Intel has discontinued support of all its PL/M compUers. The PL/M-386 was the last of the PL/M 
products in its software development product line. The PL/M-86/286 product had aheady been 
discontinued in March 1994. And, although no final date was provided, PL/M-51 has apparently 
been discontinued for some time. Intel's oldest PL/M product, PL/M-80 for the 8080/8085, has 
been placed in the public domain. Copies are available for download from the Intel BBS 
electronic bulletin board system18 Intel offers information and support to customers on a PL/M 
to "C" source-code converter program to facilitate the conversion. 

A.4.4.2 New Project Guidelines and Recommendations 

If the project directorate decides to use the PL/M language for new development, these guidelines 
should be followed: 

• Ensure the existence of an adequate supply of PL/M language. 

• Archive or store additional tools to last the expected duration of the system or 
product. 

• Search for and become acquainted with companies, individuals, or consultants 
which can provide continued support for the PL/M language. 

• Prepare for a migration path to an alternate language. 

A.4.4.3 Existing Project Guidelines and Recommendations 

For those individuals or groups that must maintain systems, project software developers and 
project leaders should make long-term plans to ensure that an adequate toolset and techmcal base 
can be sustained. 
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Appendix B. Summary of Language Guidelines 

This Appendix contains tabular summaries of the language guidelines for the languages discussed 
in the main body of the report. In addition to the summary, a relative weighting for the guideline 
is provided. These weightings are general and may change based on the specifics of each project. 
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Generic (Language Independent) Attributes 

Generic 
Characteristics 

2.1.1.1 Dynamic 
Memory Allocation 

2.1.1.2 Memory Paging 
and Swapping 

2.1.2.1 Structure 

2.1.2.2 Control Flow 
Complexity 

2.1.2.3 Initialization of 
Variables 

2.1.2.4 Single Entry 
and Exit Points 

2.1.2.5 Interface 
Ambiguities 

2.1.2.6 Data Typing 

2.1.2.7 Precision and 
Accuracy 

2.1.2.8 Order of 
Precedence 

Significance 

High 

High 

Medium 

High 

High 

Medium 

Medium 

High 

High 

Medium 

Guideline 

Minimize dynamic 
memory allocation. 

Minimize memory 
paging and swapping. 

Avoid goto's. 

Minimize control flow 
complexity. 

Initialize variables 
before use. 

Use single entry and 
exit points in 
.subprograms. 

Minimize interface 
ambiguities. 

Use data typing. 

Provide adequate 
precision and accuracy. 

Use parentheses rather 
than default order of 
precedence. 

Rationale 

Use of dynamic memory can result 
in memory leaks. 

Memory paging and swapping can 
cause significant delays in response 
time. 

goto's make execution time behavior 
difficult to fully predict as well as 
introducing uncertainty into control 
flow. 

Excess complexity makes it difficult 
to predict the program flow and 
impedes review and maintenance. 

Uninitialized variables can cause 
anomalous behavior. 

Multiple entries and exits introduce 
control flow uncertainties. 

Interface errors account for many 
coding errors. 

Data typing prevents misuse of data. 

Correct results needed in safety 
critical calculations. 

Incorrect precedence assumptions 
cause errors; source code open to 
misinterpretation. 

Mitigation 

Release allocated memory as 
soon as possible. 

Not Applicable. 

Clearly document, justify, and 
test. 

Project guidelines should set 
specific limits on nesting levels. 

Not Applicable. 

Document secondary entry and 
exit points. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Use other forms to enhance 
readability if parentheses are 
excessive. 
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Generic (Language Independent) Attributes 

Generic 
Characteristics 

2.1.2.9 Side Effects 

2.1.2.10 Separating 
Assignment from 
evaluation 

2.1.2.11 Program 
Instrumentation 

2.1.2.12 Library Size 

2.1.2.13 Dynamic 
Binding 

2.1.2.14 Operator 
Overloading 

Significance 

Medium 

Medium 

Medium 

Medium 

High 

Medium 

Guideline 

Avoid functions or 
procedures with side 
effects. 

Separate assignments 
from evaluation 
statements. 

Minimize run-time 
perturbations. 

Maintain visibility of 
instrumentation in run
time source code. 

Conform to software 
instrumentation 
guidelines. 

Control class library 
size. 

Minimize dynamic 
binding. 

Control operator 
overloading. 

Rationale 

To avoid unplanned dependencies 
and bugs. 

Incorporation of assignments into 
evaluation statements can cause 
unanticipated side effects. 

These practices improve checkout 
and verification of code. 

Large class libraries are 
unmanageable and have 
performance penalties. 

Dynamic binding causes 
unpredictability in name/class 
association and reduces run-time 
predictability. 

Operator overloading is problematic 
for predictability. 

Mitigation 

Not Applicable. 

Not Applicable. 

Intrusive instrumentation is 
sometimes necessary for problem 
resolution. Remove 
instrumentation and perform 
regression testing. 

Not Applicable. 

Justify dynamic binding. 

Sometimes acceptable for 
achieving uniformity across 
different data types. 
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Generic (Language Independent) Attributes 

Generic 
Characteristics 

2.1.3.1 Tasking 

2.1.3.2 Interrupt Driven 
Processing 

2.2.1.1 Internal 
Diversity 

2.2.1.2 External 
Diversity 

2.2.2.1 Local Handling 
of Exceptions 

2.2.2.2 Maintain 
External Control Flow 

Significance 

High 

High 

Medium 

Medium 

High 

High 

Guideline 

Minimize the use of 
tasking. 

Minimize the use of 
interrupt driven 
processing. 

When internal diversity 
is used, all interface 
versions must be 
identical. 

External diversity 
should be implemented 
in a disciplined manner. 

Handle exceptions 
locally. 

Preserve external 
control flow by 
handling the exception 
in the responsible 
module. 

Rationale 

Timing uncertainties, sequence on 
execution uncertainties and 
vulnerability to race conditions and 
deadlocks may result. 

Interrupts lead to non-deterministic 
response times. 

Internal diversity minimizes the 
possibility of design or 
implementation-related failure. 

External diversity minimizes the 
possibility of design or 
implementation-related failure. 

Local exception handling helps 
isolate problems more easily and 
more accurately. 

Interruption of control flow creates 
uncertainty in execution. 

Mitigation 

Tasking requires compelling 
justification. 

Minimize processing for 
handling interrupts. Return to 
primary program control as soon 
as possible. 

Deviation from common 
interfaces should be documented 
and justified. 

Not Applicable. 

If not possible, thorough testing 
and analysis to verify behavior 
during exception handling is 
required. 

If not possible, thorough testing 
and analysis to verify behavior 
during exception handling is 
required. 

B-5 NUREG/CR-6463 



Generic (Language Independent) Attributes 

Generic 
Characteristics 

2.2.2.3 Uniform 
Exception Handling 

2.2.3.1 Input Data 
Checking 

2.2.3.2 Output Data 
Checking 

2.3.1 Built-in Functions 

2.3.2 Compiled 
Libraries 

2.4.1.1 Indentation 
Guidelines 

2.4.1.2 Descriptive 
Identifier Names 

2.4.1.3 Comments and 
Internal Documentation 

Significance 

High 

High 

High 

Low 

Low 

Medium 

Medium 

Medium 

Guideline 

Use general and 
defined exceptions, 
conform to specific 
project guidelines on 
exceptions and uniform 
placement. 

Check input data 
validity. 

Check output data 
validity. 

Control the use of built-
in functions through 
project specific 
guidelines. 

Control the use of 
precompiled libraries. 

Conform to indentation 
guidelines. 

Use descriptive 
identifier names. 

Conform to comment 
guidelines. 

Rationale 

Undisciplined use of exception 
handling can result in inconsistent 
processing of the same exception 
condition in different parts of the 
code. 

Checks reduce the probability of 
crashes and incorrect results. 

Checks reduce the probability of 
crashes and incorrect results. 

Built-in functions have unknown 
internal structure, limitations, 
precision and exception handling. 

Precompiled libraries have unknown 
internal structure, limitations, 
precision and exception handling. 

Indentation guidelines improve 
readability and maintainability. 

Descriptive identifier names 
improve readability and 
maintainability. 

Necessary to verify conformance to 
requirements, code inspections and 
maintenance. 

Mitigation 

Not Applicable. 

May not be applicable if input 
can be "trusted." 

May not be necessary if 
downstream input checking 
performed. 

Conduct thorough testing and 
error tracking. 

Conduct thorough testing and 
error tracking. 

Not Applicable. 

Not Applicable. 

Not Applicable. 
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Generic (Language Independent) Attributes 

Generic 
Characteristics 

2.4.1.4 Subprogram 
Size 

2.4.1.5 Mixed 
Language 
Programming 

2.4.1.6 Obscure or 
Subtle Programming 
Constructs 

2.4.1.7 Dispersion of 
Related Elements 

2.4.1.8 Use of Literals 

2.4.2.1 Global 
Variables 

2.4.2.2 Complexity of 
Interfaces 

2.4.3.1 Single Purpose 
Function and Procedure 

2.4.3.2 Single Purpose 
Variables 

Significance 

Medium 

Medium 

High 

Medium 

Medium 

Medium 

Medium 

Medium 

Medium 

Guideline 

Limit subprogram size 
in accordance with 
project coding 
standards. 

Minimize mixed 
language programming. 

Minimize obscure and 
subtle programming 
constructs. 

Minimize the 
dispersion of related 
elements. 

Minimize the use of 
literals. 

Minimize the use of 
globals. 

Minimize the 
complexity of 
interfaces. 

Use single purpose 
functions and 
procedures. 

Use each variable for a 
single purpose only. 

Rationale 

Facilitate review and maintenance. 

Mixed language programming is 
hard to read and maintain. 

Obscure coding presents problems in 
review and maintenance and raises 
safety concerns. 

Dispersed elements necessitate 
multiple accesses to review or 
maintain code and are therefore 
susceptible to errors. 

The use of symbolic constants 
enhances code reliability and 
consistency. 

Globals have the potential for 
undesired side effects. 

Complex interfaces are a frequent 
cause of software failures. 

Functional cohesion facilitates 
review and maintenance. 

To facilitate review and 
maintenance. 

Mitigation 

Justify larger sizes. Provide with 
additional documentation and 
comments. 

Separate "foreign" code so that 
readability is enhanced. 

When it cannot be avoided, use 
comments to minimize the 
impact of obscure or subtle code. 

Provide clear references, 
rationale and overall source code 
organization. 

Associate comment with each 
literal to facilitate search/replace. 

Clearly identify global variables. 

Closely inspect and clearly 
identify interfaces. 

Clearly identify and rationalize 
groupings of functions. 

Not Applicable. 
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Generic 
Characteristics 

2.4.4.1 Isolation of 
Alterable Functions 

2.4.5.1Isolation of 
Non-Standard 
Constructs 

Significance 

Medium 

Medium 

Guideline 

Isolate alterable 
functions. 

Isolate implementation 
dependent constructs. 

Rationale 

Isolation of alterable functions 
facilitates review and maintenance. 

Simplifies porting to changed 
hardware configurations. 

Mitigation 

Clearly comment alterable 
sections. 

Not Applicable. 
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Ada 
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Ada 

Generic 
Characteristics 

3.1.1.1 Dynamic 
Memory Allocation 

Significance 

High 

Guideline 

Dynamic use of memory should 
be strongly discouraged. 

Avoid dynamically created 
tasks. 

Minimize use of unconstrained 
types. 

Avoid recursion. 

Do not instantiate generic units 
during runtime. 

Minimize use of large 
composite objects. 

Use length clauses if dynamic 
memory allocation is necessary. 

Rationale 

Dynamic memory can cause the 
heap to grow too large and crash 

-the system. 

Dynamic tasks use up unknown 
and potentially large amounts of 
dynamic memory. Memory 
allocated to dynamic tasks 
cannot be explicitly deallocated. 

Due to their impact on memory 
allocation. 

Recursion uses up unknown and 
potentially large amounts of 
dynamic memory. 

Generic units are not desirable 
in any safety-significant 
software. 

Large objects can cause stack 
overflows. 

To reserve memory in advance. 

Mitigation 

Release allocated memory 
as soon as possible. 
Utilize the length clause 
feature to pre-allocate 
dynamic memory pools. 
Put STORAGE_ERROR 
exception handlers in 
program units which 
allocate dynamic memory. 

Not applicable. 

Use with caution and 
justify. 

Put exception handlers for 
STORAGE_ERROR in 
recursive subprograms. 

Not Applicable. 

Not Applicable. 

Not Applicable. 
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Ada 

Generic 
Characteristics 

3.1.1.2 Memory 
Paging and Swapping 

3.1.2.1 Structure 

3.1.2.2 Control Flow 
Complexity 

Significance 

High 

Medium 

High 

Guideline 

Provide handlers for the 
predefined exception 
STORAGE_ERRORif 
dynamic memory allocation is 
necessary. 

Explicitly deallocate dynamic 
memory. 

Do not assign values of 
dynamically allocated access 
objects to other access objects. 

No Ada specific guideline, see 
the generic guideline. 

Do not use goto's. 

No more than one exit 
statements for a loop. 

Minimize return statements. 

Minimize control flow 
complexity. 

■ Rationale 

To provide a graceful recovery 
from memory exhaustion. 

The run-time executive's 
garbage collector should not be 
relied upon. 

They may point to invalid 
addresses if the original memory 
is deallocated. 

Not Applicable. 

The use of goto's clouds the 
code structure and should be 
avoided. 

More than one or two exit 
conditions from a loop indicate 
lack of cohesion, i.e., more than 
one purpose for loop. 

Multiple return statements can 
confuse meaning of subprogram. 

Excess complexity makes it 
difficult to predict the program 
flow and impedes review and 
maintenance. 

Mitigation 

Not Applicable. 

Not applicable. 

Not applicable. 

Not Applicable 

Clearly document, justify, 
test. 

Clearly document, justify. 

Clearly document and 
justify. 

Project guidelines should 
set specific limits on 
nesting levels. 
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Ada 

Generic 
Characteristics 

3.1.2.3 Initialization 
ofVariables 

3.1.2.4 Single Entry 
and Exit Points 

Significance 

High 

Medium 

Guideline 

Use if., e/si/instead of nested 
//"statements. 

Use case statements in 
preference to if., elsif 
statements whenever possible. 

When using case, also use 
when others to catch unplanned 
or unknown alternatives. 

Initialize all variables. 

If initialization is via function 
call, perform initialization in 
program unit body, not 
declaration section. 

Do not initialize large objects 
via aggregates. 

One normal (non-exception) 
entry and exit per subprogram. 

Limit the number of exception 
entry/exit points. 

Rationale 

Reduces complexity and nesting 
levels. 

Reduces complexity and nesting 
levels. 

when others traps unplanned and 
unknown alternatives. 

Ada compilers will not generally 
initialize variables, therefore the 
contents are undefined. 

Body of function may not have 
been elaborated when 
declaration section of program 
unit is being elaborated; 
PROGRAM_ERROR exception 
could be raised. 

Could cause system crash in 
some implementations. 

Single entry and return points 
are easier to understand, test, 
and less expensive to design, 
build, and maintain than 
multiple entries and returns. 

To avoid complicating the 
control flow. 

Mitigation 

Not applicable. 

Use //statements if only 
two branches or if control 
path not dependent upon 
discrete value. 

Clearly document, justify, 
test. 

The access type is always 
initialized to null. 

Elaborate pragma can be 
used to ensure body of 
function elaborated before 
declaration section. 

Not applicable. 

Document secondary entry 
and exit points. 

Clearly document each 
entry/exit point. 
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Ada 

Generic 
Characteristics 

3.1.2.5 Interface 
Ambiguities 

Significance 

Medium 

Guideline 

Avoid multiple task entry 
points. 

Minimize interface 
ambiguities. 

Explicitly specify the modes of 
parameters. 

Restrict the use of in out mode. 

Use named parameters for 
calling functions and 
procedures. 

Use target type instead of 
access type when data of the 
target type only is to be 
processed. 

Rationale 

To minimize program 
complexity. 

Interface errors account for 
many coding errors. 

Aids understandability for those 
who do not know default mode. 

Reduces ambiguity; makes plain 
the intention regarding changes 
in parameter. 
Results in safer coding; objects 
passed into subprograms and 
meant to be unchanged cannot 
unintentionally be changed. 

Using named parameters for 
calling functions and 
procedures, improves readability 
and reliability. 

Reduces ambiguity; makes plain 
which data, pointer or target 
data, is to be processed. 
Results in safer coding; objects 
of a target type passed into 
subprograms and meant to be 
unchanged cannot 
unintentionally be changed. 

Mitigation 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Objects of limited type 
cannot be out mode. 

Not Applicable. 

Clearly justify, document, 
and test. 
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Ada 

Generic 
Characteristics 

3.1.2.6 Data Typing 

Significance 

High 

Guideline 

Avoid aliased parameters. 

Take advantage of Ada's strong 
typing. 

Do not suppress Ada's run-time 
constraint checks. 

Define scalar data types with 
the narrowest possible limits. 

Use care in scalar 
subexpressions in Ada 83 
implementations. 

Minimize the use of type 
conversions. 

Avoid use of unchecked 
conversions. 

Rationale 

When aliased parameters are 
used, results from subprograms 
frequently incorrect and 
implementation dependent. 

Strong typing catches range 
errors as well as typing errors, 
making safer code. 

Strong typing conducts run-time 
range checks of parameters 
entering procedures and 
functions and of copy operations 
to variables. 

Enhances early detection of 
out-of-range data values. 

Some implementations check 
intermediate values for 
out-of-range conditions. 

Type conversions subvert the 
benefits of strong typing. 

This may lead to assigning 
illegal values to objects. 

Mitigation 

Clearly document, justify, 
and test any use. 

Not Applicable. 

Clearly document and 
justify any deviation. 

Not Applicable. 

Use implementations that 
do not have this problem. 

Justify and document. 

Not Applicable. 
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Ada 

Generic 
Characteristics 

3.1.2.7 Precision and 
Accuracy 

3.1.2.8 Order of 
Precedence 

Significance 

High 

Medium 

Guideline 

Limit the use of access type 
data. 

Avoid declaring variables in 
package specifications. 

Do relational tests on real 
values with <= and >= rather 
than <, >, =, and /=. 

Use Ada attributes in 
comparisons and checking for 
small values for real numbers. 

Test carefully using Ada 
attributes around special values 
such as 0.0. 

Use parentheses or other 
mechanisms for ensuring that 
the order of evaluation of 
operations is explicitly stated. 

Use parentheses to separate 
operations of different 
precedence. 

Rationale 

Access data is harder to verify 
and maintain. 

To increase data abstraction and 
reduce coupling. 

The values of fixed point and 
floating point numbers only 
approximate the specific 
numbers. The operations on 
these numbers are also 
approximations. Therefore, 
proper precision and accuracy 
are necessary for critical 
systems. 

The default order of precedence 
should not be depended on if any 
misinterpretation can be made. 

Less chance of misinterpretation. 

Mitigation 

Limit direction to situations 
where there are no other 
reasonable alternatives, 
performing validation on 
indirectly accessed data 
prior to setting or use to 
ensure the correctness of 
the accessed data. 

Not Applicable. 

Not Applicable. 

Use other forms to enhance 
readability if parentheses 
are excessive. 

Not Applicable. 
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Ada 

Generic 
Characteristics 

3.1.2.9 Side Effects 

3.1.2.10 Separating 
Assignment from 
Evaluation 

3.1.2.11 Program 
Instrumentation 

3.1.2.12 Library Size 

3.1.2.13 Dynamic 
Binding 

3.1.2.14 Operator 
Overloading 

Significance 

Medium 

Medium 

Medium 

Medium 

High 

Medium 

Guideline 

Use parentheses or other 
mechanisms for ensuring that 
the order of evaluation of 
operands is correct. 

Verify that functions do not 
have side effects. 

Separate assignments from 
evaluations. 

No Ada specific guideline, see 
the generic guideline. 

No Ada specific guideline, see 
the generic guideline. 

Minimize dynamic binding. 

Guidance on use of operator 
overloading should be included 
in a project specific standards 
manual and coding should 
comply with this standard. 

Rationale 

If expressions contain functions 
with side effects that affect each 
other, results of expressions will 
be implementation dependent. 

Side effects can lead to problems 
with unplanned dependencies 
and can cause bugs that are hard 
to find. 

To avoid side effects. 

Not Applicable. 

Not Applicable. 

Dynamic binding causes 
unpredictability in name/class 
associations and reduces 
run-time predictability. 

Operator overloading can be 
problematic from the perspective 
of predictability because it is 
unclear how a compiler would 
bind code for different 
polymorphic code. 

Mitigation 

Avoid functions with side 
effects. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

All cases where dynamic 
binding is required should 
be justified. 

Sometimes acceptable for 
achieving uniformity across 
different data types. 
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Ada 

Generic 
Characteristics 

3.1.3.1 Tasking 

Significance 

High 

Guideline 

Avoid operator overloading 
when the inherent precedence 
of the operator is different from 
that desired. 

Preserve conventional meaning 
of overloaded operators. 

Minimize the use of tasking. 

Avoid using the abort 
statement. 

Avoid dynamic tasking. 

Use fife/ay. only for waiting, not 
synchronization. 

Rationale 

Misinterpreting operator 
precedence could lead to 
incorrect results for expressions. 

Failure to preserve conventional 
meaning results in confusing 
code. 

Timing uncertainties, sequence 
of execution uncertainties, and 
vulnerability to race conditions 
and deadlocks. 

If a task is aborted, then all tasks 
dependent on it are aborted. 
Furthermore subprograms and 
blocks which were called by it 
will also be aborted. If the task 
was suspended, the abort will 
cause it to appear to have been 
completed. Delays are canceled 
by aborts. 

Dynamic tasking complicates the 
predictability of the run
time behavior of the program. 

delay sets a minimum time 
delay. 

Mitigation 

Use parentheses to override 
inherited precedence. 
Document usage. 

Not Applicable. 

Tasking requires 
compelling justification. 

Aborts require compelling 
justification. 

Thoroughly justify dynamic 
tasking and thoroughly test 
that all problems it can 
cause are handled. 

Not Applicable. 
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Ada 

Generic 
Characteristics 

Significance Guideline 

Minimize the number of accept 
and select statements per task. 
Minimize the number of accept 
statements per entry. 

Avoid conditional entry calls. 
Avoid selective waits with else 
parts. 
Avoid timed entry calls. 
Avoid selective waits with 
delay alternatives. 

Minimize the use of the 
PRIORITY pragma. 

Rationale 

These guidelines are motivated 
by the reduction of conceptual 
complexity and the need to 
control the task body size. 
Additionally, a large number of 
accept and select statements 
carries with it a large amount of 
inter-task communication and 
overhead. 

Use of these constructs always 
poses a risk of race conditions. 
Their use in loops, particularly 
with poorly chosen task 
priorities, can have the effect of 
busy waiting. Also these 
constructs are implementation 
dependent. 

Ada tasking is based on 
preemption and requires that 
tasks be synchronized only by 
features of the language. The 
scheduling algorithm is not 
defined by the language and may 
vary from time slice to 
preemptive priority. Some 
implementations provide several 
choices that a user may select for 
the application. 

Mitigation 

Not applicable. 

Justify any usage. 
Thoroughly test for 
occurrence of race 
conditions. 

In real-time systems it is 
often necessary to tightly 
control the tasking 
algorithm in order to obtain 
the required performance. 
This may require 
non-preemptive tasking. 
Program such tasking in 
Ada. 

NUREG/CR-6463 B-18 



Ada 

Generic 
Characteristics 

3.1.3.2 Interrupt 
Driven Processing 

3.1.3.3 Runtime 
Environment 

3.1.3.4 Automatic 
Memory Management 

3.2.1 Software 
Diversity 

3.2.2.1 Local 
Handling of 
Exceptions 

Significance 

High 

Medium 

Medium 

Medium 

High 

Guideline 

Declare interrupt values using 
named constants and isolate 
them from other declaration 
clauses. 

Isolate interrupt receiving tasks 
into implementation dependent 
package bodies. 

Pass interrupts to tasks via 
normal entries. 

Do not use task entry points for 
interrupt processing. 

Characterize timing for the Ada 
Runtime Environment (RTE). 

Avoid automatic memory 
management. 

No Ada specific guideline, see 
the generic guideline. 

Minimize propagation of 
exceptions. 

Localize handling of 
predefined exceptions. 

Rationale 

Interrupts lead to 
non-deterministic response 
times. Interrupt entries are 
implementation dependent 
features that may not be 
supported. 

The RTE is delivered by vendors 
and needs to be tested to ensure 
that it is deterministic, 
functionally correct, and satisfies 
timing requirements. 

Automatic garbage collection if 
a source of timing uncertainty. 

Not Applicable 

It may obscure program logic. 

System failures can be avoided 
if exceptions are handled locally. 

Mitigation 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable 

Justify and document 
clearly. 

If not possible, use 
thorough testing and 
analysis to verify behavior 
during exception handling. 
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Ada 

Generic 
Characteristics 

3.2.2.2 External Flow 
Control 

3.2.2.3 Uniform 
Exception Handling 

Significance 

High 

High 

Guideline 

Declare exceptions to be . 
handled in calling program 
units alongside declaration of 
called unit. 

Clearly express and document 
exception handling. 

Handle predefined exceptions. 

Do not raise predefined 
exceptions explicitly. 

Handle all program-defined 
exceptions. 

Use exception handling only 
for abnormal events. 

Minimize side effects. 

Avoid compiler vendor specific 
exceptions. 

Use and flag other in exception 
handler definitions. 

Rationale 

Allows calling program unit to 
choose what action to take upon 
raising of exception. 

To clarify control flow. 

To catch unexpected error 
conditions. 

To avoid unanticipated behavior. 

It is not good practice to ignore 
exceptions in safety critical 
systems; they can be propagated 
to the Real Time Executive and 
cause the system to come down. 

Exceptions increase control flow 
complexity and should not be 
used where inappropriate. 

Eliminates side effects in case of 
exceptions. 

Inhibits portability and 
understandability. 

All conditions in exception 
handling must be well defined. 

Mitigation 

Not Applicable 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable 

Not Applicable. 

May increase time and 
memory requirements by 
unallowable amounts. 

Justify and document any 
use of compiler specific 
exceptions. 

Not Applicable. 
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Ada 

Generic 
Characteristics 

3.2.3 Input and Output 
Data Checking 

3.3.1 Built-in 
Functions 

3.3.2 Compiled 
Libraries 

3.3.4 Traceability 
between Source and 
Compiled Code 

3.3.5 Generic Units 

3.4.1.1 Indentation 
Guidelines 

Significance 

High 

Low 

Low 

High 

Medium 

Medium 

Guideline 

Check input data. 

Ada has few built-in functions. 
Therefore no Ada specific 
guideline. See the generic 
guideline. 

Avoid built-in libraries. 

Maintain traceability between 
source code and compiled 
code. 

Minimize the use generic units. 

Indentation improves 
readability and allows the 
reader to see the structure of 
the program. 

Rationale 

Input data should be regarded as 
untrustworthy until proven 
otherwise. 

Not Applicable 

Libraries prevent the 
programmer from knowing the 
accuracies, limitations, 
robustness, and exception 
handling of the built-in 
functions. 

To avoid configuration 
management problems. 

Generic units obscure 
traceability. 

This is especially useful for 
finding the beginnings and ends 
of data structures and control 
flow structures. 

Mitigation 

May not be applicable if 
input can be "trusted". 
Output checking may not be 
necessary if downstream 
input checking is 
performed. 

Not Applicable 

Thorough testing and error 
tracking. 

If separate compilation is 
needed, use the with clause 
and appropriate tools. 

If using generic units, 
- Instantiate only during 

initialization 
- Avoid global variables 
- Document the restrictions 

on parameters. 

Not Applicable. 
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Ada 

Generic 
Characteristics 

3.4.1.2 Descriptive 
Identifier Names 

3.4.1.3 Comments and 
Internal 
Documentation 

Significance 

Medium 

Medium 

Guideline 

Indent and align nested control 
structures, continuation lines, 
and embedded program units 
consistently. Also, distinguish 
between indentations for 
nesting and for continuation 
lines. 

Follow project-specific 
guidelines on naming. 

Separate words in compound 
names with underscores. 

Use underscore"_" to promote 
readability on numbers. 

Use abbreviations with care. 

Source code should be 
supplemented with Ada 
comments that explain the 
code. 

Use comments to relate code to 
higher level design. 

Use blank lines to delineate 
related statements. 

Rationale 

Improves readability. 

Not Applicable. 

This will improve reliability 
because the reader will be able 
to more easily read the names. 

This will improve reliability 
because the reader will be able 
to more easily read the numbers 
for verification. 

Avoid jargon, use the names 
given by the application. 

Comments clarify code and help 
code maintenance. 

Comments should clarify data 
structure, not repeat what source 
code states. 

Improves understandability. 

Mitigation 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 
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Ada 

Generic 
Characteristics 

3.4.1.4 Subprogram 
Size 

3.4.1.5 Mixed 
Language 
Programming 

Significance 

Medium 

Medium 

Guideline 

Avoid use of escapes from 
language restrictions. 

Indicate the scope of renaming. 

Provide comments on 
exception handling. 

Provide comments on dynamic 
memory allocation. 

Provide comments on tasking. 

No Ada specific guideline, see 
the generic guideline. 

Avoid machine code inserts. 

Rationale 

Justified on individual basis 
elsewhere. 

To improve reviewability. 

To improve flow control. 

Dynamic memory allocation is 
discouraged and need proper 
justification and documentation. 

To provide traceability. 

Not Applicable. 

There is no requirement on how 
machine code should be 
implemented. It is possible that 
two different vendors' syntax 
would be different for an 
identical target and, certainly, 
differences in lower-level details 
such as register conventions 
would hinder portability. 

Mitigation 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

If machine code inserts 
must be used to meet a 
project requirement, 
recognize the portability 
decreasing effects and 
isolate and highlight their 
use. 

B-23 NUREG/CR-6463 



Ada 

Generic 
Characteristics 

3.4.1.6 Obscure or 
Subtle Programming 
Constructs 

3.4.1.7 Dispersion of 
Related Elements 

3.4.1.8 Use of Literals 

Significance 

High 

Medium 

Medium 

Guideline 

Minimize interfaces with other 
languages. 

Isolate and clearly document 
machine language inserts. 

Isolate all subprograms 
employing pragma 
INTERFACE to an 
implementation-dependent 
(interface) package. 

No Ada specific guideline, see 
the generic guideline. 

No Ada specific guideline, see 
the generic guideline. 

Use symbolic constants instead 
of literals. 

Use Ada attributes instead of 
literals. 

Rationale 

The problems with employing 
pragma INTERFACE are 
complex. These problems 
include pragma syntax 
differences, conventions for 
linking/binding Ada to other 
languages, and mapping Ada 
variables to foreign language 
variables, among others. 

Not Applicable. 

Not Applicable. 

It is far easier to change one 
value set at the beginning of a 
source code file than it is to 
guarantee that all literals 
associated with such a parameter 
have been changed completely 
and correctly throughout all 
relevant source code files. 

Improves portability. Removes 
need to change source code 
whenever a value obtainable by 
Ada attribute occurs. 

Mitigation 

It is often necessary to 
interact with other 
languages, if only an 
assembly language to reach 
certain hardware features. 
In these cases, clearly 
document the requirements 
and limitations of the 
interface and pragma 
INTERFACE usage. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 
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Ada 

Generic 
Characteristics 

3.4.1.9 Renaming 

3.4.1.10 Bitmaps 

3.4.2.1 Global 
Variables 

3.4.2.2 Complexity of 
Interfaces 

3.4.2.3 Avoid 
coupling 

Significance 

Medium 

Medium 

Medium 

Medium 

Medium 

Guideline 

Avoid obscuration when 
renaming. 

Use representation clauses for 
bit mapping. 

Minimize the use of global 
variables. 

No Ada language specific 
guidelines, see the generic 
guidelines. 

Avoid declaring variables in 
library package specifications. 

Rationale 

Do not use renaming if 
obscuration will occur. 

To facilitate reviews and reduce 
the possibility of coding errors. 

Global variables obscure the 
passage of data between the 
inner and outer subprograms. 

Not Applicable 

Low coupling should be a goal 
because 1) the fewer the number 
of connections between 
modules, the less chance of a 
failure in one module to 
propagate; 2) the fewer the 
number of connections between 
modules, the less chance a 
change in one module will cause 
problems in another and 
therefore increasing reusability; 
and 3) the fewer the number of 
connections between modules, 
the easier the learning curve is 
for the programmer to learn 
about the other modules. 

Mitigation 

Use only one level of 
renaming. Have project 
specific rules and 
conventions for renaming. 
Keep a registry of renamed 
identifiers for a project. 

Not Applicable. 

Clearly identify globals. 

Closely inspect and clearly 
identify interfaces. 

Not Applicable. 
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Ada 

Generic 
Characteristics 

3.4.3 Functional 
Cohesiveness 

3.4.4 Malleability 

3.4.5 Portability 

Significance 

Medium 

Medium 

Medium 

Guideline 

Every subprogram should have 
one clearly discernible purpose. 

No Ada specific guideline, see 
the generic guideline. 

Do not use busy loops to 
suspend execution. 

Validate assumptions about the 
implementation of language 
feature when specific 
implementation is not 
guaranteed or specified. Do not 
assume a correlation between 
SYSTEM. TICK and package 
CALENDAR or type 
DURATION. 

Avoid the use of package 
SYSTEM constants except in 
attempting to generalize other 
machine dependent constructs. 

Rationale 

Every subprogram should have 
one clearly discemable purpose 
with input and output parameters 
related to that purpose. 

Not Applicable. 

The timing of a loop cannot be 
determined when the code is 
ported to a different compiler, 
different machine, or even 
different operating system. 

Although such a correlation may 
exist, it is not required to exist. 

Since the values in this package 
are implementation provided, 
unexpected effects can result 
from their use. 

Mitigation 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Do not use package 
SYSTEM constants to 
parametrize other 
implementation dependent 
features and access 
collection size. 
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Ada 

Generic 
Characteristics 

Significance Guideline 

Use only pragmas and 
attributes defined by the Ada 
Standard. 

Avoid the direct invocation of 
or implementation dependence 
upon an underlying host 
operating system or Ada run
time support system. 

Minimize and isolate the use of 
the predefined package 
LOW_LEVEL_IO. 

Restrict and isolate variables of 
the type SYSTEM.ADDRESS. 

Rationale 

The Ada LRM permits an 
implementor to add pragmas and 
attributes to exploit a particular 
hardware architecture or 
software environment. These 
are obviously even more 
implementation specific and 
therefore less portable than are 
an implementor's interpretation 
of the predefined pragmas and 
attributes. 

Features of an implementation 
not specified in the Ada LRM 
will usually differ between 
implementations. 

LOWJLEVELJO is intended to 
support direct interaction with 
physical devices that are usually 
unique to a given host or target 
environment. In addition, the 
data types provided to the 
procedures are implementation 
defined. This allows vendors to 
define different interfaces to an 
identical device. 

These variables are hardware-
specific. 

Mitigation 

Some implementation 
dependent features are 
gaining wide acceptance in 
the Ada community to help 
alleviate inherent 
inefficiencies in some Ada 
features. 

In real-time embedded 
systems, often it is not 
possible to avoid making 
calls to low-level support 
system facilities. Isolate 
the uses of these facilities. 

Those portions of an 
application that must deal 
with this level of I/O, e.g., 
device drivers and real-time 
components dealing with 
discretes, are inherently 
non-portable. 

Not Applicable. 
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C and C++ 

Generic 
Characteristics 

4.1.1.1 Dynamic 
Memory Allocation 

4.1.1.2 Memory 
Paging and Swapping 

4.1.1.3 Parameter 
Passing 

4.1.1.4 Recursion 

4.1.1.5 Boundary 
Checking 

4.1.1.6 Memory Block 
Move 

4.1.1.7 Memory at 
Power Up 

4.1.1.8 Wrapping of 
built-in functions 

Significance 

High 

High 

Medium 

Medium 

Medium 

Medium 

Medium 

High 

Medium 

Guideline 

Avoid dynamic memory 
allocation. 

No C or C++ specific 
guidelines, see generic 
guidelines. 

Limit the number and size of 
parameters passed to routines. 

Minimize recursive function 
calls. 

Utilize functions with boundary 
checking. 

Do not use gets. Preferred to 
write user specified function. 

Use memmove, not memcpy. 

Examine memory at power up. 

Wrap built-in functions to 
include error checking. 

Rationale 

Dynamic memory allocation 
could cause unpredictable 
memory utilization and system 
failure. 

Not Applicable 

Parameter passing to functions 
takes stack memory and can 
cause unpredictable stack 
memory utilization. 

Recursive function calls can 
cause unpredictable stack 
memory utilization and stack 
overflow. 

Automatic boundary checking is 
not strong in C and C++. 

Gets does not have adequate 
limit checks. Writing own 
routine allows better error 
handling. 

To avoid problems with memory 
overlap. 

Ensure correct functioning of 
memory. 

Most built-in functions do not 
include safety features. 

Mitigation 

Release allocated memory 
as soon as possible. 

Not Applicable 

Pass large structures by 
pointer or reference. Use 
class definitions for related 
parameters. 

Ensure finite recursion. 
Check stack overflows. 

Not Applicable. 

Use fgets with caution. 

Not Applicable. 

Not Applicable. 

Not Applicable. 
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C and C++ 

Generic 
Characteristics 

4.1.1.9 Proper Array 
Indexing 

4.1.2.1 Structure 

4.1.2.2 Control Flow 
Complexity 

4.1.2.3 Initialization 
of Variables and 
pointers 

Significance 

Medium 

Medium 

High 

High 

Guideline 

Ensure that array indices are in 
the range 0 to n-1. 

goto should be eliminated in 
safety systems. 

Functions with a nature similar 
to goto, such as setjmp and 
longjmp, should be eliminated. 

switch .. case should be used to 
replace multiple if.. else if... 
else if.. else if possible. 

When utilizing if... else, the 
code block should be bounded 
by brackets. 

When utilizing switch .. case, 
default should be explicitly 
defined. 

Check for dead code. 

Reinitialize automatic variables. 

Initialize global variables in 
separate routines. 

Rationale 

Index origins differ among 
languages. 

The instruction goto is 
considered unstructured code. 

These two functions can jump 
from one subroutine location to 
another subroutine and make 
programs unstructured. 

Complicated control flow makes 
the program difficult to 
understand and maintain and is 

" the source of unpredictable 
control. 

Brackets avoid mismatches 
between //and else. 

default sometimes represents an 
error condition and should be 
examined carefully. 

Unreachable code causes 
confusion. 

Variables with automatic scope 
will contain "garbage" before 
explicit initialization and 
between function calls. 

To ensure that variables are 
properly set at warm reboot. 

Mitigation 

Not Applicable. 

Clearly document and 
justify. 

Clearly document and 
justify. 

Clearly document and 
justify. 

Clearly document and 
justify. 

Clearly document and 
justify. 

Not Applicable. 

Not Applicable. 

Not Applicable. 
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C and C++ 

Generic 
Characteristics 

4.1.2.4 Single Entry 
and Exit Points 

4.1.2.5 Minimizing 
Interface Ambiguities 

. .Significance 

Medium 

Medium 

Guideline 

Initialize global variables only 
once. 

Do not use pointers to variables 
outside their scope. 

Initialize pointers. 

Ensure presence of indirection 
operator for pointers. 

Use the ~ operator to initialize 
to all l's. 

Avoid multiple returns. 

Avoid setjmp and longjmp. 

Avoid pointers to functions. 

Restrict the use of throw and 
catch. 

Prototype functions and 
procedures. 

Rationale 

Global variables may or may not 
be initialized by compiler. 

Variables may contain garbage 
outside their scope. 

Using an uninitialized pointer 
can overwrite the memory 
pointed by the pointer. 

Compiler may not catch type 
mismatches. 

To be compatible with all word 
sizes. 

Multiple returns cause 
uncertainties similar to gotos. 

These commands jump outside 
function boundaries and deviate 
from the normal control flow. 

Pointer to functions cannot be 
initialized and may point to non
executable code. 

Though preferable to setjmp and 
longjmp, these are relatively 
new features of C++ and may not 
be stable. 

Avoids changing the order of 
arguments in C++. 

Mitigation 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Document and justify 
secondary exit points. 

Use only for exception 
handling; document and 
justify. 

Document and justify. 

Validate compiler 
implementation. 

Not Applicable. 
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C and C++ 

Generic 
Characteristics 

4.1.2.6 Data Typing 

Significance 

High 

Guideline 

Avoid functions with indefinite 
numbers of arguments. 

Alternate data types. 

Avoid variable argument lists. 

Ensure consistency of variable 
types with the function 
prototype. 

Test inputs and outputs. 

Use byte alignment for small 
systems or if the CPU allows it. 

Do not pass expressions as 
parameters to subroutines and 
macros. 

Eliminate increment ++ and 
decrement — operators in 
parameter passing to 
subroutines or macros. 

Use bit masks instead of bit 
fields. 

Limit the use of implementation 
dependent types. 

Rationale 

These functions are difficult to 
verify. 

Avoids changing the order of 
arguments. 

Using default arguments is 
preferable 

To avoid unintended type 
conversions or casts. 

Avoids changing the order of 
arguments. 

Byte alignment saves resources 
and makes it easy to examine 
files. 

Minimizes the complexity of the 
interface. 

Increment ++ and decrement - -
can create some undefined 
expressions when they are used 
as parameters, thus raising safety 
concerns. 

Bit fields are implementation 
dependent. 

To increase portability. 

Mitigation 

Not Applicable. 

Not Applicable 

Not Applicable. 

Not Applicable. 

Not Applicable 

Not applicable. 

Not Applicable 

Not Applicable 

Not Applicable. 

Not Applicable 
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C and C++ 

Generic 
Characteristics 

Significance Guideline 

Minimize type conversions, and 
eliminate implicit or 
automated type conversions. A 
pointer should not be cast to a 
different type of pointer. 

Avoid use of mixed-mode 
operations. 

Use a single data type in 
evaluations and relational 
expressions. 

Avoid the use of typedef s for 
unsized arrays. 

Avoid multiple declarations of 
the same identifier with several 
types. 

Avoid mixing signed and 
unsigned variables. 

Limit the use of indirect 
addressing. 

Avoid using the same identifier 
for different types. 

Rationale 

These practices reduce strong 
typing and can cause safety 
problems. 

Mixed-mode operations reduce 
strong typing and can cause 
safety problems. 

Enhances strong typing and can 
avoid safety problems. 

This feature is badly supported 
and error-prone. 

This may be a source of 
confusion. 

This raises safety concerns. 

Strongly typed array indices and 
pointers reduce the possibility of 
referencing invalid locations. 

May result in undefined 
behavior. 

Mitigation 

Use explicit casting. 

If necessary, they 
should be clearly identified 
and described using 
prominent comments in the 
source code. 

Not Applicable. 

Not Applicable. 

Use explicit casts. 

Not Applicable. 

Not Applicable. 
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C and C++ 

Generic 
Characteristics 

4.1.2.7 Precision and 
Accuracy 

4.1.2.8 Order of 
Precedence 

4.1.2.9 Side Effects 

Significance 

High 

Medium 

High 

Guideline 

Provide adequate precision and 
accuracy for the intended safety 
application. 

Use double precision. 

Account for floating point 
properties in relational 
operations. 

Account for truncation integer 
operations. 

Account for optimization. 

Ensure that arithmetic results 
are representable by the 
destination type. 

Use parentheses rather than 
default order of precedence in 
macros and bitwise and 
relational operations. 

Ensure that values in an 
expression do not depend on the 
order of evaluation. 

Generic guidelines apply. 

Rationale 

This practice preserves the 
integrity of the algorithms. 

To ensure adequate precision. 

The equality comparison is 
unreliable for floating point. 

Truncation in division of 
negative numbers is 
implementation dependent. 

Subexpressions may be moved or 
eliminated by optimizing 
compilers. 

Conversion to shorter types may 
have unpredictable results. 

Avoid hard to find computational 
errors. 

The order of evaluation is 
implementation dependent. 

Not Applicable. 

Mitigation 

Not Applicable 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Use other forms to enhance 
readability if parentheses 
are excessive. 

Not Applicable. 

Not Applicable. 
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C and C++ 

Generic 
Characteristics 

4.1.2.10 Separating 
Assignment from 
Evaluation 

4.1.2.11 Program 
Instrumentation 

4.1.2.12 Library Size 

4.1.2.13 Dynamic 
Binding 

4.1.2.14 Operator 
Overloading 

Significance 

Medium 

Medium 

Medium 

High 

Medium 

Guideline 

Separate assignments from 
evaluation statements. 

Generic guidelines apply. 

Control class library size. 

Avoid multiple inheritance. 

Minimize dynamic binding. 

The meaning of an overloaded 
operator should be natural, not 
clever. 

Keep operator precedence by 
parentheses, not by default 
order. 

Explicitly define class operators 
and declare them private. 

Rationale 

Mixing assignments with 
evaluation statements causes side 
effects. 

Not Applicable. 

A system becomes 
unmanageable or has large 
performance penalties if it has 
too many classes and objects. 

Multiple inheritance may cause 
ambiguities and maintenance 
problems. 

The unpredictability of the 
name/class association reduces 
the predictability of the run-time 
behavior and it hampers 
debugging, understanding, and 
tracjng. 

Operator overloading can 
obscure predictability. 

Operator overloading can 
obscure predictability. 

Built-in definitions may not 
remain consistent between 
implementations. 

Mitigation 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

All cases where dynamic 
binding is required should 
be justified. 

Sometimes acceptable for 
achieving uniformity across 
different data types. 

Sometimes acceptable for 
achieving uniformity across 
different data types. 

Not Applicable. 
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C and C++ 

Generic 
Characteristics 

4.1.2.15 Compiler 
Warnings 

4.1.3.1 Tasking 

4.1.3.2 Interrupt 
Driven Processing 

4.2.1 Software 
Diversity 

4.2.2.1 Local 
Handling of 
Exceptions 

Significance 

Medium 

High 

High 

Medium 

High 

Guideline 

Ensure consistency of class 
operators. 

Enable and heed compiler 
warnings. 

Minimize tasking 

Minimize interrupt driven 
processing. 

Limit function calls within 
interrupt service routines. 

No C or C++ specific 
guidelines, see generic 
guidelines. 

Handle exceptions locally. 

Rationale 

Built-in definitions may not 
remain consistent between 
implementations. 

Any warning may be a potential 
safety concern. 

C and C++ do not support multi
tasking. Their standard library 
functions may not 
be re-entrant. Using those 
functions in tasking 
environments can generate 
unspecified results. 

Interrupt driven processing leads 
to non-deterministic maximum 
response times. 

To reduce control flow 
complexity. 

Not Applicable 

System failures can be avoided if 
exceptions are handled locally. 

Mitigation 

Not Applicable. 

Not Applicable. 

Tasking requires compelling 
justification. 

If used, the code and 
processing time within the 
interrupt should be 
minimized. 

Only re-entrant functions 
should be called by interrupt 
service routines. 

Not Applicable 

If not possible, use thorough 
testing and analysis to verify 
behavior during exception 
handling. 
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C and C++ 

Generic 
Characteristics 

4.2.2.2 External Flow 
Control 

4.2.2.3 Uniformity of 
Exception Handling 

4.2.3 Input and Output 
Data Checking 

4.3.1 Built-in 
Functions 

Significance 

High 

High 

High 

Low 

Guideline 

Preserve control flow external 
to the module responsible for 
the exception. 

Rely on signals and traps 
instead of operating system 
features. 

Use throw and catch in C++ 
instead of setjmp and longjmp. 

Perform run-time checks on 
input data. Check pointers 
before use. 

Minimize the use of built-in 
functions. 

Rationale 

Safety is enhanced by 
preservation of control flow 
external to the module 
responsible for the exception. 

To avoid non-portable vendor-
specific features. 

setjmp and longjmp are difficult 
to recover from. 

Accidental data corruption in one 
module can have serious 
consequences on subsequent 
processing if allowed to 
propagate to other modules. 

Requirements for developing 
those built-in functions, 
exception handling, and the 
characteristic of those functions 
may not be the same as the ones 
in the safety systems. The 
number of built-in functions may 
vary from one compiler to 
another. 

Mitigation 

If not possible, use thorough 
testing and analysis to verify 
behavior during exception 
handling. 

Not Applicable. 

Not Applicable. 

May not be applicable if 
input can be "trusted". May 
not be necessary if 
downstream input checking 
is performed. 

Thorough testing, and error 
tracking. 
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C and C++ 

Generic 
Characteristics 

4.3.2 Compiled 
Libraries 

4.3.3 Utilizing Control 
Tools 

4.4.1.1 Indentation 
Guidelines 

4.4.1.2 Descriptive 
Identifier Names 

4.4.1.3 Comments and 
Internal 
Documentation 

4.4.1.4 Limiting 
Subprogram Size 

Significance 

Low 

Medium 

Medium 

Medium 

Medium 

Medium 

Guideline 

Minimize the use of compiled 
libraries. 

Use version control tools. 

Conform to indentation 
guidelines. 

No C or C++ specific 
guidelines, see generic 
guidelines. 

Conform to comment and 
documentation guidelines. 

Project guidelines are required 
on subprogram size. 

Rationale 

Concerns in 4.3.1 Built-in 
Functions applv. Functions with 
same names but different 
characteristics among vendors 
raises portability concerns. 

Avoids errors due to interfacing. 

Code for safety systems should 
be reviewed by peers or 
supervisors. The readability is 
essential for such reviews. 

Not Applicable 

Incomplete, outdated, and 
inconsistent comments impede 
review and maintenance. 

Large subprogram units are hard 
to read and maintain. 

Mitigation 

- Ensure that names in 
externally developed 
libraries are distinct. 
- Document all cases of 
dynamic binding. 
- Ensure that development 
and runtime shared libraries 
are identical. 

Not Applicable 

Not Applicable 

Not Applicable 

Not Applicable 

Justify larger size and 
provide additional 
documentation and 
comments. 

NUREG/CR-6463 B-38 



C and C++ 

Generic 
Characteristics 

4.4.1.5 Minimizing 
Mixed Language 
Programming 

4.4.1.6 Minimizing 
Obscure or Subtle 
Programming 
Constructs 

Significance 

Medium 

High 

Guideline 

Minimize mixed language 
programming. 

Minimize obscure or subtle 
programming constructs. 

Avoid the use of the ? : 
operator. 

Use table-driven alternatives 
when appropriate. 

Avoid using default parameters 
to combine functions. 

Avoid complex expressions 
inside a condition. 

Maximize the use the scope 
resolution operator. 

Avoid pointers to members. 

Use the virtual keyword 
wherever necessary. 

Rationale 

Mixed language programming 
presents difficulties for 
reviewers and maintainers and is 
therefore a safety concern. 

Such coding practices present 
problems in review, and 
maintenance and hence, are 
safety concerns. 

This operator makes the code 
more difficult to read. 

To create code which is easier to 
review and maintain. 

This will make code difficult to 
maintain. 

This will make the code more 
error-prone. 

To avoid ambiguities. 

They unnecessarily complicate 
the code. 

To avoid unintended calls to 
member functions. 

Mitigation 

When this practice cannot 
be avoided, minimize 
difficulties by placing the 
"foreign" language code 
adjacent to the dominant 
language routine with which 
it interfaces. 

When it cannot be avoided, 
use comments to minimize 
the impact of obscure or 
subtle code. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Use virtual functions. 

Not Applicable. 
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C and C++ 

Generic 
Characteristics 

4.4.1.7 Minimizing 
the Dispersion of 
Related Elements 

4.4.1.8 Minimizing 
the Use of Literals 

4.4.2.1 Minimize the 
use of Global 
Variables 

4.4.2.2 Minimize the 
Complexity of 
Interfaces 

Significance 

Medium 

Medium 

Medium 

Medium 

Guideline 

Place ̂ include directive at the 
beginning of programs. 

Place all external function 
prototypes in close proximity. 

Segregate base from derived 
classes. 

Safety systems should utilize 
const variables or #deflne 
instead of literals. 

Use parentheses to avoid 
expansion problems on 
#defines. 

Enumeration constants are 
preferred to #defines in 
sequences of several integer 
numbers. 

Minimize the use of global 
variables. 

Limit the number of parameters 

Use structures or classes 

Rationale 

To make it easier to trace 
dependencies. 

To make it easier to update the 
code. 

To avoid unintended changes to 
the class hierarchy. 

Literals are more difficult to 
find during modification and 
maintenance and can cause 
safety problems. 

Corrects improper expansion of 
#defines. 

It is easier to modify code when 
a new number needs to be 
inserted in a sequence. 

This avoids side effects. 

Complex interfaces are difficult 
to review and maintain and can 
cause safety problems. 

Mitigation 

Clearly document and 
justify. 

Clearly document and 
justify. 

Not Applicable. 

Associate comment with 
each literal to facilitate 
search/replace. 

Not Applicable. 

Not Applicable 

- Keep global variables and 
associated functions in the 
same file. 
- Declare global variables in 
one header file. 
- Initialize global variables 
in one place. 

Closely inspect and clearly 
identify interfaces. 
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C and C++ 

Generic 
Characteristics 

4.4.3 Functional-
Cohesiveness 

4.4.4 Malleability 

4.4.5.1 Avoid 
Implementation 
dependent types 

4.4.5.2 Avoid 
Reserved Words 

4.4.5.3 Minimize 
Hardware 
Dependencies 

Significance 

Medium 

Medium 

Medium 

Medium 

Medium 

Guideline 

Avoid expressions in parameter 
lists 

Generic guidelines apply. 

Generic guidelines apply. 

Avoid the use of 
implementation dependent types 
such as int. 

Avoid using reserved words, 
including standard library 
function names and names 
starting with underscores. 

Define hardware-dependent 
addresses symbolically. 

Use the volatile attribute for 
data items that are mapped to 
hardware. 

Avoid use of bit fields. 

Do not measure time by 
counting clock cycles. 

Rationale 

Not Applicable. 

Not Applicable. 

To ensure portability among 
platforms. 

The misuse of reserved words 
can lead to serious problems. 

To ensure portability among 
different platforms. 

Mitigation 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable 

Not Applicable 
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PLC Ladder Logic 
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PLC Ladder Logic 

Generic 
Characteristics 

5.1.1 Dynamic 
Memory Allocation 

5.1.2.1 Structure 

5.1.2.2 Control Flow 
Complexity 

5.1.2.3 Initialization 
of Variables 

5.1.2.4 Single Entry 
and Exit Points 

5.1.2.5 Interface 
Ambiguities 

5.1.2.6 Data Typing 

Significance 

High 

Medium 

High 

High 

Medium 

Medium 

High 

Guideline 

No PLC specific guidelines, see 
generic guidelines. 

Use engineering judgement 
with gotos. 

Use watchdog timers or scan 
counters with backward jumps. 

Ensure that initialization has 
occurred before the jumps. 

Reduce complex logic by 
breaking into cohesive subunits 
and limiting nesting levels. 

Audit all relevant variables that 
are initialized. 

Single returns only. Project 
guidelines strictly limit multiple 
returns. 

Verify that interfaces are well 
defined and documented. 

Ensure that data table properly 
accounts for variable types. 

Ensure that type conversion will 
not result in an error. 

Rationale 

Not Applicable 

Use gotos only if the structure is 
clear although structured 
programming is preferred. 

PLCs do not limit directions, 
leading to timer faults. 

Otherwise data words can be left 
uninitialized. 

Simple structure is easy to 
understand and predict real-time 
behavior. 

There exists no explicit 
assignment in Ladder Logic. 

Ladder Logic only supports 
single entry points, but allows 
multiple returns. 

Ladder Logic does not support 
interface checking, only type 
checking. 

PLCs do not support range 
checking or strong data typing. 

Mitigation 

Not Applicable 

Clearly document, justify, 
test. 

Not Applicable 

Not Applicable 

Document all multiple 
returns. 

Not Applicable 

Not Applicable 
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PLC Ladder Logic 

Generic 
Characteristics 

5.1.2.7 Precision and 
Accuracy 

5.1.2.8 Order of 
Precedence 

5.1.2.9 Side Effects 

5.1.2.10 Separating 
Assignment from 
Evaluation 

5.1.2.11 Program 
Instrumentation 

5.1.2.12 Library Size 

5.1.2.13 Dynamic 
Binding 

5.1.2.14 Operator 
Overloading 

Significance 

High 

Not 
Applicable 

Medium 

Not 
Applicable 

Not 
Applicable 

Not 
Applicable 

Not 
Applicable 

Not 
Applicable 

Guideline 

Develop project-specific 
guidelines. 

Verify that the processor and 
language support the floating 
point accuracy needed. 

Order of precedence does not 
exist. 

Generic guidelines apply. 

Assignment is usually separate 
from evaluation in PLCs. 

No application level support is 
needed. 

Classes and objects are not 
supported. 

No run-time binding permitted. 

Overloading and polymorphism 
are not supported. 

Rationale 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

This is provided by the PLC 
environment. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Mitigation 

Not Applicable. 

Not Applicable. 

Not Applicable. 

If it is not possible to 
separate the two: 
- Use buffer variables or 
output coils 
- Develop project-specific 
guidelines. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 
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PLC Ladder Logic 

Generic 
Characteristics 

5.1.3.1 Tasking 

5.1.3.2 Interrupt 
Driven Processing 

5.1.3.3 
Synchronization 

5.1.3.4 Self Modifying 
Code 

5.2.1 Functional 
Diversity 

5.2.2.1 System Health 
Monitoring 

5.2.2.2 Fault Routines 
and Shutdown 
Behavior 

5.2.2.3 Watch-Dog 
Timer 

Significance 

Not 
Applicable 

High 

High 

High 

Medium 

Medium 

Medium 

High 

Guideline 

Tasking is usually not supported 
on PLCs 

If interrupts are used, show that 
all timing and safety function 
requirements are met. 

Account for interrupts in critical 
response times. 

Avoid synchronization. 

Avoid self changing code. 

Generic guidelines apply. 

Ensure completeness, 
correctness and observability of 
parameters. 

Ensure completeness, 
correctness and observability of 
parameters. 

Initialize when needed. Ensure 
adequate fault routine. Use 
external timer when needed. 

Rationale 

Not Applicable. 

Interrupts are not widely 
supported. PLCs and Ladder 
Logic use deterministic polling. 

Race conditions and deadlocks 
are hard to predict. 

On-line program changes are not 
permanent. 

Not Applicable. 

Need to ensure adequacy of 
monitoring. 

Need to ensure adequacy of 
failure handling. 

Need to ensure adequacy of 
failure handling. 

Mitigation 

If tasking is supported: 
- Account for processing 
capacity 
- Account for concurrent 
access to global variables. 

Not Applicable. 

When synchronization is 
required, select the best 
platform that supports it. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 
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PLC Ladder Logic 

Generic 
Characteristics 

5.2.3 Error 
Containment 

5.3.1 Built-in 
Functions 

5.3.2 Compiled 
Libraries 

5.4.1.1 Notation 

5.4.1.2 Conformance 
to Indentation 
Guidelines 

5.4.1.3 Descriptive 
Identifier Names 

5.4.1.4 Comments and 
Internal 
Documentation 

5.4.1.5 Subprogram 
Size 

5.4.1.6 Mixed 
Language 
Programming 

Significance 

High 

Low 

Not 
Applicable 

Medium 

Medium 

Medium 

Medium 

Medium 

Not 
Applicable 

Guideline 

See guidelines on data types 
and parity bits. 

No PLC specific guidelines, see 
generic guidelines. 

Compiled libraries are not 
supported. 

Use standard notation. 

No PLC specific guidelines, see 
generic guidelines. 

No PLC specific guidelines, see 
generic guidelines. 

Document the hierarchy of 
subroutines and the flow of data 
and information among 
subroutines. 

Limit subroutines to 10 to 50 
rungs. 

Ladder Logic does not support 
"foreign" languages. 

- Rationale 

No explicit Ladder Logic 
capabilities. 

Not Applicable 

Not Applicable 

Required by PLC. 

Not Applicable. 

Not Applicable 

These two items are important to 
understand the system and 
enable independent review. 

Small programs represent a large 
screen area, which makes 
debugging and review 
cumbersome. 

Not Applicable. 

Mitigation 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 
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Generic 
Characteristics 

5.4.1.7 Obscure or 
Subtle Programming 
Constructs 

5.4.1.8 Dispersion of 
Related Elements 

5.4.1.9 Use of Literals 

5.4.2.1 Modularity 

5.4.2.2 Information 
Hiding 

5.4.2.3 Global 
Variables 

5.4.2.4 Complexity of 
Interfaces 

5.4.3 Functional 
Cohesiveness 

5.4.4 Malleability 

5.4.5 Portability 

5.5 Security 

Significance 

High 

Not 
Applicable 

Medium 

Medium 

Medium 

Medium 

Medium 

Medium 

Medium 

Medium 

High 

Guideline 

No PLC specific guidelines, see 
generic guidelines. 

Dispersion is not possible in 
Ladder Logic. 

Use symbolic constants instead 
of literals. 

Use subroutines if available. 

See Appendix A. 

No PLC specific guidelines, see 
generic guidelines. 

No PLC specific guidelines, see 
generic guidelines. 

No PLC specific guidelines, see 
generic guidelines. 

No PLC specific guidelines, see 
generic guidelines. 

No PLC specific guidelines, see 
generic guidelines. 

Use locks and passwords. 

Rationale 

Not Applicable. 

Not Applicable. 

To protect literals, and control 
the uniformity of the value. 

Changes are easier. 

See Appendix A. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

To prevent unauthorized access. 

Mitigation 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 
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EEC 1131 Sequential Function Charts 

Generic 
Characteristics 

6.1.1 Memory 
Utilization 

6.1.2.1 Structure 

6.1.2.2 Control Flow 
Complexity 

6.1.2.3 Initialization 
of Variables 

6.1.2.4 Single Entry 
and Exit Points 

6.1.2.5 Interface 
Ambiguities 

6.1.2.6 Use of Data 
Typing 

6.1.2.7 Precision and 
Accuracy 

Significance 

N/A 

Medium 

High 

High 

Medium 

Medium 

N/A 

N/A 

Guideline 

SFCs do not allocate 
memory. 

Avoid the use of goto's 

Minimize control flow 
complexity 

Account for initialization 
as part of the program 
design. 

Account for initialization 
of process steps and 
transitions. 

Single entry and exit 
points are enforced by the 
SFC grammar. 

Latch all bits which need 
to stay on between steps. 

Not applicable to SFCs. 

Not applicable to SFCs. 

Rationale 

Not applicable. 

Use of goto statements that result 
in an unstructured shift of execution 
are difficult to trace and 
understand. 

Excess complexity makes it 
difficult to predict the program flow 
and impedes review and 
maintenance. 

To ensure that variables are 
properly initialized by both the SFC 
and the underlying language. 

Multiple entries and exits introduce 
control flow uncertainties 

Non-retentive bits are reset during 
the post-scan. 

Not Applicable. 

Not Applicable. 

Mitigation 

Not applicable. 

Clearly document, justify, and 
test. 

Not applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 
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IEC 1131 Sequential Function Charts 

Generic 
Characteristics 

6.1.2.8 Order of 
Precedence 

6.1.2.9 Avoiding 
Side Effects 

6.1.2.10 Separating 
Assignment from 
Evaluation 

6.1.2.11 Program 
Instrumentation 

6.1.2.12 Library Size 

6.1.2.13 Dynamic 
Binding 

6.1.2.14 Operator 
Overloading 

6.1.3.1 Use of 
Tasking 

6.1.3.2 Interrupt 
Driven Processing 

Significance 

Medium 

Medium 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

High 

Guideline 

All transitions in a 
divergence of selection 
sequence should be 
mutually exclusive. 

Generic guidelines apply. 

Not applicable to SFCs. 

Not applicable to SFCs. 

Not applicable to SFCs. 

Not applicable to SFCs. 

Not applicable to SFCs. 

Not applicable to SFCs. 

Demonstrate that 
system/software can meet 
all requirements under 
most demanding 
conditions of interrupt 
occurrence. 

Rationale 

To avoid ambiguities when multiple 
transitions are evaluated as true 
simultaneously. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

To satisfy safety requirements. 

Mitigation 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 
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EEC 1131 Sequential Function Charts 

Generic 
Characteristics 

6.1.3.3 Divergence 
ofSequence 

6.1.3.4 Simultaneous 
Sequences 

6.1.3.5 Post Scan 
Timing 

6.2.1 Transparency 
of Diversity 

Significance 

High 

High 

High 

Medium 

Guideline 

Define Mutually exclusive 
transition conditions. 

Ensure convergence of 
sequence following 
divergence of sequence. 

Account for limits on the 
number of transitions. 

Avoid dependence on 
execution order. 

Use simultaneous 
sequences only where 
synchronization is 
required. 

Do not set timers in a 
transition. 

Account for the safety 
impact of the order of 
execution of diverse steps. 

Account for all local and 
global variables necessary 
to support replicated 
processing in transition 
files. 

Rationale 

To explicitly exclude the possibility 
of multiple transitions in such a 
structure being evaluated as true 
simultaneously. 

Predictability of control flow. 

Portability and predictability of 
control flow. 

Portability and predictability of 
control flow. 

Predictability of control flow. 

The processor does not postscan 
transition files. 

To avoid unintended outcomes. 

To ensure that no variable in 
transition files are uninitialized or 
overwritten. 

Mitigation 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 
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IEC 1131 Sequential Function Charts 

Generic 
Characteristics 

6.2.2 Exception 
Handling 

6.2.3 Input and 
Output Checking 

6.3.1 Use of Built-in 
Functions 

6.3.2 Use of 
Compiled Libraries 

6.4.1.1 Indentation 
Guidelines 

6.4.1.2 Descriptive 
Identifier Names 

Significance 

High 

N/A 

High 

Low 

Medium 

High 

Guideline 

Use G07/0 or ./MP to 
handle interruption of 
flow control with care. 

Ensure that two events, 
transitions, and exception 
handling do not conflict 
with each other. 

Ensure the safety of 
exception handling during 
a process step. 

Ensure the safety of 
exception handling during 
a transition. 

Ensure the safety of restart 
after an exception. 

Not applicable to SFCs. 

Minimize the use of built-
in functions. 

Generic guidelines apply. 

Not applicable to SFCs. 

Generic guidelines apply. 

Rationale 

These commands are not intended 
for interrupt processing. 

To satisfy safety requirements. 

To satisfy safety requirements. 

' To satisfy safety requirements. 

To satisfy safety requirements. 

Not Applicable. 

The requirements and definitions 
may not be the same for different 
platforms. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Mitigation 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Verify the exact .performance of 
steps and transitions under 
normal and abnormal conditions 

Not Applicable 

Not Applicable. 

Not Applicable 
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EEC 1131 Sequential Function Charts 

Generic 
Characteristics 

6.4.1.3 Comments 
and Intemal 
Documentation 

6.4.1.4 Limitations 
on Subprogram Size 

6.4.1.5 Mixed 
Language 
Programming 

6.4.1.6 Obscure or 
Subtle Language 
Constructs 

. Significance 

High 

High 

Medium 

Medium 

Guideline 

Provide clear and 
unambiguous descriptions 
of steps. 

Provide clear and 
unambiguous descriptions 
of interfaces. 

Provide clear and 
unambiguous descriptions 
of transitions. 

Enforce through external 
administrative procedures. 

Use SFC for sequencing. 

Do not use SFC for 
interlocking or evaluation 
of logical relationships. 

Do not use SFC for 
mathematical operations 
or evaluation of 
mathematical 
relationships. 

Avoid nesting of 
subroutines within an SFC 
step. 

Rationale 

Incomplete, outdated, and 
inconsistent comments impede 
review and maintenance. 

Large subprograms are hard to 
review and maintain. 

SFC notation is clearer than Ladder 
Logic. 

SFC is not suited for this purpose. 

Structures Text is more suitable for 
this purpose. 

The assumption isthat an SFC step 
is one subroutine. 

Mitigation 

Not Applicable. 

Justify larger size and provide 
additional documentation and 
comments. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 
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IEC 1131 Sequential Function Charts 

Generic 
Characteristics 

6.4.1.7 Dispersion of 
Related Elements 

6.4.1.8 Use of 
Literals 

6.4.1.9 Use of 
Macro-Steps 

6.4.2.1 Use of 
Global Variables 

6.4.2.2 Complexity 
• of Interfaces 

6.4.3 Functional 
Cohesiveness 

6.4.4 Malleability 

6.4.5 Portability 

Significance 

Medium 

Medium 

Low 

Medium 

Medium 

Low 

Low 

Medium 

Guideline 

Do not use SFC constructs 
which are not related to 
sequencing. 

Avoid backward directed 
links in parallel paths. 

Generic guidelines apply. 

Not applicable to SFCs. 

Follow project guidelines 
in the use of macro-steps. 

Use local variables for 
internal operations if 
supported by the language. 

Generic guidelines apply. 

Each step should have one 
clearly discernible 
purpose related to the time 
in which it is executed. 

Segregate constants from 
what is expected to be 
changed. 

Only IEC 1131 compliant 
SFCs should be used. 

Rationale 

Sequencing is the main purpose of 
SFC. 

This makes SFC programs difficult 
to maintain. 

Not Applicable. 

Not Applicable. 

There is a potential for misuse of 
macro-steps. 

Use of global variables may have 
unanticipated side effects. 

Not Applicable. 

To enhance reviewability and 
maintainability. 

To improve and clarify interfaces. 

The SFC will not be portable 
otherwise. 

Mitigation 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Justify and clearly identify global 
variables. 

Not Applicable. 

Not Applicable. 

Macro-steps must be used with 
care (see 6.4.1.9). 

Not Applicable. 
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Pascal 

Generic 
Characteristics 

7.1.1.1 Dynamic 
Memory Allocation 

7.1.1.2 Memory 
Paging and Swapping 

7.1.1.3 Avoiding 
Recursion 

7.1.1.4 Use of 
Handles with Pointers 

7.1.1.5 Use of Direct 
Memory Access 

7.1.2.1 Maximizing 
Structure 

7.1.2.2 Control Flow 
Complexity 

Significance 

High 

High 

High 

High 

Medium 

Medium 

High 

Guideline 

Dynamic use of memory should 
be strongly discouraged. 

No Pascal specific guideline, 
see the generic guideline. 

Do not use recursion. 

If pointers must be used, use 
handles whenever possible. 

Do not use direct memory 
access under Windows in 
Turbo Pascal. 

Minimize gotos. 

Use else (/"whenever possible. 

If exits from within loops can 
not be avoided, use gotos. 

Rationale 

If the program heap grows too 
large while it is running, then the 
computer will crash. 

Not Applicable 

Recursion uses stacks and can 
use up available memory in the 
heap. 

Handles allow memory 
management to recapture and 
compact free memory. 

Although Turbo Pascal permits 
access to memory directly, this is 
not a safe practice under 
Windows. 

The use of goto clouds the 
structure of the code and 
therefore should be avoided. 

The use of else //where 
appropriate helps to avoid 
program structure and logical 
errors. 

In Pascal the loops can be 
labeled in order to clarify the 
meaning of multiple loops and 
the code structure. 

Mitigation 

Release allocated memory 
as soon as possible. 

Not Applicable 

Release allocated memory 
as soon as possible. 

Release allocated memory 
as soon as possible. 

Release allocated memory 
as soon as possible. 

Clearly document and 
justify. 

Clearly document and 
justify. 

Project guidelines should 
set specific limits on 
nesting levels. 
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Pascal 

Generic 
Characteristics 

7.1.2.3 Initialization 
of Variables 

7.1.2.4 Single Entry 
and Exit Points 

7.1.2.5 Interface 
Ambiguities 

7.1.2.6 Data Typing 

7.1.2.7 Precision and 
Accuracy 

Significance 

High 

Medium 

Medium 

High 

High 

Guideline 

Initialize all variables. 

One return per subprogram. 

Avoid use of function or 
procedure parameters which 
depend on the order of 
evaluation. 

The limits on data types should 
not be excessive. 

Minimize the use of implicit 
type conversions. 

Limit the use of indirection 
(pointers). 

Precision and accuracy issues 
include the meaning and use of 
fixed point and floating point 
numbers, round off errors, type 
declarations and digital 

■ accuracy, and portability. 

Rationale 

Variables should be initialized to 
some known value before using 
them. 

Single exit points from 
procedures and functions are 
easier to understand, test, and 
less expensive to design, build 
and maintain than multiple 
entries and exits. 

Do not expect the evaluation of 
function or procedure parameters 
to occur in any particular order, 
since this is compiler 
implementation dependent. 

It forces unnecessary errors to be 
generated by unanticipated but 
not unsafe computational 
inaccuracies. 

Use of type conversions is 
strongly discouraged by most 
authors. 

Pointers are a form of dynamic 
memory and should be avoided. 

Precision and accuracy must be 
sufficient to assure proper 
functioning of algorithms. 

Mitigation 

Not Applicable 

Document secondary exit 
pointer if used. 

Not Applicable 

Not Applicable 

Not Applicable 

Not Applicable 

Not Applicable 
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Pascal 

Generic 
Characteristics 

7.1.2.8 Order of 
Precedence 

7.1.2.9 Functions or 
Procedures with Side 
Effects 

7.1.2.10 Separating 
Assignment from 
Evaluation 

7.1.2.11 Program 
Instrumentation 

7.1.2.12 Library Size 

7.1.2.13 Dynamic 
Binding 

Significance 

Medium 

Medium 

Medium 

Medium 

Medium 

High 

Guideline 

Use parentheses for ensuring 
that the order of evaluation of 
operations is explicitly stated. 

Do not depend on the order of 
evaluation. 

Use care in multiple condition 
flow statements. 

Verify that functions do not 
have side effects. 

No Pascal specific guidelines, 
see generic guidelines. 

No Pascal specific guidelines, 
see generic guidelines. 

No Pascal specific guidelines, 
see generic guidelines. 

Dynamic binding should be 
avoided if possible. 

Rationale 

The default order of precedence 
such as left to right with 
multiplication and addition 
should not be depended on. 

As permitted by the Pascal 
standards, operands of an 
expression are frequently 
evaluated differently from the 
left to right order in which they 
are written. 

The order of evaluation cannot 
be guaranteed. 

Side effects can lead to problems 
with unplanned dependencies 
and can cause bugs that are hard 
to find. 

Not Applicable 

Not Applicable 

Not Applicable 

Dynamic binding use the 
memory heap and is therefore are 
susceptible to problems. 

Mitigation 

Use other forms to enhance 
readability if parentheses 
are excessive. 

Not Applicable. 

Not Applicable. 

Use other forms to enhance 
readability if parentheses 
are excessive. 

Not Applicable 

Not Applicable 

Not Applicable 

All cases where dynamic 
binding is required should 
be justified. 
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Pascal 

Generic 
Characteristics 

7.1.2.14 Operator 
Overloading 

7.1.3.1 Tasking 

7.1.3.2 Interrupt 
Driven Processing 

7.2.1 Transparency of 
Functional Diversity 

7.2.2 Exception 
Handling 

7.2.3 Input and Output 
Data Checking 

7.3.1 Built-in 
Functions 

7.3.2 Compiled 
Libraries 

Significance 

Not 
Applicable 

Not 
Applicable 

High 

Medium 

Not 
Applicable 

High 

Low 

Low 

Guideline 

Pascal does not support 
operator overloading. 

Pascal does not support tasking. 

Isolate interrupt receiving tasks 
into implementation dependent 
packages. 
Pass the interrupt to the main 
tasks via a normal entry. 

No Pascal specific guidelines, 
see generic guidelines. 

Standard Pascal does not 
support exception handling. 

No Pascal specific guidelines, 
see generic guidelines. 

The project should control 
which functions are available 
for project work. 

Avoid the use of compiled 
libraries. 

Rationale -

Not Applicable 

Not Applicable 

Interrupt entries are 
implementation dependent 
features that may not be 
supported. 

Not Applicable 

Not Applicable 

Not Applicable 

Pascal functions are portable to 
other compilers; the Turbo 
Pascal functions are not portable 
to other compilers. 

Libraries prevent the 
programmer from knowing the 
accuracies, limitations, 
robustness, and error handling of 
the built-in functions. 

Mitigation 

Not Applicable 

Not Applicable 

Interrupt isolated entries 
can increase the interrupt 
latency time. Where this is 
unacceptable, the interrupt 
entries must be 
proliferated. 

Not Applicable 

Not Applicable 

Not Applicable 

Through testing and error 
checking. 

Thorough testing and error 
checking. 
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Pascal 

Generic 
Characteristics 

7.4.1.1 Indentation 
Guidelines 

7.4.1.2 Descriptive 
Identifier Names 

7.4.1.3 Comments and 
Internal 
Documentation 

7.4.1.4 Subprogram 
Size 

7.4.1.5 Mixed 
Language 
Programming 

7.4.1.6 Obscure or 
Subtle Programming 
Constructs 

7.4.1.7 Dispersion of 
Related Elements 

7.4.1.8 Use of Literals 

Significance 

Medium 

Medium 

Medium 

Medium 

Medium 

High 

Medium 

Medium 

Guideline 

Conform to indentation 
guidelines 

Choose names that are self-
documenting as possible. 
Separate words in compound 
names with underscores. 

Source code should be 
supplemented with Pascal 
comments that explain the 
code. 

No Pascal specific guidelines, 
see generic guidelines 

No Pascal specific guidelines, 
see generic guidelines. 

No Pascal specific guidelines, 
see generic guidelines. 

Minimize dispersion of related 
elements. Use compilation units 
to group related elements. 

Use symbolic constants instead 
of literals. 

Rationale 

Indentation improves readability 
and allows the reader to see the 
structure of the program. 

These improve readability. 

This improves readability. 

Not Applicable 

Not Applicable 

Not Applicable 

When elements are disperse 
throughout the code, it is hard to 
check, validate, and maintain the 
code. 

Hard coded numeric constants 
decrease readability and 
complicates maintainability 

Mitigation 

Not Applicable 

Not Applicable 

Not Applicable 

Not Applicable 

Not Applicable 

Not Applicable 

Provide clear reference, 
rationale, overall source 
code organization. 

Associate comment with 
each literal to facilitate 
search/replace. 
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Generic 
Characteristics 

7.4.2.1 Global 
Variables 

7.4.2.2 Complexity of 
Interfaces 

7.4.3 Malleability 

7.4.4 Functional 
Cohesiveness 

7.4.5 Portability 

Significance 

Medium 

Medium 

Medium 

Medium 

Medium 

Guideline 

Minimize the use of global 
variables. 

No Pascal specific guidelines, 
see generic guidelines. 

No Pascal specific guidelines, 
see generic guidelines. 

No Pascal specific guidelines, 
see generic guidelines. 

Avoid to use of the mod 
operator. 

Rationale 

Global variables obscure the 
passage of data between the 
inner and outer subprograms. 
Variables should be kept local to 
the routines which set and use 
them. 

Not Applicable 

Not Applicable 

Not Applicable 

Not all compilers follow the 
Standard in this respect. 
Therefore use caution when 
porting mod. 

Mitigation 

If coupling is required " 
between modules, make 
those dependencies visible 
and document to avoid 
problems. 

Not Applicable 

Not Applicable 

Not Applicable 

Not Applicable 
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PL/M 
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PL/M 

Generic 
Characteristics 

8.1.1.1 Dynamic 
Memory Allocation 

8.1.1.2 Memory Paging 
and Swapping 

8.1.1.3 Memory Bank 
Switching and Shadow 
Memory 

8.1.2.1 Maximizing 
Structure 

8.1.2.2 Minimizing 
Control Flow 
Complexity 

8.1.2.3 Initializing 
Variables Before Use 

8.1.2.4 Single Entry 
and Exit Points in 
Subprograms 

8.1.2.5 Minimizing 
Interface Ambiguities 

8.1.2.6 Data Typing 

8.1.2.7 Precision and 
Accuracy 

Significance 

High 

High 

Medium 

Medium 

High 

Medium 

Medium 

Medium 

High 

High 

Guideline 

Minimize dynamic 
memory allocation 

Minimize memory 
paging and swapping 

Avoid hardware bank-
switching. 

Eliminate goto's. 

Generic guidelines 
apply. 

Initialize all variables. 

Use single entry and 
exit points. 

Use procedure CALL 
templates and Cut and 
Paste to avoid argument 
list errors. 

Use data typing 

Account for different 
hardware. 

Rationale 

Use of dynamic memory can cause 
crashes 

Memory paging and swapping can 
cause significant delays in response 
time. 

Bank switching is a source of 
unreliability. 

.The instruction goto is considered 
unstructured code. 

Not Applicable. 

Uninitialized variables can be a 
source of latent software bugs. 

Multiply entry and exit points 
introduce uncertainties in control 
flow. 

Interface errors account for many 
coding errors. 

Data typing prevents misuse of data; 
contains errors 

Correct results needed in safety 
critical calculations 

Mitigation 

Release allocated memory as 
soon as possible. 

Clearly document, justify, and 
test. 

Clearly document and justify. 

Not Applicable. 

Not Applicable. 

Document and justify secondary 
entry and exit points. 

Not Applicable. 

Not Applicable. 

Not Applicable. 
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PL/M 

Generic 
Characteristics 

8.1.2.8 Order of 
Precedence 

8.1.2.9 Side effects 

8.1.2.10 Separating 
Assignment from 
Evaluation 

8.1.2.11 Program 
Instrumentation 

8.1.2.12 Class Library 
Size 

Significance 

Medium 

Medium 

Medium 

Medium 

N/A 

Guideline 

Account for 
optimization in floating 
point computations. 

Verify numeric 
precision in ported 
code. 

Express precision in 
terms of numeric 
ranges. 

Use parentheses rather 
than default order of 
precedence 

Generic Guidelines 
apply. 

Separate assignments 
from evaluation 
statements 

Minimize run-time 
perturbations 
Maintain visibility of 
instrumentation in run
time source code 
Conform to software 
instrumentation 
guidelines 

Not applicable to PL/M. 

Rationale 

Compilers may rearrange or delete 
subexpressions. 

Different platforms may have 
different precision limitations. 

Terms such as word are platform 
dependent. 

Incorrect precedence assumptions 
cause errors; source code open to 
misinterpretation 

Not Applicable. 

Incorporation of assignments into 
evaluation statements can cause 
unanticipated side effects 

These practices improve checkout 
and verification of code. 

Not Applicable. 

Mitigation 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Use other forms to enhance 
readability if parentheses are 
excessive. 

Not Applicable. 

Not Applicable. 

Intrusive instrumentation is 
sometimes necessary for problem 
resolution. Remove 
instrumentation and perform 
regression testing. 

Not Applicable. 
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PL/M 

Generic 
Characteristics 

8.1.2.13 Dynamic 
Binding 

8.1.2.14 Operator 
Overloading 

8.1.2.15 Compiler 
Optimization and 
Hardware Flags 

8.1.3.1 Use of Tasking 

8.1.3.2 Interrupt 
Driven Processing 

8.2.1 Software 
diversity 

8.2.2 Handling of 
Exceptions 

Significance 

High 

N/A 

Medium 

N/A 

High 

Medium 

High 

Guideline 

Eliminate overlay or 
shadow ROM code. 

Not applicable to PL/M. 

Account for compiler 
optimizations in 
sequence of operations 
and hardware flags. 

PL/M does not support 
concurrent processing. 

Minimize the use of 
interrupt driven 
processing 

Interrupt handlers 
should be as short and 
simple as possible. 

Avoid nested interrupts. 

Interrupt handlers 
should not alter shared 
data. 

Generic guidelines 
apply. 

Handle exceptions 
locally. 

Rationale 

Difficult to test and debug. 

Not Applicable. 

Compilers can rearrange or eliminate 
subexpressions. 

Not Applicable. 

Interrupts lead to non-deterministic 
response times. 

To reduce control flow complexity. 

To reduce control flow complexity. 

To reduce control flow complexity. 

Not Applicable. 

Local exception handling helps 
isolate problems more easily and 
more accurately. 

Mitigation 

Not Applicable. 

Not Applicable. 

Use assembly language for 
functions that use hardware flags. 

Not Applicable. 

Minimize processing for handling 
interrupts. Return to primary 
program control as soon as 
possible. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

If not possible, thorough testing 
and analysis to verify behavior 
during exception handling is 
required. 
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PL/M 

- •• Generic 
Characteristics 

8.2.3 Input and Output 
Checking 

8.3.1 Built-in 
Functions 

8.3.2 Compiled 
Libraries 

8.4.1.1 Indentation 
Guidelines 

8.4.1.2 Descriptive 
Identifier Names 

8.4.1.3 Comments and 
Internal Documentation 

8.4.1.4 Subprogram 
Size 

8.4.1.5 Mixed 
Language 
Programming 

8.4.1.6 Obscure or 
Subtle Programming 
Constructs 

Significance 

High 

Low 

Low 

Medium 

Medium 

Medium 

Medium 

Medium 

High 

Guideline 

Check input and output 
data. 

Control the use of built-
in functions through 
project specific 
guidelines 

Control the use of 
compiled libraries 

Conform to indentation 
guidelines 

Use descriptive 
identifier names 

Conform to comment 
guidelines 

Generic guidelines 
apply. 

Minimize mixed 
language programming. 

Minimize obscure and 
subtle programming 
constructs 

Rationale 

Accidental data corruption in one 
module can have serious 
consequences on subsequent 
processing if allowed to propagate to 
other modules. 

Built-in functions have unknown 
internal structure, limitations, 
precision, exception handling, 

Compiled libraries have unknown 
internal structure, limitations, 
precision, exception handling, 

Indentation guidelines improve 
readability and maintainability. 

Descriptive identifier names improve 
readability and maintainability. 

Necessary to verify conformance to 
requirements, code inspections, 
maintenance 

Not Applicable. 

Mixed language programming is 
hard to read and hard to maintain. 

Obscure coding presents problems in 
review and maintenance and raises 
safety concerns. 

Mitigation 

May not be applicable if input 
can be "trusted". May not be 
necessary if downstream input 
checking is performed. 

Conduct thorough testing and 
error tracking. 

Conduct thorough testing and 
error tracking. 

Not Applicable 

Not Applicable 

Not Applicable 

Not Applicable. 

Isolate second language functions 
and couple as loosely as possible 

When it cannot be avoided, use 
comments to minimize the impact 
of obscure or subtle code. 
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PL/M 

Generic 
Characteristics 

8.4.1.7 Dispersion of 
Related Elements 

8.4.1.8 Use of Literals 

8.4.2.1 Global 
Variables 

8.4.2.2 Complexity of 
Interfaces 

Significance 

Medium 

Medium 

Medium 

Medium 

Guideline 

Minimize the dispersion 
of related elements 

Minimize the use of 
Literals. 

All global variables 
should be initialized in 
exactly one place. 

All exports from a 
module should be 
explicitly global all 
other explicitly 
declared static. All 
importing modules 
should use the header 
file only. 

Use macros for local 
variables in emulators, 
simulators, and 
debuggers. 

Limit the number of 
arguments used in the 
calling program. 

Do not use ambiguous 
or terse expressions. 

Rationale 

Dispersed elements necessitate 
multiple accesses to review or 
maintain code, and therefore are 
susceptible to errors. 

The use of constants enhances code 
reliability and consistency. 

To avoid multiple definitions. 

To avoid multiple definitions. 

To avoid complicating the use of 
local variables. 

Large number of arguments can 
cause confusion and errors in a 
safety-related program. 

Use of meaningless expressions for 
modes or options can cause 
confusion to the programmer. 

Mitigation 

Provide clear reference, 
rationale, overall source code 
organization. 

Associate comment with each 
literal to facilitate search/replace. 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Use smaller functions. 

Not Applicable. 
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Generic 
Characteristics 

8.4.2.3 Use of modules 

8.4.3 Functional 
Cohesiveness 

8.4.4.1 Isolation of 
Alterable Functions 

8.4.4.2 Isolation of 
Hardware Specific 
Functions 

8.4.5 Portability 

Significance 

Medium 

Medium 

Medium 

Medium 

Medium 

Guideline 

Explicitly state 
restrictions and 
limitations. 

Use-modules to 
facilitate data 
abstraction. 

Function of a program 
and structure of its 
components should 
have clear 
correspondence. 

Place functions in DO;-
END modules within 
source code file to 
which they belong. 

Write code for 
peripheral devices in 
the form of device 
drivers. 

PL/M is obsolescent 
and of limited 
portability. 

Rationale 

Lack of clear restrictions and 
limitations can complicate the 
interface. 

To enhance maintainability by 
limiting data visibility. 

To facilitate review and maintenance 
of the program. 

Placing alterable function in one file 
may result in collection of unrelated 
procedures. 

Calling code will not be impacted by 
a change in the device driver code. 

Not Applicable. 

Mitigation 

Not Applicable. 

Not Applicable. 

Not Applicable. 

Clearly comment alterable 
sections. 

Not Applicable. 

Plan for migration to another 
language. 
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Appendix C: Glossary 

The definitions in this glossary were derived from the following sources: 

• ANSI/MIL-STD-1815 A, Reference Manual for the Ada Language,, American National 
Standards Institute/U.S. Department of Defense, 1983. 

• ANSI/IEEE 729-1983, Glossary of Software Engineering Terminology, Institute of 
Electrical and Electronic Engineers, 1983 

• Allen-Bradley, PLCS Programming Software - Programming, Publication 6200-6.4.7 
November, 1991 

• Digital1 Equipment Corporation, Programming in VAX-11 C, Publication AA-L370A-TE, 
Maynard, MA, May, 1982. 
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accept statement 
In Ada, See entry. 

access type 
In Ada, a value that designates an object created by an allocator. The designated object 
can be read and updated via the value of the access type. The definition of an access type 
specifies the type of the objects designated by values of the access type. If uninitialized, 
a value of an access type (an access value) is a null value. See also collection. 

actual parameter 
See parameter. 

aggregate 
In Ada, the evaluation of an aggregate yields a value of a composite type. The value is 
specified by giving the value of each of the components. Either positional association or 
named association may be used to indicate which value is associated with which 
component. 

allocator 
In Ada, an allocator creates an object and returns a new access value which designates the 
object. 

arithmetic operator 
An operator that performs an arithmetic operation. Examples include the unary minus (-), 
multiplication (*), division (/), addition (+) and subtraction (-). 

array 
An aggregate data type consisting of subscripted elements of the same type. Elements of 
an array can have one of the fundamental types or can be structures, unions, or other 
arrays (to form multidimensional arrays). 

array type 
A value of an array type consists of components which are all of the same subtype (and 
hence, of the same type). Each component is uniquely distinguished by an index (for a 
one-dimensional array) or by a sequence of indices (for a multidimensional array). Each 
index must be a value of a discrete type and must lie in the correct index range. 

assignment 
Assignment is the operation that replaces the current value of a variable by a new value. 
An assignment statement specifies a variable on the left, and on the right, an expression 
whose value is to be the new value of the variable. 
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assignment expression 
In C/C++,an expression of the form: 

El asgnop El 

where El must be an lValue, asgnop is an assignment operator, and E2 is an expression. 
The type of an assignment expression is that of its left operand. The value of an 
assignment expression is that of the left operand after the assignment has taken place. If 
the operator is of the form "op=", then the operation El op (E2) is performed, and the 
result is assigned to the object referred to by El; El is evaluated only once. 

asterisk (*) 
In C/C++, as a unary operator, treats its operand as an address and results in the contents 
of that address. As a binary operator, multiplies .two operands, performing the usual 
arithmetic conversions. As an assignment operator (*=), multiplies an expression by the 
value of the object referred to by the left operand, and assigns the product to the object. 

attribute 
In Ada, the evaluation of an attribute yields a predefined characteristic of a named entity; 
some attributes are functions. 

binary operator 
An operator that is placed between two operands. The binary operators include arithmetic 
operators, shift operators, relational operators, equality operators, bitwise operators (AND, 
OR, and XOR), logical connectives, and the comma operator, in that order of precedence. 
All binary operators group from left to right. (Note: C has no operator for 
exponentiation.) 

bitwise operator 
In C/C++, an operator that performs a bitwise logical operation on two operands, which 
must be integral. The usual arithmetic conversions are performed. Both operands are 
evaluated. All bitwise operators are associative, and expressions using them may be 
rearranged. The set comprises, in order of precedence, the single ampersand ([&] bitwise 
AND), the circumflex ([A] bitwise exclusive OR), and the single vertical bar ([|] bitwise 
inclusive OR). 

block 
See compound statement. 

block statement 
A block statement is a single statement that may contain a sequence of statements. It may 
also include a declarative part, and exception handlers; their effects are local to the block 
statement. 
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body 
A body defines the execution of a subprogram, package, or task. A body stub is a form 
of body that indicates that this execution is defined in a separately compiled subunit. 

cast 
In C/C++, an expression preceded by a cast operator of the form"(typename)". The cast 
operator forces the conversion of the evaluated expression to the given type. The precise 
meaning of a cast is as if the expression were assigned to a variable of the specified type, 
which is then used in place of the whole construction. The cast operator has the same 
precedence as the other unary operators. See also type conversion. 

character 
(1) A member of the ASCII character set. 
(2) An object of the C data type char — that is, a byte. (An object of type char always 
represents a single character, not a string.) 
(3) A constant of type char, consisting of up to four ASCII characters enclosed hi single 
quotes (', not ")• See also string. 

cohesiveness 
The manner and degree to which the tasks performed by a single software module are 
related to one another. 

collection 
In Ada, a collection is the entire set of objects created by evaluation of allocators for an 
access type. 

comma operator 
In C/C++, an operator used to separate two expressions: El, E2 

The expressions El and E2 are evaluated left to right, and the value of El is discarded. 
The type and value of the comma expression are those of E2. 

comment 
In C/C++, a sequence of characters introduced by the pair /* and terminated by */. 
Comments are ignored during compilation. They may not be nested. 

In C++, in addition to /* ... */, a sequence of characters starting with // and ending with 
a newline. In Ada, a sequence of characters starting with — and ending with a newline. 
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compilation unit 
A compilation unit is the declaration or the body of a program unit, presented for 
compilation as an independent text. It is optionally preceded by a context clause, naming 
other compilation units upon which it depends by means of one more with clauses. 

component 
In Ada, a component is a value that is a part of a larger value, or an object that ispart of 
a larger object. 

composite type 
In Ada, a composite type is one whose values have components. There are two kinds of 
composite type: array types and record types. Records are called structures in C/C++. 

compound statement 
A compound statement consisting of valid C/C++ statements enclosed in braces ({}). 
Compound statements can also include declarations. The scope of these variables is local 
to the block. 

conditional operator 
The C/C++ operator (? :), which is used in conditional expressions of the form: 

E1?E2:E3 

where El, E2, and E3 are expressions. El is evaluated, and if it is nonzero, the result is the 
value of E2; otherwise, the result is the value of E3. Only one of E2 and E3 is evaluated. 

constant 
A primary expression whose value does not change. A constant may be literal or 
symbolic. 

constant expression 
An expression involving only constants. Constant expressions are evaluated at compile 
time and may therefore be used wherever a constant is valid. 

constraint 
In Ada, a constraint determines a subset of the values of a type. A value in that subset 
satisfies the constraint. 

context clause 
See compilation unit. 
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conversion 
The changing of a value from one data type to another. Conversions take place in 
assignments by changing the type of the right operand's result to that of the object referred 
to by the left operand; that type is also the type of the assignment expression. In C/C++, 
conversions are also performed when arguments are passed to functions: char and short 
become int; unsigned char and unsigned short become unsigned int; float becomes 
double. Conversions can also be forced by means of a cast (see). Conversions are 
performed on operands in arithmetic expressions by the usual arithmetic conversions. 

data definition 
The syntax that both declares the data type of an object and reserves its storage. For 
variables that are internal to a function, the data definition is the same as the declaration. 
For external variables, the data definition is external to any function (an external data 
definition). 

declaration 
A statement that defines the characteristics (such as data type) of one or more variables. 

declarative part 
In Ada, a declarative part is a sequence of declarations. It may also contain related 
information such as subprogram bodies and representation clauses. 

derived type 
In Ada, a derived type is a type whose operations and values are replicas of those of an 
existing type. The existing type is called the parent type of the derived type. 

designate 
In Ada, See access type, task. 

direct visibility 
See visibility. 

discrete type 
A discrete type is a type which has an ordered set of distinct values. The discrete types 
are the enumeration and integer types. Discrete types are used for indexing and iteration, 
and for choices in case statements and record variants. Discrete types are also called sets 
in Pascal. 

discriminant 
In Ada, a discriminant is a distinguished component of an object or value of a record type. 
The subtypes of other components, or even their presence or absence, may depend on the 
value of the discriminant. 
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discriminant constraint 
In Ada, a discriminant constraint on a record type or private type specifies a value for each 
discriminant of the type. 

diversity 
The realization of the same function by different means. 

elaboration 
In Ada, the elaboration of a declaration is the process by which the declaration achieves 
its effect (such as creating an object); this process occurs during program execution. 

entry 
In Ada, an entry is used for communication between tasks. Externally, an entry is called 
just as a subprogram is called; its' internal behavior is specified by one or more accept 
statements specifying the actions to be performed when the entry is called. 

enumerated type 
An enumerated type is a discrete type whose values are represented by enumeration 
literals which are given explicitly in the type declaration. These enumeration literals are 
either identifiers or character literals. 

equality operator 
In C/C++, one of the operators = (equal to) or != (not equal to). They are analogous to 
the relational operators, but at the next lower level of precedence. In Ada, these are = and 
/= respectively. 

evaluation 
The evaluation of an expression is the process by which the value of the expression is 
computed. This process occurs during program execution. 

exception 
An exception is an error situation which may arise during program execution. To raise 
an exception is to abandon normal program execution so as to signal that the error has 
taken place. An exception handler is a portion of program text specifying a response to 
the exception. Execution of such a program text is called handling the exception. 

expanded name 
In Ada, an expanded name denotes an entity which is declared immediately within some 
construct. An expanded name has the form of a selected component: the prefix denotes 
the construct (a program unit; or a block, loop, or accept statement); the selector is the 
simple name of the entity. 

exponentiation operator 
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The C language does not provide an exponentiation operator. In Ada, it is 

expression 
An expression (i.e., series of tokens) that the compiler can use to produce a value. 
Expressions have one or more operands and, usually, one or more operators. (An 
identifier with no operator is an expression that yields a value directly.) Operands are 
either identifiers (such as variable names) or other expressions, which are sometimes 
called subexpressions. See also operator. 

external variable 
A variable that is defined externally to any function. External variables provide a means 
other than argument passing for exchanging data between the functions that comprise a 
C/C++ program. 

fixed point type 
See real type. 

floating point type 
See real type. 

formal parameter 
See parameter. 

function 
The primary unit from which C programs are constructed. A function definition begins 
with a name and argument list, which are followed by the declarations of the arguments 
(if any) and the body of the function enclosed in braces ({ }). The function body consists 
of the declarations of any local variables and the set of statements that perform its action. 
Functions need not return a value to the caller. All C functions are external; that is, a 
function may not contain another function. See also function call. 

function call 
A primary expression followed by parentheses. The parentheses contain a (possibly 
empty) comma-separated list of expressions that are the arguments to the function. In C, 
any previously undeclared identifier followed immediately by parentheses is contextually 
declared as a function returning int. A function may call itself recursively. 

fundamental type 
In C/C++, the set of arithmetic data types plus pointers. The fundamental types in C/C++ 
comprise those data types that can be represented naturally on a particular machine; 
usually, this means integers and floating-point numbers of various machine dependent 
sizes, and machine addresses. 
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generic unit 
In Ada, a generic unit is a template either for a set of subprograms or for a set of packages. 
A subprogram or package created using the template is called an instance of the generic 
unit. A generic instantiation is the kind of declaration that creates an instance. A generic 
unit is written as a subprogram or package but with the specification prefixed by a generic 
formal part which may declare generic formal parameters. A generic formal parameter 
is either a type, a subprogram, or an object. A generic unit is one of the kinds of program 
unit. 

handler 
See exception. 

identifier 
A sequence of letters and digits used as the name of an entity. In C/C++, the first 31 of an 
identifier must be unique. In Ada, the length is limited to that of a line in the source code. 
The underscore ( J is considered a letter in this context. The first character of an identifier 
must be a letter. Upper- and lowercase letters specify different identifiers in VAX-11 C. 
Note, however, that all external names are converted to uppercase to be consistent with 
VAX/VMS. 

index 
See array type. 

index constraint 
An index constraint for an array type specifies the lower and upper bounds for each index 
range of the array type in Ada. 

indexed component 
An indexed component denotes a component in an array. It is a form of name containing 
expressions which specify the values of the indices of the array component. An indexed 
component may also denote an entry in a family of entries. 

initializer 
The part of a declaration that gives the initial value(s) for the preceding declarator. In 
C/C++, an initializer consists of an equal sign (=) followed by either a single expression 
or a comma-separated list of one or more expressions in braces. 

instance 
An object created according to a given definition. See also generic unit. 

integer type 
1 An integer type is a discrete type whose values represent all integer numbers within a 

specific range in Ada or Pascal. 
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integral type 
In C/C++, one of the data types char or int (all sizes, signed or unsigned). 

keyword 
A word (series of characters) that is reserved by the language and cannot be used as an 
identifier. Keywords identify statements, storage classes, data types, and the like. 

label 
A label is the target of a goto statement. 

lexical element 
A lexical element is an identifier, a literal, a delimiter, or a comment. 

limited type 
In Ada, a limited type is a type for which neither assignment nor the predefined 
comparison for equality is implicitly declared. All task types are limited. A private type 
can be defined to be limited. An equality operator can be explicitly declared for a limited 
type. 

literal 
A literal represents a value literally, that is, by means of letters and other characters. A 
literal is either a numeric literal, an enumeration literal, a character literal, or a string 
literal. 

logical expression 
An expression made up of two or more operands separated by logical connectives. Each 
operand must be of a fundamental type or must be a pointer or other address expression. 
Operands do not have to be of the same type. In C/C++, logical expressions always return 
1 or 0 (type int) to indicate a true or false value, respectively. Logical expressions are 
always evaluated from left to right, and the evaluation stops as soon as the result is 
known. 

lvalue 
In C/C++, an lvalue is an expression which can be assigned to. An lvalue is required on 
the left-hand side of an assignment operator (hence its name) and as the operand of certain 
other operators, such as the increment (++) and decrement (—) operators. A variable 
name is an example of an lvalue, since its address can be taken (with &), and values can 
be assigned to it. A constant is an example of an expression that is not an lvalue. 

macro 
Used primarily in C/C++, a text substitution that is defined with the #define preprocessor 
control line and includes a list of "parameters." The parameters in the #define control line 
are replaced at compile time with the corresponding arguments from a macro reference 
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encountered in the source text. 

mode 
In Ada, see parameter. 

model number 
In Ada, a model number is an exactly representable value of a real type. Operations of 
a real type are defined in terms of operations on the model numbers of the type. The 
properties of the model numbers and of their operations are the minimal properties 
preserved by all implementations of the real type. 

multiplicative operator 
An operator that performs multiplication (*), division (/), or modulo arithmetic. It 
performs the usual arithmetic conversions on its operands. The modulo operator (% in 
C/C++, MOD in Ada) yields the remainder of the division of the first operand by the 
second. 

name 
A name is a construct that stands for an entity: it is said that the name denotes the entity, 
and that the entity is the meaning of the name. See also declaration, prefix. 

named association 
A named association specifies the association of an item with one or more positions in a 
list, by naming the positions. 

Programmable Logic Controller (PLC) 
A special purpose computer having a central processing unit (CPU), power supply, 
programming panel, inputs and outputs. A PLC also provides the capability to support 
remote Input/Output, special purpose Input/Output, Input/Output housing, connection 
cables, and communication boards. 

object 
One of the basic elements that the language can manipulate — that is, the elements 
to which operators can be applied. In objects include'data (such as integers, real numbers, 
or characters), data structures (arrays, structures, unions), and other user-defined data 
types. 

operation 
An operation is an elementary action associated with one or more types. It is either 
implicitly declared by the declaration of the type, or it is a subprogram that has a 
parameter or result of the type. 

operator 
An operator is an operation which has one or two operands. A unary operator is written 
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before an operand; a binary operator is written between two operands. This notation is 
a special kind of function call. An operator can be declared as a function. Many operators 
are implicitly declared by the declaration of a type (for example, most type declarations 
imply the declaration of the equality operator for values of the type). 

overloading 
An identifier can have several alternative meanings at a given point in the program text: 
this property is called overloading. For example, an overloaded enumeration literal can 
be an identifier that appears in the definitions of two or more enumeration types. The 
effective meaning of an overloaded identifier is determined by the context. Subprograms, 
aggregates, allocators, and string literals can also be overloaded. 

package 
In Ada, a package specifies a group of logically related entities, such as types, objects of 
those types, and subprograms with parameters of those types. It is written as a package 
declaration and a package body. The package declaration has a visible part, containing 
the declarations of all entities that can be explicitly used outside the package. It may also 
have a private part containing structural details that complete the specification of the 
visible entities, but which are irrelevant to the user of the package. The package body 
contains implementations of subprograms (and possibly tasks as other packages) that have 
been specified in the package declaration. A package is one of the kinds of program unit. 

parameter 
A variable declared in an external function definition, between the function name and the 
body of the function. In Ada, the mode of a parameter, i.e. whether it is an input, an 
output, or both, is indicated in the functions call. 

parent type 
See derived type. 

pointer 
In C/C++, a variable that contains the address of another variable or function. A pointer 
is declared with the unary asterisk operator. Called access type in Ada. 

portability 
The ease with which a system or component can be transferred from one hardware or 
software environment to another. 

pragma 
A pragma is a specific kind of compiler directive. 

prefix 
A prefix is used as the first part of certain kinds of name. A prefix is either a function call 
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or a name. 

preprocessor directives 
Lines of text in a C/C++ source file that change the order or manner of subsequent 
compilation. The control lines are a previous #define), #include (for inclusion of 
external source text), #Iine (to specify a line number to the compiler),#module (to specify 
a module name to the linker), and #if, #ifdef, #ifhdef, #else, and #endif (to conditionalize 
the compilation of the program). 

primary expression 
An expression mat contains only a primary-expression operator, or no operator. Primary 
expressions include previously declared identifiers, constants, strings, function calls, 
subscripted expressions, and references to structure or union members. 

primary-expression operator 
A C/C++ operator that qualifies a primary expression. The set of such operators consists 
of paired brackets (to enclose a single subscript), paired parentheses (to enclose an 
argument list or to change the associativity of operators), a period (to qualify a structure 
or union name with the name of a member), and an arrow (to qualify a structure or union 
member with a pointer or other address-valued expression). 

private part 
See package (Ada specific term) 

private type 
A private type is a type whose structure and set of values are clearly defined, but not 
directly available to the user of the type. A private type is known only by its discriminants 
(if any) and by the set of operations defined for it. A private type and its applicable 
operations are defined in the visible part of a package, or in a generic formal part. 
Assignment, equality, and inequality are also defined for private types, unless the private 
type is limited (Ada specific term) 

procedure 
See subprogram. 

program 
A program is composed of a number of compilation units, one of which is a subprogram 
called the main program. Execution of the program consists of execution of the main 
program, which may invoke subprograms declared in the other compilation units of the 
program. 

program unit 
In Ada, a program unit is any one of a generic unit, package, subprogram, or task unit. 
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qualified expression 
A qualified expression is an expression preceded by an indication of its type or subtype. 
Such qualification is used if, in its absence, the expression would be ambiguous (for 
example as a consequence of overloading). 

raising an exception 
See exception. 

range 
In Ada, a range is a contiguous set of values of a scalar type. A range is specified by 
giving the lower and upper bounds for the values. A value in the range is said to belong 
to the range. 

range constraint 
A range constraint of a type specifies a range, and thereby determines the subset of the 
values of the type that belong to the range. 

real type 
A real type is a type whose values represent approximations to the real numbers. There 
are two kinds of real type: fixed point types are specified by absolute error bound; floating 
point types are specified by a relative error bound expressed as a number of significant 
decimal digits. 

record type 
In Ada, a value of a record type consists of components which are usually of different 
types or subtypes. For each component of a record value or record object, the definition 
of the record type specifies an identifier that uniquely determines the component within 
the record. 

recursion 
The process in which a software module calls itself. 

relational operator 
One of the operators <, >, <=, or >=. In C/C++, the result (type int) is 1 or 0, indicating 
a true or false relation, respectively. The usual arithmetic conversions are performed on 
the two operands. Relational operators group from left to right. 

reliability 
The ability of a system or component to perform its required functions under stated 
conditions for a specified period of time. 

renaming declaration 
A renaming declaration declares another name for an entity. 
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rendezvous 
rendezvous is the interaction that occurs between two parallel tasks when one task has 
called an entry of the other task, and a corresponding accept statement is being executed 
by the other task on behalf of the calling task. 

representation clause 
In Ada, a representation clause directs the compiler in the selection of the mapping of a 
type, an object, or a task onto features of the underlying machine that executes a program. 
In some cases, representation clauses completely specify the mapping; in other cases, they 
provide criteria for choosing a mapping. 

robustness 
The capability of the software to survive off-normal or other unanticipated conditions, or 
the degree to which a system or component can function correctly in the presence of 
invalid inputs or stressful environmental conditions. 

satisfy 
See constraint, subtype. 

scalar 
A single object (as opposed to aggregate), that is, an object or value of a scalar type does 
not have components. A scalar type is either a discrete type or a real type. The values of 
a scalar type are ordered. 

scope 
The portion of a program in which a particular name has meaning. The scope of names 
declared in external definitions extends from the point of the definition's occurrence to 
the end of the compilation unit in which it appears. The scope of the names of function 
parameters is the function itself. The scope of names declared in any block (that is, after 
the brace beginning any compound statement) is restricted to that block. Names declared 
in a block supersede any other declaration of the name, including external definitions, for 
the extent of that block. In C/C++, struct, union, typedef, and enum tags are identifiers 
that are subject to the same scope rules as other identifiers. Member names in structure 
or union references are not subject to the same scope rules (see uniqueness). The scope 
of a label is the entire function containing the label. 

selected component 
In Ada, a selected component is a name consisting of a prefix and of an identifier called 
the selector. Selected components are used to denote record components, entries, and 
objects designated by access values; they are also used as expanded names. 

selector 
See selected component. 
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simple name 
See declaration, name. 

shift operator 
In C/C++, one of the binary operators < < or > >. Both operands must have integral types. 
The value of E1«E2 is El (interpreted as a bit pattern) left-shifted by E2 bits. The value 
of El » E 2 is El right shifted by E2 bits. 

statement 
A statement specifies one or more actions to be performed during the execution of a 
program. Statements include expression statements (an expression followed by a 
semicolon in most languages), null statements (the semicolon by itself), compound 
statements (blocks), and an assortment of statements identified by keywords. 

storage class 
The attribute that, with its type, specifies C's interpretation of an identifier. The storage 
class determines the location and lifetime of an identifier's storage. Examples are static, 
external, and auto. 

string 
(1) An array of characters 
(2) A constant consisting of a series of ASCII characters enclosed in quotation marks. 
Such a constant is declared implicitly as an array of char, initialized with the given 
characters, and terminated by a NULL character (ASCII 0, C escape sequence \0). 

structure 
In C/C++, an aggregate type consisting of a sequence of named members. Each member 
may have any type. A structure member may also consist of a specified number of bits, 
called a field. 

subcomponent 
A subcomponent is either a component or a component of another subcomponent. 

subprogram 
In Ada, a subprogram is either a procedure or a function. A procedure specifies a 
sequence of actions and is invoked by a procedure call statement. A function specifies a 
sequence of actions and also returns a value called the result, and so a function call is an 
expression. A subprogram is written as a subprogram declaration, which specifies its 
name, formal parameters, and (for a function) its result; and a subprogram body which 
specifies the sequence of actions. The subprogram call specifies the actual parameters that 
are to be associated with the formal parameters. A subprogram is one of the kinds of 
program unit. 
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subtype 
A subtype of a type characterizes a subset of the values of the type. The subset is 
determined by a constraint on the type. Each value in the set of values of a subtype 
belongs to the subtype and satisfies the constraint detennining the subtype. 

subunit 
See body. 

symbolic constant 
In C/C++, an identifier assigned a constant value by a #deflne directive. A symbolic 
constant may be used wherever a literal is valid. 

task 
In Ada, a task operates in parallel with other parts of the program. It is written as a task 
specification (which specifies the name of the task and the names and formal parameters 
of its entries), and a task body which defines its execution. A task unit is one of the kinds 
of program unit. A task type is a type that permits the subsequent declaration of any 
number of similar tasks of the type. A value of a task type is said to designate a task. 

tokens 
The fundamental elements making up the text of a C program. Tokens are identifiers, 
keywords, constants, strings, operators, and other separators. White space (such as spaces, 
tabs, newlines, and comments) is ignored except where it is necessary to separate tokens. 

type 
A type characterizes both a set of values, and a set of operations applicable to those 
values. A type definition is a language construct that defines a type. A particular type is 
dependent on the language used (e.g. in Ada a type is either an access type, an array type, 
a private type, a record type, a scalar type, or a task type). 

type name 
In essence, the declaration of an object of a given type that omits the name of the object. 

unary operator 
An operator that takes a single operand. In C/C++, some unary operators can be either 
prefix or postfix. The set includes the asterisk (indirection), ampersand (address of), 
minus (arithmetic unary minus), exclamation (logical negation), tilde (one's complement), 
double plus (increment), double minus (decrement), cast (force type conversion), and 
sizeof (yields size, in bytes, of its operand). 

union 
In C/C++, an aggregate type which can be considered a structure all of whose members 
begin at offset 0 from the base and whose size is sufficient to contain any of its members. 
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uniqueness 
A property of the names used for certain structure and union members. A name is unique 
if either of these conditions is true: 

• The name is used only once. 
• It is used in two or more different structures (or unions), but each use denotes a 

member at the same offset from the base and of the same data type. 

The significance of uniqueness is that a unique member name can be used to refer to a 
structure in which the member name was not declared (although a warning message is 
issued). 

use clause 
In Ada, a use clause achieves direct visibility of declarations that appear in the visible 
parts of named packages. 

variable 
An identifier used as the name of an object (see object). 

variant part 
A variant part of a record specifies alternative record components, depending on a 
discriminant of the record. Each value of the discriminant establishes a particular 
alternative of the variant part. 

visibility 
At a given point in a program text, the declaration of an entity with a certain identifier 
is said to be visible if the entity is an acceptable meaning for an occurrence at that 
point of the identifier. The declaration is visible by selection at the place of the 
selector in a selected component or at the place of the name in a named association. 
Otherwise, the declaration is directly visible, that is, if the identifier alone has that 
meaning. 

visible part 
See package. 

with clause 
See compilation unit. 
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Appendix D. Relationship of Generic Attributes 
to Other Work 

This Appendix compares the attributes defined in Chapter 2 to relevant standards and published 
research in software safety and quality. As such, it supports the technical basis of the work 
through the third item defined in Chapter 1 ("A substantive body of knowledge exists and the 
preponderance of the evidence supports a technical conclusion"). Sections D. 1 and D.2 show the 
relationship among these criteria and IEEE Std 603 and IEC Publication 880, respectively. 
Section D.3 shows the relationship to IEEE Std 7-4.3.2-1993. Section D.4 compares the attributes 
to a widely cited software quality framework developed by the U.S. Air Force Rome Laboratory. 
Finally, section D.5 shows how the work of other researchers in high integrity and safety related 
software corresponds to the attributes. 

D.l IEEE Standard 603 

IEEE Std 603-1991, "IEEE Standard Criteria for Safety Systems for Nuclear Power Generating 
Stations", is a significant standard for system level safety. In its earlier (1980) version, this 
standard represents one of the foundations of assessing the safety of I&C systems in general; the 
1991 version added items pertinent to digital systems. Currently, the NRC uses Regulatory Guide 
1.152, "Criteria for Programmable Digital Computer System Software in Safety-Related Systems 
of Nuclear Power Plants" and ANSI-ANS-7-4.3.2-1982, "Application Criteria for Programmable 
Digital Computer Systems in Safety Systems of Nuclear Power Generating Stations" for guidance 
when performing reviews of digital systems. The 1993 version of 7-4.3.2, makes that standard 
a "daughter" to IEEE Std. 603-1991. Thus, the safety criteria defined in Section 5 of IEEE Std. 
603 are a basis for assessing digital systems. 

Table D-l compares the top level generic attributes relates to the safety issues identified in IEEE 
Std. 603-1991. Since each column contains at least one entry, this demonstrates that the top level 
attributes described in Chapter 2 pertain to safety issues. Because lower level attributes are 
traceable to the top level attributes shown in the table, all the generic attributes identified in this 
report can be associated with safety relevant criteria. The detailed entries in the table show that 
the generic attributes described in Chapter 2 address all safety criteria 603 except the following 
inapplicable criteria: 

• Equipment qualification: This is a hardware issue with minor effects on system software. 
• Information displays: This is a requirements and design issue. 
• Auxiliary features: This is a requirements and design issue. 
• Multi-unit stations: This is a requirements and design issue. 
• Human factors considerations: This is primarily a design issue. 
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Table D-l. Comparison of Generic Attributes with IEEE Std-603-1991 Criteria 

IEEE 603 
Criterion 

5.1 Single failure 

5.2 Completion of 
protective action 

5.3 Quality 

5.5 System Integrity 

5.6 Independence 

5.7 Test and 
Calibration 

5.9 Control of access 

5.10 Repair 

5.11 Identification 

5.15 Reliability 

Top Level Generic Attributes 
Rel 
ia-
bili 
ty 

all 

2.1 
.2 

2.1 
.3 

all 

Rob 
ust-
ness 

all 

2.2. 
2, 

2.2. 
3 

2.2. 
3 

2.2. 
1, 

2.2. 
3 

Tra 
ce-

abili 
ty 

all 

all 

all 

Maintain
ability 

-

2.4.1, " 
2.4.2 

see note 
2 

2.4.4 

all 

2.4.4 

Remarks 

see note 1 

Control flow, exception 
handling, 

error containment 

Readability, data abstraction 

Timing, error containment 

Diversity, error containment 

Instrumentation, data 
abstraction 

cohesiveness, malleability 

Malleability 

Malleability 

Notes: 

(1) Software can cause single point failures when (a) the program crashes on encountering an unusual data value 
or control state, and (b) the program returns wrong results under unusual conditions. Safety concerns arising 
from (a) are minimized when memory utilization, control flow, and timing are predictable as discussed in 
Section 2.1. Concerns arising from (b) are minimized by controlled of software diversity and exception 
handling, and by error containment all of which are discussed in Section 2.2 
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(2) Software testing in the operational environment is required only after changes are made (software does not 
deteriorate with use). The cited attributes permit isolation of areas affected by changes, and thus permit 
focusing the test effort on these areas. The presence of the attributes facilitates assessment of the 
completeness of test and enhances safety. 

D.2. IEC Publication 880 

Paragraph 5.2 of IEC 880 contains the essential requirements for languages, translators, and other 
tools. Additional guidance on these subjects (not mandatory) is provided in Appendix D of IEC 
880. Table D-2 summarizes relevant provisions from these two sections of the document and 
shows how they are related to the generic attributes identified in the previous section. Appendix 
D guidance is denoted by an asterisk (*), and only the priority 1 (highest priority) 
recommendations are shown. The notation in this table is identical to that used in Table D-l. The 
following provisions of IEC Document 880 are not addressed by the attributes identified in 
Chapter 2 of this report: 

• Problem-oriented languages are preferred to machine-oriented ones: The selection of 
a development language is the responsibility of the I&C vendor and is not within the 
scope of an NRC audit. 

• Automated test tools should be available and The use of automated tools is 
recommended: These are development process issues which are not related to the specific 
language in which the safety software has been written. 

Similar to the preceding subsection, the presence of an entry in each narrow column signifies that 
the corresponding top level attribute has been found relevant to safety in the IEC document. The 
presence of an entry for each row in at least one of the narrow columns indicates that the Chapter 
2 attributes cover the IEC 880 document concerns. 
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Table D-2. Relationship between Top Level Generic Attributes 
and TEC 880 Recommendations 

IEC 880 Provision 

A thoroughly tested translator 
shall exist and be used 

The language shall be 
unambiguously defined. 
Features with respect to 
which there may be 
ambiguities shall not be used. 

The language and its 
translator should not preclude 
the use of error-limiting 

"constructs 

The language and its 
translator should not preclude 
the use of Translation-time 
type checking 

The language and its 
translator should not preclude 
the use of Run-time type and 
array bound-checking, and 
parameter checking 

Where auxiliary system 
programs (documentation 
aids) are used, they should be 
thoroughly tested.* 

The recommendations of 
Appendix B (structured 
design, etc.) should be 
supported* 

Run-time exceptions should 
be raised for exceeding anay 
boundaries, exceeding a 
declared range, and passing 
parameters of the wrong 
type.* 

The range of each variable 
should be determinable at 
translation time.* 

During expression 

Top Level Generic Attributes 
R 
eli 
a-
bil 
ity 

2. 
1. 
2. 
6 

2. 
1. 
2. 
6 

2. 
1. 
2. 
1 

2. 
1. 
2. 
6 

2. 
1. 
2. 

2. 

Rob 
ust-
ness 

2.2.2 

2.2.. 
3 

2.2.2 

2.2.3 

Tr 
ac 
e-

abi 
Iity 

all 

all 

all 

Maint 
ain-

ability 

2.4.2, 
2.4..5 

2.4.1 

Remarks 

Data abstraction, 
portability 

Exception handling, 
error containment 

Data typing 

Data typing 

Structure, readability 

Data typing, exception 
handling, error 

containment 

Data typing 

Separating assignment 
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D.3. IEEE Std 7-4.3.2 1993, Appendix F 

Appendix F of IEEE Std-7.4.3.2 (IEEE, 1993) lists items of concern in the identification and 
resolution of abnormal conditions and events. Most of these concerns relate to requirements, 
system-level design, hardware design, and software design, and are therefore not within the scope 
of this document. However, Section F.2.3.5 identifies abnormal conditions and events related to 
computer code. Table D-3 shows how the attributes support the concerns of Appendix F. 

Table D-3. Support Provided by Attributes of Chapter 2 to Items of Concern in ACES 
Analysis of IEEE 7-4.3.2 

Items of Concern in IEEE 7-4.3.2 
Evaluate equations, algorithms, and control logic for 
potential problems, including forgotten cases or 
steps, duplicate logic, neglect of extreme conditions, 
unnecessary functions, misinterpretation, missing 
condition tests, wrong variable checked, incorrect 
iteration of loop, etc. 

Confirm correctness of algorithms, accuracy, 
precision, discontinuities, out of range conditions, 
breakpoint, erroneous inputs, etc. 

Evaluate the data structure and usage in the code to 
provide adequate confidence that the data items are 
defined and used properly 

Provide adequate interface compatibility of software 
modules with each other and with external hardware 
and software 

Provide adequate confidence that the software 
operates within the constraints imposed upon it by 
the requirements, design, and the target computer 

Examine non-critical code to provide adequate 
confidence that it does not adversely affect the 
function of critical software. As a general rule, 
safety software should be isolated from non-safety 
software. The intent is to prove that this isolation is 
complete 

Provide adequate confidence that the results of 
coding activities are within timing and sizing 
constraints 

Support from Attributes of Chapter 2 
Predictability of control flow (2.1.2) and 
readability (2.4.1) 

Precision and accuracy (2.1.2.7) and 
all base attributes under robustness (2.2) 

Data typing (2.1.2.6) 

Data abstraction (2.4.2) and most base attributes 
under predictability of control flow (2.1.2) 

All base attributes under reliability (2.1) 

Data abstraction (2.4.2) 

Predictability of memory utilization (2.1.1) and 
predictability of timing (2.1.3) 
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Appendix F does not distinguish between system design, software design, and language issues. 
Therefore a one-to-one correspondence with the attributes defined in Chapter 2 of this report 
cannot be established. However, that at least one attribute can be associated with each of the 
concerns indicates that no major area has been overlooked in the generation of the attributes. 

D.4. Rome Laboratory Software Quality Framework 

The list of Software Quality Factors generated by the Rome Laboratory metrics framework 
(Bowen, 1985; Wigle, 1985) is widely used, has been continuously updated (Murine, 1994), and 
is the basis for software metrics evaluation by a consortium that includes large system integrator 
and defense organizations. It is not restricted to software quality factors that affect safety, and thus 
its principal value for this study is to serve as a check that the safety oriented selection of 
attributes in Chapter 2 has not overlooked anything from this broader context that might be 
relevant to safety. The top level 13 factors have been stable over the last ten years. The relation 
of these factors to the Chapter 2 attributes is shown in Table D-4. 
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Table D-4 Chapter 2 Attributes and Factors in the USAF Rome Laboratory Framework 

Rome 
Laboratory 
Quality Factor 

Reliability 

Survivability 

Correctness 

Maintainability 

Verifiability 

Expandability 

1 
Flexibility 

i 

Portability 

Efficiency 

Integrity 

Usability 

Interoperability 

Reusability 

Top Level Generic Attributes 

Reli 
a-

bilit 
y 

all 

2.1.2 
.7 

Robu 
st-

ness 

all 

Tr 
ac 
e-

abi 
lity 

all 

all 

Maintai 
n-

ability 

all 

2.4.3, 
2.4.4 

2.4.4 

2.4.5 

Remarks 

Precision and accuracy 

Cohesiveness, malleability 

Malleability 

Portability (adherence to 
standards) 

Not a safety issue; sufficient 
resources must be provided 

by design 

Defined as access 
protection; not a language 

issue 

Defined as not needing 
training; not a language 

issue 

May conflict with 
separation requirements of 

IEEE Std. 603; not a 
language issue 

A design rather than a 
language issue 
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D.5 Other Published Research 

Significant research on relevance of software attributes to system safety has been published by 
(Leveson, 1992; Turner, 1992; Bullock, 1980; Cuthill, 1993; Andersen, 1984; Petersen, 1984). 
These references were selected because they span a fairly long time frame (1980 to 1992), are 
oriented to nuclear safety, and originate from diverse sources (academia, a U.S. national 
laboratory, a European standards organization, and the U.S. NIST). As in Section 3.4, the 
references contain a mix of design and implementation issues, with considerable emphasis on the 
former. Subject to the restrictions imposed by this mismatch, Table D-5 shows that the issues 
raised in these references have not been overlooked in the attribute structure identified in the 
Chapter 2. 

Table D-5 also demonstrates differences between the approach taken in the generic attributes 
developed in this work versus that of previous researchers. For example, this report regards 
quality as a complex attribute including elements of reliability, readability, traceability, and 
portability (i.e., adherence to standards). Because other researchers were considering a broader 
range of issues in the system design and development process, they included issues such as fail
safe operation, minimizing critical data and code, and testability. On the other hand, there are 
areas where there is a close correspondence between this work and others. Attributes which 
directly correspond include reliability, maintainability, error containment, and diversity. 
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Table D-5. Relationship between Generic Attributes and Safety Concerns or Criteria 
Identified by Other Researchers 

Author 

Leveson 

Bullock 

Cuthill 

Andersen 
and 
Petersen 

Criterion or Concern 

Isolation and protection 

Minimizing unsafe failure 
modes 

Fail safe design 

Minimizing safety critical 
code and data 

Accuracy 

Completeness 

Understandability 

Maintainability 

Testability 

Reliability 

Comments 

Modularity 

Modularity: Separated 
execution sequences with 
limited interaction; 

Functional diversity: 
Provably separate 
execution sequences; 

Traceability 

Removal of ambiguity 

High reliability 

Safeguards against 
handling errors: 

Safeguards against 
intended misuse: 

Fault Correction, Fail to 
Safe, Fail to Operational: 

Corresponding Attributes from Chapter 2 

Robustness (2.2), particularly error containment (2.2.3) 

None (design level issues) 

Precision and accuracy (2.1.2.7), use of compiled libraries 
(2.3.2), readability (2.4.1) 

(both accuracy and completeness are partially design issues) 

Readability (2.4.1), cohesiveness (2.4.3) 

Maintainability (2.4) 

Reliability (2.1) maintainability (2.4) 
(primarily a design issue) 

Reliability (2.1) 

Comments (2.4.1.3) 

Data abstraction (2.4.2), cohesiveness (2.4.3) 

Data abstraction (2.4.2), cohesiveness (2.4.3) 

Functional diversity (2.2.1) 

Traceability (2.3) 

Reliability (2.1) 

Reliability (2.1) 

Exception handling (2.2.2) 

None (design issue) 

Diversity (2.2.1), exception handling (2.2.2) 
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Appendix E. Backgrounds of Subject Matter Experts and 
Reviewers 

This Appendix provides brief descriptions of the backgrounds and qualifications of the 18 subject 
matter experts who provided substantial technical input or reviews to this document. As the 
Principal Investigator, Dr. Herbert Hecht's background appears first. All other participants are 
listed in alphabetical order. 

1 Herbert Hecht, 

Program Manager 
PLC Subject Matter Expert 

Ph. D., University of California, Los Angeles, 1967 
MEE Polytechnic Institute of Brooklyn, 1949 
BEE College of the City of New York, BEE, 1944 

Dr. Herbert Hecht has been involved with software issues associated with critical real time control 
systems since his work on the Titan II Intercontinental Ballistic Missile guidance system in the 
middle 1960's. Dr. Hecht's involvement in safety systems for nuclear power plants began in 1980 
with his participation in the conference on the application of advanced electrotechnology 
application to nuclear power plants. Since that time, he has participated in audits of digital safety 
systems including the Arkansas Nuclear One Core Protection Calculator System, the South Texas 
Utilities Qualified Parameter Display System, and several others. In addition, he has been the 
Principal Investigator of NRC sponsored research on verification and validation guidelines for 
high integrity systems (NUREG/CR-6293) and on earlier work on high integrity systems 
(NUREG/CR-6113). Dr. Hecht's background in safety critical application of programmable 
logic controllers includes design and development of ladder logic code for short range ground 
transportation systems. The first appUcation of this software was the Big Thunder Mountain ride 
at Disneyland; additional applications are at Houston Intercontinental and other airport people 
mover systems. His previous experience includes work on ladder logic diagrams in aircraft 
avionics and flight control systems while at Sperry Corporation. 

2 Derek Decker 

Task 3 Reviewer for PLC Ladder Logic and IEC 1131 Sequential Functional Charts 

Mr. Decker is an expert in PLC programming and I&C systems integration. As a PLC application 
engineer for Texas Instruments, he installed and programmed PLCs in a wide variety of systems, 
both for in-plant use and for customers. Examples include wave solder machines and blood 
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sterilization controls. At Telemecanique, Inc., he was Technical Services Manager serving as the 
recognized expert in North American on the usage of advanced PLCs—the first to use what is 
now recognized as the IEC 1131-3 PLC language suite. Using these PLCs, he developed 
applications for manufacturing and food processing. He also prepared application notes and 
courses on the Telemecanique product line. He has written articles for Control Engineering and 
PLC Insider. 

3 Stephen Graft 

Task 2 Subject Matter Expert for Ada, Pascal 

M.S., Systems and Control Theory, UCLA, 1973 
B.S., Electrical Engineering, University of Maryland, 1969 

Steve Graff has experience in real time aerospace computer applications ranging from fighter 
aircraft to the Galileo and Ulysses space probes. Mr. Graff supported research in software 
complexity metrics and developed routines to analyze complex metrics such as Tsai. and 
dataflow. His experience in high integrity systems includes the Oceanic Advanced Automation 
System (AOAS), the F14 and F15 fighter avionics controls (in Ada), real time spacecraft ground 
control systems, and classified applications. Mr. Graffs experience in Pascal includes teaching 
at the university senior and post graduate level where he was responsible for creating and 
evaluating prograrnming for classic computer science problems such as linked lists, trees, graphs, 
and double linked lists. Mr. Graffs expertise in other languages provides the project with 
additional depth and also provides a better perspective from which to judge the relative strengths 
and weaknesses of PL/1 and Pascal. 

4 William Greene 

M.S., Astronomy, San Diego State University, 1975 
B.A., Astronomy, University of Minnesota, 1965 

Mr. Greene has a total of 22 years' experience as a programmer, with 10 years' experience in Ada 
software development. He has designed, coded, modified, and tested programs on Defense 
Satellite Program, MILSTAR and other projects in Ada and FORTRAN. This work involved real 
time ground-based satellite attitude control. In addition to his real-time background, Mr. Green 
has written Ada syntactical and lexical analysis programs in support of the development of 
software tools for the measurement of software complexity metrics. Mr. Greene also has an 
extensive background in system analysis and software testing in satellite ground support 
subsystems in Ada and other languages. This work includes writing, analysis, and criticism of 
requirements and design documents, design plans, test plans, and test procedures. 
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5 Myron Hecht, 

Assistant Project Manager, Report Editor 
Task 1 Pascal Subject Matter Expert 

M.S., University of California, Los Angeles, Nuclear Engineering, 1976 
M.B.A., University of California, Los Angeles, Computers & Information Systems, 1982 
B.S., University of California, Los Angeles, Chemistry (Cum Laude), 1975 

Myron Hecht has 20 years' software development experience in real time, scientific, and high 
integrity software prograrnming. He has previously worked on NRC-sponsored research on 
design and verification and validation guidelines for high integrity software. He has ten years' 
experience supporting the FAA in air traffic control software development in 6 different computer 
languages (including Pascal). In this capacity, he analyzed more than ten thousand failure reports 
and identified trends and software development practices which negatively affect stability and 
reliability. Previously, he directed software development for a fault tolerant distributed control 
system implemented in C for the EBRII site. He has performed several studies analyzing 
software fault distributions on the basis of error reports generated by NASA/JPL and large aircraft 
development organizations. He has also investigated the improvement of software complexity 
metrics to predict software failure densities in Ada avionics software as part of a Phase I SBIR 
(now in Phase IT for the U.S. Air Force). In earlier work, he developed and demonstrated the 
feasibility of fault-tree based design methodologies for fault tolerant software (SIFT and FTMP). 
Mr. Hecht received his graduate training in nuclear engineering and began bis career in nuclear 
nonproliferation and environmental analyses. In that capacity, he has programmed extensively 
in PL/1, Pascal, and FORTRAN. 

6 MichaelJustice 

Task 3 Reviewer for PL/M 

B.S., Computer / Electrical Engineering, University of Illinois, 1975 

Michael Justice has worked in industrial automation and process control for Amoco Oil, Intel, 
Wizdom Systems, and Synergetic. His experience includes real-time control software, 
communications, real-time operating systems, and hardware device drivers. His experience in 
PL/M includes: 

Support of the language as a software specialist and consulting engineer at Intel,. 

Heading the development of a successful line of PC-based PLCs implemented in PL/M, 

Serving as a technical consultant in his current position as Vice President at Synergetic 
Micro Systems, an engineering services firm serving major electronic and industrial 
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manufacturers in the Mid-west. 

Experience with other languages includes C, and Assembly Languages on single board computers 
(SBC) and microprocessors in all major buses (PC, STD, VME, MULTIBUS) and manufacturers 
(Intel, NEC, Motorola). 

7 Shlomo Koch 

Task 2 PLC Ladder Logic and Sequential Functional Chart Subject Matter Expert 

Ph.D. Electrical Engineering Rensselaer Polytechnic Institute (RPI), Troy, NY. 1992. 
M.Sc. Electrical Engineering Technion - Israel Institute of Technology, 1978. 
B.Sc. Electrical Engineering Technion - Israel Institute of Technology, 1973. 

Dr. Koch has extensive experience developing safety critical applications for PLC systems. 
During the last six years, he was responsible for the development and implementation of 
computer-based systems for safety-related applications in the nuclear industry including: 

• a PLC-based load sequencer for Northern States Power (NSP), Prairie Island, 

• a containment isolation status system for Tennessee Valley Authority (TVA), Browns 
Ferry, and 

• a study for implementing a PLC-based reactor protection system for NSP. 

Two of these systems are now licensed and operational. Dr. Koch has also worked on safety 
critical apphcations outside the nuclear industry, such as the pharmaceutical industry and medical 
devices that are regulated by the FDA that requires product validation, and the chemical and 
petrochemical industry that is regulated by OSHA that requires shutdown systems. Prior to 
obtaining bis Ph.D, Dr. Koch developed safety critical systems for 9 real time 
microprocessor-based defense systems. He is well versed in hazard analysis using Mil-Std-882B 
and MOD-56. Dr. Koch's experience with PLCs extends beyond safety critical systems. He has 
designed and programming of PLC-based systems for the local industry that includes paper mills, 
water treatment, machinery control, drive control, and sequencing logic, Dr. Koch has obtained 
national recognition through his numerous publications and standards activities. He is a member 
of the IEEE 7-4.3.2 standard committee, "application criteria for programmable digital computer 
systems in safety systems of nuclear power generating stations". He is also a member of the ISA 
SP84 standard committee on "appUcation of PES in safety systems for the process industry". He 
is a regular participant and speaker at EPRI, NUSMG, IEEE, ACM and other technical 
conferences on nuclear I&C system digital upgrades, software V&V and regulatory requirements. 
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8 James Leivo 

Task 1 Nuclear Systems Consultant 

B.S. Electrical Engineering, Carnegie Mellon University, 1966 

James Leivo is a registered Professional Engineer with over 25 years' experience in the nuclear 
power industry and related areas. His past work includes technical direction of the design and 
retrofit of I&C and computer systems and project management while employed at Westinghouse, 
NUS Corporation, and Los Alamos Technical Associates. Mr Leivo has served as a Consultant 
to NRC Instrumentation and Control Systems Branch, performed technical/ safety evaluations of 
computer-based reactor protection and safety instrumentation systems for advanced LWR designs 
and operating LWR upgrades. For nuclear utilities, Mr. Leivo has provided consulting services 
for independent assessment of safety and non-safety related I&C systems, electrical systems, and 
computer systems. This work has included thread audits and hazard analyses of safety and non-
safety systems being retrofit into nuclear power plants. 

9 Don Lin 

Task 2 C/C++ Subject Matter Expert 

Ph. D. Computer Engineering, University of Michigan, Ann Arbor, MI, 1988 
M.S.E. Computer, Information, and Control Engineering, University of Michigan Ann Arbor, MI, 1985 
B. S. Electrical Engineering Beijing Normal University, Beijing, 1982 

Dr. Lin's experience in high integrity software comes from his extensive experience in 
implantable medical devices, medical instrumentation design, and patient care devices. He has 
both developed software and managed software development teams for these devices using C, 
C++ and Assembly language. He also has experience in the testing and certification requirements 
of high integrity software through the premarket licensing process of the FDA. As part of his 
work on medical instrumentation, Dr. Lin has developed expertise in high performance computer 
system design, digital signal processing and pattern recognition, real and protected mode 
programming, software version control, clinical trial and data collection. Dr. Lin has also 
developed printer drivers and barcode readers. The integrity of these devices are of importance 
in medicine because of the life critical decisions which are made on the basis of printed output. 
Dr. Lin's abilities have been recognized by numerous awards in both his native country (China) 
and in the U.S., He holds two patents for medical instrumentation. Dr. Lin's familiarity with C 
and C++ comes from his work on a variety of operating systems, microprocessors, and compilers. 
His knowledge of potential problems and pitfalls comes from the extensive testing required for 
his software and devices in the medical field. 
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10 Kamran Ossia 

Task 3 Reviewer for C and C++ 

Ph.D. Electrical Engineering, University of Toronto, 1989 
M.A.Sc. Electrical Engineering, University of Toronto, 1983 
B.Sc. Electrical Engineering, Arya-Mehr (currently Sharif) University of Technology, Tehran, 1979 

Kamran Ossia has extensive experience in software development for scientific and nuclear 
apphcations. For his Ph.D. dissertation he developed a Matlab package for digital control system 
design and analysis. From 1989 to 1995 he was with Atomic Energy of Canada as control system 
designer, safety system analyst, and senior design engineer where took part in design and 
verification of reactor shutdown system software, control room user interface design, feasibility 
study of multiplexing signals inside the reactor building, analysis of nuclear reactor shutdown 
systems, updating of nuclear reactor simulation programs, design of a reactor regulating system 
on a distributed control system, and optimization of the flux detector layout for nuclear reactors. 
Dr. Ossia has coUaborated in pubhcations on stability analysis and control of mechanical systems, 
including missiles, rotating beams, gyros and columns. 

11 Jeremy Pollard 

Task 3 Reviewer for PLC Ladder Logic and IEC 1131 Sequential Function Charts 

Jeremy Pollard is the author of a monthly newsletter on PLC prograrnming, and has been 
responsible for the teaching of more than 1000 individuals on Allen Bradley equipment. He 
established a large Allen Bradley training center in Toronto for that leading manufacturer of 
controUers. He has assisted other organizations such as Flexis and TopDOC in developing PC-
based PLC control systems, and developed the control algorithms and supervised implementation 
of a control system at Corning Glass Works. In addition to his instruction and consulting on 
behalf of AUen Bradley, Mr. Pollard has initiated PLC training at a local college which resulted 
in a significant increase in student attendance and revenue. Mr. Pollard publishes regularly in 
Control Engineering magazine, and has published in other trade journals as well. 
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12 Bo Sanden 

Task 3 Reviewer for Ada 

Ph.D., Computer Science, Royal Institute of Technology, Stockholm, 1978 
M.S and B.S., Engineering Physics (combined), Lund Institute of Technology, Sweden, 1970 

Dr. Sanden is an Associate Professor, ISSE Department, George Mason University. His Research 
areas are in concurrency, use of Ada, course work and thesis direction in Ada, real time software 
design, program design, compiler design, software engineering. Prior to entering University 
faculty positions, he was technical project manager of a distributed transaction processing system. 
This high integrity system included transaction scheduling, recovery, restart mechanisms 
constructed by Dr. Sanden. In other language work Dr. Sanden was analyst, designer, and 
assembly programming consultant on a high performance JSP compUer. Dr. Sanden's recognition 
in software development includes being appointed to develop the curriculum for the newly 
established Masters program in Software Systems Engineering at George Mason University. He 
is the author of 23 referred papers and books. One of these books on Ada is now being used as 
a text at GMU and many other universities. He has authored 4 papers other refereed publications 
on Ada. His dissertation research was on restarting of real time systems 

13 Eltefaat Shokri 

Task 3 Ada and C/C++ Reviewer 

Ph.D Electrical & Computer Engineering, University of California, Irvine, 1993 
M.S. Computer Science, Sharif University of Technology, Tehran, 1983 
B.S. (cum laude) in Computer Science, Meshad University, Meshad (Iran), 1980 

Eltefaat Shokri has expertise in distributed object-oriented real time systems. Prior to performing 
his dissertation research in this area, Dr. Shokri was a lecturer in computer languages at Meshad 
University. While engaged in post-doctoral research at the University of California, Irvine, he 
developed DREAM, a real-time, object-oriented kernel for fault tolerant distributed systems in 
C and C++. Dr. Shokri is now developing a library of reusable software components for 
distributed systems implemented in Ada-95 for the U.S. Air Force Rome Laboratory, and is also 
developing a library to support adaptive fault tolerance for extended space missions for 
NASA/JPL. 
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14 Arthur Sorkin 

Ph.D., Computer Science, University of California Los Angeles, 1977 
Ph.D., Computer Science, University of California San Diego, 1971 

Task 3 C/C++, Pascal, and PL/M reviewer 

Dr. Arthur Sorkin has extensive experience in writing compilers and instruction in multiple 
computer languages. He was the Pascal compiler manager at Gould and author of language 
reference manual. He was Project manager, PLM/S86 cross compilation system for IBM 370s, 
and designed and implemented the syntax and semantic checker and error recovery routines for 
that compiler. He managed the compiler and utility group for the Vitesse mini-supercomputer 
company, and was responsible for porting assembler, loader, and debugger to AIX on IBM 370 
mainframes. Dr. Sorkin was recipient of an IBM Doctoral fellowship and was appointed Visiting 
Associate Professor, U.C. Davis; joint appointment with Lawrence Livermore National 
Laboratory. Dr. Sorkin's work in high integrity systems includes performed research in network 
computer security at Lawrence Livermore. He also automated portions of a clinical laboratory 
automation system, and developed Antisubmarine warfare software. He is the author of 12 
refereed publications. 

15 Ann Tai 

Ph.D., Computer Science, University of California, Los Angeles, 1992 
M.S., Computer Science, University of California, Los Angeles, 1986 
B.S., Mathematics/Computer Science, University of California, Los Angeles, 1984 

Task 2 Subject Matter Expert for C/C++ 

Dr. Tai has experience prograrnming in real time systems for C. In addition, she has performed 
research in verification and validation and modeling for dependable systems. Dr. Tai participated 
in the NUREG CR 6113 preliminary language study which involved analyzing Ada, C, C++, and 
PL/M and developing performance benchmarks. Her other work includes reliability modeling, 
performabiUty modeling (the integration of reliability, fault tolerance, and performance), and has 
developed high integrity software in C under SoHaR's SBIR contract with the U.S. Department 
of Energy for hierarchical distributed fault tolerant reactor control. Dr. Tai also developed of a 
methodology for verification of critical software based on the integration of functional testing, 
structural testing, and fault trees. Implemented tool written in Pascal. She participated in earlier 
NRC sponsored work on Development of guidelines for development and licensing of software 
used in Class IE reactor safety systems. Dr. Tai previously employed at JPL where she 
programmed and analyzed the Realtime Weather Processor. She was also on the Computer 
Science Faculty of the University of Texas at Dallas for one year. 
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16 K.S. Tso 

Task 3 Review for Ada 

Ph.D. Computer Science, University of California, Los Angeles, March 1987, 
M.S. Electronic Engineering. Philips International Institute, the Netherlands, June 1981, 
B.S. Electronics The Chinese University of Hong Kong, June 1979, 

i 

Dr. Tso has more than 16 years' experience prograrnming real time and high integrity software 
in C, Ada and Assembly. He is currently working on two high integrity R&D projects: a fault 
tolerant robotic control system which wiU have a recovery time of less than 40 msec. The initial 
application of the controller will be a spaceborne inspection system which continuously scans the 
outside of a large spacecraft for meteorite and other damage. The second project is the 
development of Ada fault tolerant software components. This contract was awarded in the 
competitive Small Business Innovative Research program. Dr. Tso successfully developed 
reusable software components which could be integrated on a network of UNIX workstations to 
create a fault tolerant radar processing application. Continued work including fault injection 
testing, validation, and documentation is now in progress under a Phase II SBIR contract. Dr. 
Tso has developed extensive language expertise through earlier projects with SoHaR in which he 
created parsers for the C and Ada prograrnming languages. These parsers were the bases of tools 
used to create conditional tables, which serve as test specifications for high integrity software, and 
for the analysis of Ada source code to analyze metrics such as Halstead, McCabe, and modified 
metrics to account for the real-time multitasking properties of Ada (this work was done jointly 
with M. Hecht). In earlier work on fault tolerance, Dr. Tso developed the DEDLX test bed which 
was used for evaluation of multiversion software fault tolerance. MVS fault tolerance includes 
the development of the same application using diverse languages but a single specification. Prior 
to engaging in research on fault tolerance, Dr. Tso performed research in networking, and worked 
as an engineer at an electronics firm in Hong Kong. 
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17 Douglas Wendelboe 

Task 2 Subject Matter Expert for PL/M 

B.S., Electrical Engineering, Pennsylvania State University, 1972 

Douglas Wendelboe is active in the design of microprocessor-based products and instrumentation. 
He has worked on all major Intel microcontroUers and microprocessors, and has also developed 
systems on the Motorola 68HC05 and 68HC11 families. He has developed software in PL/M, 
C, C++, and Assembler. Significant real-time control software projects include medical pacing 
systems analyzers, in-circuit emulators, meat packing weighing systems, injection mold 
temperature controllers, blood analyzers, mine shovel weighing and monitoring systems, vehicle 
inventory systems, and immunology software cartridges. Mr. Wendelboe has also been involved 
in hardware design and test system development. Prior to founding his own company in 1981, 
Mr. Wendelboe was employed at Microchip Technology, Kroy Inc., IBM, Honeywell, and Unisys. 
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