
NUREG/CR-6463

Review Guidelines on
Software Languages for Use in
Nuclear Power Plant
Safety Systems ^CBIVED

JUL \ 7 iss,

Final Report

Prepared by
H. Hecht, M. Hecht, S. Graff, W. Green, D. Lin,
S. Koch, A. Tai, D. Wendelboe

SoHar Incorporated

OSTl

Prepared for
U.S. Nuclear Regulatory Commission

DISTRIBUTION OF THIS DOCUMENT IS WLMfm M^STER

AVAILABILITY NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

1. The NRC Public Document Room, 2120 L Street, NW., Lower Level, Washington, DC 20555-0001

2. The Superintendent of Documents. U. S. Government Printing Off ice, P. O. Box 37082, Washington, DC
20402-9328

3. The National Technical Information Service, Springfield, VA 22161-0002

Although the listing that follows represents the majority of documents cited in NRC publications, it is not in
tended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room
include NRC correspondence and internal NRC memoranda; NRC bulletins, circulars, information notices, in
spection and investigation notices; licensee event reports; vendor reports and correspondence; Commission
papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the Government Printing Office:
formal NRC staff and contractor reports, NRC-sponsored conference proceedings, international agreement
reports, grantee reports, and NRC booklets and brochures. Also available are regulatory guides, NRC regula
tions In the Cocfe of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG-series reports and tech
nical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commission,
forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books,
journal articles, and transactions. Federal Register notices. Federal and State legislation, and congressional
reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference pro
ceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Office
of Administration, Distribution and Mail Services Section, U.S. Nuclear Regulatory Commission, Washington,
DC 20555-0001.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are main
tained at the NRC Library, Two White Flint North, 11545 Rockville Pike, Rockville, MD 20852-2738, for use by
the public. Codes and standards are usually copyrighted and may be purchased from the originating organiza
tion or, if they are American National Standards, from the American National Standards Institute, 1430 Broad
way, New York, NY 10018-3308.

DISCLAIMER NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government.
Neitherthe United States Government nor any agency thereof, nor any of their employees, makes any warranty,
expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of
such use, of any information, apparatus, product, or process disclosed in this report, or represents that its use
by such third party would not infringe privately owned rights.

NUREG/CR-6463

Review Guidelines on
Software Languages for Use in
Nuclear Power Plant
Safety Systems

Final Report

Manuscript Completed: June 1996
Date Published: June 1996

Prepared by
H. Hecht, M. Hecht, S. Graff, W. Green, D. Lin,
S. Koch, A. Tai, D. Wendelboe

SoHar Incorporated
8421 Wilshire Boulevard
Beverly Hills, CA 90211

R. Brill, NRC Project Manager

Prepared for
Division of Systems Technology
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001
NRC Job Code W6208

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

Abstract

Guidelines for the programming and auditing of software written in high level languages for safety
systems are presented. The guidelines are derived from a framework of issues significant to software
safety which was gathered from relevant standards and research literature. Language-specific
adaptations of these guidelines are provided for the following high level languages: Ada, C/C++,
Programmable Logic Controller (PLC) Ladder Logic, International Electrotechmcal Commission
(IEC) Standard 1131-3 Sequential Function Charts, Pascal, and PL/M. Appendices to the report
include a tabular summary of the guidelines and additional information on selected languages.

i i i NUREG/CR-6463

Table of Contents
List of Figures x
List of Tables xi
Executive Summary xii
Acknowledgements xiv
List of Acronyms xv

1 Introduction 1-1
1.1 Scope 1-1
1.2 Methodology 1-3

1.2.1 Task 1 Methodology 1-3
1.2.2 Task 2 Methodology 1-6
1.2.3 Task 3 Methodology 1-6
1.2.4 Tasks 4 and 5 Methodology 1-6

1.3 Technical basis 1-7
1.4 Contents Overview 1-8
References 1-10

2 Generic Safe Programming Attributes 2-1
2.1 Reliability 2-2

2.1.1 Predictability of Memory Utilization 2-4
2.1.2 Predictability of Control Flow 2-5
2.1.3 Predictability of Timing 2-11

2.2 Robustness 2-12
2.2.1 Controlling Use of Diversity 2-12
2.2.2 Controlling Use of Exception Handling 2-14
2.2.3 Checking Input and Output 2-15

2.3 Traceability 2-16
2.3.1 Controlling Use of Built-in Functions 2-16
2.3.2 Controlling Use of Compiled Libraries 2-17

2.4 Maintainability 2-17
2.4.1 Readability 2-19
2.4.2 Data Abstraction 2-23
2.4.3 Functional Cohesiveness 2-24
2.4.4 Malleability 2-25
2.4.5 Portability 2-25

References 2-27

3 Ada 3-1
3.1 Reliability 3-1

3.1.1 Predictability of Memory Utilization 3-1
3.1.2 Predictability of Control Flow 3-6

v NUREG/CR-6463

3.1.3 Predictability of Timing 3-22
3.2 Robustness 3-26

3.2.1 Controlled Use of Software Diversity 3-27
3.2.2 Controlled Use of Exception Handling 3-27
3.2.3 Input and Output Data Checking 3-31

3.3 Traceability 3-31
3.3.1 Use of Built-in Functions 3-32
3.3.2 Use of Compiled Libraries 3-32
3.3.3 Ada Run-time Environment 3-33
3.3.4 Mamtaining Traceability Between Source Code and Compiled Code 3-33
3.3.5 Minimizing Use of Generic Units 3-34

3.4 Maintainability 3-34
3.4.1 Readability 3-34
3.4.2 Data Abstraction 3-41
3.4.3 Functional Cohesiveness 3-42
3.4.4 Malleability 3-42
3.4.5 Portability 3-42

References 3-45

4 C and C++ 4-1
4.1 Reliability 4-1

4.1.1 Predictability of Memory Utilization 4-1
4.1.2 Predictability of Control Flow 4-11
4.1.3 Predictability of Timing 4-39

4.2 Robustness 4-42
4.2.1 Controlled Use of Software Diversity 4-43
4.2.2 Controlled Use of Exception Handling 4-43
4.2.3 Input and Output Checking 4-46

4.3 Traceability 4-47
4.3.1 Minimizing the Use of Built-in Functions 4-48
4.3.2 Minimizing the Use of Compiled Libraries 4-48
4.3.3 Utilizing Version Control Tools 4-49

4.4 Maintainability 4-49
4.4.1 Readability 4-50
4.4.2 Data Abstraction 4-58
4.4.3 Functional Cohesiveness 4-59
4.4.4 Malleability 4-60 ,
4.4.5 Portability 4-60

References 4-63

5 PLC Ladder Logic 5-1
5.1 Reliability 5-1

5.1.1 Predictability of Memory Utilization 5-1

NUREG/CR-6463 vi

5.1.2 Predictability of Control Flow 5-2
5.1.3 Predictability of Timing 5-13

5.2 Robustness 5-16
5.2.1 Transparency of Functional Diversity 5-17
5.2.2 Exception Handling 5-17
5.2.3 Error Containment 5-24

5.3 Traceability 5-24
5.3.1 Use of Built-in Functions 5-24
5.3.2 Use of Compiled Libraries 5-25

5.4 Maintainability 5-26
5.4.1 Readability 5-26
5.4.2 Data Abstraction 5-30
5.4.3 Functional Cohesiveness 5-32
5.4.4 Malleability 5-32
5.4.5 Portability 5-33

5.5 Security 5-33
References 5-35

6 Sequential Function Charts 6-1
6.1 Reliability 6-1

6.1.1 Predictability of Memory Utilization 6-1
6.1.2 Predictability of ControlFlow 6-2
6.1.3 Predictability of Timing 6-5

6.2 Robustness 6-7
6.2.1 Transparency of Diversity 6-8
6.2.2 Exception Handling 6-8
6.2.3 Input and Output Checking 6-9

6.3 Traceability 6-10
6.3.1 Use of Built-in Functions 6-10
6.3.2 Use of Compiled Libraries 6-10

6.4 Maintainability 6-11
6.4.1 Readability 6-11
6.4.2 Data Abstraction 6-15
6.4.3 Functional Cohesiveness 6-15
6.4.4 Malleability 6-16
6.4.5 Portability 6-16

References 6-17

7 Pascal 7-1
7.1 Reliability 7-1

7.1.1 Predictability of Memory Utilization 7-1
7.1.2 Predictability of Control Flow 7-5
7.1.3 Predictability of Timing 7-15

vii NUREG/CR-6463

7.2 Robustness 7-16
7.2.1 Transparency of Functional Diversity 7-16
7.2.2 Exception Handling 7-16
7.2.3 Input and Output Data Checking 7-18

7.3 Traceability 7-18
7.3.1 Controlling Use of Built-in Functions 7-18
7.3.2 Use of Compiled Libraries 7-18

7.4 Maintainability 7-20
7.4.1 Readability 7-21
7.4.2 Data Abstraction 7-23
7.4.3 Malleability 7-24
7.4.4 Functional Cohesiveness 7-24
7.4.5 Portability 7-24

References 7-25

8 PL/M 8-1
8.1 Reliability 8-1

8.1.1 Predictability of Memory Utilization 8-1
8.1.2 Predictability of Control Flow 8-3
8.1.3 Predictability of Timing 8-19

8.2 Robustness 8-21
8.2.1 Controlled Use of Software Diversity 8-22
8.2.2 Controlled Use of Exception Handling 8-22
8.2.3 Input and Output Checking 8-22

8.3 Traceability 8-25
8.3.1 Use of Built-in Functions 8-25
8.3.2 Use of Compiled Libraries 8-26

8.4 Maintainability 8-26
8.4.1 Readability 8-26
8.4.2 Data Abstraction 8-36
8.4.3 Functional Cohesiveness 8-43
8.4.4 Malleability 8-43
8.4.5 Portability 8-44

References 8-45

APPENDLX A. Language Descriptions A-l
A.1 PLC Description A-2

A.1.1 Programming Environment A-2
A. 1.2 Runtime Environment A-3

A.2 PLC Ladder Logic Language Description A-5
A.2.1 Elements of Ladder Logic A-6
A.2.2 PLC Ladder Logic Example A-9
A.2.3 General Description - Ladder Logic Programming Shell A-l 1

NUREG/CR-6463 viii

A.2.4 Ladder Logic Modularization A-13
A.3 Description of Sequential Function Charts A-15

A.3.1 Sequential Function Charts in the Context of IEC 1131 A-15
A.3.2 SFC Structure and Syntax A-15

A.3.2.1 SFC Steps A-18
A.3.2.2 SFC Transitions A-18
A.3.2.3 SFC Actions A-19
A.3.2.4 SFC Control Structures A-19

A.4 PL/M Language Description A-21
A.4.1 Language History A-21
A.4.2 Generation of Executable PL/M Programs A-22
A.4.3 Language Overview A-22

A.4.3.1 PL/M Program Structure A-23
A.4.3.2 Data Types A-23
A.4.3.3 Addressing Mechanisms A-24
A.4.3.4 Interrupt Structures, I/O Schemes, and Flags A-24

A.4.4 General Guidelines for Using PL/M A-24
A.4.4.1 An Almost Obsolete Language A-25
A.4.4.2 New Project Guidelines and Recommendations A-25
A.4.4.3 Existing Project Guidelines and Recommendations A-25

References A-26

Appendix B. Summary of Language Guidelines B-l
Generic (Language Independent) Attributes B-2
Ada B-9
C and C++ B-28
PLC Ladder Logic B-42
IEC 1131 Sequential Function Charts B-48
Pascal B-55
PL/M B-62

Appendix C: Glossary C-l

Appendix D. Relationship of Generic Attributes to Other Work D-l
D.l IEEE Standard 603 D-l
D.2 IEC Publication 880 D-3
D.3 IEEE Std 7-4.3.2 1993, Appendix F D-5
D.4 Rome Laboratory Software Quality Framework D-6
D.5 Other Published Research D-8

References D-10

Appendix E. Backgrounds of Subject Matter Experts and Reviewers E-l

ix NUREG/CR-6463

List of Figures
Figure 1-1 Overview of guideline development process 1-2
Figure 1-2 Decision diagram for defining attributes from existing literature 1-5
Figure 2-1 Top Level Attributes 2-1
Figure 2-2 Reliability and Lower Level Attributes 2-3
Figure 2-3 Robustness and Lower Level Attributes 2-12
Figure 2-4 Traceability and Lower Level Attributes 2-16
Figure 2-5 Maintainability and Lower Level Attributes 2-19
Figure 5-1 Use of goto 5-3
Figure 5-2 Sample of "complex" control structure 5-4
Figure 5-3 Use of an initialization subroutine 5-7
Figure 5-4 Ladder Logic multiple RETURN 5-8
Figure 5-5 Health monitoring routine sample program 5-19
Figure 5-5 Health monitoring routine sample program (continued) 5-20
Figure 5-6 Fault routine that alarms and halts sample program 5-22
Figure 5-7 Fault routine that restarts operation (sample program) 5-23
Figure A-l General description of a PLC software environment A-3
Figure A-2 Real time execution of PLC program A-4
Figure A-3 Ladder logic "rung" with IF/THEN configuration A-9
Figure A-4 Example of Ladder Logic A-l 1
Figure A-5 Subroutine calling in Ladder Logic A-13
Figure A-6 Subroutine interface (parameter passing) A-14
Figure A-7 Subroutine call interface (parameter passing) A-14
Figure A-8 Example of Sequential Function Chart A-17
Figure A-9 Sequential Chart for Traffic Light A-20

NUREG/CR-6463 x

List of Tables

Table 1-1. Sources Used for the Identification of Software Safety Attributes 1-4
Table 1-2. Error Data Sources for Validation of Attributes 1-5
Table 1-3. Subject Matter Experts 1-7
Table 1-4. Technical Basis Criteria and How They Were Addressed in this Document 1-8
Table 1-5. Language Cross Reference 1-9
Table 4-1. Examples of Problems Caused by Increment and Decrement Operators 4-24
Table 4-2. Problems in Mixing Signed and Unsigned Variables 4-29
Table 8-1. Optimization and Hardware Flags 8-19
Table A-l. Contacts A-7
Table A-2. Coils A-8
Table A-3. PL/M Compilers A-22
Table D-l. Comparison of Generic Attributes with IEEE Std-603-1991 Criteria D-2
Table D-2. Relationship between Top Level Generic Attributes and IEC 880

Recommendations D-4
Table D-3. Support Provided by Attributes of Chapter 2 to Items of Concern in ACES

Analysis of IEEE 7-4.3.2 D-5
Table D-4 Chapter 2 Attributes and Factors in the USAF Rome Laboratory Framework . . . D-7
Table D-5. Relationship between Generic Attributes and Safety Concerns or Criteria

Identified by Other Researchers D-9

xi NUREG/CR-6463

Executive Summary

This report provides guidance to the NRC on auditing of programs for safety systems written in the following
six high level languages: Ada, C and C++, PLC Ladder Logic, Sequential Function Charts, Pascal, and PL/M.
It could also be used by those developing safety significant software as a basis for project-specific
programming guidelines. The focus of the report is on programming, not design, requirements development,
or testing. However, it is not intended as a general programming style guide; excellent sources already exist.

A uniform framework for the formulation and discussion of language-specific programming guidelines was
the basis for developing the guidelines. The framework is a 3-level hierarchy. At the top of the hierarchy are
top level attributes, i.e., attributes which largely define a general quality of software related to safety. Four
top level attributes were defined. These are:

• Reliability. The predictable and consistent performance of the software under conditions specified
in the design basis. This top level attribute is important to safety because it decreases the likelihood
that faults causing unsuccessful operation will be introduced into the source code during
implementation.

Robustness. Robustness is the capability of the safety system software to operate in an acceptable
manner under abnormal conditions or events. This top level attribute is important to safety because
it enhances the capability of the software to handle exception conditions, recover from internal
failures, and prevent propagation of errors arising from unusual circumstances.

• Traceability. Traceability relates to the feasibility of reviewing and identifying the source code and
library component origin and development processes, i.e., that the delivered code can be shown to be
the product of a disciplined implementation process. Traceability also includes being able to associate
source code with higher level design documents. This top level attribute is important to safety because
it facilitates verification and validation, and other aspects of software quality assurance.

• Maintainability. The means by which the source code reduces the likelihood that faults will be
introduced during changes made after delivery. This top level attribute is important to safety because
it decreases the likelihood of unsuccessful operation resulting from faults during adaptive, corrective,
or perfective software maintenance.

Immediately below these top level attributes are intermediate attributes, i.e., related to the top level attribute
but not sufficiently specific to define guidelines. An example of an intermediate level attribute is predictable
memory utilization. At the lowest level are base attributes, i.e., attributes sufficiently specific to define
guidelines. An example of a base attribute is to avoid dynamic memory allocation. The guideline which can
be derived from this base attribute for C programs is to avoid the use of malloc in safety system software.

Guidelines for Ada were based on the 1983 standard ("Ada 83"). Although an extensive revision to the
standard occurred in 1995, current compiler implementations are insufficiently mature to be considered for
safety systems at the time of the writing of this report. Thus, there is not a sufficient experience base upon
which to develop substantive guidelines. The discussion encourages use of strong typing and exception
handling features in Ada 83, but strongly discourages the use of tasking. Certain pragmas such as unchecked
deallocation or suppression of run-time constraint checking are also strongly discouraged.

NUREG/CR-6463 xii

Guidelines for C and C++ were combined into a single chapter because of the close relationship between the
two languages and because programs written in C++ are also likely to contain C code as well. Although C
programs can interact extensively with operating systems or real time kernels, a discussion of these issues is
not included because it is related to specific operating system characterstics and is beyond the scope of this
study. The discussion emphasized the problems in memory allocation and deallocation, pointers, control flow,
and software interfaces.

Guidelines for programmable logic controller (PLC) Ladder Logic were discussed for the language in general,
but emphasized that implementations vary significantly among vendors. Ladder Logic is fundamentally
different from other high level languages in that it is more symbolic, has a limited number of data types, and
has a more limited syntax. Another difference is that Ladder Logic is closely associated with PLCs, computers
specialized for real time industrial control. This specialization results in unique I/O capabilities but limited
information processing features. The graphical syntax of Ladder Logic requires that safety system programs
be well organized in both their control flow and the structure of their internal data storage.

Guidelines for Sequential Function Charts (SFCs) also recognized the fundamental difference between the
programming paradigm for that language and those of other languages. SFCs are intended as a way to organize
the control flow of lower level software modules written in other languages defined by the IEC 1131-3
standard (including Ladder Logic). The guidelines emphasized the proper use of SFCs given their intended
purpose and orientation. The guidelines also identified potential pitfalls in the application of SFCs to safety
systems.

The discussion of Pascal addressed not only the ANSI standard, which is fairly limited, but also the most
popular extensions. Addressing the extensions is important because they are more widely used in real time
and near-real time systems than is the standard language. The focus of the discussion was similar to C, dealing
with memory allocation and deallocation, pointers, and software interfaces.

PL/M is a language that has been used extensively in microprocessor control applications, but which is now
no longer being supported by its corporate progenitor. The guidelines that were developed were similar to
those of C and Pascal. However, a specific concern for the use of PL/M in safety systems is the preservation
of the technical base including people, software tools, and support environments.

Appendices to the document include (a) additional descriptive material on the less known real time control
languages in this report (PLC Ladder Logic, SFCs, and PL/M), (b) tabular summaries of the guidelines in the
main body of the report, a glossary together with an assessment of their importance, (c) a glossary, (d)
additional material on the origin of the generic attributes, and (e) a brief description of the background of the
report contributors.

This report was prepared as an account of work sponsored by the Nuclear Regulatory Commission, an agency
of the United States Government. Neither the United States Government nor any agency thereof, nor any
employees, makes any warranty, expressed or implied, or assumes legal liability or responsibility for any
information, apparatus, product, or process disclosed in this report, or represents that its use by such a third
party would not infringe privately owned rights. The opinions, findings, conclusions, and recommendations
expressed herein are those of the authors and do not necessarily reflect the views of the NRC. Use of these
guidelines will assist auditors in identifying problems in the implementation of safety system programs, but
it does not guarantee that such problems will not occur. The emphasis of these guidelines was on common
attributes and related problems; it was not possible for the subject matter experts to exhaustively consider all
legal constructs in each of the languages.

xiii NUREG/CR-6463

Acknowledgments

We acknowledge the support and interest of the NRC Office of Research and in particular, that of
Mr. Robert Brill, the project manager. The additional review and comments from the National
Institute of Standards and Technology and from Dr. David Binkley are also appreciated. We also
wish to thank Mario Gareri, Michael Waterman, John Gallagher, and all the other individuals from
the NRC who contributed their views and comments to enhance this document.

NUREG/CR-6463 xiv

List of Acronyms

ANSI
BSO
CPU
DPMI
EEPROM
EPROM
HM
ICE
IEC
IEEE
IL
ISO
LRM
NIST
NRC
PID
PLC
RTE
SCADA
SFC
SME
SPC
ST
TVA

American National Standards Institute
Boston System Organization
Central Processing Unit
DOS Protected Mode Interface
Electrically Erasable Programmable Read Only Memory
Erasable Programmable Read Only Memory
Human Machine Interface
In Circuit Emulator
International Electrotechnical Commission
Institute of Electrical and Electronic Engineers
Instruction List
International Standards Organization
(Ada) Language Reference Manual
National Institute of Standards and Technology
Nuclear Regulatory Commission
Proportional+Integral+Derivative
Programmable Logic Controller
(Ada) Run-time Environment
Supervisory Control and Data Acquisition
Sequential Function Chart
Subject Matter Expert
Software Productivity Consortium
Structured Text
Tennessee Valley Authority

xv NUREG/CR-6463

1 Introduction
This is the final report prepared in accordance with the requirements of Nuclear Regulatory
Commission (NRC) Contract RES 04-94-046. This document describes characteristics and
programming guidelines for the following high level languages.

Ada
C and C++

• PLC Ladder Logic
• IEC 1131 Sequential Function Charts
• Pascal

PL/M

The goal of this report is to provide guidance to the NRC for reviewing high-integrity software in
nuclear power plants. Thus the focus of the report is on implementation (i.e., programming). Issues
related to design, requirements, verification and validation, and the development process are covered
in other industry standards and NRC reports (e.g., IEEE 7-4.3.2-1993, IEC 880, NUREG/CR 5930,
NUREG/CR 6263, and NUREG/CR 6293). In this document, these topics are covered only to the
extent that they affect implementation.

This report was prepared as an account of work sponsored by the Nuclear Regulatory Commission,
an agency of the United States Government. Neither the United States Government nor any agency
thereof, nor any employees, makes any warranty, expressed or implied, or assumes legal liability or
responsibility for any information, apparatus, product, or process disclosed in this report, or
represents that its use by such a third party would not infringe privately owned rights. The opinions,
findings, conclusions, and recommendations expressed herein are those of the authors and do not
necessarily reflect the views of the NRC.

1.1 Scope

Certain prograrnming practices can affect the safety of digital systems, and hence, guidelines can be
developed to enhance their dependability. This document identifies such guidelines for safety
related software written in the 6 high level languages identified above. This report is not intended
as a general programming style guide; excellent sources already exist for these languages. However,
this document could be used to review the development of safety-critical systems to supplement
guidance in existing coding standards or as part of the basis for reviewing non-safety grade software
incorporated in safety grade systems.

Because of the focus of this work, many prograrnming topics were excluded unless they directly
affected safety. Such topics include object-oriented analysis and design, code reuse, and efficiency
(e.g. minimizing resource requirements or optimizing for response time).

1-1 NUREG/CR-6463

Taskl

Previous Work

Define generic
attnr.

Initial Tas

Kites

k1 Report
identifying generic

safety related attributes

Review by nuclear
system expert and

Ni

Final Tas

\C

k1 Report
identifying generic

safety retell)d attributes

Task 2

■■

Develop specific
giridelKnes for each
language based on

the genera

Initial Tas

; attributes

fe 2 Report
identifying language
specific guidelines

Review by NRC

Final Tas c 2 Report
Identifying language
specific guidelines

Task 3

I
Send generic and
language specific

guidelines to outside
subject matter experts

subject matter experts
acting as reviewers

Revise GuHetnes

and to nudearsystems
expert

i as* J report
incorporating

comments

Task 4

Present results in
seminar

Comments from
audience

k-̂

i103Ov.it

Tai k5

Revise report based
on seminar comments

Deliver final report

Figure 1-1 Overview of guideline development process

The applicability of the generic attributes and language specific guidelines is affected by many
characteristics of a safety-related system. Where possible, these have been noted in the document.
However, not all such factors can be anticipated by the subject matter experts who contributed to the
language specific sections . Moreover, the general subject of coding practices and styles can be
controversial. Users of this document should take both the guidance contained in this document, the
specific project characteristics and the existing practices of the development organization into
account as they consider the application of these guidelines.

NUREG/CR-6463 1-2

http://i103Ov.it

1.2 Methodology

Figure 1-1 shows the process by which the language guidelines were developed. The work is divided
into the following 5 tasks:

• Taskl, Generic Characteristics: Define language independent software attributes affecting
safety

• Task 2, Language Assessment: Relate language independent software attributes to language
specific programming guidelines

• Task 3, Peer Review: Revise results of Tasks 1 and 2 based on review by independent
Subject Matter Experts (SMEs) acting as reviewers.

• Task 4, Seminar: Present results

• Task 5, Final Report

The following subsections discuss the methodology in greater detail.

1.2.1 Task 1 Methodology

In Task 1, generic attributes of computer languages were defined through the following iterative 3-
step process:

1. Identify safety related software attributes from review of existing work.
2. Classify and group attributes.
3. Validate classification.

In the first step, attributes related to safety identified in relevant standards and the current literature
were identified. Table 1-1 identifies the sources from which the majority attributes were extracted.

The attributes from Step 1 were aggregated and regrouped into a three level hierarchy as follows:

• Top level attributes: attributes which largely define a general quality of software related to
safety. An example of a top level attribute is reliability.

• Intermediate attributes: attributes related to the top level attribute but which are not
sufficient specific to define guidelines. An example of an intermediate level attribute is
predictable memory utilization.

1-3 NUREG/CR-6463

Base attributes: Attributes related to intermediate attributes and sufficiently specific to
define guidelines. An example of a base attribute is to avoid dynamic memory allocation.
The guideline which can be derived from this base attribute for C programs is to avoid the
use of malloc in safety systems.

Table 1-1. Sources Used for the Identification of Software Safety Attributes

Andersen, O. and P.G. Petersen, Standards and regulations for software approval and certification,
ElektronikCentralen Report ECR 154 (Denmark), 1984.
Bowen, T.P. and G.B. Wigle and J.T. Tsai, "Specification of Software Quality Attributes" Report, 3 Vols. "
RADC-TR-85-37, available fromNTIS, 1985.
Gottfried, R.and D. Naiditch, Using Ada in Trusted Systems, Proc. of COMPASS 93, May, 1993, National
Institute of Standards and Technology, Washington, DC, 1993.
Institute of Electrical and Electronic Engineers, Nuclear Power Engineering Committee, IEEE Std-603-1991,
IEEE Standard for Nuclear Power Generating Stations.
Institute of Electrical and Electronic Engineers, DEEE-Std-7 -4.3.2-1993, IEEE Standard Criteria for Digital
Computers in Safety Systems of Nuclear Power Generating Station.
International Electrotechmcal Commission (IEC), "Software for Computers in the Safety Systems of Nuclear
Power Stations," Standard 880.
McDermid, J.D., ed., Software Engineer's Reference Book, CRC Press, Inc., Cleveland, Ohio, 1993.
Leveson, N.G. and C.S. Turner, An Investigation of the Therac-25 Accidents, University of California, Irvine
Technical Report 92-108, Irvine, California, 1992.
McGarry, F., "The Impacts of Software Engineering," briefing presented to the NRC Advisory Committee on
Reactor Safeguards (ACRS), August 21, 1992.
Murine, G.E., "Rome Laboratory Framework Implementation Guidebook", RL-TR-94-149, USAF Rome
Laboratory, March 1994.
Parnas, D.L., A. J. van Schouwen and S.P. Kwan, "Evaluation of Safety Critical Software," Communications of
the ACM, Vol. 33, No. 6, p. 636, June, 1990.
Proceedings of the Digital Systems Reliability and Nuclear Safety Workshop, NUREG/CP-0136, NIST SP
500-216, 1993.
Smith, D.J. and K.B. Wood, Engineering Quality Software: A review of Current Practices, Standards, and
Guidelines Including New Methods and Development Tools. New York: Elsevier Applied Sciences, 1989.
U.S. Department of Defense, DoD-Std-2167A, Software Development Standard
Witt, B.I. and F.T. Baker and W.W. Merritt, Software Architecture and Design. Van Nostrand Reinhold, New
York, 1994.

The process was iterative. An initial framework was established, and the grouping and classification
was modified as additional references were consulted and attributes added. The decision diagram
for defining and classifying the attributes is shown in Figure 1-2.

The classification was validated by comparing the attributes with the causes and descriptions of
failures in two major air traffic control projects (the Federal Aviation Administration Advanced
Automation System and Voice Control Switching System) as well as incident reports from the Eagle
21 reactor protection system upgrades at the Tennessee Valley Authority (TVA) Sequoyah Nuclear
Plant. Additional validation came from other published large scale studies of software failures.
These are identified in Table 1-2.

NUREG/CR-6463 1-4

Identify attribute from
existing Sterature

Candidate top level
attribute

Candidate top level
attribute

Intermediate level
attribute

Intermediate level
attribute

Intermediate level
attribute

Figure 1-2 Decision diagram for defining attributes from existing literature

Table 1-2. Error Data Sources for Validation of Attributes

Thayer, R., "Software Reliability Study," Rome Air Development Center report RADCTR 76-238, March, 1976.
Chillarege, R., "Orthogonal Defect Classification," IEEE Trans. SW Engineering, November, 1991.
TVA Letter to NRC Dated May 10,1990, Sequoyah Nuclear Plant (SQN) —Eagle 21 Functional Upgrade
Commitments, NRC Public Document Room, Accession #910715001.
Advanced Automation System Program Trouble Report data (IBM/Loral) January, 1993 to July, 1994, U.S.
Federal Aviation Administration Contract DTFA01-88-C-00042
Voice Switching and Communication System Change Request (SCR) data (Harris Corp.), January, 1991 to July,
1994, Federal Aviation Administration Contract DTFA01-87-C-00002

1-5 NUREG/CR-6463

1.2.2 Task 2 Methodology

In Task 2, these attributes were provided to an initial set of Subject Matter Experts (SMEs) who
developed language-specific guidelines. These experts developed language-specific guidelines as
stand-alone documents in conjunction with the authors of the Task 1 report, who also served as
reviewers. The SMEs were briefed on the specific nature of this work, that is, concentrating on
safety and language-specific issues. The SMEs were also instructed to provide published literature
citations as references for any points that they felt would be controversial. Each SME report
prepared for a Task 2 report was reviewed and revised. This process allowed for the resolution of
technical disagreements and uncertainties. The results of the SMEs' work were then edited for
uniformity and integrated into a single document. The results of the Task 2 report were then sent
to a panel of expert reviewers for their comments. Preliminary and final copies of this report were
prepared.

1.2.3 Task 3 Methodology

In task 3, the generic attributes and language specific guidelines were submitted to an independent
set of SMEs who served as reviewers. These reviewers provided an initial round of comments, after
which the guidelines were revised. The guidelines were then resubmitted to the reviewers for a final
round of evaluations.

Table 1-3 lists the individuals who served as authors for the Task 2 guideline preparation and for the
Task 3 reviews. Each SME has one or more graduate degrees and a substantial background in
software development in both safety-critical systems and in the particular language for which the
criteria were developed. Appendix E provides additional information on the software development
background of these individuals.

1.2.4 Tasks 4 and 5 Methodology

The Task 3 report was circulated for comment within the NRC as well as to selected individuals
outside of the NRC. As part of Task 4, a seminar was conducted at which time additional comments
and feedback on the specific guidelines and the general conclusions of the report were gathered.
These comments resulted in additional changes which were then incorporated into the final
document.

NUREG/CR-6463 1-6

Table 1-3. Subject Matter Experts

Language

Ada

C

PLC Ladder Logic

IEC 1131-3 Sequential Function
Charts

Pascal

PL/M

Nuclear Systems

Task 2 SMEs

S. Graff
W. Greene

D. Lin, Ph.D
A. Tai, Ph.D

S. Koch, Ph.D
H. Hecht, Ph.D

S. Koch, Ph.D
H. Hecht, Ph.D

S.Graff
M. Hecht

D. Wendelboe

Task 3 SMEs

B. Sanden, Ph.D
K.S. Tso, Ph.D
E. Shokri, Ph.D

A. Sorkin, Ph.D
E. Shokri, Ph.D
K. Ossia, Ph.D

D. Decker
J. Pollard

D. Decker
J. Pollard

A. Sorkin, Ph.D

A. Sorkin, Ph.D
M. Justice

J. Leivo

1.3 Technical basis

Five criteria for a technical basis on which the use of digital systems could be justified were defined
in NUREG/CP-0136 (Beltracchi, 1994, p. 39). Table 1-4 shows how these criteria have been
addressed in this document.

1-7 NUREG/CR-6463

Table 1-4. Technical Basis Criteria and How They Were Addressed in this Document

Technical basis criterion

1. The topic has been clearly
coupled to safe operations.

2. The scope of the topic is clearly
defined.

3. A substantial body of knowledge
exists, and the preponderance of
the evidence supports a technical
conclusion.

4. A repeatable method to correlate
relevant characteristics with
performance exists.

5. A threshold for acceptance can
be established.

How addressed

The rationale for each guideline has been stated in this document

Section 1.1 describes the scope of language specific safety concerns.

Language-specific guidelines were based on generic attributes of safety critical
software using the methodology defined in Section 1.2. References associated
with the guidelines are provided at the end of each chapter

Language-specific guidelines for each language were prepared by SMEs with
an average of 20 years' overall programming experience.

Language specific guidelines were reviewed by independent SMEs

Not addressed in this document. Due to the paucity of failure data on digital
nuclear safety systems and the (fortunate) rarity of events resulting in
challenges to such systems, a repeatable method for correlating the identified
attributes with safe operation is not possible at this time. However, data
collection to permit assessment of the guidelines using actual failure
experience is planned for a later enhancement of this document.

Not directly addressed in this study. The guidelines identify qualitative
attributes rather than quantitatively measurable parameters. Substantial
progress in research on the quantitative failure behavior of high integrity
software is necessary to formulate a threshold.

The guidelines developed in this work provide a basis for the auditing and development of
dependable software in safety systems, but can not be considered exhaustive because they are written
without knowledge of the specific systems, language variants, and software development
environments to which they may be applied. Certain guidelines proposed by SMEs were rejected
based on the judgement of the editors or Task 3 SMEs that they were obscure or overly prescriptive,
that is, limiting the use of a language or advocating a certain style where the safety benefit was
unclear. On the other hand, not all guidelines included in this document may be applicable to a
specific project because of the presence or absence of certain requirements and design constraints,
the characteristics of a particular development environment, the testing program, or other factors.

Use of these guidelines will assist auditors in identifying problems in the implementation of safety
system programs, but it does not guarantee that such problems will not occur. The emphasis of these
guidelines was on common attributes and related problems; it was not possible for the subject matter
experts to exhaustively consider all legal constructs in each of the languages.

1.4 Contents Overview

This report is organized as follows: the second chapter of the report describes the generic attributes
for software safety and the resultant guidelines. Chapters 3 through 8 describe language-specific

NUREG/CR-6463 1-8

guidelines for Ada-83, C and C++, PLC Ladder Logic, IEC 1131 Sequential Function Charts, Pascal,
and PL/M. References are provided for the languages at the end of each chapter. Appendix A
includes an introductory discussion of PLCs, Ladder Logic, Sequential Function Charts, and PL/M.
Appendix B includes tables summarizing the language specific guidelines for the 6 languages
discussed in the main body of the report. These tables are intended to provide a brief overview of
the guidelines and to satisfy the requirement for a language matrix in the Statement of Work.
Appendix C is a glossary, Appendix D provides additional technical basis for the report, and
Appendix E summarizes the qualifications of the subject matter experts participating in the report.

Table 1-5 is a cross reference by language. It provides recommended selections of the report to
readers interested in a specific language.

Table 1-5. Language Cross Reference

Language

Ada

C and C++

PLC Ladder
Logic

IEC 1131-3
Sequential
Function Charts

Pascal

PL/M

Relevant Chapters (Main Report)

Chapter 2 (generic guidelines)
Chapter 3 (Ada specific guidelines)

Chapter 2 (generic guidelines)
Chapter 4 (C and C++ specific guidelines)

Chapter 2 (generic guidelines)
Chapter 5 (PLC Ladder Logic Specific
Guidelines)

Chapter 2 (generic guidelines)
Chapter 6 (SFC Specific Guidelines)

Chapter 2 (generic guidelines)
Chapter 7 (Pascal specific guidelines)

Chapter 2 (generic guidelines)
Chapter 8 (PL/M specific guidelines)

Relevant Appendices

Appendix B.l (guideline summary and
weighting factors)
Appendix C (Glossary)

Appendix B.2 (guideline summary and
weighting factors)
Appendix C (Glossary)

Appendix A.1 (PLC description)
Appendix A.2 (Ladder Logic description)
Appendix B.3 (guideline summary and
weighting factors)
Appendix C (Glossary)

Appendix A.l (PLC description)
Appendix A,3 (SFC description)
Appendix B.4 (guideline summary and
weighting factors)
Appendix C (Glossary)

Appendix B.5 (guideline summary and
weighting factors)
Appendix C (Glossary)

Appendix A.4 (PL/M description)
Appendix B.2 (guideline summary and
weighting factors)
Appendix C (Glossary)

1-9 NUREG/CR-6463

References

Beltracchi, L., "NRC Research Activities", Proceedings of the Digital Systems Reliability and
Nuclear Safety Workshop, NUREG/CP-0136, conducted by the NRC in conjunction with NIST,
March, 1994.

Hecht, H. et al., Verification and Validation Guidelines for High Integrity Systems, NUREG/CR-
6293, Vols. 1 and 2, March, 1995.

Institute of Electrical and Electronic Engineers, Standard Criteria for Digital Computers in Safety
Systems of Nuclear Power Generating Stations, ANSI/IEEE Std 7-4.3.2-1993.

International Electrotechmcal Commission, Software for Computers in the Safety Systems of Nuclear
Power Stations, IEC Standard 880,1986.

National Institute of Standards and Technology, High Integrity Software Standards and Guidelines,
NUREG/CR-5930,NIST SP 500-204, September, 1992.

Seth, S., et. al., High Integrity Software forNuclear Power Plants: Candidate Guidelines, Technical
Basis, and Research Needs, NUREG/CR-6263, MTR 94W0000114, Vols. 1 and 2, June, 1995.

NUREG/CR-6463 1-10

2 Generic Safe Programming Attributes
This chapter describes generic, or language-independent, attributes of safe programming. These
attributes are used as a basis for deriving the language-specific guidelines described in the following
chapters. As noted in the previous chapter, the attributes have been defined in a hierarchical, three-
level framework. The top-level attributes, shown in Figure 2-1, are:

Reliability. Reliability is the predictable and consistent performance of the software under
conditions specified in the design basis. This top level attribute is important to safety
because it decreases the likelihood that faults causing unsuccessful operation will be
introduced into the source code during implementation.

• Robustness. Robustness is the capability of the safety system software to operate in an
acceptable manner under abnormal conditions or events. This top level attribute is important

, to safety because it enhances the capability of the software to handle exception conditions,
recover from internal failures, and prevent propagation of errors arising from unusual
circumstances (not all of which may have been fully defined in the design basis).

• Traceability. Traceability relates to the feasibility of reviewing and identifying the source
code and library component origin and development processes i.e., that the delivered code
can be shown to be the product of a disciplined implementation process. Traceability also
includes being able to associate source code with higher level design documents. This top

Reliability

Safe Programming
Attributes

Robustness Traceability Maintainability

genlanllimplemtntation

Figure 2-1 Top Level Attributes

2-1 NUREG/CR-6463

level attribute is important to safety because it facilitates verification and validation, and
other aspects of software quality assurance.

• Maintainability. Maintainability is the means by which the source code reduces the
likelihood that faults will be introduced during changes made after delivery. This top level
attribute is important to safety because it decreases the likelihood of unsuccessful operation
resulting from faults during adaptive, corrective, or perfective software maintenance.

Sections 2.1 through 2.4 discuss each of these attributes in greater detail. Appendix B lists and
summarizes the associated lower level attributes, their relative priorities, and mitigation approaches
(where applicable). Appendix D shows their relationship to applicable Institute of Electrical and
Electronic Engineers (EEEE), International Electrotechmcal Commission (IEC), and Department of
Defense (DoD) standards and frameworks. It also contains a discussion of how these attributes
compares with other work in software safety.

2.1 Reliability

In the software context, reliability is either (1) the probability of successful execution over a defined
interval of time and under defined conditions, or (2) the probability of successful operation upon
demand (IEEE, 1977). That the software executes to completion is a result of its proper behavior
with respect to system memory and program logic. That the software produces timely output is a
function of the programmer's understanding of the language constructs and run-time environment
characteristics. Thus, the intermediate attributes for reliability are:

• Predictability of memory utilization. There is a high likelihood that the software will not
cause the processor to access unintended or unallowed memory locations.

• Predictability of control flow. There is a high probability that the processor will execute
instructions in sequences intended by the programmer.

• Predictability of timing. There is a high probability that the software executing within the
defined run-time environment will meet its response time and capacity constraints.

As shown in Figure 2-2, each of these intermediate attributes has multiple base attributes. The figure
also shows that base attributes related to object-oriented programming (control over polymorphism,
minimization of dynamic binding, and control over overloading) are related to both memory
utilization and control flow. These attributes are discussed further in the following sections.

NUREG/CR-6463 2-2

^ ^ ^

Predictability of ■
memory I

utilization I

/Win. dynamicX
(memory J
N. utlization J

/M in . memory\
f paging and J
\ . swapping J

■

Reliability

| <

Predictability of
control flow

f Max structure \
V (mingotos) J

(Min. control \
\flow complexityy

f Initialize \
V variables J

/6ne entry, one\
1 exit In tunc, 1
\ . procedure J

1 assignments in J
Vevaluationsi/

f Numerical N
I precision J

f Explicit \
V precedence J

f Proper code N
^instrumentation/

f Use of data \
I typing J

f Min. interface \
V ambiguities)

/ Control dass \
I library size J

(Min. dynamic \
k binding)

f Control >v
operator 1

Vovertoading\J

Predictability of B
timing m

(Min. tasking)

(Mln asynch \
\^ (interrupts) J

gMfen13 Rtbblty

Figure 2-2 Reliability and Lower Level Attributes

2-3 NUREG/CR-6463

file:///flow

2.1.1 Predictability of Memory Utilization

This section discusses the following base attributes that facilitate the predictability of memory
utilization:

• Minimizing dynamic memory allocation
• Minimizing memory paging and swapping.

2.1.1.1 Minimizing Dynamic Memory Allocation

Dynamic memory allocation is used in programs to temporarily claim (allocate) memory when
necessary during run time and to free the memory (also during run time) for other uses when no
longer needed. The safety concern is that when memory is dynamically allocated in a real-time
system, the software may not subsequently release all or some of it. This can happen either because:

• The application program allocates memory to itself but does not free it as part of normal
execution paths, or

• A program which has temporarily allocated memory to itself is interrupted in its execution
prior to executing the statement which releases the memory.

Either of these situations will cause the eventual loss of all usable memory and a loss of all safety
system functions. Dynamic memory allocation in digital safety systems should therefore be
minimized.

If dynamic memory allocation is unavoidable, the source code should include provisions to ensure
that:

• All dynamically allocated memory during a specific execution cycle is released at the end of
that cycle, and

• The possibility of interruption of execution between the point where memory is dynamically
allocated and when it is released is minimized (if not totally eliminated); there should also
be provisions in the application code that will detect any situation where dynamically
allocated memory has not been released and release such memory.

2.1.1.2 Minimizing Memory Paging and Swapping

Memory paging is the use of a part of a disk (or other form of secondary or bulk memory) to store
infrequently used primary memory areas. When these memory areas are needed by a running

NUREG/CR-6463 2-4

program, the operating system causes them to be read from the disk and loaded back into the primary
memory. Process swapping is the use of part of a disk (or other form of bulk memory) to store the
memory image of an entire inactive process (including its data areas such as a stack space and heap
space). When it is time for the process to be executed, the image is loaded from the disk back into
the primary memory for use by the CPU.

Both capabilities were developed for interactive and batch timesharing systems, where the demand
for memory was greater than the amount installed in the computer system. However, they are
inappropriate for safety systems because they can cause significant delays in response time and use
complex interrupt-driven functions to handle the memory transfers. In addition, these capabilities
depend on electromechanical components (if a disk is used as the secondary storage device) which
are subject to failure.

If an operating system and hardware that support memory paging or process swapping are used in
a safety system, this feature should be disabled at the operating system level. There should be
enough primary memory for all data and programs. If there is any question that these features were
not disabled, there should be provisions in the safety applications software ensuring that all critical
functions and their data areas are in primary memory during the entire period of execution. Such
provisions in the source code include operating system calls ("pinning"), compiler directives, and
operating system scripts.

2.1.2 Predictability of Control Flow

Control flow defines the order in which statements in a program are executed (i.e., sequential,
branching, looping, or procedural) (Meek, 1993). A predictable control flow allows an unambiguous
assessment of how the program will execute under specified conditions.

Related base attributes are:

• Maximizing structure
• Minimizing control flow complexity
• Initializing variables before use
• Single entry and exit points for subprograms
• Minimizing interface ambiguities
• Use of data typing
• Accounting for precision and accuracy
• Order of precedence of arithmetic, logical, and functional operators
• Avoiding functions or procedures with side effects
• Separating assignment from evaluation
• Proper handling of program instrumentation
• Controlling class library size
• Minimizing use of dynamic binding.

2-5 NUREG/CR-6463

• Controlling operator overloading.

These attributes and their relevance to safety are discussed in the following subsections.

2.1.2.1 Maximizing Structure

"Spaghetti code" is a common derogatory reference to code with GOTO or equivalent execution
control statements that cause an unstructured shift of execution from one branch of a program to
another. The safety concern is that the execution time behavior is difficult to trace and understand.
GOTO statements can cause undesirable side effects because they interrupt execution of a particular
code segment without assurance that subsequent execution will satisfy all conditions that caused
entry into that segment. Standards discouraging or prohibiting such coding practices have been in
place for more than two decades (e.g., MIL-Std-1679). Structure is maximized by the elimination
of GOTO statements and use of appropriate block structured code. The case, i f . . t hen . . e lse ,
do u n t i l , and do while constructs permit branching with a defined return and without
introducing the uncertainty of control flow associated with GOTO or equivalent statements (Dijkstra,
1972; DoD-Std-2167A, Appendix C).

2.1.2.2 Minimizing Control Flow Complexity

An indication of control flow complexity is the number of nesting levels for branching or looping.
Excessive complexity makes it difficult to predict the flow of a program and impedes review and
maintenance. A specific safety concern is that the control flow may be unpredictable when
unanticipated combinations of parameters are encountered. Excessive nesting can usually be avoided
by the use of functions or subroutines in place of in-line branches. A specific limit on nesting as part
of project or organizational coding guidelines can mitigate safety concerns.

2.1.2.3 Initializing Variables Before Use

When variables are not initialized to a known value at the beginning of an execution cycle, safety
is impaired because they may contain "garbage" values (residue from the previous use of that
memory area). Run-time predictability requires that memory storage areas set aside for process data
be set to known values before being accessed (set and used). A compiler cannot be depended on to
automatically reset memory areas set aside for variables (Gottfried, 1993; Naiditch, 1993).

2.1.2.4 Single Entry and Exit Points for Subprograms

Multiple entry and exit points in subprograms introduce control flow uncertainties similar to those

NUREG/CR-6463 2-6

caused by GOTO statements (DoD-Std-2167A, Appendix C). Run-time execution flow predictability
is enhanced by having only a single entry to and exit from each program. Because predictability of
execution flow is a characteristic important to safety, multiple entry and exit points in subroutines
or functions are undesirable even if the language supports them.

2.1.2.5 Minimizing Interface Ambiguities

Interface faults include mismatches in argument lists when calling other subprograms,
communicating with other tasks, passing messages among objects, or using operating system
services. An example of such an fault is reversing the order of arguments when calling a subroutine.
Previous research on software failures has shown that this category of faults is quite significant
(Chillarege, 1992; Thayer, 1976). Coding practices that can reduce or eliminate the probability of
interface faults include:

• Ordering arguments to alternate different data types (reducing the chance that two adjacent
arguments will be placed in an incorrect order).

• Using named notation rather than ordering or position notation for languages that support
such notation, e.g., display (value=>TC5, units=>EU) rather than display (TC5,
EU).

• Testing for the validity of input arguments at the beginning of the subprogram.

2.1.2.6 Use of Data Typing

Acceptance of data that differ from those intended to be used by a program can cause failures, and
such failures that occur during an exception condition may have particularly adverse effects on safety
(IEEE, 1993). This concern can be addressed by declaration of data types. Originally, the primary
advantage of declaring datatypes was to allow compilers to reserve the correct amount of memory.
However, data typing is useful for improved definition of interfaces (see above), increased legibility
(for reviews), and compile time and run time checking. These originally ancillary uses have now
become the primary motivators for data typing and have prompted the use of strong typing in which
additional declarations, at least that of a valid range, are required. The safety issues associated with
data typing include (IEEE, 1993; DoD-Std-2167A, Appendix C):

• Limiting the use of anonymous types (e.g., general integer or floating point without upper
and lower limits) in strongly typed languages.

• Ensuring that the limits on data types are not excessively constrained so that spurious
exceptions or error messages are not generated (this is an issue in strongly typed languages).

2-7 NUREG/CR-6463

Minimizing type conversions, and eliminating implicit or automated type conversions (e.g.,
in assignments and pointer operations).

• Avoiding mixed-mode operations. If such operations are necessary, they should be clearly
identified and described using prominent comments in the source code.

• Ensuring that expressions involving arithmetic evaluations or relational operations have a
single data type—or the proper set of data types for which conversion difficulties are
minimized.

• Limiting the use of indirection such as array indices, pointers (in Pascal or C), or access
objects (in Ada) to situations where there are no other reasonable alternatives, and
performing validation on indirectly addressed data prior to setting or use to ensure the
correctness of the accessed locations. Strongly typed pointers, array indices, and access types
reduce the possibility of referencing invalid locations.

2.1.2.7 Accounting for Precision and Accuracy

The software implementation must provide adequate precision and accuracy for the intended safety
application (IEEE, 1993). Safety concerns are raised when the declared precision of floating point
variables is not supported by analysis—particularly when small differences between large values are
used (e.g., when computing rate of change from the difference between current and previous values,
calculating variances, or performing filtering operations such as moving averages).

2.1.2.8 Order of Precedence of Arithmetic, Logical, and Functional Operators

The default order of precedence of arithmetic, logical, and other operations varies among languages.
Developers or reviewers may make incorrect precedence assumptions when explicit parentheses are
not used—particularly in complex expressions (DoD-Std-2167A, Appendix C). Therefore the use
of parentheses or other mechanisms for ensuring a clear statement of the order of evaluation of
operations should be used.

2.1.2.9 Avoiding Functions or Procedures with Side Effects

A side effect is a change to any variable not returned by that function that persists after the
completion of the function. This includes changes to files, hardware registers, etc. An example of
such a side, effect would be a change in a global variable not in the function parameter list. Side
effects can lead to problems with unplanned dependencies and can cause bugs that are hard to find.

NUREG/CR-6463 2-8

2.1.2.10 Separating Assignment from Evaluation

Assignment statements (e.g., extem_var := 100) should be separated from evaluation
expressions (e.g., i f sensor_val < temp_limit). The separation can be violated when
subprograms are used as part of the evaluation. For example, a filtering function may be used as part
of an evaluation rather than simply the sensor value:

if(func(a) < templimit) .

Execution of £ unc (a) may also set a global or external variable, using an assignment statement.
For example:

func(t);

begin

end.

/* data

/*
externj

/*

declarations */

initiation,
var:=0;
an external
and used by

execution, or evaluation

variable declared
this routine */

at

code

a higher

*/

scope

As a result, when the subprogram f unc is called, it will set an external variable to a value of 0. The
value of this variable may be used by other programs in calculations, logical decisions, or output.
Although this change may have been explicitly intended by the programmer, it is difficult for others
to follow. It is acceptable for the subprogram f unc to assign values to variables providing that these
variables are visible only within the subprogram, i.e., they are local variables rather than global or
external variables. A related attribute is minimization of the use of global variables discussed below.

2.1.2.11 Proper Handling of Program Instrumentation

Program instrumentation collects and outputs certain internal state values of a program during
execution and allows the developer to check if particular aspects of the specification have been
correctly implemented (Liao, 1991). Specific safety related issues are:

• Minimizing Run-time Perturbations: Instrumentation that interferes with the normal
execution flow is undesirable in safety applications. For example, extensive "write" or other
output statements can result in the execution of a significant amount of library code

2-9 NUREG/CR-6463

associated with outputting values; a less intrusive means may be to write such values to
external memory locations where they can be processed later. It may also mean writing data
in binary format for off-line format processing (i.e., conversion to human-readable text and
numeric values). To minimize differences in behavior between test and normal operation,
it may be desirable to keep certain instrumentation code in place in the actual environment.

Maintaining Visibility of Instrumentation in Runtime Source Code: Some software tools
alter compiler generated object (or executable) files in order to insert instrumentation
(Campbell, 1994; Castellano, 1994). This is generally not acceptable in a safety system
because the impact of such changes is not visible in the source code and its effect on
execution cannot be reviewed.

Conforming to Software Instrumentation Guidelines: Review is facilitated (and therefore
safety is enhanced) if the instrumentation practices are described in project specific
engineering notebooks. Guidelines are needed to identify what types of output mechanisms
are to be used, and under which conditions they should not be used. For example, a measure
mentioned above for minimizing runtime interference is at odds with the data abstraction and
error containment attributes described later in this section.

2.1.2.12 Controlling Class Library Size

Control of class library size is important to avoid a system that becomes unmanageable or has large
performance penalties because it has too many classes and objects (Cuthill, 1993). Safety is
enhanced if project-specific guidelines limit the number of classes and objects... and the actual
software conforms to these guidelines.

2.1.2.13 Minimizing Use of Dynamic Binding

Binding denotes the association of a name with a class. Dynamic binding permits the name/class
association to be deferred until the object designated by the name is created at execution time. The
unpredictability of the name/class association creates safety concerns. It also reduces the
predictability of the runtime behavior of an object-oriented program and it complicates debugging,
understanding, and tracing (Royce, 1993). Restrictions on, or elimination of, dynamic binding is
desirable for safety-critical applications.

2.1.2.14 Controlling Operator Overloading

Polymorphism (operator overloading) can improve readability and reduce complexity by allowing
a single subprogram or operator (in Ada) or object behavior (in C++) to be used for different data
types. However, it can also be problematic from the perspective of predictability because it is

NUREG/CR-6463 2-10

unclear how a compiler will bind code for different polymorphisms (e.g., how would a multiply
operation on a multidimensional array be bound to scalars or one-dimensional arrays) (Royce, 1993).
Guidance on use of operator overloading in a project-specific or organizational coding standards
manual is therefore desirable for safety-related applications, together with verification that the code
complies with this standard.

2.1.3 Predictability of Timing

Predictability of timing is crucial in a safety system used in real time control (Kopetz, 1993;
Leveson, 1992; Turner, 1992). For example, a reactor shutdown system must generate a trip signal
within a specified interval of operating parameters falling outside of allowable ranges. Also, diesel
engine startup sequences require events to happen Vvithin a defined time interval. Base attributes
related to object oriented prograrnming that have relevance to this intermediate attribute were
discussed under previous headings:

• Controlling class library size
• Minimizing use of dynamic binding, and
• Controlling operator overloading.

Two additional base attributes related to timing discussed in the following subsections are:

• Minimizing the use of tasking, and
• Minimizing the use of interrupt driven processing.

2.1.3.1 Minimizing the Use of Tasking

Although tasking (in languages such as Ada) provides an attractive model for concurrent processing,
its use is undesirable in safety-critical applications for the following reasons:

• " There are timing uncertainties associated with differing implementations by compiler
vendors, interactions with underlying operating systems (or real time kernels), and the design
of the hardware platform.

• The sequence of execution is uncertain when several calling alternatives are waiting to be
executed because it is not always clear which call will be selected (Gottfried, 1993; Naiditch,
1993).

• Tasking allows time critical errors such as race conditions and deadlocks to develop. Such
differences are difficult to debug (Royce, 1993).

Therefore, tasking is to be avoided in safety systems unless there is a compelling justification.

2-11 NUREG/CR-6463

2.1.3.2 Minimizing the Use of Interrupt Driven Processing

Using interrupt driven processing to handle the acceptance and processing of plant and operator input
can reduce average response time, but usually leads to non-deterministic maximum response times.
Interrupt driven processing was implicated in at least one of the Therac-25 accidents (Leveson, 1992;
Turner, 1992). Reference documents and standards related to digital system safety generally
discourage or prohibit its use (IEC 880). Avoiding interrupt driven processing facilitates analysis
of synchronization and run-time behavior, and avoids the non-deterrninism of response time inherent
in interrupt driven processing.

2.2 Robustness

Robustness refers to the capability of the software to continue execution during off-normal or other
unanticipated conditions. A synonym for robustness is survivability (Bowen, 1985; Wigle, 1985).
Robustness is an important attribute for a safety system because unanticipated events can happen
during an accident or excursion, and the capability of the software to continue monitoring and
controlling a system in such circumstances is vital.

As shown in Figure 2-3, the
intermediate attributes for
robustness are:

• Controlling use of
diversity

• Controlling use of
exception handling

• Checking input and
output.

These attributes and their
relevance to safety are
discussed in the following
subsections.

2.2.1 Controlling Use of
Diversity

The decision to employ diverse
software implementations is a
design-level function and is
therefore outside the scope of

Figure 2-3 Robustness and Lower Level Attributes

Robustness

gOTtanlSjofemnMS

NUREG/CR-6463 2-12

this document. However, if diversity is called for in the design or requirements, it should be
controlled in its application. There are two base attributes:

• Controlling internal diversity
• Controlling external diversity.

2.2.1.1 Controlling Internal Diversity

When only internal diversity is used, the interfaces to all versions must be identical. In other words,
any sensor data or parameters from calling procedures should be passed identically to all versions,
and output data from any version should be accepted and used by other parts of the system.
However, internal operations and storage of local data should occur diversely in the multiple module
versions or instantiations. Internal diversity is facilitated by an object-oriented approach in which
the same messages and methods are used, but the internal algorithms and data representations differ
(Cuthill, 1993). Internal diversity should be implemented in accordance with the design and with
project-specific guidelines. These should address:

• Diverse algorithms. Using different algorithms, unit conversions, and process parameters
(when called for or allowed in the requirements or design) minimizes the possibility of a
design or implementation-related failure.

• Diverse data validation. Using alternate schemes for sensor (or other input) data and output
data validation minimizes the possibility of a design or implementation-related failure.

• Diverse exception handling routines. This measure reduces the probability that an error in
the exception handling or processing will occur simultaneously on multiple versions.

• Different data types, structures, and storage allocation. This measure reduces the possibility
that unanticipated interactions between the object code generated by the compiler and the
operating system will cause data or code to be inadvertently overwritten simultaneously on
multiple versions.

• Diverse libraries and subroutines. Avoiding use of the same application software
subroutines, compiler-supplied library routines, and operating system provided application
programming interfaces. This measure reduces the possibility of a simultaneous failure due
to a defect in such routines.

• Diverse order of arithmetic operation. Changing the order of arithmetic operations in
conversions, arithmetic, and assignment statements by using commutative, associative, and
distributive properties reduces the possibility of simultaneous failures due to unanticipated
overflow conditions generated by intermediate results or problems in numerical precision.

2-13 NUREG/CR-6463

Diverse order of input and output operation. Performing I/O operations in different orders
reduces the possibility of simultaneous timing-related failures (such as a deadlock) or data-
driven failures (i.e., a program crash due to a particular data value).

2.2.1.2 Controlling External Diversity

Where external diversity is used, safety is enhanced if it is implemented in a disciplined manner in
accordance with design documents. The design documents should reflect the diversity imposed by
requirements, hazard analyses, and similar sources. External diversity is achieved by using different
interfaces among the versions, and may be combined with internal diversity. External diversity is
necessary when different languages are used for different versions, and may also be used to obtain
sensor data through a different channel. Uncontrolled or unspecified external diversity can lead to
a proliferation of interfaces which impact safety due to difficult maintenance, testing, verification,
and validation.

2.2.2 Controlling Use of Exception Handling

Exception handling deals with abnormal system states and input data (IEEE, 1993). Exception
handling provisions in some languages facilitate the establishment of an alternate execution path in
the event of conditions which, although unexpected, result in states that can be defined in advance.
Problems can arise in the use of exception raising and handling, however, because execution flow
during exception conditions is often difficult to trace.

Base attributes with respect to exception handling include (DoD-Std-2167A, Appendix, D):

• Handling of exceptions locally
• Preserving external control flow
• Handling of exceptions uniformly.

2.2.2.1 Handling of Exceptions Locally

Propagation of exceptions through several levels of a program can cause the precise nature of the
exception to be misinterpreted at the place where the exception handling is implemented. This cause
of system failure (with potentially serious safety implications) is avoided if exceptions are handled
locally.

NUREG/CR-6463 2-14

2.2.2.1 Preserving External Control Flow

Interruption of control flow external to the routine in which the exception was raised creates
uncertainty in the execution subsequent to the exception handling. Safety is enhanced by
preservation of control flow external to the module responsible for the exception.

2.2.2.2 Handling of Exceptions Uniformly

Undisciplined use of exception handling can result in inconsistent processing of the same exception
condition in different parts of the code. At worst, it can result in some exceptions being raised and
not handled. These problems can be avoided by guidance on the use of exceptions as part of the
coding practices procedures of the organization or the specific project. Topics to be included in this
guidance are:

• General and project specific exceptions which have been defined and are allowed
• Placement of exception handling code
• Enumerating all intended side effects and verifying that there are no other side effects
• Ensuring the integrity of critical state data during exception processing
• Criteria for distinguishing what conditions should be handled through control flow constructs

as part of normal processing versus abnormal conditions where use of exception handling
is appropriate.

2.2.3 Checking Input and Output

Data corruption due to a transient failure or an invalid result can have serious consequences on
subsequent processing if allowed to propagate. The base attributes related to input and output
checking mitigate such consequences by containing the error. The two base attributes discussed in
the following subsections are:

• Input data checking and
• Output data checking.

2.2.3.1 Input Data Checking

Input data includes data from another routine, data from the external environment, and data stored
in memory from a previous iteration. Input data should be checked for validity before processing.
Such checks reduce the probability of incorrect results or corrupted data being propagated. At a

minimum, the values of the inputs should be checked for data type and being within an acceptable
range. If possible, reasonableness checks on the data should also be performed. Provisions should
exist in the safety system software to detect invalid input and to bring the module to a known state

2-15 NUREG/CR-6463

(i.e., default or previously valid values) as defined in the higher-level design.

2.2.3.2 Output Data Checking

Output data—whether to the external environment, to another routine or stored for use in a
subsequent iteration—should be checked for validity. At a minimum, this validity check should
ensure that the values are of the appropriate data type and are within acceptable ranges. It is more
desirable that the values also be checked for reasonableness. However, such reasonableness checks
should not be so restrictive that they spuriously reject correct values. Provisions for handling
rejected output values according to the design should also be present in the software.

2.3 Traceability

As defined earlier in
this chapter, traceability
refers to attributes of
safety software which
support verification of
correctness and
completeness compared
with the software
design. As shown in
Figure 2-4, the
intermediate attributes
for traceability are:

Figure 2-4 Traceability and Lower Level Attributes
• Readability
• Controlling use of built-in functions
• Controlling use of compiled libraries.

Because readability is also an intermediate attribute of maintainability, it is discussed in Section 2.4.
The latter two attributes and their relevance to safety are discussed in the following section.

2.3.1 Controlling Use of Built-in Functions

Nearly all languages include built-in functions for frequently used programming tasks to maximize
programmer productivity. However, the limitations of these functions and the way in which they
handle exceptions may not be so well known those as the basic language constructs. Thus, the use
of such functions raises safety concerns.

Control use of
compiled
libraries

Traceability

Readability
(see

Maintainability)
Control use of

built in functions

NUREG/CR-6463 2-16

Concerns over the use of built-in functions can be addressed through organizational or project
specific guidelines. Regression test cases make it possible to establish conformance with expected
results of new releases of compilers and runtime libraries. Thus, test cases, procedures, and results
of previous testing for allowable built-in functions should be retained. Testing should also assess
behavior for out-of-bounds and marginal conditions (e.g., negative arguments on a square root
routine; improperly terminated strings for a string copy routine, etc.) in the specific runtime
environment.

2.3.2 Controlling Use of Compiled Libraries

Compiled libraries are routines written and compiled by an entity other than the development group.
Applications of compiled libraries include input/output operations, device drivers, or mathematical
operations that are not defined in the standard language. Such libraries can be supplied by compiler
vendors, third parties, or other departments of the development organization. Concerns for such
libraries are similar to those for built-in functions.

Concerns over the use of compiled libraries can be addressed by controlling the use of function calls
to such libraries through organizational or project-specific guidelines. Like built-in functions, a set
of test cases, procedures, and results should be maintained. The test cases should assess behavior
for normal, out-of-bounds, and marginal conditions in the specific runtime environment. Regression
testing should be performed for each new release of the compiled library.

2.4 Maintainability

Software maintainability reduces the likelihood that errors will be introduced while making changes.
The intermediate attributes related to maintainability that affect safety include:

• Readability: those attributes of the software that facilitate the understanding of the software
by project personnel

• Data abstraction: the extent to which the code is partitioned and modularized so that the
collateral impact and probability of unintended side effects due to software changes are
minimized

• Functional cohesiveness: the appropriate allocation of design level functions to software
elements in the code (one procedure; one function)

• Malleability: the extent to which areas of potential change are isolated from the rest of the
code

• Portability: the major safety impact of which is the avoidance of non-standard functions of

2-17 NUREG/CR-6463

a language.

Figure 2-5 shows these lower level and associated base attributes, which are discussed further in the
following subsections.

NUREG/CR-6463 2-18

Maintainability

g«nl*n13:m*lnUInsbUtty

Figure 2-5 Maintainability and Lower Level Attributes

2.4.1 Readability

Readability allows software to be understood by qualified development personnel other than the
writer. The importance of readability for maintainability can be seen by a study performed at the
NASA Goddard Software Engineering Laboratory (McGarry, 1992) in which manual code reading
(desk checking) was found to be more effective than structural or functional testing for finding
coding faults. It is reasonable to extrapolate that readability would also enhance identifying code
to be changed during corrective or adaptive maintenance and would reduce the probability of
introducing new faults during such maintenance.

There are no general standards for readability that can be mandated or even recommended.
However, organizational or project-specific coding style and practices manuals (or related
guidelines) are expected for safety-critical systems. The following base attributes are related to
readability:

Conforming to indentation guidelines
Using descriptive identifier names

2-19 NUREG/CR-6463

Commenting and internal documentation
Limiting subprogram size
Minimizing mixed language programming
Minimizing obscure or subtle programming constructs
Minimizing dispersion of related elements
Minimizing use of literals.

These attributes are discussed in the following subsections.

2.4.1.1 Conforming to Indentation Guidelines

Appropriate indentation facilitates the identification of declarations, control flows, non-executable
comments, and other components of source code (DoD-Std-2167A, Appendix C). Indentation
guidelines are generally part of a project specific or organizational programming style or standards.
Significant issues to be addressed by indentation practices are the handling of:

Programming blocks (sequences of statements bounded by begin and end)
Comments
Branching constructs (e.g., i f . . . t h e n . . . e lse, case statements, loops, etc.)
Multiple levels of nesting (e.g., a do loop within a do loop)
Variable and subroutine declarations
Compiler directives
Exception raising and handling.

2.4.1.2 Using Descriptive Identifier Names

Names for variables, procedures, functions, data types, constants, exceptions, objects, methods,
labels, and other identifiers that are not easily understood can impede review and maintenance.
Safety concerns arising from naming practices can be alleviated when names are required to be
descriptive, consistent, and traceable to higher-level (i.e., software design) documents (DoD-Std-
2167A, Appendix C). Naming conventions are an important part of the coding style and practices
manual. Examples of issues to be addressed include:

• Identification of plant input data (e.g., should the variable refer to a sensor, or should it be
called loopl_hot_leg_TCl)

• How looping variables should be named (e.g., i , j , k or longer titles)
• Local renaming of identifiers (e.g., average_j>rocedure .mean renamed as mean)
• Distinguishing between different categories of identifiers (e.g., a suffix on all data types with

an _T to distinguish them from variables)
• Lists of project-specific terminology and reserved words (e.g., restrictions on the use of the

terms "alarm", "limit", etc.).

NUREG/CR-6463 2-20

Use of the same name for a different purpose is to be avoided unless obviously advantageous and,
when employed, should be accompanied by clear, consistent, and unambiguous notations. Multiple
use of the same name can be confusing. A further problem can occur if the language supports
precompiled units (such as Ada). A variable with the same name in two different packages, one of
which is used by the other may be interpreted by the compiler in a different manner than intended
by the program writer. In some cases, the programmer may have omitted the declaration of a name
in a package. Thus, another package can cause a different variable with the same name to be used
in a totally unintended manner (Campbell, 1994; Castellano, 1994). If the particular branch or
execution path is not encountered frequently, it is possible that such a fault would not be discovered
until it causes a run-time failure.

Use of reserved words for user-selected identifiers (in languages where this feature is allowed) is
undesirable (DoD-Std-2167A, Appendix C).

2.4.1.3 Commenting and Internal Documentation

Incomplete comments, inconsistent formats, and comments that are not updated to reflect the current
code impede review and raise safety concerns. These problems can be minimized by guidance in the
organizational or project coding standards that controls comments and internal (to the program)
documentation. Examples of items, when incorporated, that should be located in the prologue
section include the following (DoD-Std-2167A, Appendix C):

• The subprogram or unit purpose and how achieved
• Functions and performance requirements, and external interfaces that the subprogram or unit

helps implement
• Other subprograms or units called and their dependencies
• Use of global and local variables and, if applicable, memory and register locations together

with special maintenance instructions
The responsible prograrnming department or section

• Date of creation of the unit
• Date of latest revision, revision number, problem report number, and title associated with the

revision
• Intended failure behavior and related information for all major segments of the code.
• Inputs and outputs, including data files referenced during unit entry of execution
• Comments on the purpose, scope, and limitations on each argument (for subprograms with

arguments).

Similar examples for documentation within the code include:

• Reference to higher level design documentation in comments associated with data type,
variable, and constant declarations

2-21 NUREG/CR-6463

• Purpose and expected results at the beginning of branches and programming blocks
• Detailed in-line comments explaining unusual constructs and deviations from programming

practices.

2.4.1.4 Limiting Subprogram Size

Some documents recommend specific limits on the source code of each subprogram or unit. For
example, an average of 100 non-expandable statements and a maximum of more than 200 such
statements has been recommended (DoD-Std-2167A, Appendix C). Concern with the size of
subprograms was one of the motivators for the adoption of structured programming. In Dijkstra's
words, "Widespread under-estimation of the specific difficulties of size seems to be one of the major
underlying causes of software failure" (Dahl, 1972; Dijkstra, 1972). Small subprograms (one or two
pages) are easier to review than longer ones. However, the limits on allowable size must also take
into account the nature of the program and the language. In nuclear safety and control systems, a
given code must frequently handle a multitude of sensed quantities, and the data declarations (with
required comments) for these can by themselves amount to more than a page. The criterion for this
base attribute is therefore that guidance on size be provided, rather than a universal numerical
threshold.

2.4.1.5 Minimizing Mixed Language Programming

Mixed language programming (e.g., assembly language for interrupt handling and high-level
languages for other processing) presents difficulties for reviewers and maintainers and is therefore
a safety concern. When this practice cannot be avoided, the difficulties can be minimized by placing
the "foreign" language code adjacent to the dominant language routine with which it interfaces (e.g.,
an in-line assembly compiler directive in the input processing routine associated with an interrupt)
so that readability is enhanced.

2.4.1.6 Minimizing Obscure or Subtle Programming Constructs

Obscure coding constructs can generally be characterized as the use of indirect techniques to
decrease the amount of coding or CPU processing required to achieve a result. Such coding practices
present problems in review and maintenance and hence are a safety concern. For example shifting
an integer to the left is equivalent to doubling its value. However, the former construct would be
obscure if the design calls for doubling the value (i.e., it would be preferable to perform the
multiplication); the latter construct would be obscure if the design calls for shifting the value to the
left (i.e., it would be preferable to perform the shifting operation in the source code rather than
multiplying by 2). Appropriate commenting can minimize the impact of obscure or marginally
obscure coding changes (e.g., adding the value to itself as a means of doubling it).

NUREG/CR-6463 2-22

2.4.1.7 Minimizing Dispersion of Related Elements

If related elements of the code are dispersed in a program, it is necessary to refer to multiple
locations within a source listing during reviews and maintenance. However, the specific nature of
the dispersion varies by language. For example, some languages allow for interface specifications
separated from the body of the code; others allow for "prototyping" for a similar purpose. In
languages with strong data typing, it may be desirable to centralize all type declarations in a single
file (or set of files); in object-oriented languages, it may be desirable to segregate base classes from
derived classes. Review is facilitated and safety is enhanced if project-specific guidance is provided
on the placement of related elements in the code.

2.4.1.8 Minimizing Use of Literals

Literals (i.e., an actual number or string in the source code) are more difficult to identify than names
to which a constant value is assigned at the beginning of the module (DoD-Std-2167A, Appendix
C). Literals impact safety because they decrease readability and complicate
maintainability—particularly if the literal is associated with a process parameter which may be tuned
or a conversion factor which may be changed upon recalibration of an instrument. It is far easier to
change one value set at the beginning of a file than it is to guarantee that all literals associated with
such a parameter have been changed completely and correctly throughout all relevant files.

2.4.2 Data Abstraction

Data abstraction is the combination of data and allowable operations on that data into a single entity,
and establishment of an interface which allows access, manipulation and storage of the data only
through the allowable operations. It is an important contributor to safety by virtue of reducing or
eliminating potential side effects of changing variables either during runtime or in software
maintenance activities (Parnas, 1972). This principle is associated with the following specific base
attributes:

• Minimizing the use of global variables
• Minimizing the complexity of the interface defining allowable operations.

These attributes are discussed further in the following subsections.

2.4.2.1 Minimizing the Use of Global Variables

Because of the potential for unintended side effects, it is desirable to limit the use of global variables
in safety related programs (Parnas, 1990; van Schouwen, 1990; Kwan, 1990). Readability is
enhanced if variables are set and used in the same routine. These variables can be made available to

2-23 NUREG/CR-6463

other routines through established and controlled interfaces which minimize the possibility of
unintended interactions. For the same reasons dependencies among internal stored data of different
routines need to be avoided or controlled.

To avoid potential safety concerns, local variables within different programs should not share the
same storage locations (DoD-Std-2167A, Appendix C).

2.4.2.2 Minimizing the Complexity of Interfaces

Interfaces are a frequent cause of software failures (Thayer, 1976). Complex interfaces are difficult
to review and maintain and are therefore not desirable in safety related programs. Characteristics
that contribute to complexity include:

• Large numbers of arguments used in calling routines
• Use of terse expressions when different modes or options are used (e.g.,

arraymult (a,b,2) instead of arraymult (a,b# crossproduct))
• Lack of easily understood restrictions and limitations on the use of allowable operations.

2.4.3 Functional Cohesiveness

Functional cohesiveness refers to a clear correspondence between the functions of a program and the
structure of its components. Functional cohesiveness has a single base attribute.

i

2.4.3.1 Single Purpose Function and Procedures

Review and maintenance are facilitated when every given procedure, subprogram, or function
implements only one task or purpose specified in the software design. Subprograms, functions, or
procedures that perform multiple tasks should be separated and written as separate functions. A
simple way to test if a function is a single purpose function is to check to determine if the function
can be summarized by a sentence in the following form (Parnas, 1990):

"verb + object(s)"

If multiple purposes or tasks specified in the design must be grouped into a single subprogram,
function, or procedure, then justification of the grouping should be documented.

2.4.3.2 Single Purpose Variables

The principle of single purpose functions should be applied to variables. A variable should be used
for a single purpose only (Plum, 1991).

NUREG/CR-6463 2-24

2.4.4 Malleability

Malleability is the ability of a software system to accommodate changes in functional requirements
(Parnas, 1990; van Schouwen, 1990; Kwan, 1990). Malleability extends data abstraction with the
motivation toward isolating areas of potential change. To implement a malleable software system,
it is necessary to identify what is expected to be constant and what is expected to be changed, and
to isolate what is expected to be changed into easily identifiable areas that can be altered with a
minimum of collateral changes. Malleability has a single base attribute.

2.4.4.1 Isolation of Alterable Functions

Review and maintenance are facilitated when functions that can be altered are isolated, so that
changes in these do not affect other code or data. In many cases, such functions are hardware-related
functions that need to be changed when the platform changes, the system changes, or when new
devices are used to replace old devices.

For example, when a new display device is used to replace an old display device, graphics-display-
related functions may need to be modified. Thus, the functions associated with the graphics
controller should be grouped together in the same file, kept in close physical proximity, and
organized in a manner which rninimizes changes to other modules.

To a large extent, the isolation of alterable functions is a design issue related to data abstraction. As
such, a detailed discussion is beyond the scope of this document.

2.4.5 Portability

From the perspective of safety, the benefits of portability are the adherence to standard prograrnming
constructs that yield predictable and consistent results across different operating platforms (Witt,
1994; Baker, 1994; Merrit, 1994). Thus, code which is reused or converted to run on a different
platform will be easier to maintain. Attributes related to portability which have been discussed
elsewhere include:

• Minimizing the use of built-in functions
• Minimizing the use of compiled libraries
• Minimizing dynamic binding
• Minimizing tasking
• Minimizing asynchronous constructs (interrupts).

The single base attribute related to portability is avoiding use of non-standard, or "enhanced"
constructs specific to a particular compiler or a compiler in combination with the execution platform

2-25 NUREG/CR-6463

(Smith, 1989; Wood, 1989).

2.4.5.1 Isolation of Non-Standard Constructs

Where non-standard constructs are necessary, they should be clearly identified together with the
rationale, limitations, and version dependencies.

NUREG/CR-6463 2-26

References

Andersen, 0. and P.G. Petersen, Standards and regulations for software approval and certification,
ElektronikCentralen Report ECR154 (Denmark), 1984.

Bowen, T.P. and G.B. Wigle and J.T. Tsai, "Specification of Software Quality Attributes" Report,
3 Vols. RADC-TR-85-37, available fromNTIS, 1985.

Bullock, JB, briefing charts contained in Working Group Report on Software Reliability Verification
and Validation, IEEE/NRC Working Conference on Advanced Electrotechnology Applications
to Nuclear Power Plants, IEEE Cat. No.TH0073-7, January, 1980.

Campbell, D. and V. Castellano and O. Cole, et. al., Ada/6000 Tool-Set, O.C. Systems, Fairfax, VA,
1994.

i

Chillarege, R., "Orthogonal Defect Classification," IEEE Trans. SWEngineering, November, 1991.

Cuthill, B., "Applicability of Object Oriented Design Methods and C++ to Safety Critical Systems,"
Proceedings of the Digital System Reliability and Nuclear Safety Workshop, NUREG CP-0136,
NIST SP 500-216,1993.

Dahl, O.J. and E.W. Dijkstra and C.A.R. Hoare, Structured Programming, Academic Press, London
and New York, 1972.

Gottfried, R. and D. Naiditch, Using Ada in Trusted Systems, Proc. of COMPASS 93, May, 1993,
National Institute of Standards and Technology, Washington, DC, 1993.

Henderson, J., "Low level programming," in Software Engineer's Reference Book, J.D. McDermid,
ed., CRC Press, Inc., Cleveland, OH, 1993.

Institute of Electrical and Electronic Engineering, IEEE Std 100-1977, IEEE Standard Dictionary
of Electrical and Electronic Terms.

Institute of Electrical and Electronic Engineers, Nuclear Power Engineering Committee, IEEE Std.
603-1991, IEEE Standard Criteria for Safety Systems for Nuclear Power Generating Stations.

Institute of Electrical and Electronic Engineers, IEEE-Std-7 -4.3.2-1993, IEEE Standard Criteria
for Digital Computers in Safety Systems of Nuclear Power Generating Station.

International Electrotechmcal Commission (IEC), "Software for Computers in the Safety Systems
of Nuclear Power Stations," Standard 880,1986.

2-27 NUREG/CR-6463

Kopetz, H., "Real-time systems," in Software Engineer's Reference Book, J.D. McDermid, ed., CRC
Press, Inc., Cleveland, OH, 1993.

Leveson, N.G. and C.S. Turner, An Investigation of the Therac-25 Accidents, University of
California, Irvine Technical Report 92-108, Irvine, CA, 1992.

Liao, Y., "Requirements for Directed Automatic Instrumentation Generation for Program Monitoring
and Measuring," in IEEE Trans. SW Engineering, 1991.

McGarry, F., "The Impacts of Software Engineering," briefing presented to the NRC Advisory
Committee on Reactor Safeguards (ACRS), August 21,1992.

Meek, B.L., "Early High-Level languages," in Software Engineer's Reference Book, J.D. McDermid,
ed., CRC Press, Inc., 1993.

Murine, G.E., "Rome Laboratory Framework Implementation Guidebook", RL-TR-94-149, USAF
Rome Laboratory, March 1994.

Parnas, D.L., "On the Criteria to be Used in Decomposing Systems into Modules," Communications
of the ACM, Vol. 15, No. 12,1972.

Parnas, D.L. and A.J. van Schouwen and S.P. Kwan, "Evaluation of Safety Critical Software,"
Communications of the ACM, Vol. 33, No. 6, p. 636, June, 1990.

Royce, W.W., written comments in Proceedings of the Digital Systems Reliability and Nuclear
Safety Workshop, NUREG/CP-0136, NIST SP 500-216,1993.

Smith, D.J. and K.B. Wood, Engineering Quality Software: A review of Current Practices,
Standards, and Guidelines Including New Methods and Development Tools. New York: Elsevier
Applied Sciences, 1989.

Thayer, R., "Software Reliability Study," Rome Air Development Center report RADC TR 76-238,
March, 1976.

U.S. Department of Defense, "Weapon System Software Development," MIL-Std-1679 (Navy),
1978.

U.S. Department of Defense, DoD-Std-2167A, Software Development Standard, Appendix C, 1986.

U.S. Department of Defense, DoD Std 2167 A, Software Development Standard, Appendix D, 1986.

Witt, B.I. and F.T. Baker and W.W. Merritt, Software Architecture and Design. Van Nostrand
Reinhold, New York, 1994.

NUREG/CR-6463 2-28

3 Ada
This chapter discusses Ada-specific guidelines. Ada 83 (DoD-Std-1815A) rather than Ada 95 is
discussed because at the time of the writing of this chapter, there was a limited amount of experience
with Ada 95. In addition, there are a limited number of compilers, none of which is sufficiently
mature to be used in safety-critical applications1. Section 3.1 identifies reliability-related attributes;
Section 3.2 discusses robustness-related attributes; Section 3.3 discusses traceability-related
attributes; and Section 3.4 describes maintainability-related attributes. A summary matrix is
contained in Appendix B, together with language-specific weighting factors. These factors were
influenced by Ada's strong typing and exception handling capabilities.

3.1 Reliability

The intermediate attributes of reliability related to Ada are as follows:

• Predictability of memory utilization
• Predictability of control flow
• Predictability of timing.

Ada-specific guidelines are described in the following subsections.

3.1.1 Predictability of Memory Utilization

Base-level attributes related to the predictability of memory utilization in Ada are as follows:

• Minimizing dynamic memory utilization
• Minimizing memory paging and swapping.

Specific guidelines for these attributes are discussed in the following subsections.

Ada 95 differs with Ada 83 in several major areas, making Ada 95 potentially more suitable over the long
term for developing safety-critical systems. The most important improvements are (a) providing object-oriented
features, (b) new features for more responsive task communication such as protected types for emulating the
monitor structure, and (c) hierarchical library structuring. Where appropriate in the text, references have been made
to some of the differences between Ada 83 and Ada 95 which affect safety.

3-1 NUREG/CR-6463

3.1.1.1 Avoiding Dynamic Memory Utilization

The generic2 guidelines apply to Ada. Dynamic memory allocation should be avoided. Errors
resulting from dynamic memory allocation can include (SPC, 1989, pp 76,112 -113):

1. Memory leaks that can cause the software to run out of memory. This problem is likely to
occur in Ada since an access object (pointer) ceases to exist when its scope is exited, but the
allocated memory it points to remains allocated.

2. Corruption of data due to multiple pointers to the same areas. Such corruption can be
difficult to impossible to correct or even detect. This error condition can lead to the system
crashing, frequently due to an exception being raised at a point distant from where the data
were corrupted. This makes tracing the cause of the crash difficult.

The following are Ada-specific guidelines related to memory allocation. The final four guidelines
are mitigation approaches and are relevant if dynamic memory allocation is determined to be
unavoidable by the system designers.

• Avoid explicit dynamic memory allocation. The Ada primitive new causes memory to be
allocated during execution. The following Ada code is an example of the use of dynamic
memory for a linked list:

type Cell;
type Link is access Cell;
type Cell is

record
Value: Element;
Next : Link;

end record;

L: Link := null;
L:= new Cell;

— initialization unnecessary
— allocation of memory

Avoid dynamically created tasks. Tasks should be elaborated only at system initialization.
Dynamically created tasks also cause dynamic memory allocation in Ada. The dynamic
memory utilization problem is aggravated in this case because the generic subprogram the
programmer can utilize to deallocate objects in memory, Unchecked_Deallocation, does not
apply to tasks or to objects that have tasks as components. This issue of dynamic tasks is

It should be noted that "generic guidelines" refers to the non-language specific guidelines of Chapter 2,
not to the Ada construct.

NUREG/CR-6463 3-2

discussed further in section 3.

Avoid recursion. Recursion also uses dynamic memory space. Therefore, recursive
procedures or functions should not be used. Recursion depth can be large, even infinite if
the terminating condition does not occur. An unanticipated large number of recursive calls
can use up available memory (SPC, 1989; Hutcheon, 1992). Recursion can frequently be
recognized by having a subprogram call within a subprogram of the same name, as seen in
the following example.

procedure RECURS EXAMPLE(argl: in
argla: typel;
arg2a: type2;

begin

end

sequence of statements
RECURS_EXAMPLE(argla=>argl
more statements

RECURS_EXAMPLE;

typel

arg2a

arg2: in

=> arg2);

type2) is

Mutual recursion involving two or more subprograms can also occur. Depending on the
arrangement and physical location of the source code for these subprograms, mutual
recursion can be difficult to detect from source code. For example:

procedure P (. . . .) i s
begin

Q() ;

end P;

and

procedure Q(....) is
begin

P () ;

end Q;

Do not instantiate generic units during runtime. If generic units are used, they should be
instantiated only during initialization (Jones, 1988). However, as will be described in the
section on traceability (section 3.3.3), generic units are not desirable in safety significant
software.

3-3 NUREG/CR-6463

Minimize use of local large composite objects. A memory allocation problem on the stack
can occur if large composite objects are declared as local objects of a subprogram. Avoid the
use of dynamic arrays as in p (a r ray (< » of . . .) .

Minimize use of unconstrained types. Unconstrained types such as record types with
unconstrained dynamic bound, and string types must be used with caution because of the
impact on memory allocation.

Use length clauses if dynamic memory allocation is necessary. If dynamic memory
allocation is necessary in a safety application, a l ength clause reserves in advance a pool
of specified size of dynamic memory for any allocated objects of a given datatype. To take
full advantage of this feature, the programmer must keep track of the number of objects
currently allocated from the pool and ensure that this number does not exceed the capacity
of the pool.

Provide handlers for the predefined exception STORAGE_ERROR if dynamic memory
allocation is necessary. If dynamic memory allocation is necessary in a safety application,
providing handlers for the STORAGE_ERROR exception allows for graceful recovery from
the situation of ninning out of dynamic memory. Without such handlers, the exception is
propagated to the run-time executive and will most likely result in a crash of the system. The
handlers should be provided for all program unit bodies in which memory is dynamically
allocated, as well as in recursive subprograms (SPC, 1989; pp 77-78).

Explicitly handle dynamic memory deallocation if dynamic memory allocation is necessary.
Any automatic garbage collection facility provided by a compiler should not be used because
it may affect timing. The pragma CONTROLLED is provided so that the program can disable
automatic garbage collection (reclamation of unused memory)3. If dynamic memory
allocation is necessary in a safety application, the application program should take full
control for dynamic memory allocation and deallocation. Avoid the use of dynamic arrays,
as in Procedure P(A:array(<>) of . . .) .

Do not assign values of dynamically allocated access objects to other access objects. If
dynamic memory allocation is necessary in a safety application, the application program
should not use multiple variables pointing to the same memory location. The danger is that
when the shared memory space is deallocated, another variable may still point to the released
memory space unless each one is explicitly set to null by the application program. If an
application (e.g. a linked list) necessitates such multiple accesses, it must be justified and

3 It should be noted that according the language definition, there is no mandatory garbage collection
requirement. It is up to the compiler implementation to provide such a facility.

NUREG/CR-6463 3-4

documented.

procedure update_X is
type three_D_Type is

record
x_coord : array(l..100) of float;
y_coord : array(l..100) of float;
z_coord : array(l..100) of float;

end record;
type three_D_pointer_type is access three_D_Type;

procedure Dispose is new Unchecked_Deallocation(object => three_D_type,
Name => three_D_pointer_type);

p,q : three_D_pointer_type;
three_D_display : other_3D_type; — a 3-D subtype defined elsewhere

begin
p:=new three_D_pointer_type;— dynamically allocate access objects p and g
... — p is assigned a value somewhere in the code
q:=p; — q has been set to the value of p

— this is the source of the problem

Dispose(p); — p has been set to null - now q contains an illegal value

three_D_display :=q.x_coord;
— annunciator_display will have unintended contents.
— program may continue execution with undetected error

three_D_display := p.x_coord;
— C0NSTRAINT_ERR0R exception will be generated by this statement

end update X;

The above example instantiates a procedure called Dispose to handle integers from the
generic procedure Unchecked_deallocation for deallocating dynamically allocated
memory units. It then allocates two access objects (p and q) on the stack, sets the value of
p, sets the value of q based on p, deallocates p but leaves q pointing to inaccessible memory.
Somewhere later in the code, the value of q is used in an assignment statement. The result
may be technically invalid, but if it is within the constraints of the type, it will be displayed
with no external manifestation of an error condition. On the other hand, if the explicitly
deallocated access object (p) is used in a different assignment statement, the error will be
detected and an exception will be raised. While neither condition is desirable, an undetected
incorrect data value is far worse than a detected incorrect data value which causes an
exception to be generated (and hopefully handled without causing an unacceptable system

3-5 NUREG/CR-6463

state). The above example demonstrates not only the potential dangers in dynamically
allocated variables but also the need to understand the detailed behavior of the
Unchecked_deallocation procedure and how its use can lead to subtle errors.
Important points of its behavior include:

(a) After completion of its execution, the value of the given parameter is null.
(b) If the given parameter is null, the call has no effect.
(c) If the given parameter is not null, the memory pointed by it is returned to the

heap.

This last point is of the greatest significance to the above example. Because Ada has no
runtime support such as a reference counter, it is possible to define two or more access
objects (pointers) to a given location and free the space using only one of those access
objects . The other access object(s) would still have an illegal access value(s) and might
cause a hazard if used in subsequent processing.

3.1.1.2 Minimizing Memory Paging and Swapping

The generic guidelines are applicable on the system level. Ada itself contains no features for
memory paging and swapping.

3.1.2 Predictability of Control Flow

Base level attributes related to the predictability of control flow in Ada are as follows:

• Maximizing structure
• Minimizing control flow complexity
• Initializing variables before use
• Single entry and exit points for subprograms
• Minimizing interface ambiguities
• Use of data typing
• Accounting for precision and accuracy
• Order of precedence of arithmetic, logical, and functional operators
• Avoiding functions or procedures with side effects
• Separating assignment from evaluation
• Proper handling of program instrumentation
• Controlling class library size
• Minimizing use of dynamic binding
• Controlling operator overloading.

These attributes and their relevance to safety are discussed in the following subsections.

NUREG/CR-6463 3-6

3.1.2.1 Maximizing Structure

Maximizing structure means minimizing the explicit transfer-of-control statements that change the
control flow from the basic set of sequential, conditional, and loop constructs. Most such statements
can result in unreachable code. The following guidelines are applicable.

• Do not use goto statements. The generic guideline on maximizing structure by avoiding
goto statements applies to Ada. The use of gotos can obscure program flow logic. This
statement should be used only when there is no alternative. In Ada, where certain types of
transfer of control have been incorporated into the language under other names such as exit,
there is no real reason to use a goto in an Ada program (Sanden, 1994). Consider the
following example.

<<B_Label»

«A_Label»

statement 1;
goto A_Label;
statement 2;
statement 3;
statement 4;
statement 5;
statement_6;
statement_7;
goto B_Label;
statement 8;

— unreachable code
— unreachable code
— unreachable code

— unreachable code

g Use only one exit statement per loop. At least one e x i t statement is needed in loops
without iteration schemes (LRM, 1995). Thus, only one e x i t statement should generally
be used for the loop within the loop or for any nested loops.

• Use only one return statement per junction. Multiple re turn statements can make the
meaning of a subprogram confusing. Thus, function subprograms should have only one
return statement and procedure subprograms should either use the normal exit at the end
of the body or have only one re turn statement if the end of the body is inaccessible, for
example, an infinite loop just before the end of the body.

While maximizing structure is desirable for normal program flow, different rules apply to exception
handling as discussed in Section 3.2.2. When exceptions are raised, other considerations (e.g.,
timing, intermediate operations, etc.) dominate. The guidelines on exception handling discuss
r a i s e statements in more detail.

3-7 NUREG/CR-6463

3.1.2.2 Minimizing Control Flow Complexity

The generic guideline applies to Ada. The language-specific guidelines for mmimizing control flow
complexity are as follows:

• Limit nesting levels. As noted in the generic report, there should be explicit organizational
or project-specific limits on nesting. These limits may be determined in part with respect to
a particular language and execution platform. The style guidelines for Ada published by the
Software Productivity Consortium recommend a maximum nesting level of three to five
(SPC, 1989; pp 83-84).

• Use if. .elsif instead ofnested if.. else. Use of an i f . . e l s i f in place of
nested i f . . e l se statements helps avoid program structural and logical errors (Barnes,
1984; p 62), as shown in the following example:

-- Use
if condition_l then
statement_l;

elsif condition_2 then
statement_2;

end if;

-- instead of
if condition_l then
statement_l;

else
if condition_2 then
statement_2;

end if;
end if;

Always provide an e lse branch to i f statements if there is a remote chance that the
conditions specified by the other i f statements are exhaustive.

Use case statements for multiple branches. The case statement serves as a switch for
: multiple branches and allows one evaluation for them. It is a powerful alternative to the i f
statement when the branch to be taken depends upon the value of a discrete expression, and
it is preferred if more than two conditions or branches are called for in the software design.
To avoid a syntax error, the when others construct must be included if there are any
possible values not given in other alternatives, as seen in the following example (SPC, 1989;
p85):

NUREG/CR-6463 3-8

— Use
case thermal_alarm is

when core => core_thermal_alarm(sensor_value);
when inlet => inlet_thermal_alarm(sensor_value);
when outlet => outlet_thermal_alarm(sensor_value);
when others => do_something;

end case;
— instead of
if thermal_alarm = core then
core_thermal_alarm(sensor_value);

elsif thermal_alarm = inlet then
inlet_thermal_alarm(sensor_value);

elsif thermal_alarm = outlet then
outlet_thermal_alarm(sensor_value);

else
do_something;

end if;

It should be noted that the case statement is not an all purpose replacement for the i f . .
t hen . . . e l se construct. A case statement is only possible if the cases depend on the
different values of one expression with a limited range of possible values. (In the example
on this page, thermal_alarm is an enumerated type with a limited set of possible values.)
In that situation, the case construct is always preferable over an i f . . t h e n . . . e l se unless
the number of branches is small.

3.1.2.3 Initialization of Variables before Use

The generic guideline with respect to initialization of all variables applies to Ada. Variables should
be initialized to some known value at the beginning of an execution cycle before using them. A
compiler cannot be depended on to reset variables automatically (Gottfried, 1993; SPC, 1989, pp
103-104). However, even if the compiler could be relied on to initialize values, the safety concern
would still exist because the compiler cannot be expected to initialize all objects with suitable values.

Ada provides a variety of syntaxes for data initialization upon elaboration of a variable as shown in
the following example:

3-9 NUREG/CR-6463

subtype Number_Of_Widgets is Natural range 0 .. 1_000;
Accumulator : Number_Of_Widgets := 0;
type Coefficients is array {1 .. 3, 1 .. 3) of Weights;
Example_Coefficients : Coefficients

:= ((1.0, 0.5, 0.1),
(0.5, 1.0, -0.3),
(0.1, -0.3, 1.0));

type Complex_Numbers is record
Real_Part : Float := 0.0;
Imaginary_Part: Float := 0.0;

end record;
Zero : Complex_Numbers; — Automatically initialized to(0.0, 0.0)

— when elaborated (unreliable)
Square_Root_Of_Minus_l : Complex_Numbers

:= (Real_Part => 0.0, Imaginary Part => 1.0);

type A is array (1 .. 100) of Character;
AA :A := (others => 'x'];

— Aggregate initialization:
— multiple elements
— of an array can be given initial values
— by means of the construct ^others ==>'

type B is array (years, months) of Integer;
BB: B := (others => (others => 0));

— Without this construct,
— it would be impractical to initialize

a large array.

The following are Ada-specific initialization guidelines.

• Initialize injunction body if initialization occurs via a junction call. If initialization occurs
via a function call, initializations should be done in a program body rather than in the
variable declaration since the function body may not have been elaborated when the variable
declaration was encountered (SPC, 1989; pp 103-104).

• Restrict use of aggregate assignments for initialization of large objects. As shown in the
above example, aggregates are a useful way of initializing large arrays. However, the
initialization of large objects via aggregates should occur with caution. The reason for this
guideline is that some compilers accomplish aggregate assignments by first building a
temporary version of the object with the specified values in system memory and then copying
the contents into the actual object. If the size of the temporary version exceeds available

NUREG/CR-6463 3-10

memory, the result could be a system crash.4 In such cases, testing should be done to ensure
that the aggregate assignment can be performed acceptably under operational conditions. An
alternative is to perform initialization in the program unit body rather than in the objects'
declarations for large objects.

There are two cases in Ada where explicit initialization of a variable need not be done to comply
with the guideline. First, all objects of access type (i.e., pointers) are automatically initialized to
null by the compiler. Second, type definitions for records may contain default initialization values
for all components; whenever objects of those record types are elaborated, their components are set
to the defaults in the absence of an explicit initialization (DoD-STD-1815A; Section 3.7).

3.1.2.4 Single Entry and Exit Points for Subprograms

Although the generic guideline is applicable with respect to one normal entry and exit point per
subprogram5, the guideline has limited applicability due to Ada's exception handling and tasking
features. Ada-specific guidelines are:

• One normal entry and exit per subprogram. Subprograms (procedures and functions) should
have one normal (as opposed to exception) entry and one normal exit. The word re turn
should appear exactly once in each function and not be used in a procedure. In exceptional
cases, however, multiple exits can be used if they increase readability.

• Limit the number of exception entry/exit points. The number of these points should be kept
as low as possible. Each of these exception propagation exit/entry points should be
documented clearly. The propagation of an exception raised in a subprogram to the caller
of the subprogram should be limited or not used at all because such propagation creates an
additional exit point for the first subprocedure and an additional entry point for the caller's
exception handler. More points on propagation of exceptions are discussed in Section 2.2.2.

• Avoid multiple task entry points. Each active program unit (i.e., task) may have multiple
interaction points with other active program units. The number of these interaction point
should be designed to minimize program complexity both within the task and the entire
program. Additional points on tasking are described in Section 2.2.

Such a situation actually occurred in the experience of one of the writers of this section. In an image
processing application, a 1024 x 1024 array of pixels was initialized by an aggregate of the form ((others => 0),
others => 0) . This caused the entire system, including the operating system and the other jobs being executed
concurrently, to crash without any error messages. Determining the cause was complicated by the fact that the Ada
code was syntactically and semantically correct.

5It is more appropriate to refer to entry and exit points in program unit bodies rather than in subprograms in
the case of the Ada language.

3-11 NUREG/CR-6463

3.1.2.5 Minimizing Interface Ambiguities

The generic guideline to minimize interface ambiguity applies to Ada. Ada automatically provides
features that eliminate many interface errors. For example, constraint checking is performed on
values of actual input parameters to ensure they are not out of range. Another example is that the
indices of the first and last elements in an array or array slice-parameter are automatically passed in
with the actual array parameter. Nevertheless, the language does not eliminate interface ambiguities.

The following are specific guidelines:

Specify argument modes. Arguments with procedures and entries should have their modes
specified in their declarations rather than relying on the default mode (SPC, 1989; p 68).
Specifically:

procedure Quadratic(a, b, c: in Float; rootl, root2 : out Float);

rather than:

procedure Quadratic(a, b, c : Float; rootl, root2 : out Float);

While the latter declaration is acceptable syntax (and in that sense, is unambiguous to the
compiler), explicit use of modes avoids confusion to programmers and reviewers.

Restrict use of the in out mode. The in out mode should be used only for parameters
whose value will be changed by the procedure. It should not be specified for parameters used
exclusively as either in or out parameters. When used in place of an in mode, it is
possible to modify a value that should be constant unintentionally. Using in out for an
out mode causes fewer problems, but it does obscure the intent of the parameter. This
mode is frequently used in the case of an output parameter whose value is read inside a
subprogram; when this situation leads to a compilation error, many programmers will change
the mode from out to in out rather than taking the trouble to declare and use a local
variable.6 For example, programmers will code as follows:

6In Ada 95 reading an out mode parameter is allowed. According to the Ada 95 rationale, too many
programmers were forgetting to copy the value of the local variable into the output parameter at the end of
procedures.

NUREG/CR-6463 3-12

procedure Find_Max

beg:

end

Ln

(In The List :
Maximum :

Maximum := Element_Type* first;
for List Index in In The List1

if In The List(List Index)
Maximutr

end if;
end loop;

Find_Max;

in Some_Array_Type,
in out Element_Type) is

range loop
> Maximum then --

L := In The List(List Index) ;
value read here

instead of coding:

procedure Find_Max (In_The_List : i n Some_Array_Type;
Maximum : out Element_Type) i s

Local_Max : Element_Type := E lement_Type ' f i r s t ;

begin
for List_Index in In_The_List* range loop

if In_The_List(List_Index) > Local_Max then
Local_Max := In_The_List(List_Index);

end if;
end loop;
Maximum := Local_Max;

end Find Max;

Use named parameter associations. Named parameter associations should be used by the
calling routine for functions, procedures, and task entries whenever there are two or more
parameters of the same type in the parameter list. Using named parameter associations
improves readability and reliability (Booch, 1983; p 106). The following example shows the
use of named parameter associations for a quadratic equation evaluation procedure.

3-13 NUREG/CR-6463

Quadratic (a
b
c
root
root
OK

1
2

=>
=>
=>
=>
=>
=>

second order coefficient,
first order coe
constant term,
first root,
second root,
status) ;

fficient,

Refer to the target data type rather than the pointer's type when referencing data. When data
referenced by a pointer are to be read or modified in a subprogram and the value of the
pointer itself is not to be used, the declaration and call of the subprogram should refer to the
target data type rather than the pointer's data type as shown below.

type Target_Type is array (1 100) of Component_Type;
type Pointer_Type is access Target_Type;

The_Data : Pointer_Type := new Target_Type'(others => 0);

-- Better subprogram declaration
procedure Print(The_Data : in

-- Better subprogram call
Print(The_Data.all);

-- Worse subprogram declaration
procedure Print(The_Data : in

-- Worse subprogram call
Print(The_Data);

Target_Type) ,-

Pointer_Type);

This practice removes ambiguity about which data are to be processed in a subprogram, that
is, the data being pointed to or the pointer. For in mode parameters, this practice removes
the possibility of modifying data meant to remain unchanged, since it is possible to modify
data pointed to by an in mode access type parameter. The practice also allows checking for
out-of-range data values. However, care must be taken when passing a large object by value
to avoid memory overflows.

Avoid aliased parameters. Aliased parameters should be avoided. They can arise from using
the same actual parameter for more than one formal parameter (and calling both by
reference), using overlapping array slices, referencing global variables, and using pointers
referencing the same data for different actual parameters. Results can be dependent on
compiler-specific implementations such as the order of evaluation of actual parameters.
Even when called by value, passing the same actual to two formal parameters or passing a

NUREG/CR-6463 3-14

global variable to a procedure is discouraged.

3.1.2.6 Use of Data Typing

The generic guidelines for data typing apply to Ada. Ada was made a strongly typed language in
order to provide the potential for increased safety. Code should take advantage of this feature to the
maximum extent possible. The following specific guidelines are related to the full use of data
typing:

• Constraint checking. Run-time constraint7 checking allows the detection of anomalous
conditions. Specifically, when an object is assigned a number outside its range, then a
CONSTRAINT_ERROR is raised. The pragma suppress disables run time constraint
checking and should not appear in any Ada programs used to generate the safety-system
machine code (SPC, 1989; p 102). Out-of-range values should be detected as soon as
possible in safety- critical systems, so their point of occurrence may be localized before they
have a chance to propagate and corrupt further calculations.

• ■ Limit range of scalar datatypes. Scalar data types with the narrowest possible range of
values should be used in order to detect erroneous data calculations. For example, the
predefined subtype, Positive should be used for variables that are always greater than zero
instead of the predefined type integer. If the upper limit of possible values for the
variable is known, a subtype of Positive should be used. A corollary is that the predefined
types in package Standard should be used for variable definitions only when the possible
range of values for the variable is completely unknown or is the same as the range for a
predefined type (SPC, 1989; p 34).

The practice of using the most-limited bounds on ranges can lead to difficulties in the case
of real types and subtypes. This practice may result in the raising of spurious constraint errors
and in needless interruption of normal program execution. The following example illustrates
this difficulty:

7Most Ada 83 implementations provide another predefined exception, NUMERIC_ERROR, for detection
of overflows and underflows. This run-time check also should not be suppressed. In Ada 95 the
NUMERIC_ERROR exception is incorporated into the CONSTRAINTERROR exception (Ada 95 LRM, 1995).

3-15 NUREG/CR-6463

with Trig_Functions;

PI : constant := 3.14159265;

subtype Angles is Float range 0.0 .. 2 * PI;
subtype Args is Float range -1.0 .. 1.0;

-- Spherical trigonometric function to calculate
-- angular distance between two points

function Angular_Distance

Cos_Distance : Args := 0.0;

(Side_B
Side_C
Angle_A

■ Angles;
: Angles;
Angles)

begin
Cos_Distance :=

Trig_Functions.Cos(Side_B) * Trig_Functions
Trig_Functions.Sin(Side_B) * Trig_Functions
Trig_Functions.Cos(Angle_A);

return Trig_Functions.Acos(Cos_Distance);

end Angular_Distance;

return Angles is

.Cos (Side_

.Sin(Side_
_C) +
_C) *

Although mathematically correct, execution of this function will sometimes cause constraint
errors when the two points are close together; this is because, in such cases, the
Cos_Distance calculated may be slightly greater than 1.0, the upper limit of datatype
args, due to limited precision. When such cases are encountered, the recourse should be
to rework the algorithm rather than extend the bounds of the subtype(s) and thus weaken the
benefits of constraint checking. An added test may be used to check for this condition:

NUREG/CR-6463 3-16

. . .

end

begin

Temp := (
Trig_Functions
Trig_Functions
Trig_Functions

if ... then

.Cos(Side B) *

.Sin(Side B) *

.Cos(Angle_A))
-- test

Cos_Distance := Args(Temp);
return Trig_Functions.Acos(Cos_

else

end if;
Angular_Distance;

-- Flag

Trig_Functions
Trig_Functions
;
for constraint

Distance);

the constraint

.Cos(Side

.Sin(Side

error on '

error

C) +
C) *

remp

Range checking in subexpressions. Some Ada 83 implementations constraint-check
intermediate as well as final values of expressions. In the example below, a constraint error
exception would be raised by some implementations at the point where A and B are added
together:

type Example_

A,

A
B
C

B, C

:= 7;
:= 5;
:= (A

_Type

: Example_

+ B) / 2;

is range

.Type;

--

0 .. 10;

Constraint error could be raised here

This problem has been removed from Ada 95 implementations.

Minimize type conversions. In Ada all type conversions are explicit and may be found in the
source code. However, the use of type conversions, and particularly of unchecked type
conversions (a bit-for-bit copy without any checks for such problems as mismatched type
size), is strongly discouraged. Type conversions partially negate the benefits of strong
typing.

Avoid use of unchecked conversions. A predefined generic library function called
UncheckedjConver sion is provided by Ada to facilitate interaction with hardware and/or
lower level software. However, using this facility may lead to assigning illegal value to an
object. This is against the Ada strong typing philosophy and should not be used safety-

3-17 NUREG/CR-6463

critical systems unless absolutely necessary. Documentation of the rationale for each
unchecked conversion should be included in the code.

Limit use of access objects. Programs should limit the use of objects declared as access types
(pointers) to situations in which there are no better alternatives. In general, such indirection
leads to confusion. The problem can be compounded with dynamic allocation and multiple
access objects used for the same address as pointed out in section 2.1.1.

Avoid declaring variables in package specifications. Keeping variable declarations out of
package specifications and instead defining subprograms to access the data will result in
greater data abstraction and less coupling. This practice can have maintainability benefits as
well. The example below demonstrates the point by showing a part of a compiler. Both the
package handling error messages and the package containing the code generator need to
know the current line number. Rather than storing this in a shared variable of type
Natural , the information is stored in a package that hides the details of how such
information is represented and makes it available with an access routine.

package Compilation_Status is
type Line_Range is 1 .. 2_500_000 ,
function Source_Line_Number return

end Compilation_Status ;

package body Compilation_Status is
-- define Line_Range variable
function Source_Line_Number return

-- define function
end Compilation_Status ;

with Compilation_Status ;

package Error_Message_Processing is
-- Handle compile-time diagnostic.

end Error_Message_Processing ;

with Compilation_Status ;

package Code_Generation is
-- Operations for code generation.

end Code_Generation ;

Lirie_Range ;

Line_Range is

NUREG/CR-6463 3-18

3.1.2.7 Accounting for Precision and Accuracy

Precision and accuracy generic guidelines apply to Ada. Ada supplies many more features to control
the precision and accuracy of calculations, than most other languages.

The following Ada-specific guidelines apply to precision and accuracy:

Allow for only the minimum accuracy specified in the program. Ada enables the users to
specify the minimum accuracy of numerical types. This minimum accuracy also specifies
the accuracy of arithmetic operations on the types. It does so in a way that depends on
information in the type declarations rather than the characteristics of the computer running
the program or of the compiler. Thus, a program is obtained that will run with a minimum
guaranteed degree of accuracy on any machine for which the program can be compiled.

When the development hardware or test hardware differs from the target hardware, it is of
vital importance to realize that Ada guarantees minimum accuracy. Because of their
implementation of arithmetic operations, some systems make more efficient use of the
machine; therefore, this may provide slightly better accuracy than required by Ada.
However, these slight differences may mask small errors that can accumulate during the
course of a computation to give significantly incorrect results. That two different machines
use the same number of digits in the mantissa of a floating point number does not imply they
will have the same arithmetic properties. Therefore, only the minimum accuracy should be
incorporated into the design and implementation. No safety-system program should depend
on an accuracy better than the minimum (SPC, 1989; p 136). These issues must be factored
into the design of the software.

• Use appropriate operators for relational tests. Relational tests should use <= and >= on real
values rather than <, >, = and /= (SPC, 1989; section 7.2.9).

• Use Ada attributes for checking of small values. Ada attributes should be used in
comparisons and checking for small values (SPC, 1989; section 7.2.10). For example:

if abs(X - Y) <= FloatJType■small
-- Test for absolute "equality"

i£ abs(X - Y) <= abs(X) * Float_Type'epsilon
-- Test for relative "equality"

Use Ada attributes for checking for special values. It is important that the code test carefully
around special values (SPC, 1989; section 7.2.11). For example, the following statement
should be used for a test around zero:

3-19 NUREG/CR-6463

i f abs(x) <= Float_Type'small -- Preferred t e s t for value of 0.0

3.1.2.8 Order of Precedence of Arithmetic, Logical, and Functional Operators

The generic guidelines for order of precedence apply to Ada. The following are Ada-specific
guidelines.

• Use parentheses. Arithmetic, logical, and other operations should use parentheses to ensure
that the order of evaluation is explicitly stated for operators of different precedence (SPC,
1989, pp 79 - 80). For example:

-- Use
Root := ((-B)

-- instead of
Root := (-B +

+ Square_ _Root((B

Square_Root(B **

-- Use
C := (not A) or

-- instead of
C := not A or B

B ;

; -- may

**

2 ■

be

2) -

- 4.0

(4.C

* A

mistaken

* A * C)))/(2.

* C))/(2

for "not

0 * A)

(A or

0 *

'

B) "

A);

The'reasons for using explicit parentheses is not only to avoid misinterpretation. Absence
of parentheses may also cause the results of an expression to differ because an optimizing
compiler may alter the order of expression evaluation for operators with the same
precedence. Any program that depends upon a specific order of evaluation is considered
erroneous. By erroneous, we mean that the Ada compiler" may not detect the violation, so
the effect of running such a program is unpredictable (Booch, 1983; p 153). In the following
example, the addition of B and C will cause a numeric overflow; therefore, it is vital that
the subtraction be performed first.

a) X : = A - B + C ; -- Evaluation order may be changed by
-- optimizing compiler

b) X := (A - B) + C; -- Evaluation order certain

NUREG/CR-6463 3-20

Account for full evaluation in logical expressions. In Ada, all expressions are fully
evaluated even if the final value is known earlier. For example, to evaluate logical
expression x AND Y, bothx andY will be evaluated even if the value of x is FALSE
(making the evaluation of Y unnecessary). This may lead to subtle errors, if the legality of
the evaluation of Y depends on the value of x. If the desired effect is not full evaluation
(i.e., evaluation will stop as soon as the first not true condition is found), alternative
constructs such as AND THEN or OR ELSE should be used.

3.1.2.9 Avoiding Functions or Procedures with Side Effects

Generic guidelines are applicable. Also see Subsection 3.2.2.3 for Ada-specific guidelines.

3.1.2.10 Separating Assignment from Evaluation

Assignment statements (e.g., extern_var := 100) should be separated from evaluation
expressions (e.g., i f sensor_val < temp_limit). In Ada the separation can be violated when
functions with side effects are used as part of the evaluation. In the example below, the guideline is
violated when execution of f unc (a) sets a global variable:

if (func(a) < templimit) then

The generic guideline for this attribute is, therefore, satisfied when the guidelines to avoid side
effects are followed.

3.1.2.11 Proper Handling of Program Instrumentation

The generic attributes apply to Ada programs. However, there are no specific Ada guidelines for this
attribute.

3.1.2.12 Control of Class Library Size

This attribute is not applicable to Ada 83, however, it is applicable to Ada 95.

3.1.2.13 Minimizing Dynamic Binding

This attribute is not applicable to Ada 83, however, it is applicable to Ada 95.

3-21 NUREG/CR-6463

3.1.2.14 Control of Operator Overloading

The generic guidelines apply to operator overloading. Operator overloading should be controlled
by project guidelines and the Ada specific guidelines discussed below. In Ada the following
functions can be overloaded:

and or xor
= < <= > >=
+ - & abs not
* / mod. rem **

Operator overloading can be a benefit to readability and complexity by allowing a single operator
to be useful for different data types. An example of operator overloading is shown below. The body
of the function would check to see if the sum is less than 360.0 and greater than or equal to 0.0 and,
if not, returns the sum modulus 360.0.

function "+"(LEFT, RIGHT: Angles_In_Degrees) return Angles_In_Degrees;

Ada-specific guidelines for operator overloading are as follows:

• " Order of procedure. The code should avoid operator overloading when the inherent
precedence of the operator is different from that desired.

• Consistency of semantics. The code should preserve the conventional meaning of the
operators (SPC, 1989; section 5.7.4).

func t ion "*"(LEFT, RIGHT : Matrix) r e t u r n Matr ix ;

Such a function should define the "*" operator consistent with the expected matrix
multiplication function.

3.1.3 Predictability of Timing

An Ada-specific guideline related to timing predictability was discussed with regard to recursion
in section 3.1.1.1. Additional related guidelines are:

NUREG/CR-6463 3-22

• Minimizing the use of tasking
• Minimizing the use of interrupt-driven processing
• Characterization of timing for the Ada runtime environment
• Control of memory management from the application

These guidelines are discussed in the following sections.

3.1.3.1 Minimizing the Use of Tasking

The generic guidelines for tasking apply to Ada. The use of tasking in safety-critical applications
should either be avoided or should be constrained because of the following reasons: scheduling
policy and timing uncertainties, implementation differences, race conditions, asynchronous tasking
problems, priority issues, and abort issues.

Although tasking should generally be avoided in safety-critical software, there may be cases where
it is the only reasonable solution. The following guidelines will reduce the risks associated with
tasking identified above, but do not totally mitigate them.

• Ensure that the concurrent software design is as simple as possible, but no simpler. That is,
there should be no more tasks than necessary and there should be no more task
synchronization and communication than necessary.

• Avoid abort statements. Programs should avoid using the abort statement. The
following is an example of an abort command:

abort A Short Task, Temperature Tracking(3), Sensor Data Collection.all;

Aborting a task can have many consequences, not all of which are obvious. If a task is
aborted, then all tasks dependent on it are aborted. Furthermore subprograms and blocks
that were called by it will also be aborted. If the task was suspended, the abort will cause
it to appear to have been completed. Delays are canceled by aborts, and tasks are removed
from entry queues. Accept and se l ec t statements will be left waiting for partners.
Aborting a task in rendezvous has complex consequences that depend on the situation
(SPC, 1989, p. 121; Barnes, 1984, p. 239).

Avoid dynamic tasking. All tasks should be elaborated only at system initialization.
Dynamic tasking complicates the predictability of the run-time behavior of a program for
at least the following reasons:

1. Allocated task objects referenced by access variables allow generation of aliases,
that is, multiple references to the same task object. Anomalous behavior can arise

3-23 NUREG/CR-6463

when references to an aborted task are made using an alias.

2. A dynamically allocated task that is not associated with a name (i.e., a "dropped
pointer") cannot be referenced for the purpose of making entry calls, nor can it be
the direct target of an abort statement (SPC, 1989, pp. 76-78, 111-112). Note that
there may exist tasks that need not be referenced, such as a task which performs
some periodic function in the background.

Tasks created at runtime by means of the allocator new should not be used at all for the
following reasons:

3. Runtime-created tasking complicates debugging, understanding, and control flow
tracing. '

4. Runtime-created tasking allocates memory from the heap and can lead to an
insufficient memory condition.

Use delay statements only for waiting, not synchronization. Delay statements should not
be used to set a starting time or to synchronize tasks. Synchronization and control should be
handled through a rendezvous between tasks. The delay statement only sets a minimum
time period, not a maximum period. For example, delay 3.0 means a delay of at least 3
seconds. The only guarantee is that the delay will be for a minimum time period (Barnes,
1984; p 251). Timing uncertainties are associated with differing implementations by
compiler vendors, interactions with underlying operating systems (or real-time kernels), and
the design of the hardware platform.8

Minimize the number of accept and select statements. Both the number of accept and
s e l e c t statements per task and the number of accept statements per entry should be
minimized to the extent possible without unduly complicating internal program logic and
complexity. The rationale for this guideline is to simplify the concurrent design (SPC,
1989; p 119). With more accept or s e l ec t statements, the verification of the design
and state of each calling program and each entry call causing the executing different code
sequences dependent on the task's local state can become an involved effort.

Avoid certain variations of select statements. Conditional entry calls, selective waits
with e l se parts, timed entry calls, and selective waits with delay alternatives should be
avoided because they pose a risk of race conditions (SPC, 1989; p 119). The only
circumstance under which they should be used is when the possibility of race conditions
can be conclusively shown not to exist.

Ada 95 adds the function delay until

NUREG/CR-6463 3-24

Use terminate alternatives with every selective wait. Multiple task exits (as opposed to
returns) are frequently necessary to avoid deadlocks (SPC, 1989; p 122) . Every Ada
selective wait statement not requiring an e l se part or a delay alternative should have
a terminate . However, unnecessary or redundant terminate statements should be
deleted from tasks to reduce possible confusion.

Account for exception handling during task interactions.' An exception raised during a
rendezvous (i.e., in the body of an accept statement) affects both the calling and the called
task9. The exception should be handled either in the body of the accept statement or in the
affected task. More discussion of exception handling is in the next section.

Minimize use of the PRIORITY pragma. The program should not depend on the order in
which tasks are executed or the extent to which they are interleaved, PRIORITY should
be used only to distinguish general levels of importance. The rationale for this guideline
is that the Ada tasking model is based on preemption and requires that tasks be
synchronized only through the explicit means provided in the language (i.e., rendezvous,
task dependence, and pragma SHARED). The scheduling algorithm is not defined by the
language and may vary from time slice to preemptive priority. Some implementations
provide several choices that a user may select for the application. It should be noted that
this pragma may limit portability. The number of priorities may vary between
implementations. In addition, the manner in which tasks of the same priority are handled
may vary between implementations even if the implementations use the same general
scheduling algorithm.

3.1.3.2 Minimizing the Use of Interrupt-Driven Processing

The generic guidelines for interrupt-driven processing apply to Ada. It is not generally desirable
in safety-critical systems because it can lead to nondeterministic maximum response times and
unanticipated system states. Use of a deterministic approach to the monitoring and control of
multiple input sources is usually preferred. However, there may be some situations where
interrupt-driven processing has a significant design advantage over alternatives (e.g., to handle
the acceptance and processing of plant emergency input). The following mitigating guidelines
apply:

• Declare interrupt values using named constants, and isolate them from other declaration
clauses. The actual value for an interrupt is implementation defined. The isolation of the
interrupt value named constants will not affect performance and provides portability

9If the rendezvous is nested, i.e. if the accept statement appears in the body of another accept
statement, yet another task is affected.

3-25 NUREG/CR-6463

between similarly supported implementations (SPC, 1989; p 145).

• Isolate interrupt receiving tasks into implementation-dependent package bodies when
possible. The handling of interrupt entries is not specified by the Ada Language Reference
■ Manual (DoD-STD-1815A). They are implementation dependent; that is, specific to a
compiler and its target machine. If the code is moved to a different implementation (which
may happen either during the initial development or during maintenance), the interrupt-
handling features may not be supported. The reason why this guideline is qualified with
"when possible" is that the isolation of interrupt entries creates an additional rendezvous
that will often double the interrupt latency time. Where this is unacceptable, the interrupt
entries must be proliferated with a resulting decrease in portability.

• Pass the interrupt to the main tasks via a normal entry. This allows any implementation-
dependent features to be isolated from the higher level (and presumably more complex and
worthy of preserving) software that actually handles the interrupt.

• Do not use task entry points for interrupt processing. Task entry points should not be used
for interrupt handling, unless the user-written low-level code is known to be safe (Jones,
1988).

3.1.3.3 Characterize Timing for the Ada Run-Time Environment

The run-time environment (RTE) that is loaded together with the Ada source code into the target
system is a key component affecting timing. The RTE is generally delivered by the compiler vendor
and is not developed as part of the safety application. Nevertheless, a process of testing and
validation of the RTE to ensure that it is deterministic, is functionally correct, and will satisfy timing
requirements is an important part of the safety development process. Characterization of the Ada
RTE for suitability in the safety application is primarily a test and verification issue which is beyond
the scope of this document.

3.1.3.4 Avoid Automatic Memory Management

As noted in section 2.1, a major source of timing uncertainty is automatic garbage collection
(memory reclamation) by the run time environment (if supported). Thus, it should be disabled in
time-critical systems by use of the pragma control led where deterministic response time
requirements exist.

3.2 Robustness

The intermediate attributes for robustness are as follows:

NUREG/CR-6463 3-26

Controlled use of diversity
Controlled use of exception handling
Input and output checking.

3.2.1 Controlled Use of Software Diversity

As noted in Chapter 2, use of diverse software implementations is a design-level decision. A
discussion of the factors affecting the use of diversity are beyond scope of this document. The
generic attributes and guidelines for both internal and external diversity apply to software written
in Ada. However, there are no Ada language-specific guidelines.

3.2.2 Controlled Use of Exception Handling

Exception handling provides for alternative execution paths to handle unexpected and abnormal
situations that can be anticipated. The generic guidelines for exception handlers described in Chapter
2 are applicable to Ada programs. The following sections discuss Ada-specific guidelines.

3.2.2.1 Local Handling of Exceptions

The generic guidelines apply. Exception handlers should be placed as close as possible to the point
where the exception was raised. This is because exceptions can be difficult to localize, and it is often
desirable to resume normal execution as near as possible to the point where the exception occurred
after recovery actions are taken. (SPC, 1989; p 99). The following are Ada-specific guidelines.

• Minimize propagation of exceptions. Where possible, exceptions should be handled in the
subprogram in which they were raised. Automatic propagation of exceptions should be
avoided in a safety-critical application since it is implied and obscures the program logic.
Any exception propagation should be intentional, not by default, and should be clearly
indicated in comments. Specific guidance on the use of exception handling should be part
of the coding practices documentation procedures of the organization or the specific project.

• Localize handling of predefined exceptions. The Ada LRM (DoD-STD-1815A) gives
sufficient freedom to implementors so that in many cases a predefined exception for the
same cause can be raised from a number of locations. Thus, if it is possible for the same
exception to be raised at more than one point in a program unit, the exception handler for
each raising should be different in order to localize the exception. This is shown in the
following example.

3-27 NUREG/CR-6463

procedure Same_Exception_At_Different_Points is

Dynamic_Obj ect_A : Pointer_Type;
Dynamic_Obj ect_B : Pointer_Type;

begin

begin -- isolate first occurrence of exception

Dynamic_Object_A := new Target_Type;

exception

when Storage_Error =>
Text_IO.Put_Line("Heap overflow when allocating " &

"A object");

end;

begin -- isolate second occurrence of exception

Dynamic_Object_B := new Target_Type;

exception

when Storage_Error =>
Text_IO.Put_Line("Heap overflow when allocating " &

"B object");

end;

end Same_Exception_At_Different_Points;

3.2.2.2 Preservation of External Flow Control

When an exception is raised in a called subprogram declared in a package specification and is thus
visible to external subprograms, the particular exception handling to be done frequently depends
upon the caller. Therefore, to preserve the flow control, all exceptions that are raised to a calling
subprogram should be declared in the same specification as the called subprogram. This makes
them visible to the caller (SPC, 1989; section 4.3.2), as shown in the following example.

NUREG/CR-6463 3-28

package Trig_Functions is

-- Exception raised when the combination of
-- input to a function
-- is invalid.
Invalid_Arguments : Exception;

arguments

-- Exception raised when an unexpected and unchecked
-- for constraint
-- error is raised in any trig function.
Unexpected_Constraint_Error : Exception;

-- Function to compute the arc whose tangent
-- The exception Invalid_Arguments is raised
--if both input parameters
-- are essentially zero.

is Y/X.

function Atan (Y : in Float; X : in Float) return Angles;

package body Trig_Functions is

function Atan(Y : in Float; X : in Float) return Angles is
begin
if abs(Y) < Float'small and then abs(X) <

raise Invalid_Arguments;

exception
when Invalid_Arguments => raise;
when Constraint_Error | Numeric_Error =>
raise Unexpected_Constraint_Error;

end Atan;

Float'small then

In accordance with the guideline in the previous paragraph, unexpected occurrences of the
predefined exceptions that may be raised are handled locally.

3.2.2.3 Uniform Exception Handling

When Ada code raises a defined exception, the exception processing has several courses of action:
abandon the execution of the unit, try the operation again, use an alternative approach, repair the
cause of the error, initiate alarms, or send messages to the operations personnel (Gall, 1975). The
selection of which course of action to take should be determined on a uniform, project wide basis
using the results of a safety analysis. Means of assessing and enforcing of exception handling

3-29 NUREG/CR-6463

policies should exist.

The following guidelines are suggested for uniform exception handling:

• Clearly express and document exception handling. All exception handling should be clearly
expressed in code and uniformly documented in the program.

• Handle predefined exceptions. Ada has five predefined (non-user-defined) exceptions,
CONSTRAINT_ERROR, NUMERIC_ERROR, PROGRAM_ERROR, STORAGEJERROR, and
TASKING_ERROR. It is good practice to recognize these conditions explicitly and plan for
their resolution in a uniform manner; even error conditions that the programmer believes
can never arise may be caught as a predefined exception.

• Do not raise predefined conditions explicitly. The predefined conditions should be reserved
for their intended purpose. Exceptions that are to be raised explicitly by the application
program should be identified using other names.

• Handle all program-defined exceptions. If a condition raising an exception occurs, there
should be a course of action associated with it (Booch, 1983; p 273).

• Use exception handling for abnormal events. Exceptions are just what they are called, and
should not be used for normal processing (SPC, 1989; p 96). Exceptions should be used
for abnormal or unusual occurrences only. Execution of normal control sequence is
abandoned after an exception is raised. The code should contain other provisions to handle
normal events without the asynchronous transfer of control by an exception.

• Minimize side effects. While some side effects may be inevitable as a result of exception
handling, they should be minimized. Critical state data should not be changed during
exception processing except to the extent needed to restore mainline processing to the
system.

One side effect of exceptions is that data in a calling program unit may be corrupted. For
copy-in and copy-out parameters this presents no problem, as their new values are copied
back into the original objects only upon successful completion of the called unit. For
program units that change data objects specified by reference parameters or that are global
variables, the situation is different. The reader should consider the example of a procedure
that changes the values in a large array passed to it as an in out mode parameter. If an
exception is raised after part of the array has been processed, some of the elements in the
original array object will have been processed, and other elements will retain their original
values.10

Exceptions are yet another reason why global variables should not be modified in subprograms.

NUREG/CR-6463 3-30

In safety-critical subprograms, data that are to be updated and that are passed to and from the
subprogram via reference should be copied into local variables of the same data type,
updated in the local variables, and copied into the output parameter objects only upon normal
termination. This practice involves sacrificing time and space for safety.

Avoid use of compiler vendor-specific exceptions. No exception defined by a compiler
vendor can be guaranteed as portable to other implementations whether or not it came from
the same vendor. Not only may the names be different, but the ranges of conditions
triggering the exceptions may also be different (SPC, 1989; p 144).

Use other in exception handler definitions. All conditions associated with exception
handling must be well defined; however, other should be used and flagged as an
unanticipated exception condition.

3.2.3 Input and Output Data Checking

The generic attributes for input and output data checking are applicable to Ada. Because input and
output data checking are handled through the same mechanisms in Ada, this section discusses them
together.

Ada automatically checks for certain anomalous conditions on I/O data. One such anomalous
condition occurs when the data are out of the range of the datatype; a constraint exception would
then be raised. Another anomalous condition detected automatically is when the index for an array
element is out of the array's bounds.

The file management packages provided with Ada compilers provide additional input and output
data checking. Package Text_IO routines provide not only range checks, but also syntax checks, on
I/O values. Packages Sequential_IO and Direct_IO check input values to ascertain if they can be
interpreted as being of specified datatypes.

In safety-critical systems I/O data should always be regarded as untrustworthy until proven
otherwise. The notions that input error checking may not be applicable if the input can be trusted
and that output checking may not be necessary if downstream input checking is performed should
be viewed with caution. Consequently, the automatic Ada checks on input and output data should
never be disabled.

3.3 Traceability

Traceability refers to attributes of safety software that support verification of correctness and
completeness against the software design. The intermediate attributes for traceability are as follows:

• Readability

3-31 NUREG/CR-6463

• Use of built-in functions
• Use of compiled libraries
• Use of generics.

Because readability is also an intermediate attribute of maintainability, it is discussed in Section 3.4.
Ada-specific guidelines for the other attributes are discussed in the following sections.

3.3.1 Use of Built-in Functions

The generic guidelines have limited capability. The only built-in functions in Ada are those that are
Ada operations. These operations may be overloaded. Because Ada does not provide an extensive
number of built-in functions, each project builds or acquires (either through reusing or purchasing)
additional functions. It should be noted that a separate guideline on the use of compiled libraries
recommends that externally developed libraries be acquired as source code.

Externally developed software should be subjected to at least the same degree of developmental
control and verification as the project-specific code. This would include assessment of the accuracy,
limitations, robustness, and exception handling of the functions. Test cases, procedures, and results
of previous testing should also be maintained for these libraries. The test cases should assess
behavior for out of bounds and marginal conditions (e.g., negative arguments on a square root
routine, improperly terminated strings for a string copy routine, and similar conditions) in the
specific run-time environment.

3.3.2 Use of Compiled Libraries

The generic guidelines related to controlled use of compiled libraries are applicable to Ada. The
reasons for limiting or avoiding the use of compiled libraries in safety systems are as follows:

• Lack of visibility. Libraries can be used to shield the programmer from the details of the
lower level implementation; however, it is exactly that feature that prevents the programmer
from knowing the accuracy, limitations, robustness, and exception handling of the built-in
functions. Programmers and designers must consider how to handle error conditions such
as invalid parameters, numerical instability of the calculation, non-convergence of a result,
arithmetic overflow, and underflow. These different forms of failure may well require
handling in different ways according to the severity of the impact of the error on the
calculation. In compiled libraries, the error handling mechanisms may not provide the
needed visibility to allow programmers to handle these situations (Tafvelin, 1987).

• Inconsistency in error handling. A basic consistency data and control flow for error
handling is necessary for developing and maintaining reliable systems. However, there is
no guarantee that libraries will have consistent methods of handling exceptions.

NUREG/CR-6463 3-32

• Difficulties during maintenance and upgrades. As software is maintained and new versions
of compilers are acquired, libraries may become outdated.

If compiled libraries are used, then thorough testing and error tracking are necessary as described
in the generic guidelines.

3.3.3 Ada Run-time Environment

The Ada RTE plays a critical role in ensuring the timing and correct execution of the compiled Ada
code. However, it is not directly accessible by the programmer and falls into the category of built
in functions or compiled libraries from that perspective. The concerns related to testing, error
tracking, documentation, and development control described in the previous two sections also hold
true for the Ada RTE.

3.3.4 Maintaining Traceability Between Source Code and Compiled Code

For a safety application, it is vital to ensure that the source code in a project baseline corresponds
to the compiled object code. Traceability between source and object code is needed to avoid the
uncertainty of what versions of separately compiled units are included. However, the support of the
Ada language for separate compilation can pose a challenge to this traceability. When possible, the
entire source (with the exception of compiled libraries, see Section 3.3.2) should be compiled on one
occasion. This is the most authoritative way to establish complete traceability between source and
executable.

However, it may not be possible to perform a single compilation because:

1. The source code is too large.

2. To support portability, implementation dependent source code is being placed in separate
compilation units from other Ada source code.

3. It may be desirable or necessary to incorporate externally developed components in compiled
rather than source form.

If separate compilation is needed the following guidelines apply:

• Partitioning of compilation. Only those compilation units required for execution of a
compilation undergoing compilation unit should be made visible (using a with clause) to
each unit, i.e. the with clauses should not include superfluous compilation units (Jones,
1988).

3-33 NUREG/CR-6463

Use of tools. Tools should be acquired that maintain the libraries in a sufficiently transparent
manner to allow such traceability without the need to compile all the source code be at one
time.

3.3.5 Minimizing Use of Generic Units

The Ada language includes generic units (packages or subprograms) to enhance reusability.
However, their use in safety systems is problematic because they obscure the traceability between
source code and executable. They are templates, not packages or subprograms, and it is not
immediately clear from reading the source exactly what is running in the executable code. Use of
generic units should therefore be minimized (Sanden, 1994).

However, generics may be necessary in Ada—particularly predefined generic units. If generics are
used, they are subject to the following guidelines.

• Instantiation only during initialization. This guideline was discussed in section 3.1.1 on
predictability of memory management.

• Use only the parameter list for transferring data. No global variables should be used to
supplement the parameter list and used in the bodies of other subprograms. The parameter
list should be comprehensive for all intended uses.

• Document restrictions on parameters. The use of and restrictions on generic parameters
should be identified and documented (Jones, 1988).

3.4 Maintainability

This section discusses the Ada-specific attributes of the following intermediate attributes related to
maintainability:

Readability
• Data abstraction
• Functional cohesiveness
• Malleability
• Portability.

Base-level attributes and Ada-specific related guidelines are discussed in the following sections.

3.4.1 Readability

The following base attributes are related to readability:

NUREG/CR-6463 3-34

Conformance to indentation guidelines
Descriptive identifier names
Comments and internal documentation
Limitations on subprogram size
Mimmizing mixed language programming
Minimizing obscure or subtle programming constructs
Minimizing dispersion of related elements
Minimizing use of literals
Controlled use of renaming.

The Ada-specific guidelines associated with these attributes are discussed in the following
subsections. It should be noted that the controlled use of renaming is an Ada-specific attribute that
was not included in the generic guidelines.

3.4.1.1 Conformance to Indentation Guidelines

The generic indentation guidelines are applicable. The following additional guidelines apply:

Data structures. Indent and align beginnings and endings of data structures.

• Line Continuation use different levels of indentation to distinguish between indentations for
■ statements and for line continuation (SPC, 1989, pp. 9-11; DoD-STD-2167A, App. F).

3.4.1.2 Descriptive Identifier Names

The guidelines developed for the generic descriptive identifier names attribute are applicable to
Ada. The following additional guidelines apply:

• Follow project-specific guidelines on naming. Project specific guidelines on the use of
names for variables, type definitions, procedures, functions, records, arrays, slices,
exceptions, constants, generic instantiations, access objects, and other identifiers should be
developed and followed in each program. The guidelines should also address naming of
items in different packages (if applicable), how names change based on scope, and other
project-specific considerations.

• Separate words. Words in compound names should be separated with underscores as
indicated in the following example (SPC, 1989; p. 17)

3-35 NUREG/CR-6463

Rads_Per_Second
Core_Temperature

Use underscores with larger numbers. Underscores should be used with large numbers to
promote readabihty on numbers (SPC, 1989; p. 20). This is shown in the following example:

type Popula t ions i s range 0 . . 10_000_000_000;

type Social_Security_Numbers i s range 000_00_0000 . . 999_99_9999;

• Use care in abbreviations. Abbreviations should not be used if they can be misunderstood.
For example, Time_of_Day should be used instead of TOD (SPC, 1989; p 20).

3.4.1.3 Comments and Internal Documentation

The guidelines associated with the generic attributes are applicable. In addition, the following Ada-
specific guidelines apply:

• Relate the code to higher level design considerations. Explanatory comments should not
duplicate the Ada syntax or semantics, but should clarify the coded data structures or process
algorithms at a more descriptive level than the code. "Comments should be technically
correct and should address a reader who is an Ada programmer" (DoD-STD-2167A).

• Use blank lines. Related code such as declarations, loops, blocks, cases, and exception
handlers should be grouped, separated with blank lines, and described with Ada comments
(DoD-STD-2167A).

• Identify"escapes" from language restrictions: Escapes from Ada language restrictions
(suppression of type checking, unchecked conversions, use of other languages, etc.) are
discouraged in other portions of this chapter. However, if they are used, they should be
clearly indicated in the comments together with rationale and impact.

• Use comments when renaming. The scope of renaming should be indicated in comments
physically adjacent to the renaming statements.

• Comment exception raising and handling. Comments should be used to facilitate the tracing
between exception raising and handling, and to provide traceability back to design
documents where the exceptions and handlers were designed.

• Identify dynamic memory allocation with comments. As noted earlier, dynamic memory

NUREG/CR-6463 3-36

allocation is not desirable in a safety system. If used, however, there should be comments
to identify when memory is allocated and released.

Identify tasking with comments. As noted previously, tasking and intertasking
communication poses many safety challenges. Comments should provide traceability to a
design, and the design itself should clarify issues associated with timing, intertask
communication, and avoidance of the risks associated with tasking.

3.4.1.4 Limitations on Subprogram Size

The guidelines associated with this generic attribute are applicable. There are no additional specific
guidelines.

3.4.1.5 Minimizing Mixed Language Programming

The guidelines associated with this generic attribute are applicable. The use of machine-level11

language or a non-Ada higher-level language should be avoided in Ada program units. The reasons
for avoiding other languages are listed below.

1. There is no uniform way to implement machine-level code in an Ada source program, There
will be differences in lower-level details, such as register conventions, that would hinder
implementation and portability.

2. The problems with employing pragma INTERFACE are complex12. These problems include
pragma syntax differences, conventions for linking/binding Ada to other languages, and
mapping Ada variables to foreign language variables, among others.

3. Other languages do not provide a means of expressing low-level machine features in a high-
level fashion as well as Ada does (Booch, 1983; p 264).

If use of other languages cannot be avoided, it should be minimized and controlled. The following
are Ada-specific guidelines:

• Isolate and clearly document machine language inserts. If machine-level code inserts must
be used to meet a project requirement, isolate the platform-specific implementations in a
separate package. Include the commentary that a machine-level code insert is being used and

nIn Ada the term "machine-level" language is equivalent to "assembly" language.
12A subprogram written in another language can be called if all data transfer is via parameters and function

results. The Interface pragma is the mechanism for achieving this.

3-37 NUREG/CR-6463

state what function the insert provides and (especially) why the insert is necessary.
Document the necessity of using machine-level code inserts by delineating what went wrong
with the attempts to use other higher level constructs (SPC, 1989; p 146).

• Isolate Higher-level language inserts, document the INTERFACE pragma, and account for
interface limitations: Subprograms employing the pragma • INTERFACE should be isolated
to an implementation-dependent (interface) package. The requirements and limitations of

. the interface and pragma INTERFACE usage should be clearly documented (SPC, 1989; p
146). As noted above, the conventions used by other compilers are not specified by Ada.
Thus, validating the interface and ensuring that it is free from potential interface problems
can be a complex undertaking. However, a thorough examination is required for safety
significant systems.

3.4.1.6 Minimizing Obscure or Subtle Programming Constructs

The guidelines associated with this generic attribute are applicable. There are no additional
language-specific guidelines.

3.4.1.7 Minimizing Dispersion of Related Elements

The guidelines associated with this generic attribute are applicable. There are no additional
Ada-specific guidelines. In Ada, appropriately designed packages can minimize dispersion of related
elements. This is so since a data structure and any subprograms operating on it can be collected in
an information-hiding package in such a way as to give other parts of the software controlled access
to the data exclusively via a well-defined interface.

3.4.1.8 Minimizing Use of Literals

The guidelines associated with this generic attribute are applicable. The following are additional
Ada-specific guidelines:

NUREG/CR-6463 3-38

Use constants instead of literals. The use of constants supports maintainability by assuring
that all values referencing a constant are automatically changed by a single change to the
constant declaration. The exception to this guideline is that numeric literals may be used in
well-established formulae or conversions where such values will not change and where
readability will be enhanced by the use of such literals (e.g., in the quadratic equation).

Use attributes. An additional Ada-specific guideline is that Ada attributes should be used
wherever possible in place of literals, as indicated in the following example. This practice
facilitates the propagation of consistent changes when objects related to the constant are
changed.

MAX_LINE_LEN6TH : constant :=

type Lines is array (1 .. MAX_
Line : Lines;

-- Use
for Column in Line 'range loop

132;

LINE

if Column = Line'first then

elsif Column =

end if;

-- instead of
for Column in 1 ..

if Column = 1

elsif Column =

end if;

Line'last then

132 loop
then

132 then

_LENGTH) of Character;

3-39 NUREG/CR-6463

3.4.1.9 Controlled Use of Renaming

Renaming is frequently used to reduce the length of unwieldy, fully qualified names and to make
clear ambiguous or inappropriate names. The renamed identifier can also be an aid to understanding
the use of a routine. However, renaming also complicates and obscures the traceability from the
procedure or function call to the source code. This makes debugging and maintenance harder.
Renaming of subprograms can cause unintended overloading that the designers, programmers, and
maintainers may not realize or fully understand.

The following example (from Mil-Std-1815A) illustrates the problem:

function
function
function

ROUGE
ROT
ROSSO

return
return
return

COLOR
COLOR
COLOR

renames
renames
renames

RED ;
RED ;
ROUGE ;

The function RED has been renamed as ROUGE in the first line and ROT in the second. In the third
line, the renaming on the first line (ROUGE) has itself been renamed to ROSSO. This renaming
makes it difficult to understand where a problem occurs if the function RED needs to be debugged.

The following guidelines can mitigate these problems while preserving the benefits of renaming:

• There should be only one level of renaming. A renamed identifier should not be renamed
a second time.

• All renaming should be done in accordance with project-specific conventions. Project-
specific conventions should be developed for variable naming and renaming.

Maintain a centralized list of names. A "registry" of renaming should be maintained for
each project. The scope of each renaming should also be clearly indicated in the registry.

3.4.1.10 Use representation clauses for bit mapping.

In many safety systems, there is an interface to a set of hardware discrete switches that affect the
state of the system. Such bit maps are typically stored internally as integers. However,
representation clauses and enumeration types can be used to effectively represent this status
information in a meaningful way, which facilitates review and also reduces the possibility of coding
errors as the following example demonstrates.

NUREG/CR-6463 3-40

Type Line_Status_Type
(Valve_lA_0pen,
Valve_lB_Open,

FOR Line_Status_Type I
(Va1ve_lA_Open
Valve_2A_0pen
Valve_3A_Open
Valve_lB_Open
Valve_2B_0pen
Valve 3B Open

IS
Valve_2A_0pen, Valve_3A_0pen,
Valve_2B_Open, Valve_3B_Open)

JSE
=> 2#0000_0001#,
=> 2#0000_0010#,
=> 2#0000_0100#,
=> 2#0001_0000#,
=> 2#0010_0000#,
=> 2#0100 0000#);

The array must be sorted in strict ascending order. It is better to use a name than a positional
association (Cohen, 1986, p. 780).

3.4.2 Data Abstraction

This section discusses Ada-specific data abstraction guidelines for the following attributes:

• Minimization of global variables
• Minimization of the complexity of interfaces
• Use of the Ada package for encapsulating programs and data.

3.4.2.1 Minimization of Global Variables

A global variable in Ada can be declared in the main.procedure or in a package specification. Unless
the entire program is small, neither should be used. A variable that must remain in existence and
retain its value longer than the execution of a single subprogram should be declared in a package
body. The package specification should include those procedures and functions that operate on the
variable in the package. Such information hiding ensures that the variables are not updated in
unintended ways.

3.4.2.2 Minimization of Complexity of Interfaces

The generic guidelines apply to this attribute. There are no additional Ada-specific guidelines.

3.4.2.3 Use of the Ada Package for Encapsulating Data and Related Programs

The Ad®.package feature was developed to control visibility of names and access to data. As such,

3-41 NUREG/CR-6463

it is a useful mechanism to prevent inadvertent alteration of data or execution by other programs.
Some examples of appropriate use of the package construct in safety systems are contained in
guidelines elsewhere in this chapter. A full discussion of this topic, however, is a design issue and
beyond the scope of this document. It is covered extensively in other publications on the Ada 83
language (Shumate, 1989; Cohen, 1986, SPC, 1989).

The only implementation-specific guideline is that the project programming guidelines and the
system design itself should identify standards and conventions for:

• Defining interfaces, type definitions, and data structures (including records, arrays and
strings) in packages

• Organization of compilation units

• Use of predefined compilation units (e.g., SYSTEM and STANDARD).

3.4.3 Functional Cohesiveness

Functional cohesion measures the degree to which a subprogram performs a single, problem-related,
well-understood function. The generic attributes relating to (1) a single design level function per
subprogram element and (2) each identifier having a single purpose both apply to Ada. There is no
additional language-specific guidance.

3.4.4 Malleability

The generic attribute applies to Ada. There is no additional language-specific guidance.

3.4.5 Portability

The generic attribute applies to Ada. From the perspective of safety, the benefits of portability are
the adherence to standard prograrnming constructs that yield predictable and consistent results across
different operating platforms. Code that has been designed to be portable will be easier to maintain
when it is reused or converted to run on a different platform. The general principle is avoiding use
of nonstandard, or "enhanced", constructs specific to a particular compiler by itself or in
combination with the target execution platform. Where nonstandard constructs are necessary, they
should be clearly identified together with the rationale, limitations, and version dependencies (SPC,
1989; pp. 127-155).

Attributes related to portability, which have been discussed elsewhere, include the following:

NUREG/CR-6463 3-42

• Minimizing the use of built-in functions
• Minimizing the use of machine code and foreign languages
• Minimizing the use of compiled libraries
• Minimizing dynamic binding
• Minimizing tasking
• Minimizing asynchronous constructs (interrupts).

The following are additional language-specific guidelines:

• Do not use busy loop to suspend execution. Aside from the fact that a busy loop wastes
processor resources, the timing of a standard loop cannot be determined when the code is
ported to a different compiler, different machine, or even different operating systems. For
example:

— Use
delay 3.74 ;
— Do not use
for I in 1
null ;

end loop ;

following
6874 loop

because of timing differences

Also, any knowledge of the execution pattern of tasks should never be used to achieve timing
requirements, because of the uncertainty during porting (SPC89, p. 141).

Validate assumptions about the implementation of language features when specific
implementation is not guaranteed or specified. For example, there may or may not be a
correlation between SYSTEM.TICK and package CALENDAR or type DURATION.
Although such a correlation may exist, it is not required to exist (SPC, 1989; p 141).

Avoid the use of package SYSTEM constants except in attempting to generalize other
machine dependent constructs. Since the values in this package are implementation
provided, unexpected effects can result from their use (SPC, 1989; p 146). The values of the
constants in the SYSTEM package should not be changed.

Use only pragmas and attributes defined by the Ada Standard. The Ada LRM (Mil-Std-
1815A) defines the following pragmas: c o n t r o l l e d , e l a b o r a t e , i n l i n e ,
i n t e r f a c e , l i s t , memory_size, op t imize , pack , page , p r i o r i t y ,
s h a r e d , s t o r a g e _ u n i t , s u p p r e s s , system_name and the following attributes:
address , base , c a l l a b l e , cons t ra ined , count , f i r s t , f i r s t _ b i t , l a s t ,
l a s t _ b i t , p o s , p r e d , r ange , s i z e , s m a l l , s t o r a g e _ s i z e , succ ,
t e r m i n a t e d , v a l , v a l u e , width . However, the Ada standard permits an
implementor (compiler vendor) to add pragmas and attributes to exploit a particular hardware

3-43 NUREG/CR-6463

architecture or software environment. Although potentially attractive, non-standard pragmas
and attributes are not only non-portable, their limitations may not be as well understood nor
tested as are the predefined counterparts. It should be noted that predefined pragmas and
attributes in and of themselves may not be totally portable because of the latitude allowed
in their interpretation by compiler implementors.

Avoid the direct invocation of, or implementation dependence upon, an underlying host
operating system or Ada run-time support system. Features of an implementation not
specified in the Ada LRM will usually differ between implementations. Specific
implementation-dependent features are not likely to be provided in other implementations.
Even if a majority of vendors eventually provide similar features, they are unlikely to have
identical formulations. Indeed, different vendors may use the same formulation for
(semantically) different features.

Minimize and isolate the use of the predefined package LOW_LEVEL_io. This package is
intended to support direct interaction with physical devices that are usually unique to a given
host or target environment. In addition, the data types provided to the procedures are
implementation defined. This allows vendors to define different interfaces to an identical
device (SPC, 1989; p 152).

Restrict and isolate variables of type SYSTEM, ADDRESS or with the attribute ADDRESS.
These are hardware-specific variables that should be kept in a "maintenance location" in the
code.

NUREG/CR-6463 3-44

References

International Standard ANSI/ISO/IEC-8652, Ada 95 Reference Manual, Intermetrics, Inc.,
Cambridge, MA, 1995.

Ada 95 Rational, Intermetrics, Inc., Cambridge, MA, 1995.

American National Standards Institute/U.S. Department of Defense, Reference Manual for the Ada
Language, ANSI/DoD-STD-1815A, 1983.

Barnes, J. G., Programming In Ada, Second Edition, Addison-Wesley Publishing Company, Menlo
Park, CA, 1984.

Booch, G., Software Engineering with Ada, California, The Benjamin Cummings Publishing
Company, Menlo Park, CA, 1983.

Cohen, N., Ada as a Second Language, Prentice Hall, Englewood Cliffs, NJ, 1986

Gall, J., Systematics: How Systems Work and Especially How they Fail, The New York Times Book
Company, New York, NY, 1975.

Gottfried, R. and D. Naiditch, Using Ada in Trusted Systems, Proceedings of COMPASS 93, May,
1993, National Institute of Standards and Technology, Washington, DC, 1993.

Hutcheon, A., et al., A Study of High Integrity Ada, (UK) Ministry of Defense contract: SLS31c/73
Language Review, Document Reference SLS31c/73-l-D, Version 2, 9 July 1992.

Jones, S, K. Mitchell, M. J. Mardesich, et. al., BCAG Digital Avionics Ada Standard, Boeing
Company, Document No. D6-53339, November, 1988

Kernighan, B. and P. J. Plauger, The Elements of Programming Style, McGraw-Hill, New York,
1974.

Page-Jones, M., The Practical Guide to Structured System Design, Yourdon Press, Prentice-Hall,
Englewood Cliffs, NJ, 1980.

Pyle, I., Developing Safety System: A Guide Using Ada, Prentice Hall, Englewood Cliffs, NJ, 1991.

Sanden, B. I., Software Systems Construction with Examples in Ada. Prentice-Hall, Englewood

3-45 NUREG/CR-6463

Cliffs, NJ, 1994.

Software Productivity Consortium (SPC), Ada Quality and Style Guidelines for Professional
Programmers, VanNostrand Reinhold, New York, NY, 1989.

Tafvelin, S., ed, Ada Components: Libraries and Tools, Cambridge University Press, Cambridge,
MA, 1987.

U.S. Department of Defense, Defense Systems Software Development, DoD-STD-2167A, Appendix
D, 1 August 1986.

NUREG/CR-6463 3-46

4 C and C++
This section discusses the safety issues of C and C++ languages in safety systems. The languages
are discussed together because of the C heritage in C++ and because they may be used together in
a safety application. However, the applicability of the discussion to one or both languages is clearly
indicated in the text13. The discussion is primarily independent of the underlying execution
platforms, that is, hardware, kernel, and/or operating system. Exceptions to this generalization are
noted in the text.

This chapter is organized in accordance with the framework of Chapter 2. Section 4.1 discusses
reliability-related attributes; Section 4.2 discusses robustness-related attributes; Section 4.3 discusses
traceability-related attributes; and Section 4.4 describes maintainability-related attributes. A
summary matrix showing the relationship between generic and language-specific guidelines, together
with weighting factors, is included in Appendix B.

4.1 Reliability

In the software context, reliability is either (1) the probability of successful execution over a defined
interval of time and under defined conditions, or (2) the probability of successful operation upon
demand (IEEE, 1977). The reliability of software means the ability of a system or component to
perform its required functions under stated conditions for a specified period of time (IEEE,-1990).
The reliability depends on the run-time predictability of the following:

• Memory utilization
• Control flow
• Timing.

C-specific guidelines derived from these generic attributes are described in the following sections.

4.1.1 Predictability of Memory Utilization

Unpredictable memory utilization can cause the loss of programs, instructions, and data which, in
turn, can cause system failures. Unpredictable memory utilization can be categorized into two main
categories: (a) violation of available memory restrictions and (b) unauthorized use of memory
blocks. The first four base attributes refer to the first category and the remainder to the second.

It should be noted that what is applicable to C is generally applicable to C++; however the reverse is not
true.

4-1 NUREG/CR-6463

Minimizing dynamic memory allocation
Minimizing memory paging and swapping
Minimizing memory usage caused by inefficient parameter passing mechanisms
Minimizing recursive function calls
Utilizing boundary checking for memory-related functions
Utilizing functions with well-defined behavior
Using wrappers for memory-related functions
Proper array indexing.

4.1.1.1 Minimizing Dynamic Memory Allocation

Following guidelines are applicable to both C and C++ I

Although dynamic memory allocation increases memory utilization efficiency, it can cause
unpredictable memory utilization which, in turn, could result in system failure (Hatton, 1994, pl49).
The potential problems caused by dynamic memory allocation include:

1. Allocating memory without subsequently freeing it.
2. Attempting to access memory that has not been allocated.
3. Utilizing memory that has already been freed.
4. Insufficient available memory for the dynamic memory requirements.

Thus, dynamic memory allocation should be avoided. If dynamic memory must be used, the related
functions should be used defensively, and the allocated memory should be explicitly released as soon
as possible.

Following discussion applies to C |

In C the dynamic memory allocation and deallocation functions are cal loc, malloc, rea l loc ,
strdup, and free. In addition to the above problems, other dynamic memory allocation potential
problems arise in C because of two reasons: (1) dynamic memory allocation functions provide
different services depending on the values of input parameter (Maguire, 1993) and (2) dynamic
memory management functions are not sufficiently protected against potentially incorrect input.

The following function serves as an example:

vo id * r e a l l o c (v o i d *pv , s i z e _ t s i z e) .

The function will perform one of the following actions depending on the input (Maguire, 1993):

(a) If the new size of the memory block is smaller than the old size, r ea l l oc releases

NUREG/CR-6463 4-2

the unwanted memory at the end of the block and pv is returned unchanged;

(b) If the new size is larger than the old size, the expanded block may be allocated at a
new address and the contents of the original block copied to the new location. A
pointer to the expanded block is returned, and the extended part of the block is left
uninitialized.

(c) If one attempts to expand a block and rea l loc cannot satisfy the request, NULL
is returned.

(d) If pv is NULL, then rea l loc behaves as malloc (size) and returns a pointer to
a newly allocated block, or NULL if the request cannot be satisfied.

(e) If the new size is 0 and pv is not NULL, then rea l loc behaves as free (pv) and
NULL is returned.

(f) If pv is NULL and size is 0, the result is unknown.

Use library copy and move junctions with specific lengths. As will be discussed below, use
of library copy and move functions with specific lengths (e.g., strncopy rather than
strcpy) should be used.

The following discussion applies to C++ only

In C++, the functions to dynamically allocate and free memory are new and delete. The following
guideline applies.

• Ensure that all classes include a destructor. To avoid memory leaks, all classes must
include a destructor that releases any memory allocated by the class. Constructors must
themselves be defined in a way to avoid possible memory leaks in case of failures. Ensure
that for all derived classes there are virtual destructors.

4.1.1.2 Minimizing Memory Paging and Swapping

Following guidelines are applicable to both C and C++

The generic guidelines apply. There are no additional language-specific guidelines.

4-3 NUREG/CR-6463

4.1.1.3 Controlling Parameter Passing to Routines

Following discussion applies to C |

The generic guidelines apply. Of particular concern in the use of C or C++ with small
microcontrollers is the limited stack size. Passing of many arguments or large structures may cause
a stack overflow (particularly in microcontrollers where stack memory may be limited) that, in turn,
would cause a system failure. The following are language-specific guidelines:

• Limit the number and size of parameters. The ANSI/ISO C standard only guarantees 31
parameters in one function call (section 5.2.4.1 of ANSI/ISO 9899-1990), and this
establishes an upper limit on the number of arguments that can be passed in a call. If this
number of parameters is limiting for the application, alternate means of passing data should
be considered. These alternatives include the use of arrays, structures, or global variables.
Arrays are always passed by reference (i,.e., using a pointer) and therefore, the limitation
becomes a function of the heap space. Structures can be passed on the stack or using
pointers. As is described in the following guideline, use of pointers is preferred for larger
structures to minimize the possibility of a stack overflow. Global variables are also a less
desirable means of passing data because of the undesirability of passing data by means of
side effects. However, use of global variables may prove to be a more desirable alternative
than using a structure or array if the variables have no well defined interrelationship. Section
4.4 contains additional guidelines on using global variables as a means of data interchange.

• Use pointers to conserve stack space for larger variables. In C and C++, parameters are put
on stack when calling a subroutine. As noted above, stack memory is a limited resource, and
overflowing the stack has unpredictable (and nearly always undesirable) results. ANSI C
requires converting an array to a pointer when it is passed to a subroutine (Section 6.7.1,
ANSI/ISO 9989-1990). However, C structures can also require a large amount of memory.
Because automatic conversion to pointers is not automatically in ANSI C done for unions
and structures, this conversion must be perform by the programmer as shown in the
following example:

NUREG/CR-6463 4-4

#define SSN_LEN (12)
#define DAYS_PER_MONTH (31)

typedef struct employee struct
{
char ssn[SSN_LEN] ;
short dept_id;
short working_hours[DAYS_PER_MONTH];
short vacation_hours;
double vacation_ratio;

}
void update vacation hours(employee struct
{
short i;
short total_hours=0;

for (i=0; i<DAYS_PER_MONTH; i++)
total_hours += worker->working_hours[i];

♦worker)

worker->vacation hours = total hours+worker>vacation ratio;
}
int main(int argc, char *argv[])

employee_struct employee;

update_vacation_hours(&employee); /* passing the pointer */

}

Dereferencing should be done inside the receiving function to mampulate the structure.
When a pointer to a variable is passed to a function, any modifications to the variable inside
the function are reflected in the original variable itself.

4-5 NUREG/CR-6463

4.1.1.4 Minimizing Recursive Function Calls

Following guidelines are applicable to both C and C++ |

Recursion is a process in which a software module calls itself (IEEE, 1990).

Although they normally generate efficient code, recursive function calls can cause unpredictable
stack memory utilization and are sources of stack overflow. Unbounded recursive function calls
should be avoided in safety systems. If a recursive function has to be utilized, the stack usage should
be minimized by rninimizing both the number of parameters to the function and the automatic
variables in the functions.

If recursion must be used, a compiler option to check for stack overflows during runtime should be
invoked. This option generates code with stack checking to avoid overwriting memory when stack
overflow occurs. An explicit exception handling routine should also be written to handle the stack
overflow condition. If the compiler does not have stack overflow checks, an upper bound on the
number of recursive function calls should be established (e.g., a limit on the length of an array being
sorted), which is an appropriate fraction of the space.

4.1.1.5 Utilizing Memory-Related Functions with Boundary Checking

Following discussion applies to C |

Utilizing functions with boundary checking can reduce unpredictable memory usage. Functions with
a boundary limit should be used in place of functions without such a limit. Functions with a
boundary limit are s t rnca t , strncmp, and memmove.

Although the functions strncpy and memcpy also have boundary limit checks, they should not be
used in safety systems for the reasons described in sections 4.1.1.6 and 4.1.1.7. Functions without
a boundary limit are s t r c a t , strcmp, and strcpy. Using these functions can overwrite
memory outside the intended range of addresses.

In the following example, s t r 2 is longer than s t r l ; therefore, the execution of the function can
overwrite 10 bytes of memory outside s t r l .

char s t r l [2 0] , s t r 2 [3 0] ;

s t r c p y (s t r l , s t r 2) ;

NUREG/CR-6463 4-6

Variables in those locations can be unintentionally changed. The function memmove can be used
to correct this problem, as seen below.

#define
#define

STR1
STR2_

LEN
LEN

(20)
(30)

char strl[STR1_LEN], str2[STR2_

memmove (strl, str2 , STR1_ _LEN) ;

_LEN] ;

The function call here limits the bytes copied to strl to be STR1_LEN, which is the size of s t r l .
No matter what the contents of s t r2 are, it cannot write outside s t r l .

This does not mean that the use of functions with boundary checking completely eliminates safety
problems. Most memory management functions in C are confusing and could pose a safety risk if
not carefully understood and protected against. As an example, consider the following function call
(Spuler, 1994):

strncpy(sl, s2, 20);

This function call has a hidden danger in that s i will not have the NULL character (indicating the
end of string) if s2 contains more that 19 characters. One possible solution is that the programmer
can assign the NULL character to the end of si immediately after the function call. The best possible
solution for avoiding this type of unsafe behavior is for the programmer to create a safe and specific
function for each needed memory-related action. The following example depicts such a version of
the strncpy function (Spuler, 1994).

void
{

}

safe

int i
for

}
sl[

•

_strncpy

(i=0;(i<n
Sl[i] = £

i] = '\0*

(char

-1) &&
2[i];

^sl, char

(s2[i] !=

*s2,

= '\0

int

') ;

n)

i++) {

This will provide the programmer with a function that can be tested in advance. Where
non-overlapping objects are guaranteed, the bounded forms of string library functions are safe.

4-7 NUREG/CR-6463

A similar fault avoidance technique can be used for input functions such as gets as shown in the
following example (Spuler, 1994):

char s [5];
char *result;

result = gets(s);
if (result == NULL) {

If the user enters more than 4 characters, gets will overwrite the memory which does not belong
to string s. The solution is to use a function that has a specific limit on the number of characters to
be read. For this example function, f gets provides a more desirable alternative. The programmer
can safely use f gets (s , 5, s td in) . However, with f gets the newline (i.e., \n) will be included
at the end of the string parameter, which should be replaced with a null character after the function
calls.

Following discussion applies to C++ only |

In C++, bounds checking may be integrated into the class definition so that the low-level functions
need not carry the overhead. This is especially true for numerical analysis routines where functions
like the inner product are called many times. For example, if the lengths of vector arguments are
already checked against the bound before being passed to an inner product function, there is no need
to add bounds checking to the function.

4.1.1.6 Use of memmove for Moving Blocks of Memory

Following guidelines are applicable to both C and C++ |

The memory move function memmove, should be used instead of the memory copy function
memcpy (Plum, 1991). The reason is that the memmove function first copies the source to a
temporary area, then copies the temporary area to the destination area. Thus, even if part of the
source and destination overlap, the result will not be affected, and the required contents of the source
will be copied to the destination. Where non-overlapping objects are guaranteed, the bounded forms
of string library functions are safe.

NUREG/CR-6463 4-8

4.1.1.7 Examining Memory at Power Up

Following guidelines are applicable to both C and C++

For C and C++ embedded system programs, volatile memory should be examined at power up. This
reduces the possibility of a system running on unreUable data. The program of an embedded system
should also be checked by some type of checksum code to prevent program corruption after the
system is delivered.

4.1.1.8 Wrapping of Built-in Functions for Memory-Related Operations

Following guidelines are applicable to both C and C++

In order to prevent problems, built-in functions should be contained within a programmer-defined
"wrapper" function which checks for input and other exception conditions (Hatton, 1994; p. 200).
Another solution is for the programmer to create application-specific functions for memory related
actions such as copying memory blocks.

Following discussion applies to C

The following discussion provides an example for the string copy and get string functions. Although
it was noted that use of bounded functions such as strncpy are preferable to unbounded functions
such as s t rcpy , it is not a sufficient condition in all circumstances. In the following call:

s t rncpy(s i , s2, 20) ;

there is a potential problem when s2 does not have a NULL character (indicating the end of the
string) if it contains more than 19 characters. The "wrapper" function created by the programmer
should ensure that there is a NULL character to the end of s i immediately after the function call and
should check for other exception conditions. Wrapping should be used for other built in functions
suchasfgetpos, f t e l l , bsearch, qsor t , and time (Hatton, 1994; pp. 48 and 200).

The most fundamental solution for avoiding uncertainty from potentially undefined behaviors is that
the programmer accepts a more conservative option and creates his/her own safer and possibly
application-specific functions for memory-related actions such as copying memory blocks.

4-9 NUREG/CR-6463

A example of a programmer-defined string copy function was given in section 4.1.1.5.

4.1.1.9 Proper Array Indexing

Following guidelines are applicable to both C and C++

Automatic boundary checking in C and C++ is not as strong as in some other languages. For
example, there is no boundary checking for an array index during runtime. If the index of an array
is outside the array boundary, it will not be detected during runtime. In C and C++, the array index
starts from 0 rather than 1. In an array of 100 members, the valid indices for the array are from 0 to
99.

The following is an example of incorrect array indexing. The two last assignment statements for the
data_array will insert values in an area of memory which are not part of the intended array.

#define BUF LEN (100)
int data_array[BUF_LEN] , i;
/* initialize buffer */
for (i=l; i<=BUF LEN; i++)

data_array[i] = 0;
data_array[BUF_LEN] = i;

/* wrong */
/* wrong, BUF_LEN is outside of the array */

If the intent was to assign the final value of the array with a value of 0, then the following is the
corrected code

#define BUF LEN (100)
int data_array[BUF_LEN], i;

/* initialize buffer */
for (i=0,\ i<BUF LEN; i++)

data_array[i] = 0;

data_array[BUF_LEN-l] = i;

/* start from 0, end at BUF_LEN -1 (< not <=) */

NUREG/CR-6463

4.1.2 Predictability of Control Flow

The order in which statements in a program are executed is determined by the flow of control (Meek,
1993). Predictability of control flow is the capability to determine easily and unambiguously which
path the program will execute under specified conditions.

The guidelines in this section are as follows:

Maximizing structure
Minimizing control flow complexity
Initializing variables before use
Single entry and exit points for subprograms
Minimizing interface ambiguities
Use of data typing
Accounting for precision and accuracy
Order of precedence of arithmetic, logical, and functional operators
Avoiding functions or procedures with side effects
Separating assignment from evaluation
Proper handling of program instrumentation
Controlling class library size
Minimizing use of dynamic binding
Controlling operator overloading.
Protecting macros to reduce side effects
Eliminating mixing signed and unsigned variables
Enabling and heeding compiler warnings.

The final three guidelines do not appear as generic attributes and are specific to C and C++.

4.1.2.1 Maximizing Structure

Following guidelines are applicable to both C and C++ |

The generic guidelines apply. The instruction goto should be eliminated in safety systems. In
addition, functions such as setjmp and longjmp, should also be eliminated, unless it can be guaranteed
that the function that invoked setjmp has not terminated when longjmp is called. Since these two functions
can jump from one subroutine location to another subroutine, they can cause more serious problems than the
goto instruction (e.g. leaving variables unpopped in the stack). If a goto must be used, its use should be
documented and justified.

The use of goto should be avoided except when used to jump to code processing a common error condition
(usually at function exit).

4-11 NUREG/CR-6463

4.1.2.2 Minimizing Control Flow Complexity

Following guidelines are applicable to both C and C++

The generic guidelines apply. Complicated control flow makes the program difficult to understand
and maintain and is the source of unpredictable control. The following are specific guidelines.

Use the switch construct. In safety systems, the switch . . . case construct should be
used to replace multiple i f . . . e l se i f . . . e l se i f . . . statements if possible
(Porter, 1993). In the example below, test_value is the only term used for evaluation.

if (test

else

else

else

if

if

•

_value == 0)

(test_value ==

(test_value ==

• •

1)

2)

Thus, the code could be replaced by the following:

NUREG/CR-6463 4-12

switch (test value)
{

}

case 0:

break;

case 1:

break;

case 2:

break;

default :

break;

Use brackets. When utilizing i f . . . e l se statements, the code block should be bounded
by brackets to avoid mismatches between i f and else. A mismatch example is shown
below.

if (

else

. . .)
if (. . .)

The programmer may have intended to match the e l s e with the second i f , which is
quite different from the above code. By utilizing brackets, this problem could have been
avoided.

In safety systems, brackets should be utilized to bound all code blocks in i f . . . e l s e
statements, as shown below.

4-13 NUREG/CR-6463

i f (
{

}
e l s e
{
}

. . .)

i f (. .
{
}

.)

Define defaults. When utilizing the switch . . case construct, a defaul t case should
be explicitly defined as shown in the following example.

NUREG/CR-6463 4-14

#define DRAW_CIRCLE
#define DRAW_RECTANGLE
#define DRAWJTRIANGLE
#define DRAW_LINE

(1)
(2)
(3)
(4)

switch (condition)
{ '

case DRAW_CIRCLE :
/* draw circle */

}

break;

case DRAW_RECTANGLE :
/* draw rectangle

break;

case DRAW_TRIANGLE :
/* draw triangle

break;

case DRAW_LINE :
/* draw line */

break;

default :
/* display

break;

wrong

*/

*/

condition */

To avoid forgetting a break when another case statement is added, the default should have
a break statement to terminate it (Porter, 1993).

Check for dead code. Code that is inside the switch construct but does not belong to any
of specified branch is unreachable or "dead" code. This type of code is usually located
between the beginning of the switch and its first case branch. The programmer using switch
should check the possibility of unreachable code inside switch.

4-15 NUREG/CR-6463

4.1.2.3 Initialization of Variables and Pointers Before Use

Following guidelines are applicable to both C and C++ |j

The generic guidelines apply. All variables and pointers should be mitialized before use (Porter,
1993; Kernighan, 1978). There are three basic types of variables in C and C++: global variables,
static variables, and automatic variables. Although the compiler will initialize all static variables to
zero, variables with an automatic scope will contain "garbage" before the program explicitly
initializes them. Global variables may or may not be mitialized by the compiler. The following are
specific guidelines:

• Reinitialize automatic variables. In the C and C++ languages, automatic variables lose their
locations and their values after each function return; therefore, they should be re-initialized
before they are used again. Variables should be mitialized as soon as practical after their
declaration.

• Initialize global variables in separate initialization routines. Initialization of global
variables and static variables should occur in initialization routines rather than in variable
declarations in real-time safety systems for the following reasons:

1. Such routines ensure that the variables are properly set during a warm reboot. Such
rebooting is a common practice and is included in a design to prevent overflows of
counters and timers and to ensure that systems will not get into an infinite loop.
Warm reboots are also triggered by watchdog timers and are part of recovery from
infinite loops and deadlocks.

2. To ensure deterministic reinitialization times. The timing for initialization during
declarations is unspecified in the ANSI C standard.

• Initialize global variables only once. Global variables should be initialized once. Multiple
initialization of global variables in different modules should not be done—even if allowed
by the compiler and linker.

• Do not use pointers to automatic variables outside of their scope. Pointers to automatic
variables should not be used outside of their declared scope. The value stored in a pointer
to an automatic variable will contain garbage outside the function scope.

• Initialize pointers. Initialization problems can also occur in pointers. In safety systems, all
pointer variables in C should be initialized to NULL, and all pointer variables in C++
language should be initialized to 0 (Plum, 1991). The pointer should then be tested for a
valid value before being used. In C and C++, when a pointer is defined, it does not have a
memory location associated with it. Using an uninitialized pointer will overwrite an

NUREG/CR-6463 4-16

unintended portion of memory. Incorrectly overwriting memory can cause serious problems,
including system crashes.

An example of using an uninitialized pointer is shown below:

long *buf_ptr;

*buf_ptr = some_value;

Because buf j p t r is not initialized, it will contain an undetermined value based on the
previous use of that memory location. This undetermined value will determine where the
value some_value will be placed.

The correct code is as follows:

#define some_value (13L)
long *buf_ptr;
long value;

buf_ptr = Svalue;
/* initialize the pointer */
*buf_ptr = some_value;
/* assign a value */

Because bufjptr is initialized to point to the value, the number will be written to the
memory location of the variable rather than to an unspecified memory location.

The above example should be rewritten as follows:

long *buf_ptr=
long value;

=NULL;

buf_ptr = frvalue;
/* initialize the pointer */

if (buf_ptr != NULL)
/* test initialization
*buf_ptr = 13;

*/

4-17 NUREG/CR-6463

Ensure that the indirection operator is present for each pointer declaration. Each pointer
should have an indirect operator (*) when it is declared (Porter, 1993). The following
example shows how the C syntax facilitates omitting the indirection operator:

long *member_ptr, group_ptr; /* wrong, group_ptr doesn't have
indirect operator (*) */

The correct declaration is as follows14:

long *member_j?tr;
long *group_ptr; /* correct */

Use the ~ operator when initializing to all 1 's. When initializing all bits of an integer type
to all l's, use bitwise no t 0. That is, use the following:

all 1 variable = -0;

If the variable type size changes from 16 to 32, it will initialize all 32 bits to 1.

Following discussion applies to C

C assists programmers in mitialization by providing the facility of specifying initial values along
with declarations. However, It does not require that all objects15 be initialized (Eckel, 1995).
Moreover, in some cases, the initialization of an object is not only to assign a specific bit-pattern
value to the object location, but it might need taking special actions to facilitate smooth initialization
of the object's life (e.g., allocating conesponding resources to the objects).

The following discussion applies to C++ only

To reduce the possibility of forgetting the indirect mark (*), it is recommended that each pointer
declaration be written in a separate line.

15That is, variable, structures, or arrays

NUREG/CR-6463 4-18

In C++ it is possible to consider any correlated data set as an object and provide facilities for
constructing an instance of the data set and destroying the current instance of the data set in a
systematic way.

4.1.2.4 Single Entry and Exit Points in Subprograms

Following guidelines are applicable to both C and C++ |

The generic guidelines apply. Use of single entry and exit points in functions can facilitate their
validation checks. The programmer can easily use these two points to check the validity of input
data entering the function and also the validity of the actions taken by the function. Multiple entry
and exit points in subprograms introduce control flow uncertainties similar to those caused by the
goto instruction (Plum, 1991; Kernighan, 1978). The following are specific guidelines.

• Avoid multiple return statements. Single exit points for functions is especially important in
C, since C does not provide return consistency checks for functions. Some compilers will
accept a function that has one branch of the code reaching the end of the function code (i.e.,
the last bracket) without executing any return statement (Spuler, 1994). For example, in the
following routine, the returned value is undefined if the argument is negative.

int positive(int x)
{

if(x>0) return TRUE
else
{

/* a set of statement without any return */)
}

}

Although acceptable within the function definition of C, this routine is unacceptable from
the perspective of safety. Having only a single exit point, which is reached by all branches,
eliminates the possibility of mistakenly omitting one of many re turn statements. If there
is a compelling need for multiple entry and exit points, say to avoid goto or convoluted
control flows, all such points should be clearly documented, and a rationale provided.
Multiple re turn statements must be clearly tagged with comments. Implicit re turn
statements should be avoided.

Avoiding setjmp and longjmp. The ANSI C functions, setjmp and longjmp should
not be used in place of a normal return statement, since they can jump outside a function

4-19 NUREG/CR-6463

and deviate from the normal control flow.16 An addition problem in using goto, set jmp,
or longjmp is that the initialization of the automatic variables is not performed (ANSI/ISO
9989-1990, section 6.1.2.4). The longjmp and setjmp should be used only for
exception handling—and with care.

Avoid function pointers. Although C does not allow multiple entry points, it does allow a
pointer value to be used as the address of a function to be called. Thus C allows any address
to be called by assigning an integer to the function pointer.17 Function pointers should be
avoided.

The following discussion applies to C++ only I

• Restricting use of throw and catch. The C++catch and throw exception handling
mechanism should be used with caution and tested thoroughly to verify the maturity and
reliability of the compiler implementation.

4.1.2.5 Minimizing Interface Ambiguities

Following guidelines are applicable to both C and C++ |

The generic guidelines apply as indicated below. Interface errors account for a large portion of
coding errors (Chillarege, 1992; Thayer, 1976). An example of such errors is reversing the order of
arguments when calling a subroutine. The coding style that can reduce or eliminate the probability
of misusing an interface enhances safety. The following guidelines can reduce interface ambiguities:

Use function prototyping (Porter, 1993; Kernighan, 1978; Hatton, 1994). The ANSI C
standard requires function prototypes with parameter definitions which make it possible to
perform data type checking on parameters (ANSI/ISO 9989-1990, section 6.5.4.3). If there
are no parameters, the parameter list should be declared as void to ensure proper data type
checking. Also when a function has no return value, its type should be declared as v o i d .

The following example shows a function prototype for a function with a return type of
integer and three parameters.

16It may be acceptable to use these ANSI C functions for exception handling as discussed later in this
report.

However, this can be considered an unconstrained call rather than multiple entry points.

NUREG/CR-6463 4-20

/ *
int

/*
int

{

}

function prototype */
Functionl(int first_param,

long second_j?aram,
int third_j?aram) ;

function definition */
Functionl(int first_param,

long_second_j?aram,
int third_j?aram)

int return_value;

return return_value;

A function without a return type and parameters is shown below.

void Function2(void);

void Function2(void)
{
}

/* function prototype */

/* function definition */

Do not use functions that accept an indefinite number of arguments. A function with a
variable number of arguments is difficult to verify. Moreover, the behavior of a function that
accepts a variable number of arguments and is called without a function prototype that ends
with an ellipsis is also undefined (Hatton, 1994; p. 50).

Order parameters so that different data types are alternated. This practice reduces the
chance that two adjacent parameters will be placed in an incorrect order. Judicious use of
structures or classes may reduce the number of function arguments by grouping together
several items of similar kind, e.g., height/ width/ length or row/ column.

Ensure that arguments are of a compatible type with the function prototype. The behavior
of a function called with a function prototype when the function is not defined with a
compatible prototype is not defined in C (Hatton, 1994; p. 50).

Avoid use of variable length argument lists. It is preferable to use default values for function

4-21 NUREG/CR-6463

arguments than to use a variable number of arguments. Exceptions can be made in the case
of p r in t f , scanf, and other similar library functions.18

Test the validity of input arguments at the beginning of a routine and test the validity of the
results before returning from the routine. Such testing is important for avoiding enors that
can compromise the integrity of the system (Kernighan, 1978). An example is shown below.

double value,

/*
if

check for
((value >

result
else
{

}

result;

valid input range
-1.0) && (value <
= acos(value);

/* report input

*/
1.

range error

3))

*/

Range checking inside a function is preferred. The checking in the example above is outside
the function acos because the function is an ANSI C library function and is provided by
compiler manufacturers.

Using byte alignment of compilers}9 Most C and C++ compilers allow programmers to
determine how a variable is aligned in structures and unions. These structures and unions
can be parameters, passed by their pointers, or can be written to files to interface with other
programs. A consistency-of-alignment method should be included in the project software
development guidelines. Byte alignment, which saves resources such as memory and disk
space, should be utilized in small-scale safety systems with limited resources. Using word
alignment or double-word alignment when required by the CPU is acceptable.

Eliminate expressions in parameter passing to subroutines or macros. Since the order of
evaluating parameters is unspecified in the C language (Annex G of ANSI/ISO 9989-1990),
using expressions as parameters raises safety concerns. For example:

short paraml, param2;

However, see the earlier guideline on the use of wrapper functions
19the storage of the adjacent data in the following byte (as opposed to the following word or double word).

NUREG/CR-6463 4-22

functionl(paraml++, param2 = paraml + 1); /* wrong */

The following section of code conects the problem in the above example.

short paraml, param2;

paraml++;
param2 = paraml +
functionl(paraml,

1;
param2);

Eliminate Increment (++) and decrement (—) operators from macro and junction calls.
Removing the increment and decrement operators from macros and functions eliminates the
possibility of undefined expressions. Although they provide a more efficient way of adding
1 or subtracting 1 to a variable, their use in argument lists raises safety concerns. They should
only be used in isolated expressions for incrementing loop counts. Table 4-1 illustrates
problems caused by increment and decrement operators in function calls.

4-23 NUREG/CR-6463

Table 4-1. Examples of Problems Caused by Increment and Decrement Operators
Problem

Unspecified
behavior

Unspecified
behavior

Unintended
change

Problem Syntax and Corrected Syntax

Problem Syntax:
func t ion_ca l l (i++);

Corrected Syntax:
i++;
f u n c t i o n _ c a l l (i) ;

Problem Syntax
func t ion_ca l l ((i++)) ;

Corrected Syntax:
i++; J
f u n c t i o n _ c a l l (i) ;

Problem Syntax:
#define MAX(x, y) (x>y) ? x:y
up_l imit = MflX(++i, j) ;

Corrected Syntax
++i;
up_l imi t = MAX(i, j) ;

.Comment on Problem Syntax

Whether the variable i is increased before the
function call or after is unspecified (Spuler,
1994).

The extra parentheses do not guarantee when
the variable i is increased. The variable still
may be increased before starting the
function_call, or after the function is
executed (Spuler, 1994).

This expression will be expanded by the
preprocessor as:

up_limit = (++i > j) ? ++i : j ;

Variable i could be increased by 2. The first
increment happens at (++i > j); the second
one happens when the comparison is true, and
++i is assigned to up_limit. Depending
upon the values of i and j , i can be
increased by 1 or 2, which is unlikely to be
the intent of the programmer.

Use bit masks, not bitfields. Bit fields and masks are used for reading setting status registers
in hardware and for reporting status to other portions of the system. Bit field assignment is
implementation defined (Section 6.5.2.1 ANSI/ISO 9989-1990). When a bit field is defined
in a program, a compiler can assign any bit(s) to it, either higher bit(s) in a memory or lower
bit(s). This may create interface problems when bit field variables are written to a file and
the file is accessed by another program written in another language or compiled by another
compiler (Porter, 1993; Hatton, 1994). Problems may also be created when the variable is
communicated to another system. Bit field variables should not be utilized in safety systems,
a bit mask should be instead. The following is an example of the use of bit field variables
in which short integers are used to store the value of a send and receive flag.

NUREG/CR-6463 4-24

#define BUFSIZE (1024)
typedef struct comm struct
{

short send_flag short receive_flag
: 1;
: l;

unsigned char buf[BUFSIZE];
};
comm_struct comm_var;
if
{

if
{
}"

(comm_var.send_flag)

(comm_var.receive_flag)

The problem with this code is that should there be a need to port it to another system or
compiler, it us unclear whether the placement of the bits will be properly interpreted by the
CPU during runtime. A better practice is to explicitly place and check bits using a bit mask
as shown below:

#define BUFSIZE (1024)
#define SEND_FLAG (0x01)
#define RECEIVE_FLAG (0x02)
typedef struct comm struct
{

int flag; /* bit 0:
unsigned char buf[BUFSIZE];

};
comm struct comm var;
if (comm_var.flag

if (comm var.flag
{
}

& SEND_FLAG)

& RECEIVE_FLAG)

/*
/*
/*

SEND_

buffer size
bit 0 */
bit 1 */

FLAG, bit 1:

*/

RECEIVE_ FLAG*/

4-25 NUREG/CR-6463

4.1.2.6 Controlled Use of Data Typing

Following guidelines are applicable to both C and C++

Acceptance of data that differ from those intended for use by a program can cause system failures.
The following measures should be taken to reduce data typing errors.

• Limit the use of implementation-dependent types. Data types whose sizes are machine- or
compiler-dependent types should be used with caution. For C, these types are f loa t ,
char, and i n t . Unrestricted use of these data types could cause interface and portability
problems. The utilization of these data types as Input/Output variables or as structure and
union fields should be avoided in safety systems. Data type f loa t should be replaced by
double and datatype char should be replaced by either signed char or unsigned
char. In many cases, data type i n t should be replaced by short i n t or long i n t
if the actual size of these types are known. This data type is used in many built-in function
and procedure calls, as well as in externally developed libraries. Thus, it is not possible to
eliminate i n t from safety-critical code. However, i n t should be used with care, and all
occurrences should be clearly documented. When possible, variables should be declared as
short or long (which are of known size for all machines with a given word length), and
then cast to the required i n t type for interfacing. Though popular, the data type i n t is
not machine- or compiler-independent. If the lengths of implementation-dependent (integer
or floating point) types have an impact on the operation of the software, this must be
documented.

• Minimize the use of type conversions and eliminate implicit or automated type conversions.
In addition to the general guideline to limit the number of explicit conversions, a tighter
restriction should be placed on conversions of pointers. Use of one pointer should not cast
a different type of pointer (Plum, 1991).

• Avoid the use of mixed-mode operations. Operations using multiple data types should be
avoided. If such operations are necessary, they should be clearly identified and described
using prominent comments in the source code. Explicit casts should be used if practical in
order to make the designer's intentions clear.

The following example demonstrates the potential problems:

t d e f i n e BUF_
s i g n e d c h a r
i n t s c a l e ,

_SIZE
c o u n t ,
r e s u l t ;

(32)
i n_buf [BUF_ S I Z E] ;

The reader should note the recommended restrictions on the use of int in the previous paragraph

NUREG/CR-6463 4-26

count =
scale =
result

in
2;
= 2

_buf [0] ;

* count * scale;

Since the range of a signed char type is from -128 to 127, the expression can generate
unexpected results. For example, when count is 127,2 * count is 254 which is -2 as a
signed char variable. The result is -4 after -2 * scale , which is different from the
expected 2* 127* 2 or 508.

The following are two possible corrections:

Correction 1: Changing the variable type

#define BUF SIZE (32)
signed char in_buf[BUF_SIZE];
int count, scale, result;

count = (int) in_buf[0];
result = 2 * count * scale;

/* count is int now */

Correction 2: Casting the variable type

#define
signed

BUF SIZE
char count,

int scale, result;

count =
result

in buf[0];

(32)
in_buf[BUF_SIZE];

= 2 * (int)count * scale;

The first conection approach (changing the variable type) is prefened since it reduces the
type conversion when the variable count is used in multiple places.

Use a single data type in evaluations and relational operations. Expressions involving
arithmetic evaluations or relational operations should have either a single data type or the
proper set of data types for which conversion difficulties are rninimized (Porter, 1993). This

4-27 NUREG/CR-6463

guideline is related to the above discussion on minimization of mixed-mode operations.

Avoid the use of typedef s for unsized arrays. Although legal, such constructs are obscure
badly supported, and enor-prone (Hatton, 1994, p. 75).

Avoid multiple declarations of one identifier with several types. Even if multiple declarations
result in no compiler enors, they may be a source of confusion or even of undefined
behavior.

Avoid mixing signed and unsigned variables. Mixing signed and unsigned variables in
arithmetic and logical operations raises safety concerns and should be avoided in safety
systems. Explicit casts should be used if practical in order to make the designer's intentions
clear. Mixing signed and unsigned variables in arithmetic and logical operations can create
unexpected results (Porter, 1993). A hexadecimal number FFFF is -1 in a signed 16-bit
integer and is 65535 in an unsigned 16-bit integer. This difference can change the outcome
of a comparison and the result of an arithmetic operation. Mixing signed and unsigned
variables in arithmetic operations can also create overflow problems. Table 4-2 illustrates
two problems with mixing signed and unsigned variables.

NUREG/CR-6463 4-28

Table 4-2. Problems in Mixing Signed and Unsigned Variables
Problem

Comparison
problem

Division
problem

Problem Syntax

in t i ;
unsigned in t u i ;
i - - 1 ;
ui = 2;
i f (i > ui)

{
/ * do A * /
}

else
{
/ * do B * /
}

in t i , resul t ;
unsigned in t u i ;

i = - 1 ;
ui = 2;
resul t = i / u i ;

Comment on Problem Syntax

When comparing a signed variable with an unsigned
variable, the compiler will automatically convert the
signed value to an unsigned value. The result is just
the opposite of what the programmer intended to do.
In this example, variable u i needs to be cast as a
signed integer. In some other cases, the signed
variables need to be cast as unsigned variables.
Sometimes, both variables need to be cast as a long
integer. A signed 16-bit variable can be cast as an
unsigned variable only when its value is greater than or
equal to zero (nonnegative number), and an unsigned
16-bit variable can be cast as a signed variable only
when its value is less than hexadecimal 7fff or decimal
32767.

When there is a signed and an unsigned variable in a
division, the compiler will automatically convert the
signed value into an unsigned value. The value -1 will
be interpreted as 65535. The result is 32767, not the
expected 0. To solve this problem, the unsigned
variable u i needs to be cast as a signed variable. In
some other cases, casting the unsigned i n t to
signed may not be correct. The proper solution is to
eliminate mixing signed and unsigned variables in
division operations.

Limit use of indirect addressing. Validation of indirectly addressed data should be performed
prior to setting or using it to ensure the conectness of the accessed locations. Use of void
pointers should be limited.

Do not declare the same identifier for multiple incompatible types. The behavior of a
program using a data type or a function with incompatible types is not defined (Hatton, 1994;
p. 49).

4-29 NUREG/CR-6463

4.1.2.7 Precision and Accuracy

Following guidelines are applicable to both C and C++ |

Safety related software must provide adequate precision and accuracy for the intended application
(IEEE Std-7-4.3.2-1993). At the same time, the software must also tolerate the inconsistencies
emerging from operations on floating point numbers. The following are specific guidelines for C
and C++.

• Use double precision. Data type double should be used for floating point variables in
safety systems. As noted earlier, the f loa t data type should not be used because it may not
provide adequate precision and accuracy and because it limits portability.

• Account for floating point properties in relational operations. The equality comparisons on
floating-point numbers should be avoided in safety systems since the machine representation
of floating-point numbers may lack precision and may have a small residual enor. Inequality
comparisons should be utilized and equality comparisons should be avoided on floating-point
numbers (Porter, 1993; Kernighan, 1978).

The following example demonstrates the potential problems.

double value; /* temporary variable for re turn value */

if (value == 0.0)
.{

/* calculate something */
}

The condition value == o. o in the above example is likely to be false because of rounding
enors, even if the value is expected to be zero. The condition should be modified as follows:

#define FLOATING_POINT_TOLERANCE (0.00001)
if((value < (0.0 + FLOATING_POINT_TOLERANCE)) &fc

(value > (0.0 - FLOATING_POINT_TOLERANCE)))
{

/* calculate something */
}

NUREG/CR-6463 4-30

Account for truncation in integer operations. If a floating-point arithmetic operation can
generate truncation and rounding enors, integer arithmetic may generate such enors more
often. Integer truncation enors are generated by division. In C and C++ languages, the
results of integer divisions are always truncated (e.g. 5/3 = 1). If a result is negative, even
the method of truncation is implementation dependent. The result of - 5/3 can be -2 or - 1 ,
depending upon the compiler. The truncation method that a compiler uses may not be the
same as the truncation method that a developer or a reviewer assumes is being used.
Truncation enors can cause safety concerns when the results with truncation are used in
comparisons and conditions for control decisions. Therefore, a rounding-off technique
should be utilized. A typical rounding-off method is to perform the division in double, add
0.5 to the result, and cast the result back to an integer, as seen in the following example.

long
long
long

int
int
int

result =

result;
total_energy ;
stations;

(long int) ((double) total_ _energy / (double) stations + 0 .5);

However, this rounding off method may apply to positive results only. Whether it applies
to negative results will depend on the combination of how the compiler handles the division
and how a developer wants the rounding off to be performed. The negative results may
require subtracting 0.5 instead of adding 0.5 for rounding off.

Account for optimization. Within the rules of precedence, order of evaluation of
sub-expressions in C is implementation-defined. This may lead to unexpected results in the
presence of optimized code being generated by the compiler. This is especially an issue with
floating point computations. A compiler might replace ((1.0+x)-x) with 1.0 at compile time,
when the floating point rounding enor is what the program is trying to compute. Note that
the above optimization is guaranteed to always be conect for integer types.

Ensure that arithmetic conversion produces a result that can be represented in the space
provided. When conversion or casting is necessary, care must be taken to ensure that enough
memory space is available. For example, if an integer floating-point expression is cast down
or converted to a shorter data type, care must be taken to ensure that the value is
representable in the shorter type (Hatton 1994, pp. 55 and 56).

4-31 NUREG/CR-6463

4.1.2.8 Use of Parentheses Rather Than Default Order of Precedence

Following guidelines are applicable to both C and C++ j

Generic guidelines apply. The default order of precedence of arithmetic, logical, and other
operations varies between languages. Developers and reviewers may make inconect precedence
assumptions when explicit precedence relations are not used, particularly in complex expressions
(Kemighan, 1986). Also, an overloading operator in C++ may change the precedence. (Section
4.1.2.13 for a related discussion.). The following are specific guidelines.

• Use parentheses in bitwise operators. In the C and C++ languages, bitwise operators have
lower precedence than logical operators. Parentheses must be utilized in comparisons and
conditions that have bitwise operators. For example:

if
/*

((I
do

& 0x01) =
something

== (j
*/

0x02))

Use parentheses in comparisons and conditions. Parentheses must also be utilized in
comparisons and conditions that have assignment operators (Plum, 1991) because
assignment operators have lower precedence than logical operators. This is shown in the
following example.

/ * read a key from keyboard */
i f ((key = g e t c h O) == FTJNCTTON_KEYS)
key = ge t chO ;

Use parentheses in macros. Parentheses can be used to protect macros to reduce side effects.
Using macros can make code more readable and can reduce repetitive code. However,
without proper parentheses, macros can introduce side effects, as shown below.

NUREG/CR-6463 4-32

#define square(x)

int delta;
int sqr;

sqr = square(3+delta) ;

X * X

/* problem */

The preprocessor will expand the above expression as:

sqr = 3 + del ta * 3 + de l ta ;

which is equivalent to:

sqr = 3 + (delta * 3) + delta;

This is completely different from the square of 3 + de l t a . The problem shown in the
example is that the macro square (x) is not protected. To ensure that a macro is fully
protected, the expression should be parenthesized as follows:

#define square(x) ((x) * (x))

In some cases, use of parentheses may result in loweij readability. If parentheses are
excessive, then macros should not be used and alternative forms should be employed to
achieve readability.

Ensure that the values of expressions do not depend on the order of evaluation. As noted
above, within the rules of precedence, order of evaluation of sub-expressions in C/C++ is
implementation-defined. Unlike some other languages, for example, FORTRAN, parentheses
in C/C++ only override precedence, and have no other effect on order of evaluation. Where
order of evaluation is critical, for example, in floating point computations, expressions
should be broken up into multiple statements, since the end of a statement is a sequence point
in C/C++, and the ordering of sequence points is guaranteed to be preserved.

4-33 NUREG/CR-6463

Any expression potentially having side-effects, e.g., containing a function evaluation, should
not depend upon order of evaluation. Generally speaking, integer expressions without
side-effects are independent of order of evaluation. Both C and C++ use "short-circuiting"
(Spuler, 1994) in the evaluation of logical expressions. That is, as soon as the final value of
an expression is determined (for example, a zero value in an AND expression is
encountered), the remaining sub-expressions are not evaluated. Other unevaluated parts of
the expression are ignored. Although short-circuiting increases the efficiency of the
evaluation procedure, it may have unexpected results if not used carefully as illustrated in
the following example:

i f (x < y && (ch=getchar()) != EOF)
{

}

4.1.2.9 Avoiding Functions or Procedures with Side Effects

Generic guidelines are applicable.

4.1.2.10 Separating Assignment from Evaluation

Following guidelines are applicable to both C and C++

Generic guidelines apply to C and C++. The following are language-specific guidelines.

• Separate relational and assignment operators. The assignment operator is one equal sign,
"="; the relational operator is a double equal sign " ==". An assignment statement, such as
assign_this = value should be separated from an evaluation expression such as
i f (vaiuel — vaiue2) (Porter, 1993). The following two valid statements (in both C
and C++) illustrate the potential problem:

NUREG/CR-6463 4-34

/*

/ *

Example
while
{
}

Example
while
{
}

1 */
(evaluation = 1)
valuel == value2;

2 */
(evaluation == 1)
valuel = value2;

Example 1 causes an infinite loop in the program because the evaluation occurring
immediately after the while is always true.

If it is not possible to avoid separation of assignment and evaluation statements, the following
mitigating measures should be used:

1. Parenthesize any embedded assignment in an evaluation expression.

2. . Ensure that the order of evaluation does not affect the value of the assignment statement.
This includes accounting for the "short circuit" evaluation mechanism used in C and C++.

4.1.2.11 Proper Handling of Program Instrumentation

Following guidelines are applicable to both C and C++

Generic guidelines apply. Program instrumentation collects and outputs certain internal state values
of a program during execution and allows the developer to ascertain that particular aspects of the
specification have been conectly implemented (Liao, 1991).

4-35 NUREG/CR-6463

4.1.2.12 Control of Class Library Size

The following discussion applies to C++ only

Generic guidelines apply to C++. There are two specific guidelines.

• Limitation of class library size. Limiting the library size minimizes the chance of a system
becoming unmanageable or having large performance penalties because it has too many
classes and objects (Cuthill, 1993).

Avoiding multiple inheritance. Multiple inheritance should not be used in safety systems
(Porter, 1993) because of ambiguities (Cargill, 1992) and maintenance problems (Hatten,
1994). An example of ambiguity is shown below:

class
{

};
class
{

};
class
{

};

file_base

protected:
void Init();

io_port

public:
void Initialization
{

InitO;
}

private:
void Init();

file_io: public file_base, public io_j?ort

public:
file io()
{

InitO; // ambiguous
}

NUREG/CR-6463 4-36

This ambiguity may be detected by some compilers, but it may not be detected by others.

4.1.2.13 Minimizing Use Of Dynamic Binding

The following discussion applies to C++ only

The generic guidelines apply. Binding denotes the association of a variable with a class. Dynamic
binding allows the name/class association to be defened until the object designated by the name is
created at runtime. The unpredictability of the name/class association creates safety concerns,
reduces the predictability of the runtime behavior of an object oriented program, and complicates
debugging, understanding, and traceability.

4.1.2.14 Control of Operator Overloading

The following discussion applies to C++ only

Generic guidelines apply to C++. Operator overloading can improve readability and reduce
complexity by allowing an object behavior to be used for different data types. However, overloading
can also be problematic from the perspective of predictability because the precedence of one operator
may not be consistent (as will be described below). When using operator overloading, the following
guidelines should be followed (Porter, 1993):

• The meaning of an overloaded operator should be natural, not clever (Cargill, 1992.
Binkley, 1995). It is generally recognized that there are advantages to localizing related
elements in a single module. If any of the operators for a class are redefined, the operator's
original meaning should be preserved. That is, if addition operator + is redefined for a class,
the operator should still have the sense of adding something to the class instance. This is a
case where operator overloading is useful for achieving uniformity across data types.

• Operation order should be ensured by parentheses (Porter, 1993; Kemighan, 1978). When
performing floating-point arithmetic, bitwise exclusive OR operator A may be redefined as
an exponentiation operator. However, a bitwise exclusive OR operator has different
precedence than an exponentiation operator.21 When a floating-point exponentiation operator
is overloaded to a bitwise exclusive OR operator, it changes the precedence of such operators
for exponentiation, as seen in the following example.

A bitwise exclusive OR operator has lower precedence than an addition operator while an
exponentiation operator has higher precedence than an addition operator.

4-37 NUREG/CR-6463

double

basel =
base2 =
sum_of_

basel,

= 3.0;
= 4.0;
squares

base2, sum_

= baselA2

°f

0 +

squares;

base2A2
~
0;

Since an addition operator has higher precedence than a bitwise exclusive OR
operator, the compiler will evaluate the expression as:

sum_of_squares = (base l A (2 .0+base2) A 2 .0) ;

which is different from the expected result of 25.0. To get the conect results, parentheses
should be used to keep the precedence of the exponentiation operator, as indicated by the
following:

basel = 3.0;
base2 = 4.0;
sum_of_squares = (basel*2.0) + (base2^2.0);

Explicitly define class operators. Since the default constructor, copy constructor, destructor,
and the operators operators, operators:, and operator<comma> all have default
meanings, they should be explicitly defined in every class. To avoid unwanted implicit calls
to these functions, declare them private (Binkley, 1995).

Ensure consistency of pointer operators. For a class that defines the operators operator->,
operator*, and opera tor!] , ensure the equivalences between p->m, (*p) .m, and
p[0] .m . Otherwise this will avoid unexpected enors when programmers assume the
equivalence (Binkley, 1995).

Ensure consistency of increment operators. For a class that defines the operators
operator*, operator=+, operator++, and operator++ (in t) , ensure the equivalence
of x=x+l, x+=l, and ++x and their relationship to x++. Note that the use of++ is generally
discouraged (Binkley, 1995).

NUREG/CR-6463 4-38

4.1.2.15 Enable and Heed Compiler Warnings

Following guidelines are applicable to both C and C++ |

Both C and C++ are complex enough that programmers should employ all available mechanisms to
create a safe programs. Although relying on compilers alone is not a useful practice, warnings
produced by compilers are a valuable source of information on abnormal and potentially dangerous
parts of the program. All optional compiler warning should be enabled. Every warning messages
should be analyzed carefully.

4.1.3 Predictability of Timing

Predictability of timing is crucial in a safety system used in real time control (Kopetz, 1993;
Leveson, 1994). Some related guidelines were discussed in the previous subsections including:

• Control of class library size (section 4.1.2.12)
• Minimizing dynamic binding (section 4.1.2.13)
• Control of operator overloading (section 4.1.2.13).

Two additional guidelines are:

• Minimizing the use of tasking
• Minimizing the use of interrupt-driven processing.

These additional guidelines are discussed below.

4.1.3.1 Minimizing the Use of Tasking

Following guidelines are applicable to both C and C++ |

Although multitasking provides an attractive model for concunent processing, its use is undesirable
in safety systems for the following reasons:

1. Multitasking creates uncertainties in execution, timing, and resource utilization.

2. C and C++ do not support multitasking. Their standard library functions may not be
reentrant functions (ANSI 9984-1990, section 5.2.3). Using those functions in
multitasking environments may therefore cause unanticipated results.

4-39 NUREG/CR-6463

Tasking requires compelling justification.

4.1.3.2 Minimizing the Use of Interrupt Driven Processing

Following guidelines are applicable to both C and C++ |

Using interrupt-driven processing to handle the acceptance and processing of plant and operator
input can reduce average response time, but usually leads to nondeterministic maximum response
times. If an interrupt-driven processing has to be used, the processing time within interrupt service
routine should be minimized.

When interrupt driven processing must be used, the following guidelines mitigate the associated risk:

• Limit interrupt processing. The code and processing time within the interrapt service routine
should be minimized. Any data checking and data processing should be done after the
interrupt processing. Typically, a circular buffer can be used to store the incoming data
(buffers should be large enough to avoid data overruns).

Limit junction calls. Function calls within interrupt service routines should be minimized,
and only reentrant functions should be called by interrupt service routines. ANSI/ISO C
standard does not guarantee any standard library functions to be reentrant (ANSI/ISO 9989-
1990, section 5.2.3).

For example:

/* data buffer size */
#define BUFSIZE (2048)

/* Buffer index wrap around mask. This wraparound method works only when
the buffer size is a power of 2 */
#define BUF_INDEX_MASK (BUFSIZE - 1)

/* COM port address */
#define COM_PORT_ADDR (0x2f8)

/* COM port interrupt vector address */
#define COM_ISR_ADDR (12)

/* time out in 2 second */
#define TIMEOUT LIMIT (2*CLOCK PER SECOND)

NUREG/CR-6463 4-40

/* local variables */
static int data_in_index;
static unsigned char data_buf[BUFSIZE];

/* local function prototype(s) */
static void Init(void);
static interrupt new_com_isr(void);

/*
Description: This function initializes the COM port, interrupt

vector, and buffer index variables.
input var: none
output_var: none
return: none
global var:

*/
static void Init(void)
{

data_in_index = 0;

/* other initialization */
}

/*
Description : This function is called when there is an RS232 (COM

port) interrupt. It reads a byte from the COM port and
saves it in the data buffer.

input var: none
output var: none
return val: none
global var: data_buf -- new data is save int the buffer

data_in_index -- used and modified.
*/

static interrupt new_com_isr(void) {
data_buf[data_in_index++] = inp(C0M_P0RT_ADDR);
data_in_index &= BUF_INDEX_MASK;
}

main ()
{

int return code = 0;

4-41 NUREG/CR-6463

}

interrupt orig_com_isr;
cloct_t last_time;

/* save the original interrupt service routine address */
orig_com_isr = get_vector(C0M_ISR_ADDR);
data_out_index = 0;
InitO ;

/* set new interrupt service routine */
set_vector(new_com_isr);

last_time = clock ();
while ((clock() - last time) <= TIMEOUT LIMIT)
{

if (data in index != data out index)
{

/* process new data */
data = data_buf[data_out_index++];
data_out_index &= BUF_INDEX_MASK;

/* update time out count */
last time = clock();

}
}
/* restore original interrupt service routine */
set_vector(orig_com_isr);

/* exit this program */
return return_code;

Interrupt routines may be required to handle inputs from external devices, but such routines should
be kept as short and simple as possible. Masking of interrupts, nested interrupts, and interrupt
processing in general all cause non-deterministic behavior. Also, some form of locking or mutual
exclusion may be required when using interrupts.

4.2 Robustness

Robustness refers to the capability of the software to survive off-normal or other unanticipated

NUREG/CR-6463 4-42

conditions, or the degree to which a system or component can function conectiy in the presence of
invalid inputs or stressful environmental conditions (IEEE, 1990). Since unanticipated events can
happen during an accident or excursion, it is vital for a safety system to survive an accident and
continue working. This section discusses the following topics related to robustness:

• Controlled use of software diversity
• Controlled use of exception handling
• Input and output checking.

4.2.1 Controlled Use of Software Diversity

Following guidelines are applicable to both C and C++

The generic guidelines apply to both internal and external diversity. There are no additional
language-specific guidelines.

4.2.2 Controlled Use of Exception Handling

An exception is an event that causes suspension of normal program execution (TEEE, 1990).
Exception handling deals with abnormal system states and input data (TEEE, 1993). This section
discusses guidelines related to the following attributes:

• Local handling exceptions
• Preservation of external control flow
• Uniformity of exception handling.

4.2.2.1 Local Handling of Exceptions

Following guidelines are applicable to both C and C++

The generic guidelines apply. Exceptions should be handled locally.

Propagation of exceptions through several levels of a program can cause the precise nature of the
exception to be misinterpreted at the place where the exception handling is implemented. This cause
of system failure can be avoided if exceptions are handled locally. This section describes suggested
approaches ito local handling of the following types of exceptions: addressing, data, input/output,
overflow/underflow, operation, and protection.

• Addressing exceptions. Addressing exceptions can be caused by an uninitialized or

4-43 NUREG/CR-6463

improperly set pointer. For example, an uninitialized static pointer will have NULL as its
value. Writing to the uninitialized pointer will overwrite system memory which can cause
catastrophic system failure. There is no way to recover from such a condition. Hence,
addressing exceptions must be prevented as described in section 4.1.1.

Data exceptions. Data exceptions can be data-domain enors or data-range enors. Both
categories can occur when calling a library function. After calls to any mathematics
functions in the standard library, the variable errno, which is declared in the e r ro r . h
file, should be checked for possible data exceptions.

Input/output exceptions. Input/output exceptions can be related to files. After a function call
to open a file (fopen). or to seek a location in a file (fseek), the result should be
checked to verify if the function call is successful. Function fopen can fail when the file
does not exist or when the file open mode and the file attributes do not match (e.g., to open
a file in write mode, but the file is read only). Function fseek will fail if the specified
location does not occur in the file. If the function call fails, the program should not continue
without handling the exception condition related to the failure.

Before closing a file, the program should verify whether the file is cunently open to avoid
accidentally closing another stream. If the file is not cunently open, the file pointer is NULL,
and a catastrophic failure may occur. For example, NULL can be interpreted as stream
number 0 which is the keyboard in MS-DOS. Closing a NULL pointer can lock up the
keyboard and disable the user interface. When the system requires a user input, it cannot
receive it because the keyboard is locked. The system cannot do anything until it is reset.

An input/output exception handling example is shown below:

#define DATA_FILE "safety.dat"
#define OPEN_FILE_ERROR "ERROR==>cannot open file %s

FILE *fp;

fp = fopen(DATA_FILE, "w+t");
if (fp == NULL)
{

/* report file open error */
cprintf(OPEN_FILE_ERROR, DATA_FILE);

/* exception handling */

}
else

NUREG/CR-6463 4-44

{
}

/* if the file is opened,
if (fp != NULL)

fclose(fp);

close it */

• Overflow and underflow exceptions. Some overflow and underflow exceptions can also be
checked by examining the variable enor, especially after calling a mathematics library
function. Without checking the variable enor, the result cannot be assumed to be conect.
One of the most common such exceptions is divide by zero. To avoid this condition, the
denominator should be verified as being nonzero before a division is be performed.

• Operation exceptions. Operation exceptions can be race condition, data or address bus busy,
device busy, device idle, or lack of memory. A timer with an expiration time (deadline) is
a technique to handle operation exceptions. For example, there should be a deadline or "time
out" when the system is waiting for a response from a remote station. The action after the
time-out should be well defined.

• Protection exceptions. A protection exception is an abnormal event caused by system locks
on shared resources such as files. An example is that an application is trying to open a file
while the file is locked by another application. When such an exception happens, a retries
should be performed up to a predefined limit. The likelihood of such an exception can be
reduced by opening files only when they are needed, locking only required records rather
than the entire file, or opening a file in the conect mode (i.e. do not open read-write mode
when the operation only requires a file read).

If it is not possible to place exception handling locally, thorough testing and analysis is necessary
to verify the proper behavior of the program in the exception state.

4.2.2.2 Preservation of External Control Flow

Following guidelines are applicable to both C and C++ |

Generic guidelines apply. Interraption of control flow external to the routine in which the exception
was raised creates uncertainty in the execution subsequent to the exception handling. Safety is
enhanced by preservation of control flow external to the module responsible for the exception.
When an exception occurs, the external control flow should be preserved. This requires the module

4-45 NUREG/CR-6463

not only to handle the exception internally, but also to set flags. These flags are used for external
communication. If it is not possible to preserve external control flow, then thorough testing and
analysis should be used to verify behavior.

Asynchronous exceptions can only be handled by catching signals. The effect of handling the
exception in this way can be localized to the module containing the handler, and flags can be used
to communicate the enor to other modules. Additional related comments on the use of
setjmp/longjmp in enor handling are in section 4.1.2.1.

4.2.2.3 Uniformity of Exception Handling

Following guidelines are applicable to both C and C++

Generic guidelines apply. Exceptions should be handled uniformly. Section 4.2.2.1 described the
likely types of exceptions to be encountered in C and C++ and how they can be handled locally. The
following are additional language-specific guidelines on handling exceptions uniformly.

• Rely on signals and traps rather than operating system features for handling of exceptions.
Some commercial real-time operating systems that may be incorporated into safety systems
have additional support for exception handling. However, in order to ensure uniform and
predictable handling of exceptions, these operating system features should be used only as
a last resort in safety systems. It is preferable that signals and traps related to exceptions be
intercepted and handled by the safety software unless the exception handling standard and
methods of an operating system are well documented and understood.

• Use throw and catch in favor of set jmp and longjmp in C++. C uses setjmp and
longjmp in the Standard C library for exception handling purposes. The problem with
these functions is that it is virtually impossible to recover effectively from a complicated
exception condition (Plauger, 1995). However, C++ provides a cleaner exception-handling
mechanism using the throw, catch mechanism (Plauger, 1995). C++ programmers should
make use of this uniform exception-handling mechanism, although compiler
implementations may need to be validated.

4.2.3 Input and Output Checking

Following guidelines are applicable to both C and C++

Generic guidelines apply. A specific guideline relating to the use of pointers for input or output
operations.

NUREG/CR-6463 4-46

Checkpointers before use. Pointers should be checked before use to ensure that the location
from which data are being read is valid. Such checking is shown in the following example:

FILE *fp;

fp = (FILE *) NULL;

fp = fopen(...);

if (fp != (FILE *) NULL)
{
}
if (fp != (FILE *) NULL)
{

fclose(fp);
fp = (FILE *) NULL;

}

/* define a pointer */

/* initialize the pointer */

/* assign the pointer */

/* check the pointer */

/* check the pointer */

/* clear the pointer */

4.3 Traceability

Traceability refers to attributes of safety software that support verification of conectness and
completeness as compared to the software design. The intermediate attributes for traceability are
as follows:

Readability
Minimizing use of built-in functions
Minimizing use of compiled libraries
Utilizing version contiol tools
Utilizing comments and internal documentation

Because readability is also an intermediate attribute of maintainability, it is discussed in Section 4.4.
C and C++ specific guidelines for the latter two attributes are discussed below.

4-47 NUREG/CR-6463

4.3.1 Minimizing the Use of Built-in Functions

Following guidelines are applicable to both C and C++

The generic guidelines apply. C and C++ include built-in functions, sometimes called intrinsic
functions (Koeman, 1995) for frequently used programming tasks in order to maximize programmer
productivity.

The use of those functions raises safety concerns for the following reasons:

1. The requirements for developing those built-in functions may not be the same as those of the
safety systems.

2. The input and output data validation and exception handling may not be the same as that
needed in safety systems.

3. The number of built-in functions may vary from one compiler to another. A function
supported by one compiler may not be supported by another compiler. For example,
compilers for embedded systems generally do not support all ANSI C standard functions.

Because of these concerns, the use of built-in functions should be minimized. When built-in
functions are used, their use should be supported with documented testing and tracking of anomalies.
Although the built-in functions should be minimized in safety systems, it may not be possible to
eliminate all built-in functions because a language is not complete without those functions and some
task may not be able to be performed. When built-in functions are used, only functions in ANSI C
Standard should be called. Wrapper functions should be used for potentially problematic standard
functions (Hatton, 1994).

4.3.2 Minimizing the Use of Compiled Libraries

Following guidelines are applicable to both C and C++ I

The generic guidelines apply. Compiled libraries can be supplied by compiler vendors or third
parties to support input/output operations or mathematical operations which are not defined
constructs within the basic language. All concerns discussed in sections 4.3.1 and 4.4.1 also apply
to compiled libraries. Like built-in functions, the use of compiled libraries should be minimized.
In addition, libraries provided by commercially oriented vendors may not have been developed with
the same safety standards as the project for which they are used. The following are additional
language-specific guidelines.

NUREG/CR-6463 4-48

Ensure that names in externally developed libraries are distinct from those in the compiler
or those developed within the project. Functions with the same names but different
purposes—or even the same purpose and different characteristics—can cause unintended
behavior.

Document all cases of dynamic binding to externally developed libraries. As was noted in
section 4.1, dynamic binding should generally be avoided in safety systems. However, if
dynamic binding with an externally developed library is needed in a safety function, all
should be justified and documented. Each use should be supported with documented testing
and tracking of anomalies.

Ensure that development and runtime shared libraries are identical. Shared libraries, i.e.
those which exist on the target machine and are linked at run time, should be used only if
they are guaranteed to be identical to libraries on the developer's machine.

4.3.3 Utilizing Version Control Tools

Following guidelines are applicable to both C and C++ |

All C and C++ software should be kept under configuration management utilizing version control
tools. Version control tools ask the author to document the changes when he/she makes changes,
thereby rninimizing the possibility of interface enors due to incompatible versions. A good version
control package also provides a comparison utility that allows a user to compare the changes between
source files of any two versions.

4.4 Maintainability

This section discusses the C and C++ specific attributes of the following intermediate attributes
related to maintainability:

Readability
Data abstraction
Functional cohesiveness
Malleability
Portability.

Base-level attributes and specific C and C++ guidelines are discussed in the following sections.

4-49 NUREG/CR-6463

4.4.1 Readability

Readability allows software to be understood by qualified development personnel other than the
author. Readability is an important characteristic of programs, as almost all programs are modified
or debugged by someone other than the original author at some time during the life of the program.
Although readability should in large measure be based on project-specific guidelines, there project-
independent issues that should be addressed. These issues and related guidelines are discussed in
the following subsections.

4.4.1.1 Conformance to Indentation Guidelines

Following guidelines are applicable to both C and C++

The generic guidelines apply. Appropriate indentation facilitates the identification of declarations,
control flows, nonexecutable comments, and other components of source code. Spaces are prefened
to tabs for indentation since tabs may have different spaces on different file editors or printers.
Indentation guidelines are as follows:

• Programming blocks should be bounded with brackets.
Comments should have the same indentation as the objects being described.

• Branching constructs (i.e., i f . . . e l se . . . ; and switch . . . case,)
should be indented.

• Looping blocks (i.e., for , while, and do . . . while) should be indented.
Automatic variables should be indented.

• Compiler directives should be indented.

The following example shows a function with recommended indentation:

NUREG/CR-6463 4-50

top level -->main()
{

/* loop variable */
second level > int i;

/* sub-block */
for (i=0; i<MAX_L00PS; i++)
{

third level > if (...)
{

fourth level >while (...)
{

fifth level > ...
}

}
}

second level > switch
{

t h i r d l e v e l > . . .
}

}

4-51 NUREG/CR-6463

4.4.1.2 Descriptive Identifier Names

Following guidelines are applicable to both C and C++

The generic guidelines apply. The names of variables, routines, macros, and labels should be
descriptive and closely related to the entities that are represented. Short and cryptic names should
be avoided. The single additional guideline relates to variable names. Differences between variables
with related names should occur early within the name (e.g. level2_sensor rather than
sensor_level2). Although the ANSI/ISO C standard only guarantees the number of significant
characters for an internal identifier and macro names to be 32, the number of significant characters
for an external identifier should be limited to 6 (ANSI/ISO 9989-1990, section 5.2.4.21).

4.4.1.3 Comments and Internal Documentation

Following guidelines are applicable to both C and C++ I

The generic guidelines apply. Inadequate comments impede review and maintenance (Kemighan,
1978). The commenting guidelines in Chapter 2 are relevant. The following are additional guidelines
for internal documentation:

• A routine should have a header that describes the input and output variables, the return type
of the routine, the meaning of the return value if there is a return value, referenced and
modified global variables, and an explanation of any arithmetic equations and algorithms in
the routine. It should also document the modules it accesses.

• Comments should be used where subtle prograrnming tricks are used or where critical steps
are executed.

• Nested comments should not be used. When a block of code is no longer used, it should be
removed from the source code to avoid confusion to developers and reviewers. For instance
#if (0) . . . #endif should be used to temporarily comment-out a block of code (Porter
1993). Some compilers have an option that allows nested comments. This option should not
be enabled in safety-system development.

• Use care in mixing comment delimiter styles. Some C compilers allow C++ style comment
"//". When using it in C language, cautions should be taken. A code with ("/* // This is a
comment */") may work with C compilers, but it may not work with C++ compilers.

• The end brackets of loops and if blocks should be tagged with comments.

NUREG/CR-6463 4-52

4.4.1.4 Limitations on Subprogram Size

Following guidelines are applicable to both C and C++ |

The generic guidelines apply. Subroutines should be limited in size, depending largely on project
guidelines. The ANSI/ISO C standard limits are 127 identifiers within the block scope declared in
a block and 31 parameters in a function definition (ANSI/ISO 9989-1990, section 5.2.4.2.1).
Subroutines in C must not exceed these limits.

4.4.1.5 Minimizing Mixed Language Programming

Following guidelines are applicable to both C and C++ |

The generic guidelines have limited applicability. It may be acceptable, necessary, or desirable to mix
C and C++ programs. However, other types of mixed language prograrnming are a safety concern
because (1) they present difficulties for reviewers and maintainers and (2) they cause interface enors
because of different calling conventions and different data representations.

When this practice cannot be avoided, risks can be mitigated by the following measures:

• Physical proximity. Placing the "foreign" language code adjacent to the dominant language
routine with which it interfaces.

• Use of the asm directive. The asm directive should be used where possible to include
assembly code in C. Where separate assembly code must be used, macros should be defined
to hide calling convention details.

4.4.1.6Minimizing Obscure or Subtle Programming Constructs

Following guidelines are applicable to both C and C++ |

The generic guidelines apply. Obscure or subtle programming can generally be characterized as the
use of indirect techniques to decrease the amount of coding or processing time required to achieve
a result. Such coding practices present problems in review and maintenance and hence are a safety
concern.

The guidelines for minimizing obscure or subtle prograrnming are (Kemighan, 1978):

a) Write clearly; do not be too clever,

4-53 NUREG/CR-6463

b) Make it conect before making it faster,
c) Make it clear before making it faster, and
d) Do not sacrifice clarity for efficiency.

When obscure code cannot be avoided (e.g., due to timing or memory constraints), comments should
minimize the impact. The following are specific guidelines for C and C++

Following discussion applies to C

Avoid use of the ?: operator. The ?: operator is another form of the if-then-else
statement. The ?: operator makes the code more difficult to read should be avoided in favor
of the more conventional if-then-else construct.

Use table-driven alternatives when appropriate. The following is an example to determine
the next state of a state-machine with the following state-transition: 0->l, l ->0, 2->3,
3->4, and finally 4->2 (Maguire, 1993). The following three equivalent code fragments
illustrate the effect of chosen language features in the safety and simplicity of the code:

/* option 1 : use of ?: */
((x<=l)?(x?0:l) : (x==4)?2:(x+1))

/* option 2 : use of nested if */
if(x<=l)
{

if(x!=0)
x=0;

else
x=l; }

else
{

if(x==4)
X=2;

else
x=x+l;

}

/* option 3 : use of table-driven selection */

static const nextvalue[]=(1,0,3,4,2)

x = nextvalue[x];

NUREG/CR-6463 4-54

The following discussion applies to C++ only |

Avoid using default parameters to combine junctions. For example, the use of the single
function lookup (char *name, i n t code=-l)— where the value of code determines
whether lookup should fail if name is not found — may not be clear to the reviewer. The
more appropriate way is to define a new function for this purpose. Note that use of default
parameters is acceptable in general (Binkley, 1995).

Avoid complex expressions inside a condition. For example, i f (i&mask==0) is equivalent
to i f (i& (mask==0)) and not to i f ((i&mask)) ==0). In this case the reviewer is
expected to remember the operator precedences to verify the intent of the programmer.
Replace it with long masked_i=i&mask; i f (masked_i==0) (Binkley, 1995).

Maximize the use of the scope resolution operator. The scope resolution operator : : should
be used to indicate explicitly which of a collection of functions or variables is being used.
This includes globals accessed as : : global_yariable (Binkley, 1995).

Avoid pointers to members. They unnecessarily compUcate the code. Use virtual functions or
redesign (Binkley, 1995).

Use the virtual keyword wherever necessary. For a C++ member function declared in a base
class the keyword virtual should be used explicitly in the declaration of the function and all
declarations and definitions of the functions in each derived class (Binkley, 1995).

4.4.1.7 Minimizing Dispersion of Related Elements

Following guidelines are applicable to both C and C++ |

The generic guidelines apply. If related elements of the code are dispersed in a program, this makes
it necessary to refer to multiple locations within a source listing in reviewmg or modifying the source
code. The following are specific guidelines

• Place include directives at the beginning of each program. #include compiler
. directives for header or other files should be located at the beginning of each program. If it

is necessary to include files in the middle of a program, this must be clearly tagged with a
comment.

4-55 NUREG/CR-6463

Place all external function prototypes in physical proximity. External function prototyping
should be in one place, e.g., a header file. Prototypes should not be in each individual file
where the function is referenced. For functions with static scope, the prototypes should be
in the same module where they are defined and used, and the function should be declared as
static.

The following discussion applies to C++ only |

• Segregate base from derived classes. In C++, it is desirable to segregate base classes from
derived classes.

4.4.1.8 Minimizing Use of Literals

Following guidelines are applicable to both C and C++ |

Literals, also called hard-coded numbers or hard-coded strings, are more difficult to identify than
names to which a constant value or a string is assigned at the beginning of the module. Safety systems
should utilize symbolic values (using the const identifier or if necessary, #def ine) instead of
literals that have some extrinsic meaning or that may be changed in the future. The following specific
guidelines apply:

• Parentheses. In safety systems, all expressions for #def ine should be place in parentheses,
even for a single number. The reason for using parentheses on a single number is that
#def ine value may be changed later to an expression and consistency is always desired.
It makes systems maintenance easier. As mentioned earlier, defining a variable with the
const identifier is preferable to #def ine.

• Enumeration. When there are several sequential integer numbers, enumeration constants are
prefened to separate #def ine statements (Porter, 1993). Enumeration makes it easier to
modify when a new number needs to be inserted to the sequence.

For example, in the following statements:

#define templ_sensor (10)
#define flowl_sensor (11)
#define flow2 sensor (12)

The equivalent enumeration constants are:

NUREG/CR-6463 4-56

enum
{

};

instrument labels

templ_
flowl
flow2

sensor
sensor
sensor

= 10,

To add an additional temperature sensor before flowl_sensor, all the numbers after
templ_sensor need to be changed in the #def ine statements. However when using
enumeration only one change is needed: inserting the new label between templ_sensor and
flowl sensor.

The new code will be:

#define templ_sensor
#define temp2_sensor
#define flowl sensor
#define flow2_sensor

(10)
(11)
(12)
(13)

/* add new operation */
/* 11 changed to 12 */
/* 12 changed to 13 */

The equivalent enumeration constants are:

enum
{

};

instrument labels

templ_sensor = 10,
temp2_sensor,
flowl_sensor,
flow2 sensor

/* this is the only change */

If literals are used, comments should be associated to facilitate search and replace efforts.

4-57 NUREG/CR-6463

4.4.2 Data Abstraction

Data abstraction is the combination of data and allowable operations on that data into a single entity,
and establishment of an interface which allows access, manipulation, and storage of the data only
through the allowable operations.

4.4.2.1 Minimizing the Use of Global Variables

Following discussion applies to C |

Generic guidelines apply to C. Because of the potential for unintended side effects, use of global
variables in safety related programs should be limited (Pamas, 1990). Readability is enhanced when
variables are declared, set, and used in the same routine. If global variables are to be used, the
following language-specific guidelines can mitigate the associated safety concerns.

• Keep global variables and associated junctions in the same file. If a limited number of
functions need to share a certain variable, those functions can be included in the same file and
the shared variable given file scope.

• ' Declare global variables in one header file. When a global variable has to be used, it should
be declared in one header file. There should not be multiple reference extern declarations
for a variable. The following example shows how multiple references create maintenance
problems and safety concerns:

static int i;
main()
{

extern int i;
{

extern int i; /* Scope? */
}

}

Initialize global variables in one place. As noted earlier, global variable initialization should
occur in exactly one place in the program.

NUREG/CR-6463 4-58

4.4.2.2 Minimizing the Complexity of Interfaces

Following guidelines are applicable to both C and C++ |

The generic guidelines apply. Interfaces are a frequent cause of software failures (Thayer, 1976).
Complex interfaces are difficult to review and maintain and are therefore not desirable in safety-
related programs. The following are specific guidelines:

• Limit the number of parameters. In the C and C++ languages, the number of parameters of
a function or a macro should be minimized. Large numbers of parameters can make
interfacing complex.

• Use structures. When there many parameters and some of those parameters are related, they
should be defined in a structure, and a pointer to the structure should be passed as a parameter

' to reduce stack usage.

• Avoid expressions in parameter lists. Since the order of parameters being evaluated is
unspecified in the ANSI C standard, the expressions should be eliminated in parameter
passing to a subroutine or a macro, as shown in the following example:

calculate_area(length=2, width=length+2);

Because the second parameter, "width," may be evaluated first when the routine is called, it
may produce an unintended result. A possible conection for the above function call is:

length = 2;
width = length + 2;
calculate_area(length, width);

4.4.3 Functional Cohesiveness

Cohesiveness is the manner and degree to which the tasks performed by a single software module are
related to one another (IEEE, 1990). Functional cohesiveness refers to a clear conespondence
between the functions of a program and the structure of its components.

4-59 NUREG/CR-6463

Following guidelines are applicable to both C and C++ I

The generic guidelines apply to C and C++. Review and maintenance are when a given function
implements only one well understood purpose.

Following discussion applies to C++ only |

The rationale for the design of class libraries should be obvious and related to the objective. Objects
defined in C++ should have a single identifiable purpose. Specific guidance is a design level issue
which is beyond the scope of this document.

4.4.4 Malleability

Following guidelines are applicable to both C and C++ I lg guidelines are appi

MaUeability is the ability of a software system to accommodate changes in functional requirements
(Pamas, 1990). Malleability extends data abstraction with the motivation toward isolating areas of
potential change. The generic guidelines apply to both C and C++. There are no additional language-
specific guidelines.

4.4.5 Portability

Portability is the ease with which a system or component can be transfened from one hardware or
software environment to another (IEEE, 1990). From the perspective of safety, the benefits of
portability are the adherence to standard prograrnming constructs that yield predictable and consistent
results across different operating platforms (Witt, 1994). Thus, code that is reused or converted to
run on a different platform will be easier to maintain and will be more exhaustively tested.

The following portability-related guidelines relevant to C and C++ have been discussed previously:

Minimizing the use of built-in functions (section 4.3.1)
Minimizing the use of compiled libraries (section 4.3.2)
Minimizing interface ambiguities (section 4.1.2.5)
Minimizing dynamic binding (section 4.1.2.12)
Minimizing the use of tasking (section 4.1.3.1)

lg the use of interrupt driven-processing (section 4.1.3.2).

NUREG/CR-6463 4-60

The following additional specific guidelines will be discussed in this section:

• Minimizing anonymous data types
• Avoiding reserved words and keywords
• Minimizing hardware dependencies.

4.4.5.1 Minimizing Platform-Dependent Data Types.

Following guidelines are applicable to both C and C++ |

This topic has been partially discussed in previously (section 4.1.2.6 Use of Data Typing).
Implementation-dependent data types may create problems across different platforms or compilers.
The related guideline discussed in that section is the use of the integer and floating point data types.
A typical example of this data type is i n t , which is 16 bits in some compilers and 32 bits in others.

4.4.5.2 Avoiding Reserved Words

Following guidelines are applicable to both C and C++ I

The following are portability-related guidelines on the use of reserved words in C and C++:

• Avoid underscores. Identifiers with starting underscore or underscores should not be used.
According to the ANSI C standard ((ANSI 9989-1990), section 7.1.3) all identifiers that begin
with an underscore and either an uppercase letter or another underscore are always reserved
for any use. Identifiers that begin with an underscore are reserved for use as identifiers with
file scope in both the ordinary identifier and tag name spaces. Identifiers starting with double
underscores LIKE_THIS and identifiers starting with an underscore and followed by an
upper case letter _SUCH_AS_THIS are reserved words. Identifiers starting with an underscore
_ l i k e _ t h i s are reserved for file scope variables. C++ reserves identifiers with double
underscores for implementation and libraries. Using identifiers with starting underscore and
double underscores can cause unspecified results if they are reserved words (such identifiers
can also cause unspecified results later even if they are not reserved words for the cunent
revision of the compiler).

• Avoid use of C++ keywords even though that language is not used. C programmers should
avoid using names that are keywords in C++ since C programs may later be converted to C++
programs. Examples are catch, c l a s s , de l e t e , f r iend, i n l i n e , new,
operator , p r iva t e , protected, publ ic , template, t h i s , throw, t r y ,
and v i r t ua l .

4-61 NUREG/CR-6463

• Do not use the names of functions in the standard library. The names of the functions in the
standard library should be treated as reserved words (Plum, 1991).

4.4.5.3 Minimizing Hardware Dependencies

Following guidelines are applicable to both C and C++

Define hardware-dependent address symbolically. In a control system, it may be possible to
avoid directly accessing hardware by means of a vendor supplied device driver. However,
it may be necessary or desirable for the safety system software to directly interface to the
hardware for the purposes of traceability. If writing to hardware is necessary, the addresses
should be clearly documented and defined in a manner that minimizes the possibility of
change enors. This may be using symbolically as defined earlier in this section (or by means
of class definitions (in C++) for potential future changes.

Use volatile attribute for data items that are mapped to hardware. Data items that are
mapped to actual hardware must have the v o l a t i l e attribute. This attribute ensures that
the compiler will not use optimization and leave the value in a CPU register, but will read it
from the memory location each time it is set or used (Harbison, 1987, p. 265). The rationale
for the use of volatile is that the value may have changed since the last time it was set or used
by the CPU (e.g., a bit set to busy subsequently was set to not busy). When such an item is
referenced, its pointer should be a pointer-to-volatile.

Avoid the use of bit fields. Bit fields are dependent on the compiler and the "little-endian/big-
endian" nature of the CPU. They should therefore not be used. Shifting and masking should
be used instead. Additional guidelines on the use of bit masks in place of bit fields are found
in section 4.1.2.5.

Do not measure time intervals by counting clock cycles. Generating delays by counting clock
cycles should also be avoided since the timing of a clock cycle can will differ on a different
platform.

NUREG/CR-6463 4-62

References

American National Standards Institute, ANSI C Standard, American National Standard for
Programming Languages—C, ANSI/ISO 9899-1990.

Binkley, D.W., "C++ in Safety Critical Systems", NIST-IR 5769, National Institute of Standards
and Technology, November, 1995.

Cargill, T., C++ Programming Style, Addison Wesley, 1992.

Chillarege, R., "Orthogonal Defect Classification", IEEE Transactions on Software Engineering,
1992.

Cuthill, B., "Applicability of Object Oriented Design Methods and C++ to Safety Critical
Systems", Proceedings of the Digital System Reliability and Nuclear Safety Workshop, NUREG
CP-0136, NIST SP 500-216,1993.

U.S. Department of Defense, Software Development Standard, MIL-Std-2167A, August, 1986,
Appendix C.

Eckel, B., "Exception Handling in C++", Embedded Systems Programming, Vol.8, No.l, January,
1995.

Harbison, S.P., and G.L. Steele, C: A Reference Manual, Prentice Hall, Englewood Cliffs, NJ,
1987

Institute of Electrical and Electronics Engineers, IEEE Std 100-1977, IEEE Standard Dictionary
of Electrical and Electronic Terms.

Institute of Electrical and Electronics Engineers, IEEE Std 610.12-1990, IEEE Standard Glossary
of Software Engineering Terminology.

Kemighan, B.J and P. J. Plauger, The Elements of Programming Style, Second Edition, McGraw-
Hill, New York, 1978.

Koeman, S. and S. Ross, "Optimize Your Code to Run Faster and Jump Higher with the Visual
C++ 2.0 Compiler," Microsoft Systems Journal, 1995.

Liao, Y., "Requirements Directed Automatic Instrumentation Generation for Program Monitoring
and Measuring," In IEEE Transactions on Software Engineering, 1991.

Meek, B.L., "Early High-Level Languages," In Software Engineer's Reference Book, J.D.
McDermid, ed., CRC Press, Inc., 1993.

4-63 NUREG/CR-6463

Pamas, D.L., A.J. van Schouwen, and S.P. Kwan, "Evaluation of Safety Critical Software,"
Comm. ACM, Vol. 33, No. 6, p. 636, June, 1990.

Plauger, P.J., "Under Construction", Embedded Systems Programming, Vol.8, No.4, Apr. 1995,
pp. 125-128.

Plum, T. and D. Saks, C++ Programming Guidelines, Plum Hall, 1991.

Porter, A., The Best C/C++ Tips Ever. Osborne McGraw-Hill, New York, 1993.

Spuler, D.A., C++ and C Debugging, Testing, and Reliability, Prentice Hall, Englewood Cliffs,
New Jersey, 1994.

Thayer, R., "Software Reliability Study," Rome Air Development Center report RADC TR 76-
238, March 1976.

Witt, B.I. and F.T. Baker, and W.W. Merritt, Software Architecture and Design, VanNostrand
Reinhold, New York, 1994.

NUREG/CR-6463 4-64

5 PLC Ladder Logic
This chapter discusses use of Programmable Logic Controller (PLC) Ladder Logic in safety systems.
The chapter is organized in accordance with the framework of Chapter 2. Section 5.1 discusses
reliability-related attributes of PLC Ladder Logic; Section 5.2 discusses robustness-related attributes
of Ladder Logic; Section 5.3 discusses traceability-related attributes; and Section 5.4 describes
maintainability-related attributes. A summary matrix showing the relationship between generic and
language specific guidelines, together with weighting factors, is included in Appendix B. Language-
specific weighting factors were based on the special nature of the language with its industrial contiol
and hardware orientation together with limited data types.

At present, Ladder Logic is the principal problem solving (application) language for PLCs22.
Although programming considerations are largely common, the variety of PLC models and the
absence of a single standard that unambiguously defines Ladder Logic complicate the issue of
defining some guidelines and providing examples. Most of the programming examples in this
chapter and Appendix A use the Allen Bradley PLC-5 variety of Ladder Logic. However, the use of
this PLC as an example should neither be interpreted as an endorsement or criticism of that product
line.

5.1 Reliability

The reliability of a PLC Ladder Logic program means its ability to perform its required functions
under stated conditions for a specified period of time (IEEE, 1990). Reliability depends on the
runtime predictability of the following:

• Memory utilization
• Control flow
• Timing.

PLC Ladder Logic-specific guidelines are described in the following sections.

5.1.1 Predictability of Memory Utilization

The key element in predictability of memory utilization is to avoid the use of dynamic memory
allocation. However, PLC Ladder Logic does not specifically allow for dynamic memory allocation.
In general, memory required by the program is static at runtime. For each variable that the program

A PLC is a special purpose computer for industrial control applications. More complete descriptions of
both PLCs and the Ladder Logic programming language are provided in Appendix A.

5-1 NUREG/CR-6463

uses, there is a specified memory location in a data table file. Each program is stored in a program
file whose size is determined during compilation or translation. Thus, the generic guidelines are not
relevant for Ladder Logic programs.

The only memory allocation that is not defined prior to runtime is memory utilization by the
"operating system" (PLC firmware) for stack and queue purposes. However, this memory allocation
is beyond the scope of the PLC Ladder Logic controller. In general, stack allocation should not be
a cause of program crashes due to restrictions imposed by the Ladder Logic programming
environment. In some PLC models these restrictions are limits on the number of parameters passed
to a subroutine or on nesting levels, in other PLC models, other controls are used. The intent of these
is to prevent the PLC programmer from causing failures due to memory management problems.

5.1.2 Predictability of Control Flow

Predictabihty of control flow is the capability to determine easily and unambiguously what path (i.e.,
which set of branches and in what order) the program will execute under specified conditions. This
subsection discusses guidelines related to the following attributes:

• Maximizing structure
• Minimizing control flow complexity
• Initializing variables before use
• Single entry and exit points for subprograms
• Minimizing interface ambiguities
• Use of data typing
• Accounting for precision and accuracy
• Order of precedence of arithmetic, logical, and functional operators
• Avoiding functions or procedures with side effects
• Separating assignment from evaluation
• Proper handling of program instrumentation
• Controlling class library size
• Minimizing use of dynamic binding
• Controlling operator overloading.

5.1.2.1 Maximizing Structure

The generic guidelines apply. Use of goto or equivalent statements resulting in an unstructured shift
of execution from one branch of a program to another should be avoided because such programs are
difficult to trace and understand.

Ladder Logic language allows the programmer to use goto statements. In Ladder Logic language,
there is no mechanism to force the programmer to develop a structured program. A sample use of

NUREG/CR-6463 5-2

the goto (JMP) command is shown in Figure 5-1. Whether goto statements should be banned in a
project depends on the characteristics of the selected PLC. Some versions of Ladder Logic allow the
maximization of structure by the use of block stractured code and calls to subroutines. When
available, these constructs should be utilized.

However, not all PLC Ladder Logic
implementations support subroutines,
especially in smaller models. Fewer still
support parameter passing to subroutines or
subroutines with local memory. In the case
of a PLC without subroutine support, the
jump to label illustrated in Figure 5-1 may
be the only mechanisms available to provide
control flow over program segments.

If goto statements are used, it is necessary to Figure 5-1 Use of goto.
justify why such statements are needed and
why alternative prograrnming methods could
not be used. The following specific guidelines are applicable if the goto (or JMP) is used:

• Use watchdog timers or scan counters with backward jumps. The PLC does not limit
direction, so that the program can jump backwards. This backward movement could result
in an internal watchdog timer expiration, causing the PLC to enter a fault state. This is
another reason to require a timer or a scan counter to protect the integrity of the program (see
guidelines below).

• Ensure that data initialization has occurred before making the jump. Since logic between the
JMP and the LBL instructions are not scanned by the PLC, data table words and bits can be
left in an non-initialized state. This could breach a safety-critical application.

5.1.2.2 Minimizing Control Flow Complexity

The generic guidelines are applicable. The control flow in Ladder Logic is controlled by "if. .then"
structures, making it is easy to predict run-time behavior of a single statement. Even a relatively
complex control flow structure, as shown in Figure 4.2, is reviewable in PLC Ladder Logic.
However, it is not always so easy to predict behavior on the program level, when many rungs are
involved. A further complication is the complexity/feature set of the specific Ladder Logic
implementation being used. There are significant differences in various models of PLCs.

The specific guidelines related to control-flow are as follows:

• Decomposition. The Ladder Logic program should be subdivided into cohesive subroutines.

5-3 NUREG/CR-6463

Nesting level limits. Care should be taken to ensure that nesting levels are not excessive. The
maximum nesting level may be defined on a project-specific basis. For some PLCs, there is
a limit on the maximum number of levels.

Figure 5-2 Sample of "complex" control stracture.

Limitation for use other than Booleanfunctions. PLC Ladder Logic should be limited to its
primary intended purpose, i.e., interlocks and other Boolean applications. The above diagram
is a good example of how Ladder Logic used in such a manner can be quite clear and easy to
understand, even when expressing a complex boolean relationship. The same cannot be said
for the use of Ladder Logic for mathematical functions or other purposes. In such cases, the
code can be more complex and difficult to understand. If Ladder Logic is needed for such
code, extensive documentation is necessary to make its purpose clear in a production system.

Impact of the underlying PLC data base. Predictability of the behavior of entire PLC
programs depends not only on the Ladder Logic program itself but also on the interaction with
the PLC data base. It is not unusual for PLC programs to consist of dozens of rungs of logic
applied to a single global variable base. There is a significant potential for programming
enors. Proper and strict management of this variable base, or PLC memory map, and
adherence to a methodology for using these variables are required for the safe programming
of PLCs. These guidelines are discussed later.

NUREG/CR-6463 5-4

5.1.2.3 Initialization of Variables Before Use

Proper variable initialization is critical for Ladder Logic programs. However, the generic guideline
is applicable in a manner somewhat different from other high-level languages because of the
differences in which initialization must occur in different Ladder Logic implementations. The
following are specific guidelines.

• Initialization of variables in Ladder Logic programs. Where supported, variables should be
mitialized in the Ladder Logic code. Explicit mitialization of variables in Ladder Logic, or
any of the other PLC Languages, is one of the requirements of the IEC 1131-3 PLC Language
Specification. Unfortunately, few if any cunently available PLC systems support this concept
at the source code level. It is anticipated that the feature will become more common in future
implementations.

• Initialization at program load time. Many, but not all, PLC development environments allow
the programmer to set initial values for PLC variables, which are then subsequently uploaded
to the PLC. Others simply initialize the variable pools to zero. Both the PLC programmer
and auditor should be aware of how the particular PLC system chosen for a safety-critical
application operates in this regard, which should be noted in the PLC program documentation.
Relying on the development environment to upload initial values of variables does not
automatically ensure that all variables were conectiy mitialized. Also, the programmer
normally has the capability to initialize the data table files manually, not through explicit
assignment in the Ladder Logic program.

• Initialization at power up. Initialization should be performed every time the system is
powered up, restarts operation, or recovers from a failure. An mitialization subprogram can
handle all the program mitialization issues, not only variables, when the PLC is turned into
RUN mode. This procedure is recommended unless other means for ensuring conect
initialization are in place.

The following is an example of initializing some words to an explicit value (e.g, the boiling
point of a liquid) into the calculation:

|._ | |

Move
Source:
Dest:

-MOV
232 N7:10
232

5-5 NUREG/CR-6463

Another example is the executive program that calls an mitialization subroutine shown in
Figure 5-3. Many PLCs have a mechanism similar to the SYSTEM_INITLAL shown in the
figure: a flag from the operating system signals the first scan of the PLC. Some PLCs further
distinguish this first scan as a either a Cold Start, when mitialization of variables may be
necessary, or a Warm Start, in which all variables have successfully retained their values since
the. PLC was powered down. Specific mitialization actions are required in these
circumstances, depending on the application. However, critical variables should be explicitly
initialized in the program in a start up scan subroutine.

Accountingfor mode changes. Initialization may also be a concern when an operator changes
the mode of operation. The program should not rely on assumed prior conditions to initialize
after a mode change.

5.1.2.4 Single Entry and Exit Points in Subprograms

The generic guidelines apply. Ladder Logic implementations supporting subroutines generally allow
only a single entry point to those subroutines. When the program jumps to such a subroutine, the
entry point will always be the first rung. However, Ladder Logic allows the use of multiple exits by
placing a RETURN rung at different locations along the execution path. An example of multiple
exits is shown in Figure 5-4; an equivalent program with a single exit is also presented. It should be
noted that the end of program statement acts as a RETURN rung so that it is not necessary to
explicitly include one. When passing parameters, however, the program needs the RETURN
statement complete with the parameter return address.

In the case of a PLC system without explicit subroutine support, it is even more critical that all
subprograms (implemented with JMP to label) have a single entry and exit point. Not only will this
simplify understanding of the program, but it will also contribute to conect operation. On many PLC
systems, overlapping or nested JMP commands could cause counter-intuitive and difficult-to-
understand results at run time.

Guidelines for a single exit requirement can be established in the programming manual. Use of
multiple exit points may be justified by the developer by showing that a single exit causes more
problems than it fixes. When using multiple exit points, it is necessary to ensure that the state of the
data tables will be unambiguously known at all exit points.

NUREG/CR-6463 5-6

File #2 MAIN Proj:XXXXXXXX Page:YYY 14:46 12/07/94

SUBROUTINE: MAIN - REVISION 1

On the first scan of the program, INITIALIZE subroutine is called
to set all programmable parameters. It sets the variable SYSTEM_INITIAL
high for one additional scan. READ STATUS subroutine is called
to provide the required information to INITIALIZE subroutine.

SUBROUTINE: INITIALIZE

INPUTS: N 1 4 : l
N 1 4 : l / 5
N 1 4 : l / 6
N 1 4 : l / 7

SYSTM_STAT_WORD
INFORMATION1
INFORMATION
INFORMATIONS

RETURN:

N14:l/10 SYSTEM_INITIAL
S:l/15 PLC-5 performing First Scan

N14:1 SYSTM_STAT_WORD
N14:l/10 SYSTEM_INITIAL
N14:l/12 A_OR_B_LOGIC
N14:2 CABINET_NUMBER
N14:3/0 LMP TST PROCESS

A masked move is used to pass the first 8 bits of word N14:0 to word
N14:l SYSTM_STAT_WORD. This is to prevent overwriting other status
bits that are stored in N14:l.

PLC-5
performing
First
Program Scan

S:l/15
READ_STATUS

-JSR

SYSTEM_INITIAL
N14:l/10
H r-

JUMP TO SUBROUTINE
FILE #: U:25
INPUT PAR:
RETURN PAR: N14:0
RETURN PAR: N14:4

SYSTM_STAT_WORD
—MVM
-I MASKED MOVE
SOURCE: N14:0

0
MASK: OOFFh

OOFFh
DEST: N14:l

0

INITIALIZE_SBR
JSR

HJUMP TO SUBROUTINE
FILE #: U:15
INPUT PAR
INPUT PAR
RETURN PAR
RETURN PAR
RETURN PAR

N 1 4 : l
S : l

N 1 4 : l
N14:2
N14:3

Figure 5-3 Use of an initialization subroutine.

5-7 NUREG/CR-6463

—SBR
SUBROUTINE
INPUT PAR: N10:0
INPUT PAR: N10:l

INPUTJL
N10:0/0

OUTPUT
N10:4/0

()
-RET-

RETURN ()
RETURN PAR: N10:4

INPUT_2
N10:l/0

OUTPUT
N10:5/0

()
-RET-

RETURN ()
RETURN PAR: N10:5

-[END] —

ALTERNATIVE SINGLE EXIT PROGRAM

-SBR-
SUBROUTINE
INPUT PAR: N10:0
INPUT PAR: N10:l

INPUT_1
N10:0/0

OUTPUT
N10:4/0

()

INPUT_1 INPUT_2
N10:0/0 N10:l/0

— I / I 1 I —
OUTPUT
N10:4/0

()

-RET-
RETURN ()
RETURN PAR: N10:4

-[END]-

Figure 5-4 Ladder Logic multiple RETURN.

NUREG/CR-6463 5-8

5.1.2.5 Minimization of Interface Ambiguities

The generic guidelines have limited applicability. Interface enors account for a significant portion
of coding enors. Unfortunately, Ladder Logic has limited support for avoiding such enors. The
following are specific measures that can be used:

• Validity checking: The prefened approach is testing for the validity of input arguments
before they are passed to the data table addresses used by the subroutine. Typically, such
validity checking would be a range check done in the rung previous to the subroutine jump
(JSR) call. As an alternative, it can be done at the beginning of the subroutine. In the
example in Figure 5-4, each input parameter is in the range [0,1], but is stored as a 16-bit
integer. A validity test is required to verify if the actual input is limited to the valid range.

• Comments. Internal comments and documentation of interfaces are important to avoid
interface ambiguities and enors.

• Type Checking. Type checking can be used to detect some basic types of interface
incompatibilities. However, it is the least effective since most variables are integers.

5.1.2.6 Use of Data Typing

The generic guidelines have limited applicability. In general, most Ladder Logic implementations
are weakly typed. It is therefore not possible to gain the advantages of strong data typing. The
following are specific guidelines.

• Ensure that the data table properly accounts for variable types. The data tables must be
constructed to account for the differing lengths and storage characteristics of data types. For
example, in the TSX PLC line sold by AEG/Schneider, identifiers W3, DW3, and FW3 all
refer to the same location in memory, but are treated as a 16-bit integer, a 32 bit integer (in
conjunction with the next location, W4), or a 32-bit floating point value (again with W4)
respectively. Care must be taken, in the event that DW3 is used as a 32 bit integer, that
neither W3 nor W4 is used as 16-bit integers elsewhere in the program, as this would result
in corrupted data. Data types supported by the Allen Bradley PLC5 line are floating point,
integer, binary, BCD/HEX, and ASCII. A problem can exist in certain instructions where the
result of a calculation is incompatible with the resulting data table constructs, such as a
negative integer being written into a BCD (or decimal) data table area. In this case, the data
would be stored inconectly, which could result in a latent failure that would be manifested
subsequently. However, should the number being written into the resulting word be too large
in quantity, and a file type instruction is being used, the risk exists that the PLC will fault
(typically, a 'BAD OPERAND' fault would occur) immediately.

5-9 NUREG/CR-6463

Ensure that type conversion will not result in an error. For example, a floating point word/file
transfer to an integer data type will result in rounding, and in fact, some floating point words
may be truncated.

Develop project-specific guidelines. The nature and extent of data typing varies from PLC
implementation to implementation. It is therefore imperative that project-specific guidelines
on the use of available data types and appropriate safeguards be developed. These guidelines
should reflect specific PLC characteristics, and compliance with these guidelines should be
monitored.

5.1.2.7 Precision and Accuracy

The general guidelines are applicable. The specific guideline is to ensure that the accuracy required
by the algorithm is supported. Most Ladder Logic programs handle integer and bit variables.
Algorithms that require floating point arithmetic must be analyzed on a case by case basis to verify
that the processor and language provide the accuracy required by the algorithm.

5.1.2.8 Order of Precedence of Arithmetic, Logical, and Functional Operators

Ladder Logic implementations vary in how they handle order of precedence in arithmetic and logical
expressions. Many implementations perform arithmetic operations by means of dedicated ADD,
SUBTRACT, MULTIPLY and DIVIDE blocks, etc, as illustrated in the Allen-Bradley and Modicon
example programs illustrated here. These blocks only accept a predetermined number of parameters,
and so order of precedence is not an issue in systems of this type.

Other PLC systems do allow complex mathematical statements by means of'operation blocks' or
compute and transfer (CPT) blocks. Here, the order of precedence of arithmetic operators can be an
issue. Unfortunately, there is no consensus among PLC implementations of this type as to the order
of precedence of arithmetic operators. Hence, the liberal use of parenthesis (when available) is
recommended to force the desired execution order. An example follows:

10,0 r OPERATE n

r , , {_ :i_: Jl
I I

: 1 : (W1+W2/W3)*(W53(W3))/W34->W34

The operate block in this Ladder Logic example contains the complex expression footnoted as :1:.
In the case of the Allen Bradley PLC5 controller, a complex expression in a COMPUTE (CPT) block
instruction can also be entered. As an example, a unit conversion could be done in one CPT block
[(N7:0*2) - 32]. Again, parentheses are needed. Order of evaluation of expressions on systems that

NUREG/CR-6463 5-10

support this type of construct will vary by make and manufacturer. In this instance, order of
evaluation of the calculations was explicitly indicated by the use of parentheses. Both the
programmer and the auditor should be aware of what the requirements are for the specific PLC
system used.

Order of execution of logical elements is controlled by the Ladder Logic network itself. Whereas all
Ladder Logic implementations execute each network of Ladder Logic sequentially, the order of
execution of each network of logic varies from implementation to implementation. The specific
nature of the PLC system used in a safety-critical application must be explicitly known by both the
programmer and auditor. Use of Ladder Logic constructs that depend for their conect operation upon
the specific nature of the Ladder Logic network execution order should be avoided.

5.1.2.9 Avoiding Functions or Procedures with Side Effects

Generic guidelines are applicable.

5.1.2.10 Separating Assignment from Evaluation

Some Ladder Logic implementations do not allow external assignment or even expression evaluation
as part of conditional statements. On these systems, conditional statements are restricted to simple
variable comparisons, and the generic guidelines do not apply.

However, expression evaluation within comparison blocks is allowed on many PLC systems. For
example, on the Allen Bradley PLC5, the CMP instruction accepts expressions for data comparisons.
The Modicon 984 line has no separate compare instruction, but utilizes a side effect of the subtract
block to implement comparison functions. On these systems, it is not possible to separate assignment
from evaluation of conditional statements.

In such cases, the specific guidelines are as follows:

• Use buffer variables or output coils. A conditional statement in a PLC requiring an
assignment should use a designated dummy variable as a buffer. This variable is used for no
purpose other than as a memory buffer for unwanted assignments. This practice is easily
auditable, and prevents confusion of assignment and evaluation of conditionals. Many (but
not all) PLCs require that each network of Ladder Logic contain an output coil, even though
the boolean result of the network is meaningless in the context of the application.

• Develop project-specific guidelines for separating assignment from evaluation. The features
and functionality of the PLC system used for a safety critical application regarding the
separation of assignment from evaluation should be documented and conformance should be
monitored.

5-11 NUREG/CR-6463

5.1.2.11 Proper Handling of Program Instrumentation

The generic guidelines described in Chapter 2 are applicable. The following are specific guidelines.

• Do not perform on-line modification. Most PLCs provide a facility that allows the
modification of the PLC program while the PLC is executing that program. The operational
consequences of utilizing this feature during operation can be quite dangerous. First, a
programmer could accidentally introduce enors into a running PLC program by using this
feature. Secondly, the added communications load on the PLC processor during the program
change transfer could also result in delays that prevent needed actions from happening in
time.

• Do not activate on-line monitoring facilities for time critical operations. There should be no
use of debuggers, instrumentation, or monitors during PLC operation of time-critical
functions unless such monitoring is part of the baseline design and its impact on timing has
been accounted for. If such monitoring is necessary, it should be done in an off-line mode or
using a simulator/emulator. If operations are not time critical, then on-line monitoring may
be performed, but with caution and only under conditions where it can be guaranteed that
monitoring of non-time-critical functions will not affect time-critical functions.

5.1.2.12 Control of Class Library Size

Ladder Logic does not support classes and objects. Therefore, the generic guidelines are not
applicable.

5.1.2.13 Minimizing Dynamic Binding

Ladder Logic does not support dynamic binding. All structures must be defined by the programmer
before compilation. Therefore, the generic guidelines are not applicable.

5.1.2.14 Control of Operator Overloading

The generic guidelines are not applicable. Ladder Logic prohibits operator overloading and does not
support polymorphism.

NUREG/CR-6463 5-12

5.1.3 Predictability of Timing

Predictability of timing is crucial in a safety system used in real-time control. Timing-specific
concerns relevant to PLCs include:

• Minimizmg the use of tasking
• Minimize the use of interrupt-driven processing
• Input/output timing
• Avoidance of self-modifying code

5.1.3.1 Minimizing the Use of Tasking

While some PLC systems do not support multitasking in any form, many support it either implicitly
or explicitly. Implicit multitasking occurs where only one Ladder Logic program can be run, but the
firmware manages handling the Ladder Logic program scan, remote I/O scan, block data transfers,
and other communications asynchronously (i.e., each as an independent task). Limited multitasking
allows the PLC programmer to create a timed interrapt, a distinct Ladder Logic program (or section
of Ladder Logic code) designated to be executed at fixed intervals (usually expressed in msec),
regardless of the state of the main program. Other PLCs have complete multitasking capabilities,
with each task having a defined periodicity and separate I/O scan.

The generic guidelines on minimizing the use of tasking apply at the application level. Where
multitasking is supported, caution and prudence must be exercised. The decision of whether or not
to use explicit multitasking (i.e., the simultaneous running of multiple Ladder Logic programs in a
single PLC) should not be taken lightly. Multitasking is an attractive programming model and may
be simpler at the application level than coding a single task to perform the same functions. However,
worst case execution times, latencies, and coordination of data access may introduce uncertainties
that are unacceptable in safety applications. System-level alternatives, such as the use of multiple
PLC's should be considered if design of a single task is unduly complex.

Specific guidelines for PLC multitasking are as follows:

• Account for processing capacity. The PLC program must limit PLC CPU utilization and
provide generous margins to account for variation. CPU bandwidth usage should be explicitly
calculated and shown to be within specified margins. The results of these calculations should
be included in the PLC documentation along with the periodicities of the various tasks
derived from them. Manufacturer's guidelines for CPU bandwidth utilization should be
striptly followed. For implicit multitasking, the Ladder Logic application should allow a
sufficient margin for PLC firmware overhead tasks and for variations in scan times due to
hardware latencies. Where explicit multitasking is used, margins must also include variations
in the application tasks. For example, a 10 msec timed interrupt task may normally execute
in one msec. However, under some cases, 10 msec might be required. This situation will

5-13 NUREG/CR-6463

prevent other applications and system overhead tasks from being executed, which will cause
a PLC failure. Worst-case conditions must be defined, and measurements of execution times
under these conditions for each task must be made. If it is not possible to characterize such
worst case conditions authoritatively, multitasking should not be used.

Account for concurrent access to global variables. Another safety related issue in regard to
multitasking in PLCs is that, in many cases, each task accesses the same global variable base
rather than a separate variable base for each task. The potential for prograrnming enors when
global variables can be accessed at different periodicities is significant. For example, an input
that is updated by a 500 msec auxiliary task can be directly referenced by a 10 msec fast task.
Both of these tasks can read or write to the same internal bits and words. The PLC memory
map must be carefully designed, documented, and verified to ensure that concunent data
access has been properly implemented. If it is not possible to model and represent this
concunent access authoritatively, multitasking in conjunction with a global database should
not be used.

5.1.3.2 Minimizing the Use of Interrupt-Driven Processing

Ladder logic programs in themselves are not normally implemented using an interrapt driven
architecture. However, they do exist within an interrupt driven runtime environment. The indirect
impact of interrapt driven processing must be considered in the design of the Ladder Logic
application. The following guidelines apply:

• Account for interrupts in critical response times. PLC response times can be affected by
timer interrapts, local input interrapts, I/O scan interrupts, and other event-driven interrupts.
Such interrapt processing may not be under the control of the application programmer.
However, since this adds execution time and overhead time (for stack maintenance, etc.) to
the overall system response, it must be considered where response times are critical. This
issue is further discussed in the following section on I/O timing.

• Use of interrupts for exception handling and recovery. Interrupt-driven processing can be an
asset to safety when used to recover from processor hangs (via a watchdog timer) or more
general processor failures (via a fault routine). These issues are discussed in Section 4.2.

5.1.3.3 Input and Output Timing

The programmer must ensure that the order of program execution is such that variables are updated
prior to their use and that the values of inputs or the result of the previous step are current. Timing
issues that should be verified in an audit or review of a real-time PLC system depend strongly on
factors specific to the methods used by various PLC operating systems for scanning the real world
I/O. Generally speaking, these methods can be classed into four categories:

NUREG/CR-6463 5-14

1) PLC has no separate I/O scan - I/O is updated as required by each rung of
Ladder Logic ("Immediate I/O update").

2) PLC I/O scan occurs asynchronously from Ladder Logic scan ("Asynchronous").
This allows values of inputs to change during the course of a single Ladder Logic
scan.

3) PLC I/O scan occurs asynchronously from Ladder Logic scan, but input and
output values are "captured" in a buffer to eliminate the possibility of variance during
the Ladder Logic scan ("Captured Asynchronous").

4) PLC I/O scan is fully synchronous with the Ladder Logic scan ("Synchronous").

In addition, PLC systems vary widely in the delay time (i.e., latency) between when an event related
to a sensor occurs and when it is seen by the Ladder Logic system. Similarly, there is a latency
between when an actuator is commanded by the Ladder Logic program and the actual activation.
These delay times are influenced by:

• The type of sensor signal used
• The input modules' input filter delay
• The I/O scan type mentioned above
• The data rate between the PLC processor and its I/O racks.

Thus, the PLC program design and documentation should explicitly address the I/O impact of
response time. Timing issues that may need to be reviewed include:

• Accounting for multiple scans of the same variable. In a multitasking software system, an
input variable might be read by segments of the program in different scans on PLC systems
that allow this (e.g., Immediate I/O and Asynchronous I/O types).

• Accountingfor the effect of hardware-induced latency of input and output signals. This delay
and its characteristics should be known (i.e., measured) arid documented as part of the PLC
program documentation.

• Accountingfor the effect of sensor induced latency. Sensors themselves have different
response times in differing states. For example, if a proximity switch has a latent response
time on both sides (blocked and not blocked), then the software constructs need to be
cognizant of this delay, especially when this data is used in conjunction with other data and
certain prograrnming methodologies such as one shots.

• Accountingfor the effect of I/O data rates. Input/output data rates can vary from less than
38.4 kilobits per second (KBPS) to greater than 12 megabits per second (MBPS).

5-15 NUREG/CR-6463

Synchronization of replicated PLCs. Multiple PLCs in safety systems might be used in
redundant configurations based on hot backup (dual redundant) m out of n voting or median
selection (for triple redundancy and higher). Some of these applications might require that the
programs executed on different PLCs be synchronized. If this is indeed the case, care should
be taken to ensure selection of a redundant PLC system that supports the desired degree of
synchronization. Hot backup, or triply redundant, PLCs have varying types of
synchronization, ranging from none to twice per PLC scan as well as explicit synchronization
of PLC program execution and variable pool data after the execution of each network of
Ladder Logic. As the PLC programmer has little or no control over the synchronization
algorithms used, the usage of synchronization of Ladder Logic programs on PLCs of this type
is not a direct application-level issue. However, the strengths and limitations of the
redundancy management and synchronization design should be well documented and
understood. The impact in the design should be explicitly documented, and a rigorous testing
program (also beyond the scope of this document) need to be considered.

5.1.3.4 Avoidance of Self-Modifying Code

Most Ladder Logic implementations do not provide any features that allow the program to modify
itself. However, modification of run time environment parameters is possible. The following specific
guidelines ,apply to these parameters:

• No changes to system configuration parameters. System configuration parameters
should be accessed only by the appropriate routines. This can be verified by the use
of cross reference tables generated by the programming tool to determine which
subroutines are accessing the configuration variables. However, cross reference
information WILL NOT show usage of data table areas accessed by indirect and
indexed addressing prograrnming techniques. Configuration parameters depend on the
specific processor used and should be identified in the design documents.

• No changes to task periodicities or running tasks. If multitasking is to be used, there
should be no changes to task periodicity, even if it is possible to modify these
periodicities from the application program. Some PLCs also allow other types of
control over PLC operation, e.g., stopping the PLC program execution or
stopping/starting individual tasks. These features should not be utilized in safety
critical systems.

5.2 Robustness

Robustness refers to the capability of the software to survive abnormal or other unanticipated
conditions. The intermediate attributes of robustness are:

NUREG/CR-6463 5-16

• Transparency of functional diversity
• Controlled Use of Exception Handling
• Input and Output Checking
• Enor Containment.

These are discussed in the following sections.

5.2.1 Transparency of Functional Diversity

There are no specific guidelines for functional diversity. The generic guidelines apply.

5.2.2 Exception Handling

The generic guidelines are not directly applicable due to the unique software architecture of PLCs and
the interaction with the hardware. The following are specific guidelines for exception handling
supported by PLCs:

• Use of system status information for recovery
• Accounting for shutdown behavior
• Use of watchdog timers.

These are described below.

5.2.2.1 Use of System Status Information for Recovery

When available, system status information should be used as part of the detection and recovery
process. The nature and extent of the PLC system status momtoring varies among manufacturers and
models. Some PLCs provide Ladder Logic software commands which output status bits that indicate
abnormal conditions of execution (not restricted to hardware faults). Examples of these problems
are arithmetic overflow, full communication queues, bad addresses, and program assembly enors.
These bits can be used by the Ladder Logic program to initiate exception handling similar to that for
hardware faults. Most PLCs immediately shut down if a RAM memory checksum enor or other seri
ous system enor occurs, thereby eliminating the need for a status bit for this condition. Figure 5-5
shows a momtoring routine in an Allen Bradley PLC-5 that checks the status of enor bits and
annunciates to the operator that the system experiences problems. The information can also be used
by the programmer to write an exception handling routine which either handles the problem or directs
the Ladder Logic application program to a predefined state, such as shutting down the controlled
system.

Specific guidelines for use of system status information are:

5-17 NUREG/CR-6463

Completeness. All relevant information should be used to detect and determine the
appropriate recovery action.

Correctness. The recovery action should be appropriate for the condition.

Observability. The Ladder Logic program should annunciate and log the condition.

NUREG/CR-6463 5-18

PLC-5 LADDER LOGISTICS Report header (c) ICOM Inc. 1987-1991
PLC-5 Ladder Listing

File #43 ANNUNC_1 Proj:XXXXXXXX Page:YYY 10:55 12/08/94
SUBROUTINE: ANNUNCIATOR REVISION 0
INPUTS: N43:0

N43:0/l
N43:0/2
N43:0/10
N43:0/ll
N43:l
N43:l/0
N43:l/1
N43:2
N43:2/0
N43:2/l
N43:2/2
N43:2/3

SYST_STAT_WORD
PRIME_PS_OK
SECOND_PS_OK
SYSTEM_INITIAL
POLL_TIMEOUT
STATUS_WORD_0
S_CARRY
S_OVER_UNDR_FLW
STATUS_W0RD_1
S_RAM_CHECKSUM
S_RUN_MODE
S_PROG_MODE
S TEST MODE

N43:2/5
N43:2/6
N43:2/7
N43:2/8
N43:2/9
N43:2/ll
N43:3 ■
N43:3/ll
N43:3/12
N43:3/13
N43:3/14
N43:3/15

S_DOWNLD_ENABLD
S_TST_EDIT_MODE
S_REM_POSITION
S_FORCE_PRE SENT
S_FORCE_ENABLED
S_PER_ONLIN_PRG
STATUS_W0RD_2
S_ADDRESS_1
S_ADDRESS_2
S_LOAD_FRM_EPRM
S_RAM_BACKUP
S MEM PROTECT

PROCESSING: ANNUNCIATOR receives the status information listed above
and calculates output bits which are forced high if any
abnormal condition is detected. The ANNUNCIATOR word is
packed and returned to RUN subroutine to be passed to the
Plant Computer and Annunciator. This subroutine
checks for non-critical/soft failures that do not affect the
performance of the system, but notify the operator that
the system requires maintenance.

ANNUNCIAT_1_SBR ANNUNCIATOR
-SBR 1 i CLR

-| SUBROUTINE
INPUT PAR:
INPUT PAR:
INPUT PAR:
INPUT PAR:

N43:0
N 4 3 : l
N43:2
N43:3

CLEAR
DEST: N43;

Pack ANNUNCIATOR word to be passed to the Plant Computer.
PRIME_PS_OK

N43:0/l
l/h

PRIME_PS_ERR
N 4 3 : 4 / l

- () ■

SECOND_PS_OK
N43:0/2

H/h
SECOND_PS_ERR

N 4 3 : 4 / 2
-()-

SYSTEM_INITIAL
N43:0/10

POLLJTIMEOUT
N43:0/ll
H h

SYSTEM_INITIAL
N43:4/3

()
_POLL_TIMEOUT

N43:4/4
■ () •

S_CARRY
N43:l/0

ARITHMETIC_ERR
N43:4/5

S_OVER_UNDR_FLW
N43:l/1

-()-

S_RAM_CHECKSUM
N43:2/0

1 I
RAM_CHCKSUM_ERR

N43:4/6
()

Figure 5-5 Health momtoring routine sample program.

5-19 NUREG/CR-6463

S RUN_M0DE
N43:2/l
1/1-

10

11

12

13

14

S_PR0G_M0DE
N43:2/2

1 I
S_TEST_MODE

N43:2/3
1 I

S_DOWNLD_ENABLD
N43:2/5

S_TST_EDIT_MODE
N43:2/6

PLC_MODE_ERR
N43:4/7
()

S_REM_P0SITI0N
N43:2/7
1 1

S_FORCE_PRESENT
N43:2/8

PLC_REM_POSITON
N43:4/8
()

FORCES_PRESENT
N43:4/9
()

S_FORCE_ENABLED
N43:2/9

1 I
S_PER_ONLIN_PRG

N43:2/ll
■ h

FORCES_ENABLED
N43:4/10
()

S ADDRESSJL
~N43:3 /11

PERF_ONLIN_PROG
N43:4/ll

()

S_ADDRESS_2
N43:3/12

1/|
S_LOAD_FRM_EPRM

N43:3/13
1/|

S_RAM_BACKUP
N43:3/14
1/1

S_MEM_PROTECT
N43:3/15

BCKPLN_SWCH_ERR
N43:4/12

()

RETURN: N43:4
N43:4/l
N43:4/2
N43:4/3
N43:4/4
N43:4/5
N43:4/6
N43:4/7
N43:4/8
N43:4/9
N43:4/10
N43:4/ll
N43:4/12

ANNUNCIATOR
PRIME_PS_ERR
SECOND_PS_ERR
_SYSTEM_INITIAL
_POLL_TIMEOUT
ARITHMETIC_ERR
RAM_CHCKSUM_ERR
PLC_MODE_ERR
PLC_REM_POSITON
FORCESJPRESENT
FORCES_ENABLED
PERF_ONLIN_PROG
BCKPLN SWCH ERR ANNUNC_1_RET

RET
RETURN ()
RETURN PAR: N43:4

-[END] —

Figure 5-5 Health momtoring routine sample program (continued).

NUREG/CR-6463 5-20

5.2.2.2 Accountingfor Shutdown Behavior

The Ladder Logic program should properly account for PLC behavior at shutdown. Generally, all
outputs turn off, but this is not always true. The PLC system is designed so that such a shutdown
places the system in a fail-safe condition.

Some PLCs have the capability to run a designated Ladder Logic subroutine which the processor
automatically executes when it encounters a condition that will cause execution of the main Ladder
Logic routine to stop. In the PLC5, this subroutine is called a "fault routine". It allows the designer
to decide on the appropriate action, including shutting down the system in a safe manner. An
example of a simple fault routine is shown in Figure 5-6. The routine annunciates to the operator that
the system is experiencing problems and brings the system to a halt. Another example, shown in
Figure 5-7, clears the major fault enor bits and restarts operation by forcing the PLC to perform a
startup procedure. Should the fault still exist, then the fault word will be set to reflect this, and the
fault routine will be executed again. It may be desirable to limit the number of times the fault routine
runs in some cases.

The following specific guidelines apply to exception handling fault routines:

• Completeness. The fault routine cannot be relied on to detect all instances of program
crashes. Additional provisions that may be required by the specific safety requirements of the
application for PLC major faults must be specified.

• Observability. The fault routine should annunciate and log the condition. The execution of
the fault routine should not be masked.

• Validity checking. The conditions under which the fault routine is running may have
corrupted program memory, data files, or I/O. The fault routine must ensure the validity of
its environment before proceeding to execute.

• Fail safe properties in the absence of the fault routine. The fault routine cannot be relied
upon to operate under every major failure condition. The PLC may be so disabled that this
is not possible. Thus, the system design should ensure a safe state in the absence of the
successful execution of the fault routine.

5-21 NUREG/CR-6463

File #47 FAULT Proj:XXXXXXXX Page:165 10:12 12/08/94

SUBROUTINE: FAULT FILE - REVISION 0

GLOBAL OUTPUTS: 0:030/16

The FAULT ROUTINE File # is set in the INITIALIZE subroutine.
This is done by moving the integer 47 (N7:12) into the status
word S:29. The FAULT file implements the following actions:
1) Unlatch the STATUS (alarm condition) and use an IOT

instruction to write the output immediately.

STATUS
0:030/16

(U)
Use Immediate Output (IOT) instructions to force the status outputs
immediately.

30
•[IOT]-
•[END]-

Figure 5-6 Fault routine that alarms and halts sample program.

NUREG/CR-6463 5-22

File #47 FAULT Proj:XXXXXXXX Page:165 10:12 12/08/94

FAULT FILE

The FAULT file will complete the following:

1) Unlatch annunciator (alarm conditions) and use an IOT
instruction to write the output immediately.

2) Force every bit of the Major Fault Flag, S:ll, to 0 in an
attempt to clear the fault.

3) Latch S:l/15 PLC Performing First Program Scan. This will force
MAIN program to call retart.

Not in Service
Alarm

0:001/00
(U)
0AN

Force every bit of the Major Fault Flag word, S:ll, to 0. This
will attempt to clear any major faults so that operational
scanning may continue.

Status Word 11
MAJOR_FAULT_FLG
i MVM
MASKED MOVE
SOURCE:
MASK:

DEST:

0
0

OFFFFh
FFFFh
S:ll

0

The PLC First Program Scan is forced high.
PLC-5
performming
First
Program Scan

S:l/15
(L)

Write Annunciators immediately.
1

- [I O T] -

OAN
■[END] —

Figure 5-7 Fault routine that restarts operation (sample program).

5.2.2.3 Watchdog Timer

The PLC system provides an internal watchdog interval timer which is either fixed or set by the
program (depending on PLC manufacturer). The fixed watchdog timer is typically utilized to protect
against a stopped or hung CPU. The timer expiration will shut down the PLC explicitly. The

5-23 NUREG/CR-6463

software-based watchdog timer is typically utilized to protect against excessive scan times caused by
infinite loops and related failure modes. If under program control, the timer interval should be set
during initialization. If the program scan time exceeds this value, the interval timer expires. Once
the timer interval expires, the PLC halts and declares an enor condition. This provides a mechanism
for identifying each scan during which the program exceeds its expected execution time.

Both the Ladder Logic program and the system design should contain provisions to recover from the
timer expiration condition. Ladder Logic provisions include prograrnming the fault routine to handle
the watchdog timer fault bit. System design measures can include an external watchdog timer,
independent of the PLC, that will handle the fault (e.g., by alarming) in case the PLC crashes and
cannot execute the fault routine. The external timer is a second line of defense in the event of a
failure of the Ladder Logic recovery.

5.2.3 Enor Containment

The generic guideline has limited applicability. Depending on the capabilities of the PLC, it may be
possible to separate local variables from global variables that provide one line of defense. The second
line of defense is data validation when variables are passed among ladder logic routines, or when
input or output occurs. This was discussed earlier under avoiding interface ambiguities.

5.3 Traceability

Attributes specifically related to traceability include the use of built-in functions and compiled
program libraries.

5.3.1 Use of Built-in Functions

The generic guideline applies. Ladder Logic includes built-in function blocks for frequently used
functions. Ladder Logic applications rely on the PLC operating system and the supported function
set.

The robustness of the PLC operating systems is a function of the quality of the development process.
Generally speaking, PLC operating systems are produced under strict software quality controls, and
are extensively tested. The quality and integrity of operating systems must be affirmed by the
commercial grade dedication process that qualifies the use of the PLC in safety-related applications.

The function set is defined by the PLC manufacturer and these functions are implemented by the PLC
firmware. The quality and integrity of these built-in functions must be affirmed by the commercial
grade dedication process that qualifies the use of the PLC in safety-related applications. The built-in
functions provided by the PLC are usually simple building blocks and do not obscure the traceability

NUREG/CR-6463 5-24

between the code and the design specification.

5.3.2 Use of Compiled Libraries

The generic guideline applies. Compiled libraries should be used with caution. Some PLCs support
external libraries as optional function blocks written in C or PL/M. In the case of Allen Bradley PLC-
5, they are called "custom application routines" or CARs. They perform functions such as mass flow
control. These routines are 68000 native code, which the PLC 5 executes. Data is passed back and
forth via the PLC data table. Add-on libraries may also be written in Ladder Logic, available from
the manufacturer and other vendors. The following specific guidelines apply:

• Accountingfor interfacing and integration issues. Where functions from these libraries are
used, special care must be taken to review the integration of these functions into the PLC
Ladder Logic program, such as unintended side effects.

• Development process. The same testing, validation, documentation, and visibility into the
development process must be applied to the function blocks as the Ladder Logic software
resident on the parent PLC.

• Assessing accuracy and robustness. The accuracy and robustness of the libraries must be
understood as part of the dedication process. This understanding can generally be gained
through testing. However, if source code is unavailable, the testing of necessity must be at
the functional or "black box" level. Careful judgement in assessing the results of such testing
is necessary.

• Timing issues. The latency in passing data to the routines and receiving data from the routines
must be understood and documented.

Coprocessors offered by some PLC manufacturers are related to compiled libraries. Coprocessors
are separate processing boards installed in PLCs that accept conventional programming languages
such as C or BASIC. The software programs written in these languages and executed on a different
processor can be used by the ladder logic as function blocks. When coprocessors are used, the
following additional guidelines apply:

• Accountingfor interface and integration issues. As was the case with compiled libraries,
special care must be taken to review the integration of coprocessors into Ladder Logic,
particularly with respect to the use of memory and for unintended side effects. Additional
issues are the extent to which hardware enor checking is incorporated when data are passed
across a bus or via direct memory transfers. Additional validity checks in software may be
necessary. These considerations should be documented.

5-25 NUREG/CR-6463

Development process. As was the case for compiled libraries, the same testing, validation,
documentation, and visibility into the development process must be applied to the function
blocks resident in coprocessors as the software resident on the primary PLC.

Failure behavior and robustness. The coprocessor hardware platform should have the same
hardware failure behavior robustness as the "parent" PLC. If not, the software design should
account for the differences.

5.4 Maintainability

The software maintainability lower-level attributes in this section are limited to those affecting safety.
These include the following:

Readability
Abstraction
Functional cohesiveness
Malleability
Portability.

5.4.1 Readability

The generic guidelines apply. Readability is essential for review and maintenance of PLC Ladder
Logic safety systems. The graphical notation of Ladder Logic can facilitate understanding the
operation of a single Ladder Logic network. Understanding a complete Ladder Logic program,
however, requires the reader to understand the interactions between many Ladder Logic networks
operating on a global variable database. In many cases, the interaction occurs between Ladder Logic
networks that are pages apart in the documentation. Thus, the programs and databases must be
structured to facilitate understanding by individuals other than those who wrote the code. The
following specific guidelines apply:

Overview documents. Since there is no ladder logic overview function, the review of any
program for readability should include a general overview document. A program flow chart
can be used to document control flow. Documentation should not just explain the purpose of
each network but the purpose of each section of PLC program. The documentation must be
maintained together with the code as changes are made.

• Documentation of PLC data files. An important component of documentation readability
concerns the documentation of usage of data files — particularly if they are global — with
a data flow description among the data tables.

NUREG/CR-6463 5-26

5.4.1.1 Notation

The generic guidelines are not applicable. Ladder logic notation is determined by the characteristics
of the specific programming package used. This notation is not readily modifiable by the end user.

5.4.1.2 Conformance to Indentation Guidelines

The guidelines are not applicable to Ladder Logic.

5.4.1.3 Descriptive Identifier Names

Ladder Logic supports the use of descriptive identifiers or tagnames, with lengths between 7 and 32
characters being common. In addition to the identifier, each variable can be described by an address
description. A typical address description has 5 lines of 15 characters each.

The following are specific guidelines:

• Inputs and outputs. The identifiers should be as similar as possible to the names used
externally (e.g., P&ID numbers). Use of the same variable name for different purposes is not
allowed in Ladder Logic.

• Consistency with project notation. Ladder Logic names should be consistent with design
documents. ,

5.4.1.4 Comments and Internal Documentation

The generic guidelines apply. Ladder Logic supports internal documentation by means of "rung
descriptions" and "section headers."

The following are specific guidelines:

• Revision level. An important internal documentation feature is the revision level. In some
PLCs, if the revision level is recorded as a comment, it will be disassociated from the code
when it is downloaded to the PLC. To avoid configuration management problems in such
systems, it is recommended that the revision level be recorded as part of the program itself
by storing it in memory as a variable. Figure 4.3 is an example which shows the subroutine
version marked as a comment (not the prefened practice in this case) and not as a memory
location.

5-27 NUREG/CR-6463

Interfaces. Detailed and unambiguous descriptions of subroutine interfaces and functions are
another important documentation feature that should be verified. As shown in Figure 4.3,
each subroutine should have a detailed description of the input parameters, global variables
(if any), the processing performed by the subroutine, output parameters returned, effect on
global variables, and side effects (if any).

Calling hierarchy. The level of documentation required for incorporation in the program
depends on the complexity of the program/subroutine and on the description provided in other
accompanying documents such as the software design description. Two important issues to
be documented are (1) the hierarchy of subroutines and who is calling whom, and (2) the flow
of data and information among subroutines. These two items, especially the second one, are
important to understand the system and enable independent review. Some programming
shells provide a database and cross references of all data-table variables used by the program.
The designer or an auditor can use these tables to track the flow of information.

5.4.1.5 Limitations on Subprogram Size

The generic guidelines apply. Due to the limited number of Ladder Logic rungs that can fit on a
single page of documentation, limiting the size of subprograms is important. It is difficult for a
program auditor to follow operation of any program over more than a few pages. However, Ladder
Logic as a language does not enforce any limitations on subroutine size. Moreover, some PLCs only
support the division of programs via JMP to label instructions as there is no subroutine support.
Thus, decisions on program size limitations are dependent on the properties of the individual Ladder
Logic implementation and the project needs. The following are specific guidelines:

• Use subroutines and subprograms. For Ladder Logic implementations supporting
subroutines and nesting, there should be a limit on the maximum number of rungs per routine.
Even for PLCs without subroutine capabilities, it should be possible to subdivide the
application into a set of manageably sized subprograms. (The distinction is that after a
subroutine is executed, control is transfened back to the calling program without an explicit
JMP statement). An upper limit might be 50 rungs, but even limits as low as 10 rungs may
be appropriate where visibility is important.

• Avoid arbitrary program division. The basis for subdividing programs should be by function,
resporisibility, or class of data. This guideline is related to functional cohesiveness described
below.

5.4.1.6 Minimize Mixed Language Programming

The guidelines on mimmizing mixed language programs are partially applicable. IEC 1131-3
compliant systems support mixed language programming among the five defined languages in the

NUREG/CR-6463 5-28

IEC 1131-3 specification. The reason why there are five languages is that each has strengths and
weaknesses. Ladder Logic, for example is an excellent tool for expressing Boolean relationships
between entities, as in an alarming function. However, it is not as clear as Sequential Function Charts
(SFCs) for sequencing operations, nor is it as readable as Stractured Text (ST) for complex
mathematical operations.

Thus, readability and maintainability of PLC programs are enhanced when each of these languages,
if available, are utilized for their strengths. However, a judicious balance must be struck. The
following are specific guidelines:

• Ensure that proper tools are within the development organization. Such tools include
compilers, debuggers, cross reference generators, testing, and documentation aids. A multiple
language safety application should not be contemplated without adequate support for
maintenance and enhancements for all languages used in the applications.

• Use each language according to its strengths. Mixed languages should be used because the
resulting application is easier to maintain or more robust.' Additional languages should not
be introduced gratuitously into a safety application. Justification for the use of each
additional language should be included in the documentation.

5.4.1.7 Minimize Obscure or Subtle Programming Constructs

Each make and model of PLC supports a number of obscure and sometimes counter-intuitive
programming constructs in their Ladder Logic implementations. These are normally peculiar to
specific implementations. There should be project guidelines relating to the specific characteristics
of the PLC. It may be advisable to consult the manufacturer's technical support organization to
obtain such information. The following are guidelines common to multiple PLCs (however, they may
not be applicable to all PLCs):

• Avoid use of overlapping JMP to label statements or to labels that precede the JMP in the
code. Different systems will execute overlapping or backwards jumps differently, and
sometimes in unpredictable ways.

• Minimize indirect addressing. Although program constructs can be more concise using these
addressing techniques, the addresses and functionality presented are not obvious. Without
the proper tools and documentation, however, the underlying logic could be overlooked.
Such indirect addressing should be used sparingly and with adequate documentation.

• Use indexed addressing for repeated elements only. Indexed addressing should be used
where there are repeating elements (e.g., thermocouples on a single hot leg). They should not
be used for grouping elements with diverse meanings (e.g., a temporary storage variable at
one location, the value of a sensor at the second, etc.).

5-29 NUREG/CR-6463

5.4.1.8 Minimize Dispersion of Related Elements

In general, PLC programs are stored by their development environments as a single file or group of
files. This precludes the dispersion of related elements among several files from being an issue with
the majority of PLC implementations.

However, there are PLC systems that do not conform to this general statement. When dealing with
a system of this type, it is important that logically related elements of the program remain in a single
file so as to minimize any confusion in locating and understanding them.

5.4.1.9 Minimize Use of Literals

The generic guideline is partially applicable. Most, but not all, Ladder Logic implementations
support an area of the global variable pool that is writable by the development environment but not
by the PLC program itself. The actual nature of these "Constant" variables (to use the IEC 1131-3
nomenclature) varies from implementation to implementation. When available, the use of variables
from this constant pool is prefened to the use of literals. However, Constant variables may not be
available on all PLC systems; in such systems, literals are necessary.

5.4.2 Data Abstraction

This principle depends on the following specific base attributes:

• Modularity
• Information hiding
• Minimizing the use of global variables
• Minimizing the complexity of the interface and defining allowable operations.

PLC Ladder Logic does not provide the advanced features of object-oriented languages, such as C++,
to support abstraction. However, Ladder Logic provides some tools that can help achieve abstraction.

5.4.2.1 Modularity

The generic guidelines are applicable. Some Ladder Logic implementations support modularity
through the subroutine stracture; however, the language does not enforce use of subroutines and
design of cohesive functions. Even in the absence of this supporting language features, all Ladder
Logic programs should be organized as a number of distinct subprograms, each with a particular
function, dedicated variable area, and each fully documented. Passing of information between these
subprograms should be accomplished via a well documented and consistent methodology (guidelines

NUREG/CR-6463 5-30

are discussed under global variables).

In the event that subroutines are not available on the PLC system chosen for a particular project, the
Ladder Logic program should be ananged into a series of subprograms, each with a particular
function, in order to enhance the understanding of the program. ■

5.4.2.2 Information Hiding

The generic guidelines apply to those Ladder Logic implementations that support the concept of
information hiding through the use of local variables that no other subroutine can access or alter.
The Ladder Logic program should be designed to use parameter passing to subroutines through
formal parameter interfaces. Even if the parameter is a global variable that is visible inside the
subroutine, it should be passed to the subroutine as a parameter.

For PLCs that do not allow subroutine parameter passing or local variables (at the time of this
writing, most do not), information hiding through formal parameters cannot be supported. However,
as described in the next section, there are techniques using the global PLC data tables that can be
used.

5.4.2.3 Minimizing the Use of Global Variables

The generic guidelines apply only to those PLCs and implementations of ladder logic that support
local variables. Global variables can be accessed from any part of the Ladder Logic program. Thus,
they can cause side effects or unintended behavior through deliberate or inadvertent modification by
various programmers working on different parts of the program. Local variables should be separated
from global variables for those Ladder Logic implementations that support local variables. In most
PLC systems, local variables are static memory locations, that is, they maintain their value after the
subroutine returns. However, support for local variables is not common in cunent PLC Ladder Logic
implementations; most cunently use a single global variable pool. The following guidelines apply
to the management of the global data memory area when local areas are not supported:

• Separate variables by usage. Usage of variables within this pool can be controlled by the
PLC programmer to separate the handling of local and global variables. This can be achieved
by setting aside distinct areas of memory for use only by single PLC subprograms (i.e., local
memory areas). Passing of variables to and from subprograms should be accomplished by
"transfer" variables used for this purpose only. The method for such transfers should be
consistent in all of the application subprograms.

• Use transfer variables. Interface to subroutines on PLCs that do not support parameter
passing is via the use of global variables. It is recommended that, on systems of this type, that
specific variables be explicitly designated for the input and output parameters associated with

5-31 NUREG/CR-6463

• each PLC subprogram.

• Use support tools and documentation for global memory areas. A careful examination of the
PLC memory map, with the aid of the cross-reference features normally found in the PLC
program development environment, is mandatory to ensure safe PLC programming. The exact
features, layout, and composition of a PLC cross-reference listing vary between PLC
programming packages. For example, ICOM software has a feature that applies local/global
flags to data table files. (It is not part of the PLC firmware, and does not serve any purpose
when using another programming software package.) In general, these listings show which
PLC variables are being used, in what part of the program they are being used, and whether
they are being read from or written to.

• Ensure proper index variable bounds. Some PLCs support treating the variable pool (or a
section of it) as a large anay and allow indexing into this anay. Expressions using this
indexing should be carefully audited to ensure that the index value remains within the value
of the anay under all circumstances.

5.4.2.4 Minimizing Interface Complexity

The specific guidelines related to interface complexity are the same as the transfer variable, global
memory area partitioning, and documentation guidelines discussed above.

5.4.3 Functional Cohesiveness

The generic guidelines apply. Every subprogram should have one clearly discemable purpose with
input and output parameters related to that purpose. Two or more different functions should not be
combined in a single subprogram.

5.4.4 Malleability

Malleability is the ability of a software system to accommodate changes in functional requirements.
Ladder Logic allows programmers to create code which is hard to change. However, the guidelines
related to modularity, minimizing obscurity, interfacing, global memory management, and portability
can be used to achieve malleability.

NUREG/CR-6463 5-32

5.4.5 Portability

Portability is a safety concern required by the need to minimize changes when replacing or upgrading
equipment. The features, functionality, syntax and semantics of the various implementations of
Ladder Logic for PLCs and PLC-like systems vary widely, more so than any of the other languages
considered in this report. It is difficult, therefore, to make sweeping statements about safety-related
aspects of portability. Nevertheless, over the plant life, it is unlikely that the same runtime
environment will be supported since every vendor only supports its own equipment and upward
compatibility (i.e., programs executed on an older processor will also execute on the newer processor
ladder) is not always provided. When new processors are introduced, the instruction set is usually so
different that the application should be re-written anyway to take advantage of the new firmware. The
objective of maximizing portability is to reduce the likelihood that changes will introduce dangerous
faults.

Unfortunately, conforming to the IEC 1131-3 standard at present will not guarantee portability.
Cunently, this standard is vague in many areas where PLCs vary. Moreover, not all PLC
manufacturers have committed to supporting the standard even in its cunent form. However, as has
happened in other areas of computing, pressure for standardization will grow. As this occurs,
conforming to an extended IEC 1131-3 standard will enhance portability.

Although portability of the Ladder Logic program itself may not be possible, the design and approach
can be made portable. Candidate areas for such unified approaches are common PLC functions
including:

• Analog programming
• Alarm handling
• Fault/exception handling
• Operator interface

Closed loop control programming
• Variable frequency drive interfacing
• Computer communications
• Data logging.

A consistent approach to these areas will provide common code and will result in greater portability
to new runtime platforms.

5.5 Security

Security in this context refers to the protection of computer software from accidental or malicious
access, modification, or destraction. The discussion in this section is restricted to security measures
associated with the Ladder Logic language and its associated program development environment.

5-33 NUREG/CR-6463

The main concern of security when handling PLC systems is that an unauthorized person might gain
access to the program and:

• Change the program or the data in the PLC memory
• Change the PLC configuration
• Download a wrong program
• Leave the system in the wrong "mode" after maintenance
• Force inputs and/or outputs.

Security concerns are particularly acute when program or hardware maintenance is performed. The
key issues are password protection and physical access. The latter is not a language feature, but it
is mentioned here because the PLC environment is vulnerable to security infringements by improper
change of ROM components.

Software maintenance on a PLC can be performed either by connecting an external PC to the PLC,
or from a user interface station that might run a Supervisory Control and Data Acquisition (SCADA)
package that interfaces with the PLC. The nature and level of this type of password protection vary
from PLC programming package to PLC prograrnming package. In some cases, the interfacing
software packages provide password protection with multiple levels of access rights that allow people
with different skills and authority to perform only the functions for which they are authorized. Other
PLC systems come with keys and locks that only allow modification of the PLC program after the
key is inserted. However, PLC programming packages have no security provisions whatsoever.

The auditor should verify that the design requires minimum operator access to software. Whenever
operator access is necessary, the system should be designed to include security measures in the
application proper, rather than relying exclusively on interfacing software.

Some PLCs have implemented a security system which is part of the PLC firmware. This will limit
interaction with the PLC memory contents based upon access rights (Allen Bradley, 1991). Because
it is firmware-based, the passwords are also resident in the memory of the PLC. If this feature is to
be exploited, the runtime software package used to develop the ladder logic must support it.

NUREG/CR-6463 5-34

References

Allen Bradley, PLC-5 Programming Software - Programming, Publication 6200-6.4.7 November
1991.

Allen Bradley, PLCS Programming Software - Software Testing and Maintenance, Publication
6200-6.4.10 November 1991a.

ICOM PLC-5 Ladder Logistics, User's Manual, 1989.

International Electrotechmcal Commission (TEC), Programmable Controllers General Information,
IEC Standard 1131, Part 1, 1992. (Available in the U.S. from the American National Standards
Institute, New York.)

International Electiotechnical Commission (IEC), Programmable Controllers Programming
Languages, IEC Standard 1131, Part 3,1993. (Available in the U.S. from the American National
Standards Institute, New York.)

SoHaR Incorporated, Generic Attributes for High Level Languages, Task 1, SoHaR Inc., Contract
RES-04-94-046, Beverly Hills, CA, October 1994.

Institute of Electrical and Electronic Engineers, ANSI/IEEE 729-1983, Glossary of Software
Engineering Terminology, 1983.

5-35 NUREG/CR-6463

6 Sequential Function Charts

PLC Sequential Function Chart (SFC) programs do not resemble traditional high-level languages.
Instead, SFCs are program stracture tools that present a visualization of the underlying control flow.
The SFC structure includes both steps and transitions; each step and transition is implemented in an
underlying IEC 1131 language (ladder logic, stractured text, instruction lists, or functional block
diagrams). The charts provide a higher level of abstraction that hides lower level details handled in
the underlying languages. An introduction and basic description of SFCs in the context of IEC 1131
is contained in Appendix A.3. As noted in that section, SFCs are best used in applications where the
execution can be partitioned into distinct steps.

This chapter discusses the applicability of the generic attributes to PLC SFCs. The chapter is
organized in accordance with the framework of Chapter 2. Section 6.1 discusses reliability-related
attributes of SFCs; Section 6.2 discusses robustness-related attributes of SFCs; Section 6.3 discusses
traceability-related attributes; and Section 6.4 describes maintainability-related attributes. A
summary matrix showing the relationship between generic and language-specific guidelines, together
with weighting factors, is included in Appendix B. Language-specific weighting factors were based
on the limited nature of the language, which has no variables, data types, or subroutines.

6.1 Reliability

Reliability is either (1) ability to perform the required functions under stated conditions for a specified
period of time (IEEE, 1990) or (2) the probability of successful operation upon demand (EEEE, 1977;
p. 584). The reliability of an SFC program depends on the run-time predictability of the following:

• Memory utilization
• Control flow

Timing.

SFC-specific guidelines derived from these generic attributes are described in the following sections.

6.1.1 Predictability of Memory Utilization

SFC programs do not directly allocate memory. Thus, the generic guidelines are not applicable at the
SFC level. However, they are applicable at the underlying language level. The previous chapter has
a discussion of these issues for Ladder Logic.

6-1 NUREG/CR-6463

6.1.2 Predictability of Control Flow

Predictability of control flow is the capability to determine easily and unambiguously what path (i.e.,
which set of branches and in what order) the program will execute under specified conditions.
Related base attributes are:

Maximizing stracture
Minimizing control flow complexity
Initializing variables before use
Single entry and exit points for subprograms
Minimizing interface ambiguities
Use of data typing
Accounting for precision and accuracy
Order of precedence of arithmetic, logical, and functional operators
Avoiding functions or procedures with side effects
Separating assignment from evaluation
Proper handling of program instrumentation
Controlling class library size
Minimizing use of dynamic binding
Controlling operator overloading.

Guidelines related to predictability of control flow for SFCs are discussed in this section.

6.1.2.1 Maximizing Structure

The generic guidelines are applicable. Use of goto statements or equivalent execution control
statements that result in an unstractured shift of execution from one branch of a program to another
are difficult to trace and understand. Although SFCs allow the programmer to use goto statements,
they should not be used in safety-critical apphcations with one exception: handling out-of-sequence
events in an abnormal situation. This situation was discussed in Section 5.2.

6.1.2.2 Minimizing Control Flow Complexity

The generic guidelines are applicable. Although SFCs have a limited syntax, it is possible to create
SFCs that are quite complex. Hence, the following guidelines:

• Limit the number of parallel paths. The number of parallel paths at the beginning and end
of a logic zone should normally be limited to seven (Hughes, 1989; p. 178).

• Limit use of SFC to sequential operations. Use of SFCs in non-sequential applications (e.g.,

NUREG/CR-6463 6-2

state machines) will result in a large number of directed links and divergence of sequence
selections, resulting in an overly complex SFC. This should be avoided.

Use of Macro-steps as a means of simplifying the appearance of SFCs was discussed in Section 5.4.

6.1.2.3 Initializing Variables Before Use

SFCs do not handle mitialization because they do not have variables. Thus, the generic guideline is
not directly applicable at the SFC code level, but is applicable at other levels. The following are
specific guidelines:

• Accountingfor initialization as part of the program design: SFC-specific variables, when
they exist, are typically mitialized and maintained by the PLC system, and so there are no
application program mitialization issues concerning them. These variables are maintained
in the same data table, using the same data types that the PLC uses. Thus, initializing
variables used in the languages that define the step actions and the transition conditions is an
issue. The SFC Initial Step is an appropriate place for code that performs this mitialization

• Initialization of process steps and transitions: Within each process step and transition,
initialization issues are associated with the lower level IEC 1131 language (e.g., Ladder
Logic).

6.1.2.4 Single Entry and Exit Points for Subprograms

The generic guideline is applicable. The SFC grammar allows only single entry and exit points (called
transitions) from each process step. Macro-Steps, as well, may only have single entry and exit points.
However, it should be noted that the control language in e£.ch one; of the process steps or transitions
may involve multiple entry points . The previous chapter discusses these issues for Ladder-Logic.

6.1.2.5 Minimizing Interface Ambiguities

SFC does not support any interfaces. However, there is an issue of interfaces between steps with
respect to latching bits. In order to have a bit stay on between steps, the bit has to be latched since
all non-retentive bits are reset in the post scan. However, latching bits can cause a problem during
mitialization as well as during runtime if the bits are not reset immediately23. The specific guideline
is therefore to avoid use of latching bits.

An incident that occurred to one reviewer is that a main motor bit was latched 'ON'. When a circuit
breaker tripped, the motor came on immediately because the bit was not reset explicitly. This condition could have
caused a major accident.

6-3 NUREG/CR-6463

6.1.2.6 Use of Data Typing

The generic guideline is applicable to the underlying languages, not to SFCs themselves. Some SFC
implementations do not have variables (Allen Bradley, 1989); therefore, there are no data types.
Other SFC implementations have variables associated with each step. In one such system, each step
has a step bit (XO, XI, etc.) that is on when that particular step is active. Each step may also have a
step timer (X0,V, XI,V, etc.) that indicates the length of time that step has been active. However,
the data types of these step-associated variables are fixed.

However, the underlying IEC 1131-3 languages do have varying degrees of support for data typing.
For example, as was described in the previous chapter, PLC Ladder Logic provides few data types.
The specific guideline with respect to SFC programs is to use data types to the maximum extent
possible.

6.1.2.7 Accounting for Precision and Accuracy

Some SFC implementations do not have variables; therefore, the guidelines are not applicable for
SFCs. However, the guidelines are applicable for the languages used within each step.

6.1.2.8 Order of Precedence of Arithmetic, Logical, and Functional Operators

The mail issue regarding order of precedence in SFC is what occurs when multiple transitions in a
divergence of sequence selection are evaluated as true simultaneously (i.e. on the same PLC scan).
Depending on how the SFC is implemented, the leftmost sequence may be selected, or all valid
sequences may be selected.

All transition conditions involved in a divergence of selection sequence should be programmed to
be mutually exclusive in order to exclude the possibility of multiple transitions involved in such a
stracture being evaluated as true simultaneously. This is actually a requirement of the IEC 848 SFC
standard.

However, the guidelines are applicable for the underlying IEC 1131 languages used within each step.
If Ladder Logic is used within a step, the applicable guidelines are found in the previous chapter.

6.1.2.9 Avoiding Functions or Procedures with Side Effects

Generic guidelines are applicable.

NUREG/CR-6463 6-4

6.1.2.10 Separating Assignment from Evaluation

As noted above, SFCs vary in their support for variables and assignment; therefore, the guidelines
are not applicable for SFCs. However, the guidelines are applicable for the underlying IEC 1131
languages used within each step. If Ladder Logic is used within a step, the applicable guidelines are
found in the previous chapter.

6.1.2.11 Proper Handling of Program Instrumentation

Program instrumentation generally depends on the programming support environment for the PLC
and not on the SFC itself; therefore, the generic guidelines are largely inapplicable. However, the
guidelines1 are applicable for the underlying IEC 1131 languages used within each step. For ladder
logic, the issue of program instrumentation discussed in the previous chapter (Section 5.1.2.11) are
applicable.

As mentioned above, some SFC implementations have variables associated with the execution state
and execution time of steps. These variables are a form of instrumentation. Tracking usage of these
variables, as well as all others in the PLC, is a major aspect of ensuring PLC program safety.

6.1.2.12 Controlling Class Library Size

Neither SFC nor the underlying IEC 1131 languages support classes and objects; therefore, the
generic guidelines are not applicable.

6.1.2.13 Minimizing Dynamic Binding

Neither SFC nor the underlying EEC 1131 languages allow dynamic binding. All structures must be
defined by the programmer before compilation. The generic guidelines do not apply.

6.1.2.14 Controlling Operator Overloading

Neither SFC nor the underlying IEC 1131 languages allow operator overloading or polymorphism.
The generic guidelines are not applicable.

6.1.3 Predictability of Timing

Predictability of timing is crucial in a safety system used in real-time control. This section discusses
SFC-specific issues related to:

6-5 NUREG/CR-6463

• Minimizing tasking
• Minimizing .interrupt processing
• Divergence of sequences
• Simultaneous sequences
• Accounting for scans and post scans.

6.1.3.1 Minimizing the Use of Tasking

At the source code level, SFC does not support multitasking; therefore, the generic guidelines are not
applicable. However, it should be noted that the operating system in the PLC firmware may include
a multitasking kernel which may support execution of multiple independent SFCs. Such multiple
independent SFCs should be avoided in safety applications.

6.1.3.2 Minimizing the Use of Interrupt Driven Processing

The generic guidelines have limited applicability. SFCs themselves do not support interrupts.
Should a condition occur which requires immediate attention, the SFC program cannot service the
request due to the sequential nature of execution. This issue is discussed further in the section on
exception handling.

It should be noted, however, that the firmware or runtime environment program associated with the
SFC might use interrapts. It is therefore necessary to demonstrate that the system/software can meet
all of its timing and safety function requirements under the most demanding conditions of interrupt
occunence.

6.1.3.3 Divergence of Sequence

The following are specific guidelines for divergence of sequence A divergence of sequence selection
is represented in SFC by a single horizontal line under a step, followed by multiple parallel
transitions. Appendix A explains divergence of sequence.

• Define mutually exclusive transition conditions. All transition conditions involved in a
divergence of selection sequence should be programmed to be mutually exclusive in order to
explicitly exclude the possibility of multiple transitions involved in such a structure being
evaluated as true simultaneously. This prograrnming style is mandated by the IEC 848 SFC
standard.

• Ensure convergence of sequence following divergence of sequence. Any divergence of
sequence selection must eventually be followed by a convergence of sequences, where the
alternate sequence paths reunite. This should be checked by the auditor, as well, although

NUREG/CR-6463 6-6

most SFC editors enforce this.

Account for limits on the number of transitions. Limits on the number of transitions that can
be placed in a divergence of sequence selection vary from implementation to implementation.
These limits should be accounted for in the design.

6.1.3.4 Simultaneous Sequences

In the event that multiple transition conditions evaluate as trae simultaneously (i.e., on the same PLC
scan), different implementations of SFC will result in different behavior.

Avoid dependence on execution order. On some systems, the leftmost branch is selected; on
others, all of the sequences following trae transition conditions are selected. Therefore, it
is considered poor programming practice to have the proper operation of a simultaneous
sequence depend upon the order of processing of active steps in these sequences within a
single scan. The PLC program auditor should check for this.

• Use simultaneous sequences only where synchronization is required. Simultaneous
sequences are used when parallel processes need to be synchronized at their beginning and
their ending. Where asynchronous sequences that do not require this kind of synchronization
are desired, they should be coded as independent SFC Charts.

6.1.3.5 Accounting for Post-Scan Timing

Post-scan timing is unique to the SFC language. After a trae transition, the processor scans a step
once more to reset all timer instructions and other variables and controls (Hughes, 1989; p. 178).
This extra step is called the post-scan. The new active step is scanned for the first time only during
the next scan. The following are specific guidelines related to this characteristic of SFCs:

• Post-scan timing requirements. The time required for the post-scan should be characterized
and shown to be in accordance with the safety requirements of the PLC and overall safety
system.

• No timers in transitions. The processor never postscans a transition program file. Therefore,
timers should not be set in a transition because they will not be reset.

6.2 Robustness

Robustness refers to the capability of the program to survive off-normal or other unanticipated
conditions. This section discusses guidelines on functional diversity and exception handling.

6-7 NUREG/CR-6463

6.2.1 Transparency of Functional Diversity

SFCs are well suited to implementing diverse algorithms or implementations given that the need for
such diversity has been established. An AND path can force several different process steps to
evaluate the same condition. An additional step can vote. An OR path can be used to cause a
transition if it is desired to program a system such that any number of diverse parallel algorithms
cause the transition. The following are specific guidelines:

• Order of execution. The design should account for the safety impact of the order of execution
of diverse process steps. The ordering on the SFC should reflect the intention of the design.

• Interfaces. The safety system design should account for all local and global variables
necessary to support replicated processing in transition files. As part of the implementation,
it should be verified that no variables in transition files will be initialized or overwritten.

6.2.2 Exception Handling

The level, nature, and functionality of SFC exception handling varies significantly among SFC
implementations. Exception handling functionality in SFC ranges from none at all, through
activation of a designated fault sequence under certain conditions, to the ability to completely
override the activation status of an SFC chart under contiol of portions of the PLC program not in
the SFC (Allen-Bradley, 1989; PLC Direct, 1994; Telemecahnique, 1994). It is necessary for project
and PLC SFC-specific guidelines to be created for exception handling to account for these specific
characteristics.

Although there are significant variations, the following guidelines apply to most SFC
implementations:

• Use of GOTO or JMP statements to handle the interruption of control flow. Sequential
function charts do not support interrapt processing due to the sequential nature of execution.
Thus, should an abnormal condition or exception occur which requires immediate attention,
SFCs do not allow servicing of the request. GOTO or JMP statements can provide a method
of handling this abnormal asynchronous condition. For example, should a mixing sequence
not be completed because a valve failed to open, the mixer contents would have to be
dumped. Due to the sequential nature of SFC, it is not possible to exit the cunent transition
and start executing the dumping step without using JMPs or GOTOs. Although JMP or
GOTO statements can be used for this purpose, their use for normal control flow should be
minimized.

• Avoiding conflicts. It must be determined that the two events, tiansition and exception-

NUREG/CR-6463 6-8

handling, do not conflict with each other.

Behavior of the exception-handling mechanism during a process step. The exact behavior
of process steps interrupted by fault routines should be characterized and shown to be in
accordance with the safety requirements of the PLC and overall safety system. For example,
a fault routine may not interrapt a process step unless initiated by the PLC. This behavior
must be understood explicitly.

Behavior of the exception handling mechanism during a transition. The exact behavior of
transitions interrupted by PLC fault routines should be characterized and shown to be in
accordance with the safety requirements of the PLC and overall safety system. The transition
and exception handling mechanism must be evaluated as to whether they conflict with each
other.

Restart behavior. Care must be taken in design for power up and fault recovery conditions.
The exact behavior of SFC restart after an exception should be characterized and shown to
be in accordance with the safety requirements of the PLC and overall safety system. For
example, pre-scan and post-scan firmware logic employed when using SFCs only operates
when the step is entered and exited. The SFC reset instruction can be used to shut a system
down, however, there is no control for orderly shutdown should a fault occur. This behavior
may not be acceptable in a safety application.

6.2.3 Input and Output Checking

Data corraption in a process step or transition can have serious consequences if allowed to propagate
to other process steps. SFCs do not have explicit input and output checking mechanisms. However,
the generic guidelines apply to the underlying program steps and tiansitions.

The specific guideline is that input and output checking (enor containment) should be handled at the
language level and not at the SFC level. The likelihood of enor propagation can be reduced if a
process step uses reasonableness checks prior to setting variables used by other steps. Similarly, the
possibility of enor propagation is reduced and safety is enhanced if a module using values set by
another module performs checks on acceptability before operating on these variables. When the
checks indicate that some assertions have been violated, exception handling can be used to bring the
system to a state defined in the higher level design. Specific guidelines for PLC ladder logic were
described in the previous Chapter.

6-9 NUREG/CR-6463

6.3 Traceability

Traceability refers to attributes of safety software which support verification of conectness and
completeness compared with the software design. The intermediate attributes for traceability are:

• Readability
• Minimizing use of built-in functions,
• Minimizing use of compiled libraries.

Because readability is also an intermediate attribute of maintainability, it is discussed in the next
section. The following paragraphs discuss the latter two attributes.

6.3.1 Use of Built-in Functions

The SFC language does not explicitly support built-in functions. However, the underlying IEC 1131
languages used in process steps and transitions do support such functions. The use of built-in
functions raises safety concerns for the following reasons:

• The requirements for built-in functions may not be the same as those for developing safety
systems.

• The exception handling of the built-in function may not be as well characterized as portions
explicitly developed for the safety system.

• The specific built-in functions may vary from one PLC platform to another thereby raising
portability and maintainability concerns.

Because of these concerns, the use of built-in functions should be minimized. When built-in
functions are used, the developers should conduct thorough testing and develop a means for tracking
enors. The details and acceptance criteria of such a testing and verification program are beyond the
scope of this document.

6.3.2 Use of Compiled Libraries

SFC does not support the use of external libraries. However, its runtime environment does consist
of libraries of compiled components the underlying languages may also support compiled libraries.
The concerns in the previous section also apply to compiled libraries. When compiled libraries are
used, the developers should conduct thorough testing and develop a means for tracking enors. The
details and acceptance criteria of such a testing and verification program are beyond the scope of this
document.

NUREG/CR-6463 6-10

6.4 Maintainability

This section discusses safety-related maintainability attributes for SFCs. These include:

Readability
Data abstraction
Functional cohesiveness
Malleability
Portability.

6.4.1 Readability

Readability allows software to be understood by qualified development personnel other than the
original developer. Readability is essential for safety because it facilitates reviews and reduces the
likelihood of enors during maintenance.

SFC was specifically designed as a notation for representing a sequence of operations. As such, it
fits a developer's cognitive model of machine sequencing. Thus, SFC programs for sequencing
operations are readable. In general, the SFC construct adds an additional level of abstraction to the
prograrmning language.

The following specific guidelines are related to readability:

Conformance to indentation guidelines
Descriptive identifier names
Comments and internal documentation
Limitations on subprogram size
Minimizing mixed language programming
Minimizing obscure or subtle programming constructs
Minimizing dispersion of related elements
Minimizing use of literals
Controlled use of macro-steps.

6.4.1.1 Conformance to Indentation Guidelines

Because of the structure and notation of SFC, indentation guidelines are not applicable.

6-11 NUREG/CR-6463

6.4.1.2 Descriptive Identifier Names

The generic guidelines are applicable. Many SFC systems allow the naming of steps and transitions.
Identifiers are used to label the steps and transitions of the SFC. Each identifier refers to a program
file containing a process step or transition. The identifiers should be defined so that they provide
adequate information on the nature and content of each file. Specific guidelines should be developed
for each system and project, and the project-specific guidelines should be followed in the actual SFC
programs.

6.4.1.3 Comments and Internal Documentation

The generic guidelines apply. The following are specific guidelines:

• Descriptions of steps. Clear and unambiguous descriptions of process steps need to be
provided. These descriptions should include the processing performed by the step, timers set
and reset, and other operations. The description should be, in accordance with the design,
traceable to higher-level requirements and design documents.

• Description of interfaces. The interfaces for each step and transition should be described in
the preamble. This description should include a complete identification of the input
parameters, global variables (and any side effects), and output parameters. These descriptions
should be traceable to higher level design documents.

• Description of transition conditions. The transition conditions should be clearly stated. All
input variables and global variables should be identified. These descriptions should be
traceable to higher-level design documents.

6.4.1.4 Limitations on Subprogram Size

The generic guidelines are applicable. SFC implementations vary in the limitations on the amount
of code that can be in a single step. These limitations range from a single network of Ladder Logic
to no limit whatsoever (other than memory capacity of the PLC). The following are specific
guidelines:

• Limitation of a single step to a single function. The code in a single step should be limited
to performing a single action. Since each SFC step is typically a subroutine using a PLC
supported language, the rule for subroutines should apply to steps - one function which is
clearly definable. Multiple actions in a step are to be discouraged.

• Limitation on transitions to a single expression. SFC transition conditions are limited to a
single expression.

NUREG/CR-6463 6-12

6.4.1.5 Minimization of Mixed Language Programming

The generic guidelines are not applicable. Each of the IEC1131-3 programming languages for PLCs
is specific to a particular aspect of the control problem domain. PLC programs that are simple have
lower incidence of prograrnming enors, and are more maintainable than those that use the EEC 1131-3
languages for their intended purposes.

The following are specific guidelines on the use of SFCs in a mixed IEC 1131-3 language
application:

• Use SFC for sequencing. SFC is specifically intended for the programming of machine
sequences. The SFC notation for this purpose is clearer than Ladder Logic or Stractured
Text.

• Do not use SFC for interlocking or evaluation of logical relationships. Ladder Logic is well
suited for interlocking and other apphcations requiring evaluation of Boolean relationships.
SFC is not suited for this purpose.

• Do not use SFC for mathematical operations or evaluation of mathematical relationships.
Structured text excels over SFC, Ladder Logic, or function blocks for mathematical
relationships.

6.4.1.6 Minimize Obscure or Subtle Programming Constructs

The guidelines associated with this generic attribute have limited applicability. The following are
specific guidelines:

• Avoid nesting of subroutines within an SFC step. An SFC step suggests that a certain PLC
subroutine will be executed at that step. When the end of program statement or RET
statement is executed for that subroutine, the transition file is then checked, and the flow
continues from there. Calling nested subroutines of any language from within the called SFC
step is obscure because of the assumption that an SFC step is one subroutine.

• Do not use SFC constructs that are not related to sequencing. SFC as a language is intended
for the prograrnming of control sequences. There are some SFC constructs that allow other
uses for SFC. These constructs should be avoided.

• Avoid backward directed links in parallel paths. This is demonstrated in the following SFC
construct (which should be avoided). The transition condition labeled V, when active, allows
the re-activation of step 0. This can lead to multiple steps in the same sequence being active
simultaneously. SFC programs that allow this can be difficult to program and maintain.

6-13 NUREG/CR-6463

I - 1 o

I

I 1 1

a b

I 12

6.4.1.7 Minimize Dispersion of Related Elements

The guidelines associated with this generic attribute are appUcable. Dispersion can be an issue with
SFC because of its graphical organization. Few details are presented at the SFC level, and specific
variables associated actions are contained within many step and transition files. A further degree of
dispersion can occur because a step can be organized as several subroutines, each of which could be
in a separate file. Project-specific guidelines on how to stracture SFC programs to minimize the
dispersion of safety-critical components should be developed and adhered to during development.

6.4.1.8 Minimize Use of Literals

The generic guidelines are not applicable because the SFC language does not include literals. Use
of literals can occur in the underlying EEC 1131 languages. Specific guidance for PLC ladder logic
is contained in the previous chapter.

NUREG/CR-6463 6-14

6.4.1.9 Controlled Use of Macro-Steps

Macro-steps (nested SFCs), when available in the SFC implementation, can enhance readability by
combining several smaller steps and transitions into a single larger step. However, the misuse of
macro-steps can make SFC programs difficult to understand. Macro-step use should be controlled
by project guidelines to ensure that undue complexity is not hidden through excessive use of such
nesting.

6.4.2 Data Abstraction

As described in Chapter 1, data abstraction is the combination of data and allowable operations on
that data into a single entity, and the establishment of an interface which allows access, manipulation,
and storage of the data only through the allowable operations. It reduces or eliminates the potential
side effects of changing variables either during runtime or in software maintenance activities (Pamas,
1972). SFC programs provide an abstraction of the control sequence to be executed by the PLC.
This section includes guidelines on:

• Minimizing the use of global variables
• Minimizing the complexity of the interface defining allowable operations.

These attributes are discussed further in the following subsections.

6.4.2.1 Minimizing the Use of Global Variables

The generic guidelines have limited applicability because many PLCs allow only global variables.
Nevertheless, as noted previously, there are some implementations which do support a distinction
between local and global variables. If local variables are supported by the underlying language of the
process step or transition, they should be used for all internal operations.

6.4.2.2 Minimization of the Complexity of Interfaces

The generic guidelines are applicable. The primary interface issues are in the interaction between
process steps and transition files. These must be addressed through the underlying IEC 1131
languages.

6.4.3 Functional Cohesiveness

The generic guidelines are applicable. The following are specific guidelines.

6-15 NUREG/CR-6463

• A single function for each step. Every step should have one clearly discemable purpose
related to the time in which it should be executed. Two or more different steps should not be
combined in a single step if they handle different functions or processes.

• Use macro-steps for related junctions. When there are several related functions that are to
be performed in series, macro-steps can be used.

6.4.4 Malleability

Malleability is the ability of a software system to accommodate changes in functional requirements.
To implement a malleable software system, it is necessary first to identify what is expected to be
constant and what is expected to be changed, and then to segregate what is expected to be changed
into easily identifiable areas where alterations can be made with a rninimum of collateral changes.
The segregation into steps provides some malleability.

6.4.5 Portability

The advent of IEC-1131 software standards will create a common platform and a standardized
approach. However, this will be breached by hardware vendors trying to add extensions which only
they can interpret. This extensibility can be useful for an application, but useless in the desire for
standardization.

Only EEC 1131-3 compliant SFC systems should be used. Without the use of IEC 1131-3 constraints,
an SFC will NOT be portable between platforms. The implementations of SFC are varied. For
example, European implementations, or GRAFCET, (Blanchard, 1985) differ from domestic
implementations. Allen-Bradley's SFC is not a complete implementation of the IEC 1131 standard;
it also has unique features (Allen-Bradley, 1989).

NUREG/CR-6463 6-16

References

Allen Bradley, PLC-5 Programming Software - Programming, Publication 6200-6.4.7 November,
1991.

Blanchard, M. Le GRAFCETde noveaux concepts, CEP AD (France), 1985.

Bossy, J.C., P. Brard, P. Fagere, and C Mwerlaud, Le GRAFCET sa pratique etses applications,
Educalivre, France, 1979.

Hughes, T.A., Programmable Controllers, Instrument Society of America, Research Triangle Park,
NC, 1989.

Institute of Electrical and Electronic Engineering, IEEE Standard Dictionary of Electrical and
Electronic Terms, IEEE Std 100-1977.

Institute of Electrical and Electronic Engineers, Glossary of Software Engineering Terminology,
ANSI/IEEE Std 729-1983.

Institute of Electrical and Electronic Engineers, IEEE Standard Glossary of Software Engineering
Terminology, IEEE Std 610.12-1990.

International Electiotechnical Commission (TEC), Preparation of Function Charts for Control
Systems, IEC Standard 848, 1986. (Available in the U.S. from the American National Standards
Institute, New York.)

Intemational Electiotechnical Commission (DEC), Programmable Controllers General Information,
IEC Standard 1131, Part 1, 1992. (Available in the U.S. from the American-National Standards
Institute, New York.)

International Electiotechnical Commission (IEC), Programmable Controllers Programming
Languages, IEC Standard 1131, Part 3,1993. (Available in the U.S. from the American National
Standards Institute, New York.)

PLC Direct Corp., PLC Direct Technical Overview, 1994

Telemecanique, XTEL PLC Programming Software Version 5.5,1994

6-17 NUREG/CR-6463

7 Pascal
This chapter describes guidelines for the application of Pascal in safety systems and is organized in
accordance with the framework of Chapter 2. Section 7.1 discusses reliability-related attributes;
Section 7.2 discusses robustness-related attributes; Section 7.3 discusses traceability-related
attributes; and Section 7.4 describes maintainability-related attributes. A summary matrix showing
the relationship between generic and language-specific guidelines, together with weighting factors,
is included in Appendix B.

Although Pascal was standardized by the EEEE 770 and ANSI X3 J9 committees and is documented
by several standards (NIST, 1985), the language has several major variants. The most sigmficant of
these is Pascal developed by Borland International Corp. running under versions of the Microsoft
MS-DOS and Windows operating systems (Microsoft, 1992; Borland, 1991). These are of
significance for this report because of their cunent and potential continued use as platforms for
testing Class IE equipment. Guidelines that are specific to these latter variants are indicated as such
in this chapter.

Language-specific weighting factors were based on the key characteristic of Pascal designed for
safety, that is, strong data typing. Other factors were determined to be neutral from this perspective.
Recursion and interrapt handling through the run-time environment are felt to be important in the
negative sense; their use should be constrained and limited.

7.1 Reliability

This section discusses specific guidelines associated with intermediate attributes related to reliability.
The intermediate attributes are as follows:

Predictability of memory utilization
• Predictability of control flow
• Predictability of timing.

These attributes are discussed in the following sections.

7.1.1 Predictability of Memory Utilization

Base-level attributes related to the predictability of memory utilization in Pascal are as follows:

• Avoiding dynamic memory allocation
• Minimizing memory paging and swapping

7-1 NUREG/CR-6463

• Avoiding recursion
• Use of handles with pointers
• Avoiding the use of direct memory access.

Specific guidelines for these base attributes are discussed in the following subsections. It should be
noted that the final three guidelines are applicable to Pascal but are not included in the generic
guidelines. The final two guidelines are specific to Borland Pascal.

7.1.1.1 Avoiding Dynamic Memory Allocation

The generic guideline on avoiding dynamic memory allocation is applicable to Pascal. Dynamic
memory allocation should be avoided in safety systems written in Pascal.

The strong typing of ANSI Standard Pascal makes each anay type with different bound a distinct
type. This can make handling variable-length data items, such as strings, a problem. Kemighan
(Kemighan, 1981) has pointed out that the way around this problem is to ensure that all strings of a
program are set to strings of predetermined lengths, with an associated string type for each length.
In a safety system, this approach is preferable to an alternative approach using dynamic memory
allocation. This issue is discussed further in the section on data typing.

The use of dynamic memory can be detected through the Pascal statements containing new (to
allocate), dispose (to free memory), and the Pascal pointer (A). An alternative form is
GetMem/PreeMem. It should be noted that these two methods do not allocate memory on the heap
in the same way. The use of these functions interchangeably could conceivably destroy the heap
thereby losing all the data and crashing the computer (Borland, 1991). Care must be taken to avoid
"dangling pointers," i.e., pointers to space which has been freed or deallocated.

If dynamic memory allocation is necessary in a safety appUcation, the application program should not
use multiple variables pointing to the same memory location. The danger is that when the shared
memory space is deallocated, another variable may still point to the released memory space unless
each one is explicitly set to null by the application program. If an application (e.g. a linked list)
necessitates such multiple accesses, it must be justified and documented.

The foUowing is an example of dynamic memory allocation using Borland Pascal 7.0:

NUREG/CR-6463 7-2

{ Example 1 }
{ declaration }

VAR StrPtr : ASTRING;
GenPtr : POINTER;

{ Then, that string pointer is allocated space within the program}

New(StrPtr);

{ The string pointer is copied to the general one }

GenPtr : = StrPtr;

{ Example 2 }
{ The program assigns this value to an ARRAY of variant records.

One of the elements of the record is of type POINTER: }

TYPE YYSType = record case Integer of
1: (yylnteger : Integer);
2: (yyPointer : Pointer);

end;

If dynamic memory use is essential, the software should always release dynamic memory as soon as
possible.

7.1.1.2 Minimizing Memory Paging and Swapping

The generic guideline on nunimizing paging and swapping is applicable to Pascal programs. There
are no Pascal-specific guidelines.

7.1.1.3 Avoiding Recursion

This guideline is not generic; however, it is appUcable to Pascal. Recursive programs should not be
used in safety systems unless it can be definitively shown that there is always a terminating condition
within a deterministic time and number of iterations, and that the memory will not be exceeded at the
maximum level of recursion. The number of recursions can be large, even infinite, because the
terminating condition may not occur.

There are two types of recursion in Pascal: self-recursion and mutual recursion. Self-recursion can
be recognized by having a procedure call within a procedure of the same name. In mutual recursion,
two routines call each other. In the following example, functions A and B will call each other until
some termination criterion is met (unspecified in this example). Mutual recursion is rarely detected
by compilers.

7-3 NUREG/CR-6463

function B(x : integer)
function A(y : integer)
begin

... B(I) ...
end ;
function B(x : integer)
begin

... A(j) ...
end ;

: char ; forward ;
: char ;

: char ;

7.1.1.4 Use of Handles with Pointers

The following guideline is applicable to Borland Pascal.

If pointers must be used, handles should be used whenever possible. Handles allow memory
management to recapture and compact free memory24. The memory block should be locked to protect
moveable blocks and should be unlocked as soon as possible thereafter. When data in a moveable
block needs to be changed, locking the block while the change is being made and then unlocking the
block protects the data. When a block is locked the block cannot be moved. Once the block has been
unlocked, memory management can then move the blocks for compaction. If the handle is not
unlocked in a timely manner, memory management is unnecessarily hampered.

This guideline is illustrated in the following example (Borland, 1991).

ItemGlobalHandle := GlobalLock(GlobalHandle) ;
ItemGlobalHandleA[0] := 255 ; {Process data

using ItemGlobalHandle}
GlobalUnlock(ItemGlobalHandle) ;
if ((DataRecord.bitOptions or DDE_Release) <> 0) then

GlobalFree(ItemGlobalHandle);
end ;

Improper locking and unlocking of handles or failure to lock handles is a frequent source of enors
in Macintosh programming, which uses dynamic relocation and compaction of memory.

7.1.1.5 Avoid Use of Direct Memory Access

The following guideline is applicable to Borland Pascal under Windows and in Protected Mode

Compacting memory is a design issue that must be handled with care.

NUREG/CR-6463 7-4

Under DOS.

Direct memory access should not be used except in situations where hardware devices have memory-
mapped control registers that must be read or written. Although Borland Pascal permits access to
memory directly, this is not a safe practice under Windows at any time. Windows should manage
memory issues or the programs may crash (Borland, 1991). Protected mode does not allow direct
addressing. Instead, memory selectors should be used.

If direct memory access has to be used, it should be encapsulated, where possible, to avoid enors.

7.1.2 Predictability of Control Flow

This section discusses base-level attributes related to the predictability of memory utilization in
Pascal. These guidelines are

• Maximizing stracture
• Minimizing control flow complexity
• Initializing variables before use
• Single entry and exit points for subprograms
• Minimizing interface ambiguities
• Use of data typing
• Accounting for precision and accuracy
• Order of precedence of arithmetic, logical, and functional operators
• Avoiding functions or procedures with side effects
• Separating assignment from evaluation
• Proper handling of program instrumentation
• Controlling class library size
• Minimizing use of dynamic binding
• Controlling operator overloading.

These attributes and their relevance to safety are discussed in the following sections. It should be
noted that the avoiding-side-effects guideline is applicable to Pascal but not included in the generic
guidelines.

7.1.2.1 Maximizing Structure

The generic guideline on maximizing stracture applies to Pascal. Maximizing structure means not
using gotos (jumps in program control). Three language-specific guidelines are related to goto
statements, i f . . . e l se i f statements, and case statements.

7-5 NUREG/CR-6463

Avoid goto statements except as early exits from loops. The use of goto clouds the structure
of the code in that it can obscure program flow logic and result in unreachable code. The
following is an example25 of a fragment of a Pascal program containing goto statements
resulting in unreachable code.

B_Label:

A Label:

statement_l;
goto A_Label;
statement 2;
statement 3;
statement 4;
statement_5;
statement 6;
statement_7;
goto B_Label;
statement_8;

{unreachable code}
{unreachable code}
{unreachable code}

{unreachable code}

The rationale for the early loop exit exception to this guideline can be seen in the following
example. In Pascal the loops can be labeled in order to clarify the meaning of multiple loops
and the code structure. In the following example the_f i r s t_loop and inner_mos t_loop
are loop names.

25 This rather trivial example is only included for the purpose of illustration.

NUREG/CR-6463 7-6

label
after_

: the_first_loop, after_the_
_inner_most_loop ;

the_first_loop :
for i := 100 downto 1 do
begin

for alpha := 1 to 26 do

end
after_

begin
for numbers := 5 to 11 do

begin
the_inner_most_loop:
for steps := 1 to 10

begin

if sample <= 10e-6

first_loop, the_

do

and bc_flag
then goto after_the_first_loop

if bc_flag or not op_flag
then goto after_inner_most_loop ;

end ; {the_inner_most_loop}
{loop name for

after_inner_most_loop :
end ;

end ;
; {the_first_loop}
_the_first_loop : i := 1 ;

readability}
j := 5 ;

{loop name

_inner_most_

'"

for

loop,

readability}

It should be noted that standard Pascal allows only integers as labels, while Borland Pascal
has an extension to the language that also allows character strings as labels (Jensen, 1974;
Borland, 1991). It should also be noted that Borland Pascal 7.0 uses the keywords break and
continue, so that gotos with these constructs are not necessary.

Use ofif... else if and case statements. The use of i f . . . e l s e i f is shown in the
following example:

7-7 NUREG/CR-6463

if condition 1 then
statement_l ;

else if condition 2
statement_2 ;

else if condition 3
statement_3 ;

else
statement_4 ;

then

then

The final e lse statement allows the handling of conditions not anticipated in the first three
conditions; it also serves as a default. This construct should be used in all situations even if
it can be guaranteed that the conditions specified by the other e l se i f statements are
exhaustive.

The case statement serves as a switch for multiple branches and allows one evaluation for
the multiple branches. It is an alternative to the i f statement under the circumstances that
all conditions within the case statement are exhaustive (Jensen, 1974, p 31; Grogono 1983,
p 161). It is a run-time enor (of unspecified behavior) if the case selector does not equal one
of the case conditions. Some implementations of Pascal allow for a default selector, e.g.,
otherwise. However, if a default selector is used, the program is non-portable.

case thermal al
core
inlet
outlet

end ;

arm of
: core thermal alarm(sensor value) ;
: inlet thermal alarm(sensor value) ;
: outlet thermal alarm(sensor value) ;

7.1.2.2 Minimizing Control Flow Complexity

The generic guideline with respect to nesting levels applies to Pascal. Specifically, control flow
complexity results from the use of too many nested levels of branching or looping. As noted in the
generic report, there should be explicit organizational or project-specific limits on nesting. There are
no specific guidelines with respect to Pascal.

7.1.2.3 Initializing Variables before Use

The generic guideline with respect to initialization of all variables applies to Pascal. Run-time
predictability requires that memory storage areas set aside for process data be set to known values

NUREG/CR-6463 7-8

prior to being accessed (i.e., set and used). Variables should be initialized to some known value at
the beginning of an execution cycle before they are used. In Pascal all pointers must be mitialized
to NIL.

The key characteristic of Pascal associated with this guideline is the lack of compile time
initialization. The lack of compile time mitialization means that variables must be mitialized
explicitly by assignment statements. Because mitialization occurs at the beginning of the program,
initialized variables must be visible at the highest level of the calling hierarchy. The result is that
most variables to be initialized will have global scope (Kemighan, 1981). This is problematic
because excessive use of global variables conflicts with the data abstraction and visibility guidelines
described below.

The following guideline is applicable to Borland Pascal

When using separately compiled units with shared variables, mitialization should occur in one and
only one place.

7.1.2.4 Single Entry and Exit Points for Subprograms

The generic guidelines apply to Pascal. Standard Pascal is a block-stractured language in which
procedures and functions are defined by begin and end statements. This guideline is enforced by the
language (ANSI, 1983; p 66).

The following guideline is applicable to Borland Pascal

Borland Pascal provides the capability for multiple exit points. This capability should generally not
be used in safety-critical systems. When multiple exit points are unavoidable, the rationale should
be documented; and return value assignments must precede every exit point.

7-9 NUREG/CR-6463

{ In standard Pascal, acceptable }
function F: Boolean;
begin
if condition
then F:=true;
else
begin

F: =
end

end;

{ Borland Pascal (and some others), alternative form, not acceptable in
safety system }

function F: Boolean;
begin
if condition then
begin
F:=true; exit; { first exit }

end;

F: =
end; { second exit }

7.1.2.5 Minimizing Interface Ambiguities

The generic guideline with respect to interface ambiguity minimization applies to Pascal. Interface
ambiguities minimization can occur in both functions and procedures. The following additional
guideline applies:

• Alternate data types in subroutine formal argument lists. Inadvertent switching of parameters
of the same type can be avoided by not listing the same types in consecutive order when
possible, as shown in the following example.

process_sensor_data(sensor_id
value : string[255],
calib_date : integer,
calib_tech : string)

integer,

NUREG/CR-6463 7-10

7.1.2.6 Data Typing

The generic guidelines for data typing apply to Pascal. Pascal is a strongly typed language, and the
code should take advantage of this feature to the maximum extent possible. The following are
specific guidelines.

• Use subtypes. When defining data types, it is generally good practice to use subtypes of the
predefined types to define the range explicitly, thus bounding the enors. When an object is
assigned a number outside its range, a run-time enor is raised (Jensen, 1974; Grogono 1983).
The limits on data types should not be excessively constrained, forcing an unnecessary enor
to be generated.

• Minimize the use of implicit type conversions. All type conversions in Pascal are implicit.
Therefore, the programmer and the reviewer must be vigilant for these unannounced
conversions. An example with string assignments where the receiving string (right hand side
of an assignment statement) is a different size than the assigned string (left hand side).

The following is an example showing implicit type conversions in equations:

i : integer ;
r : real ;

r := i + r ;

i := i + r ;

{implicit conversion from integer to
real -- allowed}
{illegal}

Pascal ensures that expressions involving arithmetic evaluations or relational operations have a
single data type or the proper set of datatypes for which conversion difficulties are minimized.
It is not possible to assign the result of a r ea l expression to an in teger variable (Grogono,
1983, p. 37).

• Limit the use of indirection (pointers). Limiting the use of indirection, such as anay
indices and access types, in Pascal to situations where there are no other reasonable
implementation alternatives and performing validation on indirectly addressed data prior
to setting or use, ensure the conectness of the accessed locations.

7.1.2.7 Accountingfor Precision and Accuracy

Precision and accuracy generic guidelines apply to Pascal. Precision and accuracy issues include
the meaning and use of fixed point and floating point numbers, round off-enors, type declarations

7-11 NUREG/CR-6463

and digital accuracy, and portability. The accuracy and precision necessary are a function of the
project requirements in concert with the computer, the compiler, the hardware, the sensors, the
observability and the control requirements. The issues raised must be factored into the design of
the software. These are discussed in the generic guideline chapter of this report.

Within the rules of precedence, order of evaluation of expressions in Pascal is
implementation-defined. This may lead to unexpected results in the presence of optimized code
being generated by the compUer. This is especially an issue with floating point computations. A
compiler might replace ((L0+x)-x) with 1.0 at compile time, when the floating point rounding
enor is what the program is trying to compute (note that the above optimization is always
guaranteed to be conect for integer types).

7.1.2.8 Order of Precedence of Arithmetic, Logical, and Functional Operators

The generic guidelines for order of precedence apply to Pascal. The default order of precedence
of such operations as left to right with exponentiation, multiplication, and addition should not be
depended on. Hence, the following specific guidelines:

• Use parentheses. Arithmetic, logical, and other operations should use parentheses or
other mechanisms for ensuring that the order of evaluation of operations is explicitly
stated.

• An expression should not depend on the order of evaluation. The Pascal standard permits
operands of an expression to be evaluated differently from the left to right order in which
they are written. For example, in the statement:

i := F(J) d iv G(J) ;

where F and G are functions of type Integer, G may be evaluated before F, since this
enables the compiler to produce better code. If F and G have side effects, in particular,
changing the value of J, (perhaps inadvertent — as described in the next section), the
order of execution may have an effect that the programmer had not intended and that may
lead to a subtle and difficult to find the bug (Borland, 1991; p 241).

7.1.2.9 Avoiding Functions or Procedures with Side Effects

Generic guidelines are applicable. The following specific guideline applies to Pascal:

Global variables should not be set or changed by procedures and functions for which that variable
is global in scope. This means using local variables within functions and subroutines for variables
that should not be visible outside the function or procedure, and using the var only for those

NUREG/CR-6463 7-12

variables that the procedure should be changing.

7.1.2.10 Separating Assignment from Evaluation

The generic attributes apply to Pascal programs. Since there is no embedded assignment operator
for expressions in base Pascal, embedded assignment can only occur via side-effect producing
functions, which were discussed in Section 2.1.2.9.

7.1.2.11 Proper Handling of Program Instrumentation

The generic guidelines are applicable to standard Pascal. Borland Pascal and Turbo Pascal have
extensive instrumentation capabilities that can be implemented transparently in the source code
using the debugger supplied by the company. The additional guideline is to ensure that compiler
switches are set in a manner that does not disable debugging, such as $D-.

7.1.2.12 Controlling Class Library Size

The generic guidelines for this attribute are applicable to Borland Pascal but not to ANSI standard
Pascal, which is not object oriented.

7.1.2.13 Minimizing Use of Dynamic Binding

The generic guidelines for this attribute are applicable to Borland Pascal but not to ANSI standard
Pascal, which is not object oriented. The following specific guideline applies.

Dynamic binding and methods should be avoided if possible?6 The rationale for this guideline
is that dynamic binding forms unpredictable relationships which are hard to debug and difficult
to test for all possible configurations. If a class declares or inherits any virtual methods, then
variables of that type must be initialized through a constructor call before any call to a virtual
method. Thus, any object type that declares or inherits any virtual methods must also declare or
inherit at least one constructor method.

Dynamic method calls are dispatched at run time, as opposed to virtual methods whose invocation
is known at compile time. For all other purposes, a dynamic method can be considered equivalent

Methods are functions and procedures that are used to manipulate and retrieve data from the data objects in
the methods' class. Methods are by default static, but can, with the exception of constructor methods, be made virtual
through the inclusion of a virtual directive in the method declaration. The compiler resolves the calls to static methods at
compile time, whereas calls to virtual methods are resolved at run time. The latter is sometimes referred to as late
binding or dynamic binding.

7-13 NUREG/CR-6463

to a virtual method. An object is instantiated, or created through the declaration of a variable or
typed constant, or by applying the standard procedure new to a pointer variable of an object type.
It is important to note that assignment to an instance of an object type does not entail mitialization
of the instance.

The foUowing are examples of constructors:

constructor Field.Copy(var F : Field) ;
begin

Self := F ;
end ;
constructor Field.Init(FX,FY, FLen : Integer ; FName
begin

X := FX ;
Y := FY ;
Len := FLen ,-
GetMem(Name, Length(FName) + 1) ;
Name*" := FName ;

end ;
constructor StrField.Init(FX,FY,FLen: Integer; FName
begin

Field.Init(FX, FY, FLen, FName) ;
GetMem(Value, Len) ;
Value* := '' ;

end ;

: String) ;

: String) ;

The following are examples of destructors:

destructor Fielc
begin

FreeMem(Name,
end ;

I.Done :

Length(NameA) + 1) ;

destructor StrField.Done ;
begin

FreeMem (Value,
Field.Done ;

end ,-

Len) ;

Dynamic binding uses the heap and is therefore susceptible to the same types of memory

NUREG/CR-6463 7-14

problems described in Section 7.1.1.1, Avoiding Dynamic Memory Allocation. Therefore, as
with pointers, dynamic memory should be avoided if possible. All cases requiring dynamic
binding should be documented and justified.

7.1.2.14 Controlling Operator Overloading

Pascal does not have operator overloading features; therefore, the guideline is not applicable.

7.1.3 Predictability of Timing

Predictability of timing is cracial in a safety system used in real-time control. Concerns over
object-oriented base attributes discussed in the previous sections (e.g., package library size,
dynamic binding, and operator overloading) also apply to timing. In addition, specific concerns
related to interrupts are discussed in Section 7.1.3.2.

7.1.3.1 Minimizing the Use of Tasking

Pascal does not have tasking features; therefore, the generic guidelines are not applicable.

7.1.3.2 Minimizing the Use of Interrupt Driven Processing

The generic guidelines for interrupt-driven processing apply to Pascal. It is not generally
desirable in safety-critical systems because it can lead to nondeterministic maximum response
times and can lead to unanticipated system states. Use of a deterministic approach to the
momtoring and control of multiple input sources is normally prefened. However, there may be
some situations where interrupt-driven processing has a significant design advantage over
alternatives, for example, to handle the acceptance and processing of plant input. When interrapt
service routines are needed, only the minimum processing needed to buffer the input should be
performed by the interrupt driver. AU non-time-critical processing (e.g. units conversions) should
occur in the main line code.

The following is the form of an interrapt handler in Borland Pascal under MS-DOS on Intel
processors:

7-15 NUREG/CR-6463

procedure IntHandler(Flags,
ES, BP : Word);

interrupt ;
begin

end ;

CA, IP, AX, BX, CX, DX, SI, DI,

Interrupt routines must be designed with care. Masking of interrapts, nested interrupts, and
interrupt processing in general can all cause non-deterministic behavior. Also, some form of
locking or mutual exclusion may be required when using interrupts.

In case of code that directly accesses hardware, it must be noted that Pascal lacks the volatile
attribute, so it is not possible to guarantee that memory accesses are not deleted and that they
occur in the specified order.

7.2 Robustness

Robustness refers to the capability of the software to survive off-normal or other unanticipated
conditions. The intermediate attributes for robustness are as follows:

• Controlled use of diversity
• Controlled use of exception handling
• Input and output checking.

This section describes Pascal-specific guidelines for the base-level attributes of software diversity
and exception handling.

7.2.1 Transparency of Functional Diversity

There are no Pascal-specific guidelines for functional diversity. The generic guidelines apply.

7.2.2 Exception Handling

Standard Pascal does not have exception handling. Therefore, this guideline is not applicable.
Borland Pascal has specific types of enor handling, which are not as general as full exception
handling. The following guidelines apply to Borland Pascal:

• Exit handling. Exit handling can be used to recognize run-time enors explicitly and plan
for their resolution, and for post-mortem analysis. Borland Pascal provides a method of

NUREG/CR-6463 7-16

declaring run-time enors and of building the appropriate exit handling code. This is exit
handling, not exception handling. It is considered good practice to recognize these
conditions explicitly and plan for their resolution.

procedure TestExit ;
var
ExitSave : Pointer ;

procedure MyExit ;
far ;
begin
ExitSave := ExitProc ;

end ;

begin
ExitSave := ExitProc ;
ExitProc := ©MyExit ;

end ;

{Always restore old vector first}

Use of IOresult. The built-in function IOresult returns MS-DOS enor codes when
performing input and output operations through the operating system. This function is
used with input/output checking disabled (the $1 compiler directive). Under these
circumstances, use of IOresult (for input and output made through the operating system)
can result in more robust code. For example, in the following code fragment, the
procedure FilelOCheck would caU the IOresult built-in function, determine whether the
file-open was successful, and take appropriate action, such as bypassing a routine and
informing the operator, if it was not successful (Borland, 1991).

{$1-}
Assign(F,
Reset(F):

{disable
Filename);

FilelOCheck;

I/O Checking }

It should be noted that input/output checking should normally be enabled. If it is disabled,
as in the example above, an enor checking routine should be performed immediately after
the operation.

7-17 NUREG/CR-6463

7.2.3 Input and Output Data Checking

The generic attributes for input and output data checking are applicable to Pascal.

7.3 Traceability

Traceability refers to attributes of safety software that support verification of conectness and
completeness compared with the software design. The intermediate attributes for traceability are

• Readability
• Use of built-in functions
• Use of compiled libraries.

Because readability is also an intermediate attribute of maintainability, it is discussed in Section
7.4. Pascal-specific guidelines for the latter two attributes are discussed in the following
subsections.

7.3.1 Controlling Use of Built-in Functions

The generic guidelines on the use of built-in functions apply to Pascal. Pascal functions defined
in the standard are portable to other compilers. The distinction between built-in functions and
intrinsics that may be implemented inline by the compiler is not always self-evident. Some
"functions," e.g., ord, are really intrinsics. Some, such as sqrt, are really library functions.

The use of some buUt-in functions may be necessary or expedient. The decision is a design-level
issue that is beyond the scope of this report. However, for functions determined to be desirable
for inclusion in safety systems, the testing and related generic guidelines apply. An example of
a function whose behavior should be tested and understood because it is not uniform across
compilers is mod (modulo) (Grogono, 1983; p. 36).

7.3.2 Use of Compiled Libraries

The following guidance is specific to Borland Pascal

The generic guidance relating to limiting the use of compiled libraries is applicable to Pascal.
Although there is no reference to compiled libraries in the Pascal language specification (ANSI,
1983), Borland Pascal has extensive support for compiled libraries and for dynamic linked
libraries, which are part of the Microsoft Windows operating environment.

Borland Pascal units are program modules that make it possible to perform separate compilation.

NUREG/CR-6463 7-18

A unit can contain code, data, type, and/or constant declarations, and can use other units. The unit
has a public section called interface and a private section called implementation (Borland, 1991).
Units are necessary because of a 64K code segment limit (Borland, 1991). However, because they
are compiled separately, they do not have the same visibility rules as text-based files, which are
included prior to compilation. Thus, global types, variables, and definitions must be compiled
into a separate global-level unit. Beneficial uses of units (even if not essential) include providing
common and enforceable data type declarations and module initialization. Constant definitions
enhance safety and are not a violation of the guideline. Units can also be used to include well-
tested and trusted libraries from the development organization. However, units used to include
externally developed code and dynamic link libraries should be niinimized.

Units can be recognized by the reserved word "unit" appearing at the beginning of the Pascal
source code. The following is an example program that uses a precompiled unit called Mathfunc.

program calculate
{$R MATHFUNC}
uses Mathfunc;
type

The following is the beginning of the source code unit for the Mathfunc unit.

unit Mathfunc;
interface
function add (X, Y) :
function multiply (X,

implementation
function add...
function multiply...

real
Y) : real;

In addition to precompiled units written in Pascal, it is also possible to link in code written in
other languages, such as C, in Windows Dynamic Linked Libraries (DLLs) in a separate
compilation unit called a library. This unit is identified by a reserved word "library" at the
beginning of the source file. The functions which may be accessed by another routine can be
recognized by the reserved word "export." The following is an example:

library Mathfunc;
function Power(x,y:
begin

real):

Power:=Exp(y*ln(x));

Real ; export;

7-19 NUREG/CR-6463

end;

{ more functions here }

That a routine uses such library functions can be determined through the word "external." The
foUowing is an example of "external."

unit Mathfunc;
const Place: integer := 21;
interface
function add (X, Y): real;
function multiply (X, Y): real;

implementation
function add; external 'Mathfunc'

function multiply...

index Place; {assuming this is the 21st
Function in the library }

There are several different types of libraries that could be used, depending on whether the
appUcation is running under MS-DOS only or MS-DOS and Windows; additional libraries may
be used for object classes shipped with the language (appUcable to both the MS-DOS and Turbo
versions). The decision as to which libraries are necessary and which are expedient is a design-
level issue that is beyond the scope of this report. However, for libraries determined to be
desirable for inclusion in safety systems, the testing, configuration control, and related guidelines
apply.

7.4 Maintainability

This section discusses the Pascal-specific attributes of the following intermediate attributes related
to maintainability:

• Readability
• Data abstraction
• Functional cohesiveness
• Malleability
• Portability.

Base-level attributes and Pascal-specific guidelines are discussed in the following sections.

NUREG/CR-6463 7-20

7.4.1 Readability

The following base attributes are related to readability:

• Conformance to indentation guidelines
• Descriptive identifier names
• Comments and internal documentation
• Limitations on subprogram size
• Minimizing mixed language programming
• Minimizing obscure or subtle prograrnming constructs
• Minimizing dispersion of related elements
• Minimizing use of literals.

The Pascal-specific guidelines associated with these attributes are discussed in the following
subsections.

7.4.1.1 Conformance to Indentation Guidelines

The guidelines developed for the generic indentation attribute are applicable to Pascal.

7.4.1.2 Descriptive Identifier Names

The guidelines developed for the generic descriptive identifier names attribute are applicable to
Pascal. The following additional guidelines apply:

• Separate words in compound names with underscores.

Rads_Per_Second
Core_Temperature

• Choose names that are as self-documenting as possible.

• When separate compilation units exist, utilize prefixes. (The following guidance is
specific to Borland Pascal.) Where there are multiple modules, it is possible to have a
convention specifying that every export from a module have an identical descriptive prefix
on the name. This allows a person reading the code to see immediately where a particular
imported function, procedure, or variable came from.

7-21 NUREG/CR-6463

7.4.1.3 Comments and Internal Documentation

The guidelines associated with the generic attributes are applicable.

7.4.1.4 Limitations on Subprogram Size

There are no Pascal-specific guidelmes. The guidelines associated with the generic attributes are
applicable.

7.4.1.5 Minimizing Mixed Language Programming

There are no Pascal-specific guidelines. Since there is no separate compilation in ANSI standard
Pascal, there can be no mixed language programming. The guidelines associated with the generic
attributes are therefore not applicable.

However, in Borland Pascal, separate compilation is supported and use of mixed language
prograrnming is, therefore possible (although non-portable). Since, generally speaking, there are
differences in calling conventions and datatypes between languages, mixed languages should be
used with caution, if at all.

7.4.1.6 Minimizing Obscure or Subtle Programming Constructs

There are no Pascal-specific guidelines. The guidelines associated with the generic attributes are
applicable. The guidelines on side effects, global variables, and order of evaluation are also
related.

7.4.1.7 Minimizing Dispersion of Related Elements

The guidelines associated with the generic attributes are applicable. In addition, when elements
are dispersed throughout the code, it is hard to check, validate, and maintain the code.

The following guideline is specific to Borland Pascal.

Use compilation units to group related elements. Pascal has a strict order in which it
accepts declarations (i.e., label, const, type, var, procedure and function declarations,
and finally the main procedure). Thus, it is difficult to keep the declaration, mitialization,
and use of types and variables close together in large programs in standard Pascal
(Kemighan, 1981). However, where separate compUation is supported, related variables
and procedures can be kept in separately compiled units.

NUREG/CR-6463 7-22

7.4.1.8 Minimizing Use of Literals

The guidelines associated with the generic attributes are applicable. In addition, the following
Pascal specific guidelines apply:

• Use constants for numeric literals. The use of numeric literals as hard coded constants,

Area := 3.14159265*sqr(radius) ;

instead of constant identifiers such as,

cons t
p i : r e a l := 3.14159265 ;

decreases readability and complicates maintainability, particularly if the literal is associated
with a process parameter which may be tuned or a conversion factor which may be changed
upon recalibration of an instrument. It is far easier to change one value set at the beginning
of a source code file than it is to guarantee that all literals associated with such a parameter
have been changed completely and conectiy throughout all relevant source code files. When
constants are not used, uniform comments should be associated with each constant to
facilitate search and replace operations.

7.4.2 Data Abstraction

Data abstraction is the combination of data and allowable operations-on that data into a single
entity, and the establishment of an interface which allows access, manipulation and storage of the
data only through the allowable operations. This principle results in the following specific base
attributes:

• Minimization of the use of global variables.

7.4.2.1 Minimization of the Use of Global Variables

The guidelines associated with the generic attributes are partially applicable. Standard Pascal
does not support external variables (local variables whose values persist in memory after the
execution of the routine has ended). Thus, any values which are necessary in the next invocation
of a function or procedure must be maintained at a higher scope. Moreover, as pointed out earlier,
variables which must be initialized early in program execution of necessity must be visible at a
relatively high position in the program hierarchy. Finally, there are appropriate uses for global
variables, i.e., maintaining the state of data that must be accessed by many functions. The
alternative is to pass such values as parameters which increases the complexity of the function

7-23 NUREG/CR-6463

interfaces.

Nevertheless, global variables obscure the passage of data between subprograms and defeat the
benefits of data abstraction. They are a primary mechanism for side effects and the resultant
subtle bugs. Thus, a balance must be struck between the characteristics of Pascal, which tend to
encourage use of global variables (related to initialization and persistence of variables), and the
principles of data abstraction.

7.4.2.2 Minimization of Complexity of Interfaces

The generic guidelines are applicable to Pascal. No language-specific attributes apply.

7.4.3 Malleability

The generic guidelines apply. Malleability is the ability of a software system to accommodate
changes in functional requirements (Witt, 1994). Malleability extends data abstraction with the
motivation toward isolating areas of potential change. To implement a malleable software
system, it is necessary to identify what is expected to be constant and what is expected to be
changed, and to isolate what is expected to be changed into easily identifiable areas where
alterations can be made with a minimum of collateral changes.

7.4.4 Functional Cohesiveness

The generic guidelines are applicable. No additional guidelines apply.

7.4.5 Portability

The generic guidelines have limited applicability. From the perspective of safety, the benefits of
portability are the adherence to standard prograrnming constructs that yield predictable and
consistent results across different operating platforms (Witt, 1994). However, the limitations of
the standard base Pascal language make it difficult to write real time control programs without
extensions. Some of the difficulties were discussed in this chapter (no external variables, no
separate compilation units, no default ("otherwise") in a case construct, etc.). As a result, almost
aU Pascal compilers have language extensions to varying degrees. Thus, portability is difficult to
achieve in Pascal.

NUREG/CR-6463 7-24

References

ANSI/1EEE770X3.97-19S3, American National Standards Committee Pascal, 1983 .

Borland International Corporation, Borland Turbo Pascal 4.0, Scotts Valley, CA, 1987.

Borland International Corporation, Borland Pascal for Windows Programmer's Guide, Scotts
Valley, CA, 1991.

Coad, P., "OOD Criteria, Part 1," Journal of Object-Oriented Programming, 4: 69-70.

Grogono, P., Programming in Pascal, 2nd Edition, Addison-Wesley Publishing Company,
Reading, MA, 1983.

Hutcheon, A., "A Study of High Integrity Ada," (UK) Ministry of Defence contract: SLS3 lc/73
Language Review, Document Reference SLS3 lc/73-1-D, Version 2, July 9,1992.

Jensen, K. and N. Wirth, Pascal User Manual and Report, Second Edition, Springer Verlag, New
York, NY, 1974.

Kemighan, B. W. and P.J. Plauger, The Elements of Programming Style, McGraw-Hill, New
York, NY, 1974.

Kemighan, B. W. and P.J. Plauger, Software Tools, Addison-Wesley, Reading, MA, 1976.

Kemighan, B.W., Why Pascal is Not My Favorite Programming Language, April 2, 1981,
Available from Internet Universal Resource Locator (URL):
http://www.ee.ryerson.ca:8080/~elf/hack/pascal.html.

National Institute of Standards and Technology, FIPSPUB 109 Pascal, 1985. (Available from
National Technical Information Service).

Page-Jones, M., The Practical Guide to Structured System Design, New York Yourdon Press,
Prentice-Hall, New York, NY, 1980.

Pyle, I. C, The Ada Programming Language, Prentice-Hall, Englewood Cliffs, NJ, 1981.

Software Productivity Consortium, Ada Quality and Style Guidelines for Professional
Programmers, Van Nostrand Reinhold, New York, NY, 1989.

Witt, B. I, F. T. Baker, and W. W. Merritt, Software Architecture and Design. Van Nostrand
Reinhold, New York, NY, 1994.

7-25 NUREG/CR-6463

http://www.ee.ryerson.ca:8080/~elf/hack/pascal.html

8. PL/M
This chapter discusses guidelines for the application of PL/M in safety systems. This chapter is
organized in accordance with the framework of Chapter 2. Section 8.1 discusses reliability-
related attributes; Section 8.2 discusses robustness-related attributes; Section 8.3 discusses
traceability-related attributes; and Section 8.4 describes maintainability-related attributes.
Appendix A.4 provides additional information on the language including its history and variations
across different processors. A summary matrix showing the relationship between generic and
language-specific guidelines, together with weighting factors, is included in Appendix B.

Intel Corp., the company which originally sponsored development and promoted the use of PL/M,
discontinued support of their last PL/M compiler (PL/M-386) in December 1994. Since then, the
use of PL/M in real-time control systems has diminished, and the number of programmers with
proficiency in this language is also declining. Thus, conservative use of the language and its
features is advisable in development of safety-related applications.

8.1 Reliability

Reliability implies that the software executes to completion, produces expected results, and that
the output is within the required response time. Other attributes of reliability are as follows:

• Predictability of memory utilization
• Predictability of control flow
• Predictability of timing.

Further discussion on the relevance of these attributes as they relate to safe use of PL/M is found
in the sections below.

8.1.1 Predictability of Memory Utilization

PL/M and the supporting development environment provide compUe-time features for enforcing
the predictability of memory utilization. These features do not depend upon run-time support
portions of the compiler.

Unlike most other computer architectures, Intel's PL/M software development environment
encourages the separation of data and instructions into distinct contiguous segments (Intel, 1990;
Intel, 1992). The PL/M compiler generates relocatable object modules in which the various types
of memory are kept separated. At program link time, all program instructions are collected and
stacked together, followed by data constants, read-write variables, and stack allocation

8-1 NUREG/CR-6463

information.

After linking, Intel requires one last step before the program module is made executable in
devices with nonvolatile RAM. The last step, known as Locate, maps the various collected
memory segments by type into their final absolute memory addresses. All program instructions
are mapped into a ROM segment, or an EEPROM segment where they remain nonvolatile until
reprogrammed. RAM variables and the system stack are likewise mapped into an address space
containing the read-write memories. The Locate step is not required where PL/M programs are
being used with an operating system in volatile RAM. A loader performs the locate function in
these cases.

8.1.1.1 Minimizing Dynamic Memory Allocation

The generic guideline applies. The PL/M language does not have built-in functions equivalent
to the C a l l o c and malloc, which dynamically allocate RAM at run-time. Any dynamic
allocation of RAM must be explicitly handled by the PL/M programmer. Such allocation is
nevertheless discouraged and should be identifiable as part of a review.

8.1.1.2 Minimizing Memory Paging and Swapping

The generic guideline applies. In embedded systems where the bulk of PL/M has been used, the
concepts of memory paging or process swapping are not likely to be used. In such systems,
generally all programs reside in fixed read-only memory. Likewise, sufficient read/write data
memory should be designed into a system. Removable or moving magnetic media are usually
only used for data collection, momtoring, and secondary storage.

If memory paging and process swapping are proposed for use in an embedded safety system, the
design should be reviewed and reconsidered in light of the above.

8.1.1.3 Minimizing Memory Bank Switching and Shadow Memory

The PL/M linker and locator programs can be manipulated to produce sections of binary code that
have the same address space as other program modules, usually by means of a hardware bank-
switching mechanism devised by the system hardware designers. This mechanism is commonly
used in smaller micro-controller architectures (limited to 64k) when the complete address space
has been consumed.

Use of hardware bank-switching, and its associated software housekeeping, should be avoided
if at all possible because it is a source of unreliability. Great care must be taken to ensure that

NUREG/CR-6463 8-2

program and data code is where it is thought to be. Interrapts and exceptions may cause the
vectoring of the program to an address page that has been switched out of working memory.

8.1.2 Predictability of Contiol Flow

Control flow defines the order in which statements in a program are executed. Control statements
determine sequential execution of code, conditional branching, iteration and looping, and
procedure invocation (Meek, 1993). A predictable control flow allows an unambiguous
assessment of how the program will execute under specified conditions. Attributes related to safe
control flow include the following:

• Maximizing structure
• Minimizing control flow complexity
• Initializing variables before use
• Single entry and exit points for subprograms
• Minimizing interface ambiguities
• Use of data typing
• Accounting for precision and accuracy
• Order of precedence of arithmetic, logical, and functional operators
• Avoiding functions or procedures with side effects
• Separating assignment from evaluation
• Proper handling of program instrumentation
• Controlling class library size
• Minimizing use of dynamic binding
• Controlling operator overloading.

These attributes and their relevance to safety are discussed in the following sections.

8.1.2.1 Maximizing Structure

The generic guideline applies. The PL/M language supports structured programming. Although
PL/M does have a goto statement, in almost all cases a structured prograrnming construct can
be found to replace or eliminate it. Structure is maximized by eliminating goto statements and
using appropriate block stractured code instead. The PL/M constructs of DO . . CASE, DO . . WHILE,
iterative DO and I F . , THEN . . ELSE permit branching with a defined return without introducing
the uncertainty of control flow associated with the goto statement.

Guidelines, recommendations, and examples for enhancing a safe program using PL/M's
structured constructs are provided below.

8-3 NUREG/CR-6463

DO..END Blocks. The simple DO.. END statement pair is a building block of structured
programming. The DO block in PL/M is sometimes confused with the active DO statements
described below. The following example of a simple DO block is provided to clarify
program blocks:

DC-

END;

Statement 1
Statement 2
Statement 3

Statement n

DO CASE Blocks. The DO CASE statement in PL/M is a simpler construct than the CASE
or SWITCH statement found in other languages and it must be used with care. The main
problem with the PL/M CASE statement is that it is unbounded. It is quite easy to generate
an out-of-bounds CASE value that will then branch into inconect code. The code segment
in the example below will produce unexpected and possibly disastrous results if ETEST
is not in the range of 0 to 4.

ETEST = 5;
DO CASE ETEST;

TEST = TEST + 1;
TEST = TEST * TEST;
;
TEST = TEST - 1;
CALL NOTEST;

END; /* End of DO CASE ETEST

/*
/*
/*
/*
/*
*/

case 0
case 1
case 2
case 3
case 4

*/
*/
(null stmt)*/
*/
*/

The reason for this construct is that the PL/M compiler generates an anay of addresses
(pointers) for each of the cases defined. Each address in the anay points to a section of
code for the particular CASE element. At the end of each code element, an absolute branch
statement takes the code to the next statement after the DO CASE. If evaluation of the
CASE index results in an out-of-range value, that inconect value attempts to access a
pointer to a nonexistent anay element fetching a pointer to "garbage". Left unbound by

NUREG/CR-6463 8-4

the I F . . . THEN . . . ELSE statement, the DO CASE would subsequently perform a "wild"
branch to the location pointed to by the enoneous pointer.

In contrast, other languages have a bounded CASE-like statement. The SWITCH
statement in C, for example, will yield a default statement, or act as a null statement if
the evaluated switch index does not match a vaUd case statement. For programmers with
a background in C who are about to embark on a PL/M project, this statement may be a
source of potential problems.

This shortcoming of PL/M can be conected by containing the DO CASE statement within
a condition (i.e., an IF statement) that checks whether the DO CASE index is within the
valid range. In the following example, if ETEST is negative or greater than 4, the ELSE
clause will catch and handle the exception. The DO CASE statement will be ignored when
ETEST is out of range.

IF (ETEST >= 0) AND (ETEST <
THEN DO CASE ETEST;

TEST = TEST + 1;
TEST = TEST * TEST;
;
TEST = TEST - 1;
CALL NOTEST;

END;

5)

ELSE CALL TEST_NUMBER_EXCEPTION

/*
/*
/*
/*
/*
/*
/*
/*

Confine cases to [0.
case 0 */
case 1 */
case 2 (null stmt)*/
case 3 */
case 4 */
End of DO CASE ETEST
handle exception */

4]*/

*/

■An alternative to this construct is to limit the use of the DO CASE statement to binary
(i.e., true/false) conditions.

DO WHILE Blocks and IF Statement. Relational comparisons normally result in OFFH
being set for TRUE and OOH being set for a FALSE condition, DO WHILE only looks at
the least significant bit to determine TRUE (=XXXXXXXIB) or FALSE (=XXXXXXXOB)
condition. This may cause confusion when using both the DO WHILE statement and the
IF statement as shown in the following examples

Improper assumptions: OOH is FALSE; 01H..0FFH is TRUE
OOH is FALSE; OFFH is TRUE;
01H..0FEH undefined.

8-5 NUREG/CR-6463

Correct assumption: xxxxxxxOB is FALSE; xxxxxxxlB is TRUE.

Procedure Activation. In PL/M, there are three ways in which a procedure can be
activated. In the first two a procedure is invoked by name, and there is no problem (in
these forms the parameter list is optional):

CALL name [{parameter l i s t)] ; /* untyped procedure form
*/
name [{parameter list)]; /* typed procedure form
*/

A third type of procedure invocation is possible: by location. This method contains risks,
as the compiler does not fully check the number of parameters passed, nor does it provide
automatic type conversion for these parameters. The invocation form for call by location
is as follows:

CALL location[.member-identifier] [{parameter list)];

The location value can be a stracture reference, but it cannot be subscripted. Use of the
call-by-location method of invocation is not recommended. If this style must be used,
detailed attention must be given to the parameter list. Since both type conversion and
parameter checking occur at compile time, checking these constructs can prevent

• problems.

goto Statement. The goto statement should be avoided because it leads to unstractured
code. Programming teams should be challenged to develop a complete software program
without using a single goto statement. There is almost always a way to stracture code so
that a goto statement is not needed, goto statements sometimes crop up when a
programmer becomes frustrated with the handling of exception or enor handling code.
Generally, it is better to handle enors and exceptions locally rather than to branch out of
the middle of the block. Exception handling is further discussed below.

Comments /*... */. The method in which PL/M implements comments can sometimes
cause problems. In certain cases, unmatched comment pairs inadvertently "comment out"
sections of source code statements. If this occurs in code segments that are infrequently
used, such as safety handling exceptions, the fault can go unnoticed for a long period of
time. In the following example, statement2 has been inadvertently commented out by the
missing terminator of statementl. The compiler will not object as it is only scanning for
the next comment terminator »*/".

NUREG/CR-6463 8-6

statementl; /* This i s a comment about t h e s e . . .
statement2; /* . . . t h r e e statements and how statement 2 . . . */
statement3; /* . . . has been accidentally commented out. */

In the PL/M-80 and PL/M-86 compiler, unbalanced comment pairs are not caught and
flagged by the compiler when they occur at the end of a compiled module. In the
following case, statement3 does not produce code because it is inadvertently commented
out. The compiler also does not object and does not produce a warning or enor. In this
case, we have a compiler weakness or shortcoming that does not object to unbalanced
comment delimiter pairs.

statementl;
statement2:
statement3;

END;

/* This is a comment about these...
/* ...three statements and how statement 3..
/* ...has been accidentally commented out.

*/

8.1.2.2 Minimizing Control Flow Complexity

All generic guidelines under this heading apply to PL/M. "Excessive nesting can usually be
avoided by the use of functions, subroutines, or CASE statements in place of in-line branches.
Guidelines specifying a limit on the nesting levels should be included in the project's
programming handbook.

8.1.2.3 Initialization of Variables Before Use

The generic guideline applies in PL/M. In embedded systems, uninitialized variables can often
be the source of latent software bugs.

In PL/M, the variables mitialized prior to execution are part of the CONSTANT segment and are
normally stored with the CODE segment. If a variable requires an initial value, but is not a
constant, then it must be initialized by the software. PL/M compilers do not contain built-in
facilities to provide initialization of variables automatically. The compiler will help partition the
code into data segments, but the user must write the code to move the data from a ROM segment
into a RAM segment to initialize it at run time. The reason is that most PL/M applications do not
run under a standard operating system, which would normally handle the initialization on program
loading.

8-7 NUREG/CR-6463

Certain debugging tools can mask mitialization problems during development. In-circuit emulator
systems may test and initialize emulation memory as part of the power-up sequence. Hence, when
a user program executes in the emulation environment, every variable has unknowingly been
mitialized to a known value (usually zero). When this same debugged code is moved to the actual
operating platform, the RAM values will likely be random. This condition can result in latent
flaws with safety significance — particularly in rarely used exception and enor handling code.

One method of avoiding the above condition is to clear all RAM areas to zero intentionally and
explicitly as part of the software mitialization process. In embedded systems, the software often
performs some self-test on the hardware system well before the main program is entered. The
pseudocode shown in the example below illustiates how PL/M startup code can provide proper
"housekeeping" before beginning to execute.

PowerOnRESET:
/* Gain control of the System */

Disable Interrupts;
Bring all peripherals to known state;
Perform system self-tests;

/* Setup operating environment */
Set up interrupt vectors;
Initialize peripheral devices;
Clear all RAM to zeros;
Initialize program RAM variables;
Enable appropriate interrupts;

Main$Program$Loop: /* Drop into Main Program */
Statement 1;

8.1.2.4 Single Entry and Exit Points in Subprograms

The generic guideline applies in PL/M. Multiple entry and exit points in a subprogram introduce
uncertainties in the control flow similar to the use of goto statements. Contiol flow predictability
is enhanced when there is only a single entry point, and a single exit point from a subprogram.
Because predictability of execution flow is important to safety, multiple entry points in
procedures or functions should not be used even if the language supports them.

• No calls to locations. When PL/M procedures are invoked by name, they can only have
one entry point, which is the name assigned to the procedure itself. However, PL/M also

NUREG/CR-6463 8-8

allows a call to a location. This is dangerous as the compiler will not guarantee that the
destination location is even a procedure or that it has a valid RETURN statement. Repeated
invocations to this enant location will continue to PUSH data onto the system stack without
a conesponding POP of the same data off the stack on exit. The result will be a system
crash as the stack grows out of bounds.

The example below illustiates how a second entry point can be dangerously assigned to
a procedure.

DOITALL:

DO$SOME:

PROCEDURE
S ta t emen t^

S ta t emen t^

RETURN;

(A,
1 ;

k ;

B)

/*

'•

L a b e l e n t r y p o i n t */

For safety related reasons, it is recommended that the procedure call-by-location not be
used. A better method to accomplish the above is shown below. Here, two procedures are
defined instead of one with multiple entry points. Both procedures now have only one
entry point and one exit point.

DO$SOME:

DOITALL:

PROCEDURE
S t a t e m e n t _ l ;

S t a t e m e n t n ;
RETURN;

PROCEDURE (A, B) ;
S t a t e m e n t _ l ;

CALL DO$SOME;
RETURN;

8-9 NUREG/CR-6463

8.1.2.5 Minimizing Interface Ambiguities

Interface enors in argument lists and messages passed to other program entities account for many
coding enors. These enors may appear syntactically conect to the compiler and hence go
unnoticed until runtime. An example of such an enor is reversing the order of arguments when
caUing a procedure. Unfortunately, PL/M offers limited safeguards to prevent such problems (i.e.,
a linker check for the number and type of parameters).

The following specific guidelines apply:

• Use templates during code development. A template can provide a useful mechanism for
preventing argument list enors. In the example below, each procedure when written
includes a calling sequence template stored as a comment in the procedure's header block.
Each time a procedure invocation is to be coded, the programmer should COPY the calling
template (three lines in the following example) and PASTE it where the invocation should
occur. The comment delimiters are then removed, and the associated parameters become
part of the program. Once the invocation has been coded, the remaining commented
declaration lines can be deleted. By having all of the information at hand at the coding
point, the programmer does not risk guessing at the parameter specifications. Templates
should also be built for system procedures and buUt-in functions. The following example
shows a procedure CALL template:

/ * * * * * * * * * + * + • * * * + + * * * * * * * * * * * * * * * * * * + * * * * * * * * * * * * * + * * * * * * * * * * * * * * * /
/* Calling Template: */

/* CALL FIRE$LASER (CHANNEL, DURATION, POWER$LEVEL) ,- */
/* DECLARE CHANNEL BYTE; */
/* DECLARE DURATION, POWER$LEVEL REAL; */

/* */
/*++********************************+**************•***********»***/
FIRE$LASER: PROCEDURE (CHANNEL, DURATION, POWER$LEVEL);

DECLARE CHANNEL BYTE;
DECLARE DURATION, POWER$LEVEL REAL;

• Parameter Validity Checking. In any language, including PL/M, active checks can be
placed in the code to ensure that proper parameters have been passed. In the
FIRE$LASER example below, checks can be placed at the beginning of the procedure to
ensure that all parameters passed are valid. A compound IF statement is used to verify
data before the actual procedure logic is invoked in the following example.

NUREG/CR-6463 8-10

FIRE$LASER: PROCEDURE (CHANNEL, DURATION, POWER$LEVEL);
DECLARE CHANNEL BYTE;
DECLARE DURATION, POWER$LEVEL REAL;
DECLARE DURATION$LOW LITERALLY '0.0'
DECLARE DURATION$HI LITERALLY '3.0';
DECLARE POWER$LOW LITERALLY '0.0',-
DECLARE POWER$HI LITERALLY '100.0';

IF (((CHANNEL = 1) OR (CHANNEL
AND ((DURATION > DURATION$LOW)

; /*
/*
/*
/*

Minimize literals in
...code by declaring.
...them centralized..
...in the header.

= 2))
AND

AND ((POWER$LEVEL) > POWER$LOW AND
) THEN DO;

... /* Code to fire the
END;

END; /* End Of FIRE$LASER */

Laser

..*/
•*/
*/
*/

(DURATION < DURATION$HI))
(POWER$LEVEL < POWER$HI))

*/

In areas of safety-critical applications, this overhead is justified to ensure that parameters
passed are within acceptable range. Although these parameters may have been checked
elsewhere, these checks add an extra level of safety if some of the calling code is modified
inconectly during maintenance in the future.

8.1.2.6 Use of Data Typing

The generic guideline applies. Acceptance of data that is different from that intended for use by
a subprogram or procedure can cause failures. The PL/M language provides for simple data
typing of variables and constants. In PL/M the data types are fixed and predefined. Simple data
typing provides for memory length and simple data pattern format checking. Thus, the data types
BYTE and unsigned char or WORD and in t can occupy the same number of bits, but have
different meanings when being evaluated. For example, WORD is 0...65535, but i n t is
-32768.32767.

In PL/M, only the constant data type is checked for a maximum and minimum range. This is only
to ensure that the compiler can properly fit the data value into the specified data type. No user-
specified range check is made. Strong Data Typing, which allows a user not only to specify a data
type but also to place valid range bounds on that data type, is not supported.

Specific guidelines are as follows:

• Actively check all mathematical and index values prior to use. As PL/M does not
support strong data typing, this must be implemented manuaUy. Calculated values
should be checked for their potential to overflow or underflow. Index values
should be checked to ensure that they do not attempt to access out-of-bound anay
or matrix elements. Memory pointers should also be checked to ensure that they

8-11 NUREG/CR-6463

point to valid memory areas.

Avoid automatic or implicit type conversions. For clarity, readability, and
comprehension, explicit type conversions should be used.

Avoid mixed mode operations. Mixed mode operations should also be avoided for
the same reasons as stated above.

Limit the use of indirection with indices, pointers, and based variables to
situations where no other reasonable alternatives exist. Validation should be
performed on indirectly addressed data to ensure conectness of the accessed
locations.

Add explicit range checking. Adding explicit data checking when the data has not
been validated previously can be prudent. In the example below, the variable
DURATION is verified by the procedure CHECK$DURATION to ensure that its
value is within a valid range. Line 34 of this example uses a compound I f
statement to ensure that all laser parameters are in range before allowing the laser
instrument to fire. The ELSE clause of this same statement on line 36 locally
handles the case of one of these parameters being out of range.

NUREG/CR-6463 8-12

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34

35
36
37
38

END OF

1
1
1
2
2
2
2

2
2
2
1
2
2
2
2

2
2
2
1
2
2
2
2
2

2
2
2
1
2
1
2
2
2

3
3
2
1

PL/M-

STRONG$DATA$TYPE: DC-

DECLARE TRUE LITERALLY 'OFFH';
DECLARE FALSE LITERALLY 'NOT TRUE';

CHECK$DURATION: PROCEDURE (DURATION) BYTE;
DECLARE CHK$FLAG BYTE, DURATION WORD;
DECLARE DURATION$LOW LITERALLY '0';
DECLARE DURATION$HI LITERALLY '3';

IF ((DURATION > DURATION$LOW) AND
(DURATION < DURATION$HI))

THEN CHK$FLAG = TRUE;
ELSE CHK$FLAG = FALSE;
RETURN (CHK$FLAG);

END CHECK$DURATION; /* End of Procedure */

CHECK$POWER$LEVEL: PROCEDURE (POWER$LEVEL) BYTE;
DECLARE CHK$FLAG BYTE, POWER$LEVEL WORD;
DECLARE POWER$LOW LITERALLY '0';
DECLARE POWER$HI LITERALLY '100';

IF ((POWER$LEVEL > POWER$LOW) AND
(POWER$LEVEL < POWER$HI))

THEN CHK$FLAG = TRUE;
ELSE CHK$FLAG = FALSE;
RETURN (CHK$FLAG);

END CHECK$POWER$LEVEL; /* End of Procedure */

CHECK$CHANNELS: PROCEDURE (CHANNEL) BYTE;
DECLARE (CHK$FLAG, CHANNEL) BYTE;
DECLARE CHAN$A LITERALLY '3';
DECLARE CHAN$B LITERALLY '23';
DECLARE CHAN$C LITERALLY '19';
IF ((CHANNEL = CHAN$A) OR

(CHANNEL = CHAN$B) OR
(CHANNEL = CHAN$C))
THEN CHK$FLAG = TRUE;

ELSE CHK$FLAG = FALSE;
RETURN (CHK$FLAG);

END CHECK$CHANNELS; /* End of Procedure */

LASER$SETUP$EXCEPTION: PROCEDURE;
/* ...exception handling code here... */

END LASER$SETUP$EXCEPTION;

FIRE$LASER: PROCEDURE (CHANNEL, DURATION, POWER$LEVEL);
DECLARE CHANNEL BYTE;
DECLARE (DURATION, POWER$LEVEL) WORD;

IF ((CHECK$CHANNELS(CHANNEL))
AND (CHECK$DURATION (DURATION))
AND (CHECK$POWER$LEVEL(POWER$LEVEL))

) THEN DO;
/* ... Code to fire the laser */

END;
ELSE CALL LASER$SETUP$EXCEPTION; /* handle exception

END FIRE$LASER; /* End of FIRE$LASER */
END STRONG$DATA$TYPE; /* End of Program */

-386 COMPILATION

*/

8-13 NUREG/CR-6463

8.1.2.7 Precision and Accuracy

The generic guideline applies. The software application must provide adequate precision and
accuracy for the intended safety application. Safety concerns are raised when the declared
precision of floating point variables is not supported by analysis, particularly when small
differences between large values are calculated. The following are specific guidelines:

» Account for different hardware. The same data types, when used by different compilers,
may have different precision. For instance, the data type WORD is a 16-bit number in
PL/M-86 and PL/M-286, but becomes a 32-bit number in PL/M-386. Likewise DWORD
is a 32-bit number in PL/M-86/286 and a 64-bit number in PL/M-386.

• Account for optimization in floating point computations. Unexpected results can occur
during compiler code optimization. This is especially an issue with floating point
computations. A compiler might replace ((1.0+x) -x) with 1.0 at compile time, when
the floating point rounding enor is what the program is trying to compute. Note that the
above optimization is always guaranteed to be conect for integer types.

• Verify numeric precision in ported code. In porting code containing calculations, the
range of precision of the datatypes should be investigated and verified. This is particularly
trae when porting code downward to a less powerful platform. Even though the data types
may be syntactically equivalent, their precision may be inadequate for the function to be
ported.

• Express precision in terms of numeric ranges. Comment block procedures with precise
numeric ranges (rather than data types) are shown in the following example.

/* Designed for the
DECLARE
DECLARE
DECLARE

PL/M-
DELTA$VOLTS WORD;
VOLT$l HWORD;
LED$V BYTE;

-386
/*
/*
/*

platform.
Range:
Range:
Range:

0.
0.
0.

. (2**

. {2**

.255
•32)-
-16)-

-1
-1

*/
*/
*/
*/

If the code in this example were to be run on both an 80286 and an 8086-based platform,
the values for DELTA$VOLTS and VOLT$ l would have be changed from WORD to DWORD,
, and from HWORD to WORD, respectively, in order to maintain the same mathematical
• precision. This becomes a simpler task if the intended data range has been expressed in
comments by the original designer of the procedure, such as in the example shown below.

NUREG/CR-6463 8-14

/* Designed
DECLARE
DECLARE
DECLARE

for the PL/M-
DELTA$VOLTS DWORD;
V0LT$1
LED$V

WORD;
BYTE;

-86
/*
/*
/*

or 286
Range:
Range:
Range:

platforms.
0.
0.
0.
.(2**32)
.(2**16)
.255

-1
-1

*/
*/
*/
*/

In the above example, expressing the variable only by data type leaves the issue of
changing the data type ambiguous. Without this information, the programmer
inadvertently or unknowingly may leave DELTA$VOLTS as data type WORD in the porting
process.

8.1.2.8 Use of Parentheses Rather than Default Order Precedence

The generic guideline applies. The default order of precedence of arithmetic, logical, and other
operations varies among languages. Developers or reviewers may make inconect precedence
assumptions when explicit parentheses are not used. In moving between languages with similar
statement definitions such as "C" and PL/M, developers and reviewers are particularly vulnerable
to these wrong assumptions about order of operations.

The explicit use of parentheses and other mechanisms for ensuring a clear statement of the order
of evaluation of operations should be used. In some cases, complex statements should be broken
down into two or three simple statements to enhance clarity and readability and to ensure that the
compiler properly evaluates the statement expressions. This is particularly the case in floating
point computations when compiler optimization is used. Such expressions should be broken up
into multiple statements because the ordering of statements is usually preserved, even by
optimizing compilers.

8. 1.2.9 Avoiding Functions or Procedures with Side Effects

Generic guidelines are applicable.

8.1.2.10 Separating Assignment from Evaluation

Separation of assignment statements from the evaluation of expressions is particularly important
in PL/M because the syntax defines two meanings for the token "=" (equal sign). The equals sign
can represent the logical relational operator "equals," or it can represent the assignment of a value
to a variable. PL/M attempts to compensate for this by defining an embedded assignment token

8-15 NUREG/CR-6463

of": =" (colon, equals). The latter is explained below. Embedded assignment can also occur by
invoking a typed procedure within an expression.

Embedded assignment statements should be separated from the evaluation of expressions. The
PL/M language documentation (Intel, 1990) explicitly states that:

"...the rules of PL/M do not specify the order in which
subexpressions or operands are evaluated. When an embedded
assignment changes the value of a variable that also appears
elsewhere in the same expression, the results cannot be
guaranteed."

Intel does not guarantee the order in which the following ambiguous expression will be
evaluated. In addition, the compiler may even interpret the statement differently in various levels
of compiler optimization. The expression:

A = (X:=X+4) + Y*Y + X;

could result in A being assigned either of the following:

(X+4) + Y*Y + (X+4);
(X+4) + Y*Y + X;

The ambiguity can be removed by separating out the embedded assignment statement, and
recoding explicitly as the programmer intended it to be:

X = X + 4 ;

A l = X + Y*Y + X;

X = X + 4 ;

A2 = X + Y*Y + (X-4) ;

or ,

In summary, safety concerns dictate that assignments be separated from evaluation in order to
avoid ambiguity and to improve readability of the code. Modem compilers do well in constructing
optimized code. The inclusion of a large number of terms in an expression in source code

NUREG/CR-6463 8-16

statement rarely results in more efficient machine code than the same logic broken out into two
or more lines of code.

8.1.2.11 Proper Handling of Program Instrumentation

The generic guideline applies. Program instrumentation is used to collect and output certain
internal state values of a program during execution. Program instrumentation is one method that
allows a developer to check that particular aspects of a specification have been conectiy
implemented (Liao, 1991). Use of program instrumentation is often the only method for observing
the operation of systems containing proprietary and/or protected operating systems. Fortunately
for the vast majority of PL/M users, nonintiusive real-time methods of obtaining the same
information exist through use of the in-circuit emulator development tool.

In-circuit emulators (ICE) allow detailed data about a program's execution to be collected in a
non-invasive manner while the program executes in real-time. Since no code is necessarily added
to the program, the program being executed under the ICE unit can be the exact code to be run
in the final system.

If an ICE system;is not available, or for some reason program instrumentation appears preferable,
the following guidelines and recommendations are offered:

• . Minimize run-time perturbations. Instrumentation that interferes with the normal
execution flow and timing rhythms is undesirable in safety applications because it will
change the normal operation pattern of the program. Less intrusive methods should be
employed, such as collecting data in memory and later processing them in a background
task.

• Instrumentation source code should remain visible. PL/M does not provide any compiler
features that generate hidden or concealed code for a "debug" mode of operation.
Compiler directives may be used, however, to compile program instrumentation
conditionally into the code. This is generally acceptable if the two models do not depart
as discussed above.

• Conform to software instrumentation and test guidelines. Program review is facilitated
and safety enhanced if instrumentation and test procedures are described in the project-
specific handbook. Program instrumentation and test are often detailed in a separate test
specification. These test specifications should describe the program instrumentation and
its scope in detail.

8-17 NUREG/CR-6463

8.1.2.12 Control of Class Library Size

The generic guideline does not apply. Because PL/M is an older language, it does not contain
any of the features or concepts related to object-oriented methods, including classes, inheritance,
operator overloading, and polymorphism. Object-oriented characteristics can be enhanced by
controlling limits on subprogram and module sizes.

8.1.2.13 Minimizing Dynamic Binding

PL/M does not support dynamic binding of code segments. As PL/M is primarily an embedded
language that executes from nonvolatile ROM, the dynamic binding of code during run time is
not supported. However, bank switching, which is a hardware form of dynamic binding,
sometimes appears. Hence, the following specific guideline for this issue.

The PL/M object code linkers and locate programs do allow for the generation of overlay or
shadow ROM code (see section 8.1.1.2) by the use of hardware bank switching techniques. These
represent a risk and should therefore be eliminated. Bank switching is difficult to test and debug,
particularly in the areas of fault and interrapt handling.

Most cases of bank switching appear in modifications to a system when the complete address
space becomes full. From a safety standpoint, bank-switching is never worth the risk and effort.
It is preferable to upgrade the hardware to the next microcomputer architecture containing a larger
memory address space.

8.1.2.14 Control of Operator Overloading

The generic guideline does not apply. The PL/M language does not support the concepts of
polymorphism or operator overloading.

8.1.2.15 Compiler Optimization and Hardware Flags

PL/M-86 and later compilers are capable of performing extensive optimizations on the object
code generated by earlier passes of the compiler. Such optimization changes the exact sequence
of machine code produced from a given sequence of PL/M source statement.

One of the impacts is that the microprocessor hardware flags cannot be predicted or determined
for any given point in a program. As an apparent carry-over from the early unoptimized PL/M-80
compiler, the language provides built-in functions that attempt to return the cunent value of the
hardware flags. These built-in functions should be used with caution if used at all. They are listed
in the following table.

NUREG/CR-6463 8-18

Table 8-1 Optimization and Hardware Flags.
Hardware flag bits
Carry-rotation
functions
Decimal adjust
function
Hardware register
Arithmetic operators

CARRY, SIGN, ZERO, PARITY
SCL, SCR

DEC

FLAGS
PLUS, MINUS

Functions that use these hardware flags should be programmed in assembly language so that
predictable contiol can be achieved. It is also recommended that, where wananted, a library of
these functions be developed in one module so that they might be isolated and better maintained.

8.1.3 Predictability of Timing

Predictability of timing is cracial in a safety system used in real time contiol (Kopetz, 1993;
Leveson, 1992). Response to asynchronous interrapt inputs must be predictable to ensure that
safety-related procedures are allowed to complete execution within their precise window of time
according to specification. In addition, output values must be computed and prepared according
to precise timing requirements.

8.1.3.1 Minimizing the Use of Tasking

Tasking is undesirable in safety systems unless there is a compelling justification. The PL/M
language does not provide any language facility for implementing concunent processing. Intel
does, however, provide a compatible real-time operating system kernel known as iRMX.

If an operating system kernel such as Intel iRMX is used, it should be provided with complete
source code. Although the user documentation for such a system may be extensive, developers
need to have access to all aspects of this controlling code to avoid safety-related problems that
may be hidden from view.

8.1.3.2 Minimizing the Use oflnterrupt-Driven Processing

Use of interrapts to handle the acceptance and processing of plant and operator inputs can reduce
average response times. It also usually leads to nondeterministic "maximum response times.
Improper use of interrapt-driven processing has been implicated in at least one fatal accident
(Leveson, 1992). Documents and standards related to digital system safety generally discourage
or prohibit the use of interrapt-driven processing to facilitate analysis of synchronization and run
time behavior and to avoid the nondeterministic response times inherent in interrupt-driven

8-19 NUREG/CR-6463

processmg.

However, use of interrapts may be necessary to capture asynchronous data within a certain
deadline. Not doing so may allow the external data to change or become overrun with other new
data. The following specific guidelines are applicable.

• Interrupt handlers should be as short and simple as possible. The processing associated
interrapts should be minimized. The interrapt handler should only access, queue, and flag
data for processing at a later time. There should be only a single path of execution with
no delays or waiting involved.

• Avoid nested interrupts. Nested interrapts should not be permitted in safety systems.

• The interrupt handler should not set or otherwise alter shared data. In general, the
interrapt handler should write data into a dedicated memory area or buffer. However, if
the handler must access shared data, some form of locking or mutual exclusion may be
required when using interrapts.

The foUowing is a descriptive example of an interrapt driven system. This basic design has been
used in a number of successful biomedical and process control instruments. A hardware timer
provides a system "heartbeat" of 30 ms. This heart beat time is arbitrarily chosen and could be set
to any reasonable time-slice interval.

NUREG/CR-6463 8-20

Every 30 ms the timer interrupts the background task and performs any time
critical tasks. The interrupt duty cycle is designed to not exceed 50 percent.

Hardware signals are latched and generate a level two interrupt. Interrupt
handlers are designed to be low in overhead. They execute as a fast "store,
flag, and return." In other words, on interrupt they:

Fetch the waiting input data,
Store it in a queue,
Set a data available flag, and
return to processing.

This approach eliminates the use of interrupt processing and yet acknowledges
asynchronous input data quickly.

Every 30 ms the level one timer interrupts. The level one task then performs
the following:

• Checks critical areas of the system for validity.
• Looks for new queued input data.
• Calculates any new controlled output values.
• Outputs new values (if any).
• Returns from Interrupt.

When interrupt processing has been completed, the system returns to background
processing. Tasks that are not time critical are continuously processed in
a priority order in this task. Examples include writing data to a display
buffer, storing data in a data cartridge and similar tasks.

Tasking has been minimized in this system. In addition, and most important, the tasking that does
exist is explicitly controUed; it is not delegated to a black box operating system kernel. Interrapts
are used as necessary to capture (but not process) real-time events. They then terminate as rapidly
as possible. The timer-interrupt routine is efficient enough to complete all of its tasks within 15
ms.

8.2 Robustness

Robustness (or survivability) refers to the capabiUty of the software to continue execution during
abnormal or other unanticipated conditions. Robustness is an important safety system attribute
because unanticipated events can occur during an accident or excursion. The ability of the
software to continue momtoring and controlling under such circumstances is vital. The
intermediate attributes for robustness are as follows:

8-21 NUREG/CR-6463

Controlled use of software diversity
• Controlled use of exception handling
• Input and output checking.

These attributes and their relevance to safety are discussed in the following sections.

8.2.1 Controlled Use of Software Diversity

The decision to employ diverse software implementations is a design-level function. The PL/M
languages offer no features that require more than the generic concerns under this heading.

8.2.2 Controlled Use of Exception Handling

Exception handling deals with abnormal system states and input data. Exception handling
provisions in some languages facUitate the estabUshment of alternate execution paths in the event
ofoonditions that, although unexpected, result in states that can be defined in advance. Problems
can arise in the use of exception raising and handling, however, because execution flow during
exception conditions is often difficult to trace.

Attributes that pertain to safe exception handling include the following:

Local handling of exceptions
• Preservation of external control flow

Uniformity of exception handling.

PL/M has no native facilities that support exception handling. Synchronous exceptions can be
handled locaUy, but asynchronous ones may require an interrapt or trap handler to process them.
Asynchronous exceptions can only be handled by interrupt or trap handlers. The effect of
handling the exception in this way can be localized to the module containing the handler, and
flags can be used to communicate the enor to other modules. Sometimes polling can be used to
turn an asynchronous condition into a synchronous one.

8.2.3 Input and Output Checking

Input and output data should be validated before being used. Corraption of data, whether due to
a transient failure of a sensor, a flipped memory bit, or an invalid calculation, can have serious
consequences on subsequent processing if the enor is aUowed to propagate. PL/M does not offer
any specific language features to accomplish this checking. However, data can be validated as
part of the application software as shown in the following example.

NUREG/CR-6463 8-22

The example incorporates both input/output checking and local exception handling. This
procedure checks and confines the input and output data to specific ranges. In addition, the
exceptions raised from data being out of range are handled by a local procedure.

Lines 6 through 18 in the example are nested local procedures that perform input and output data
checking. Also, the procedure HANDLE$EXCEPTIONS provides a local facility for handling the
exceptions encountered in this procedure.

The reason for using a procedure to accomplish this is that procedures provide isolation and
localization of the exception code. They also increase readabflity which promotes review and
maintenance. Although not shown in this example, the complete limits and default values for the
input and output data should be explicitly defined within the local procedure with a series of
DECLARE.. .LITERALLYstatements.

Use of this format also provides some of the positive attributes of data abstraction and
encapsulation. All data and procedures necessary to handle data I/O checking and exceptions are
contained within procedure CALCULATE$VELOCITY.

On line 20 of the example, the data input values are checked and adjusted. If any are out of range,
an exception can be raised that will be handled later in the procedure. Between lines 20 and 21,
the full calculation of velocity wiU occur. Line 23 then checks the results of the computations and
adjusts them before making the data available as output from this procedure.

During execution of this procedure, data input and output exception flags may have been raised
by either local procedures IN$ CHECK or OUT$ CHECK. Perhaps further processing of these noted
exceptions is necessary. A message may have to be sent to another module warning of a possible
degradation of the system. This might be done in local procedure HANDLE$EXCEPTIONS.

If necessary in the design, an exception flag can be returned from the typed procedure
CALCULATE$VELOCITY.

8-23 NUREG/CR-6463

10
11
12
13

2
3
3
3

/ • i t * /
3 1 CALCULATE?VELOCITY: PROCEDURE (CHAN$1, CHAN$2, TIME) BYTE;
4 2 DECLARE (CHAN$1, CHAN$2, TIME) REAL;
5 2 DECLARE V$EXCEPT BYTE;

/* Local Procedure: IN$CHECK */
/* Checks that input data is within valid range. */
/* Substitutes Max/Min data for out of range data ... */
/* .. so that calculations can continue. */
/•A**/

6 2 IN$CHECK: PROCEDURE BYTE;
7 3 DECLARE I$EXCEPT BYTE;

/* ... other statements ... */
8 3 RETURN (I$EXCEPT);
9 3 END IN$CHECK;

/* Local Procedure: OUT$CHECK */
/* Checks that output data is within valid range. */
/* Adjusts as necessary so that computation and... */
/* ... control can continue as normal. */
OUT$CHECK: PROCEDURE BYTE;

DECLARE 0$EXCEPT BYTE;
/* ... other statements ... */

RETURN (0$EXCEPT);
END 0UT$CHECK;

/* Local Procedure: HANDLE$EXCEPTIONS */
/* ...code to handle the out-of-data-range exception */
/* ...locally so that calculations can continue. */

HANDLE$EXCEPTIONS: PROCEDURE BYTE;
DECLARE C$EXCEPT BYTE;

/* ... Handle local exceptions here ... */
C$EXCEPT = FALSE;
RETURN (C$EXCEPT);

END HANDLE$EXCEPTIONS;

19 2 DECLARE (EXCEPT?IN, EXCEPT$OUT) BYTE;
20 2 EXCEPT$IN = IN$CHECK; /* Check data about to be used */

/* ...Perform all processing of data here... */
/* ... other statements ... */

21 2 EXCEPT$OUT = OUT$CHECK; /* Check data just computed */
V$EXCEPT = TRUE;
IF (EXCEPT$IN OR EXCEPT$OUT)THEN V$EXCEPT = HANDLE$EXCEPTIONS;
RETURN (V$EXCEPT); /* exception flags can also be... */ .

/* ...returned to caller if desired. */
END CALCULATE$VELOCITY;

14
15
16
17
18

2
3
3
3
3

22
23
24
25

2
2
2

NUREG/CR-6463 8-24

The above design preserved the flow of the control logic while handling any exceptions. No goto
statements have been used to branch to other outside exception handling code, thus transferring
flow to another control path.

8.3 Traceability

As defined earlier, tiaceability refers to attributes that support and allow verification of
conectness and completeness when compared to the software design specifications. The
intermediate attributes for tiaceability are as follows:

• Readability
• Use of built-in functions
• Use of compiled libraries.

Readability is an intermediate attribute shared by traceability and maintainability; it is discussed
under that heading in Section 8.4 below. The latter two attributes and the PL/M features relevant
to safety are discussed in the following section.

8.3.1 Use of Built-in Functions

Generic guidelines apply to PL/M. Concerns over the use of built-in functions can be addressed
by controlling the use of built-in functions through organizational or project-specific guidelines.
Regression test cases make it possible to establish conformance with expected results for new
releases of compilers and runtime libraries. Therefore, regression test cases, procedures, and
results of previous testing for allowable built-in functions should be maintained. Test cases
should assess behavior for out-of-bounds and marginal conditions in the specific runtime
environment. Examples of these conditions include negative arguments on square root functions
and improperly terminated strings. The built-in functions included with PL/M-386 are shown
below.

LENGTH, LAST, SIZE
DOUBLE, REAL, FLOAT, FIX
ABS, IABS
CHARINT, SHORTINT, INTEGER
Rotate (ROL, ROR)
Arith Shift (SAL, SAR)
Compare (CMPB, CMPHW)
String Mismatch (SKIP)
Set String (SETB, SETW)
Find Bit (SCANBIT)
Lock Set (LOCKSET)
CAUSE?INTERRUPT
CARRY, SIGN, ZERO, PARITY
Decimal Adjust (DEC)
INPUT, OUTPUT
GET$REAL$ERROR

LOW, HIGH
INT, SIGNED, UNSIGN
BYTE, WORD, HWORD
SELECTOR, OFFSET, POINTER
Log Shift (SHR, SHL)
Move (MOVB, MOVW, MOVHW)
Find (FINDB, FINDW)
Translate String (XLAT)
Copy Bit (MOVBIT)
Time Delay (TIME)
Interrupt ENABLE, DISABLE
HALT
PLUS, MINUS
STACKPTR, STACKBASE
SET$REAL$MODE
WAITFORINTERRUPT

8-25 NUREG/CR-6463

8.3.2 Use of Compiled Libraries

The generic guidelines apply to PL/M. CompUed libraries are routines written and compiled by
a group or organization, usually outside and removed from the current development group.
Compiled libraries are often sold by third-party providers and are available only in object-code
format with detailed calling and usage documentation. For the most part they are documented
"black boxes" with their internal methodologies and algorithms hidden. Concerns for such
libraries are similar to those for built-in functions.

8.4 Maintainability

Attention given to maintainability issues in program design makes it easier and safer to make
changes to the program. These issues reduce the likelihood of enors inadvertently being
introduced during the change or upgrade process. Addressing these issues at design time is really
an investment in the future robustness of the program.

The following attributes are related to maintainability as it affects safety:

• Readability. These are attributes of the software that facilitate the understanding of
the software by project personnel.

• Data Abstraction. This is the extent to which the code is partitioned and modularized
so that the collateral impact and probability of unintended side effects due to software
changes are minimized.

• Functional Cohesiveness. This is the appropriate aUocation of design-level functions
to software elements in the code (i.e., one procedure, one function).

• Malleability. This is the extent to which areas of potential change are isolated from
the rest of the code.

• Portability. The major safety impact is the avoidance of nonstandard functions.

These attributes are discussed in detail in the sections below.

8.4.1 Readability

The attribute of good readability allows the software to be understood by qualified personnel
other than the original author of the code. Readable source code adds to the documentation of the
program itself (self-documenting). Studies have shown that manual code reading is more effective
than stractural testing or functional testing for finding code faults (McGarry, 1992). Therefore,

NUREG/CR-6463 8-26

it seems that good readability will enhance the probability of locating faulty or weak code that
could cause faUures in operation or problems during maintenance. The following attributes make
source code more readable:

• Conformance to indentation guidelines
• Use of descriptive identifier names
• Comments and internal documentation
• Limitations on subprogram size
• Minimizing mixed language programming
• Minimizing obscure or subtle prograrnming constructs
• Minimizing dispersion of related elements
• Minimizing the use of literals.

PL/M aspects of these attributes are discussed below.

8.4.1.1 Conformance to Indentation Guidelines

Appropriate indentation facilitates the identification of declarations, contiol flows, nonexecutable
comments, and other components of source code. Indentation guidelines are generally part of a
project specification, organizational style, or standards document. In the paragraphs below,
indentation issues, guidelines, and recommendations are discussed as they pertain to PL/M
program blocks and control flow blocks.

• Program blocks. Program blocks separate sequences of statements. In PL/M, the DO
and END statements define the limits of a program block. In PL/M, program blocks
can be nested. Each program block, therefore, provides a natural method of expressing
the program logic by indenting. It is recommended that, for clarity and understanding,
the program segments and blocks be indented consistently throughout the program.

• Control flow blocks. Program control statements of DO . . .WHILE, DO CASE,
iterative DO, and I F . . . THEN . . . ELSE also provide natural indentation segments.

8.4.1.2 Descriptive Identifier Names

The generic guidelines apply. , an identifier is the name of a variable, procedure, symbolic
constant, or statement (label). Identifiers can be up to 31 characters long. The first character must
be alphabetic, and the remainder may be either alpha or numeric.11 There is no distinction

This applies to early versions of PL/M such as PLM-80. Later versions also allow the underscore
character and either alpha, numeric, or the underscore as the first character.

8-27 NUREG/CR-6463

between upper and lower case letters. The "$" (dollar sign) can be used to improve readability;
it is not evaluated by the compiler as an identifier. An identifier containing a dollar sign is
equivalent to the same identifier without the dollar sign.

The following are language-specific guidelines:

• Distinguish procedure and variable names. Variable names should be distinguished from
procedure names by some convention (this can be project-specific). It is often convenient
to give a hierarchy number to a module in addition to a name. The hierarchy number is
used primarily for documentation purposes and with the prefix/suffix notation. Use of an
identifier prefix (or suffix) allows information about the identifier to be attached or
carried.

• Loop variables should be given some standard nomenclature. As these variables are often
local counters and have no other meaning except their local use as a counter or index,
programmers may be tempted to choose any nondescript name that comes to mind. A
standard nomenclature, as in lines 5 and 6, allows these variables to be identified readily.

• Label data from an external source. In general, data that is received from an external
source, such as a sensor or data port, should have a name descriptive of that source.
VIBRATION$X, VIBRATION$Y, VIBRATION$Z is a better descriptive label than
IO$PORT$I, IO$PORT$17, and IO$PORT$23. The declaration of these might be as
shown below.

DECLARE VIBRATION$X BYTE; /* X-axis vibration component from Port 01H */
DECLARE VIBRATION$Y BYTE; /* Y-axis vibration component from Port 017H */
DECLARE VIBRATION$Z BYTE; /* Z-axis vibration component from Port 023H */

Avoid reserved words or words similar to existing reserved word. PL/M, being an older
language, does not support features such as overloading and pre-compiled headers.
Reserved words or even identifiers containing reserved words should never be used as
identifiers. It is best to give wide berth to identifiers similar to reserved words. These
identifiers may become reserved words in the course of the code's lifetime due to
compiler changes.

8.4.1.3 Comments and Internal Documentation

Weak or lacking internal program documentation and comments raise safety concerns. Sparse,
incomplete, or outdated program comments can impede code review and mislead those
performing program modification and maintenance.

NUREG/CR-6463 8-28

Comments are important elements of safety software that should be maintained with each revision
of the source code, no matter how minor the change.

Although the concerns with comments in PL/M are essentially generic language ones, the
following example may be helpful to reviewers in judging the adequacy of comments in the target
of their review This example shows basic information about the module as well as where
additional information can be found. Note how the comments indicate that the outline of the
software documentation has been designed and space has been allocated in section 4.2.2 for
detailed documentation of this module.

RANGING$LASER: DO; /* Module */
/***
/* Module 4.2: RANGING$LASER
/* Revision #: 2.2
/* Revision Date: December 12, 1993
/* Revised by: Sally Newprogrammer, Approved by: Sarah Boss
/*
/* Function: This module contains all of the software functions
/* necessary to initialize, aim, arm, and fire the
/* main system ranging laser unit. All routines, data,
/* and declarations necessary to operate the laser are
/* contained in this module.
/*
/* Documentation: This module is documented in further detail in
/* section 4.2.2 of "ABC Systems Software Manual"
/* 3-100422 Rev C (December 1993)
/*
/* Include Files: File LASER.EQU should be included in any
/* external module which uses the procedures
/* contained within.
/*
/* Associated Hardware: Apex 150 Ranging Laser #43-4568-01A
/*
/* Module author: John C. Programmer

/* Original Date: January 14, 1983

.... statements ...

END; /* End of Module RANGING$LASER */

In the above example, the complete module has been encapsulated; therefore the only outside
references are contained in the include file named "LASER.EQU." Other modules may not be so
self-contained and may require other types of header information. For instance, utility subroutines

8-29 NUREG/CR-6463

or procedures are often used many places in a program. Routines such as BCDTOBINARY,
DISPLAY$TIME, etc. often have a "WHERE USED :" comment section in their header block.

The following example illustiates a comment header block for procedures. The function is
described nanatively. The inputs are described in real measure units. The range of valid
arguments is also shown. Since this is a utility subroutine, the locations where it is used
throughout the program are shown.

NUREG/CR-6463 8-30

/* Procedure: AIM$LASER (X, Y, Z) BYTE PUBLIC;
/* Revision Date: December 1, 1992
/* Revised by: Sally Newprogrammer, Approved by: Sarah Boss
/*
/* Function: This procedure physically aims the laser unit base
/* on coordinate input information X, Y, and Z. Servo
/* information is calculated, and the servos activated
/* by calling private procedure SET$SERV0 located in
/* • this module. If the status return for the servo
/* operation is OK, a TRUE indication is returned to
/* the Calling program.
/*
/* Inputs: Coordinates are in units of millimeters passed as real values.
/* Precision must be to three decimal places. Valid ranges are
/* as follows:
/* X: 0.000 .. 100.000
/* Y: 0.000 .. 24.750
/* Z: 0.000 .. 75.000
/*
/* Where used: INIT.PLM: INIT$LASER
/* MAIN.PLM: GET$RANGE, DEACTIVATE$LASER
/* TEST.PLM: TEST$1, TEST$5, TEST$19
/*
/* Documentation: Section 8.2.9 of "ABC Systems Software Manual"
/* 3-100422 Rev C (December 1993)
/*
/* Module author: John C. Programmer
/* Original Date: January 14, 1983

AIM$LASER: PROCEDURE (X, Y, Z) BYTE PUBLIC-
DECLARE (SX, SY, SZ, STATUS) BYTE;
DECLARE (X,Y,Z) REAL;

SX = SET$SERV0 (CHANNEL$1, X); /* Return status of servo move */

SY = SET$SERV0 (CHANNEL$2, Y);
SZ = SET$SERV0 (CHANNEL$3, Z);
/* ...other statements... */
RETURN (STATUS); /* Combined status of servos */

END;

END AIM$LASER; /* End of AIM$LASER Procedure */

8-31 NUREG/CR-6463

Other items that might be included in comment header blocks and in line comment blocks include
the following:

• Performance requirements for the procedure
• Unusual external interfaces and associated information
• Enor handling and exception behavior and related information
• Inputs and outputs of the module and their range of values
• References to appropriate design documentation and charts
• Purpose and expected results of blocks of in-line code
• Expected results at branching junctures within a code segment
• Expected actions and results of exception code
• DetaUed in-line comments explaining unusual constructs and deviations from normal

program practices.

8.4.1.4 Limitations on Subprogram Size

Only generic guidelines apply.

8.4.1.5 Minimizing Mixed Language Programming

The generic guidelines apply. Generally speaking, mixing prograrnming languages is a source
of enor because of different calling conventions, register usage, and data representations. None
of the Intel PL/M languages support in-line assembly language coding.

However, mixed language coding and linking is sometimes necessary. When functions must be
developed in a second language, they should be isolated and designed as loosely coupled as
possible. If at all possible, parameters should be passed to the routine rather than accessed as a
global entity.

Where separate assembly code must be used, macros should be defined to hide calling convention
details.

8.4.1.6 Minimizing Obscure or Subtle Programming Constructs

The generic guidelines apply. Obscure or subtle coding techniques should be avoided if at all
possible. If they cannot be avoided and justification for their use exists, they should be isolated
and well commented. An example follows:

NUREG/CR-6463 8-32

/* NON-STANDARD CODE FOLLOWS */
/* The following code is used to increase performance by using */
/* a left shift by 3 to replace a multiply by 8. */
/* */
OPERANDI = SHL (OPERANDI, 3); /* OPERANDI = OPERANDI * 8 */
/* End of Non-Standard Code Section *

In this example, the code is clearly marked as nonstandard code. The sunounding comments
describe exactly what the code is attempting to accomplish. The end of the code block is also
clearly marked.

8.4.1.7 Minimizing Dispersion of Related Elements

When related elements of code are dispersed in a program, it is necessary to refer to multiple
locations within the source listings during reviews and maintenance. Review is facilitated and
safety is enhanced if project-specific guidance is provided on the placement of related elements
in the code. Since the PL/M language is not complex, most cases of code dispersion occur with
the use of the DECLARE statement and general utility procedures.

Control dispersion of DECLARE statements. The DECLARE . . . LITERALLY
statement is often used to give more meaningful names to numeric constants. These
descriptive names are then used throughout the program to enhance readability. Therefore,
they should be placed in a source-code file to be included in all program modules. All of
these values are then localized to one file making them easier to change. Compiler
directives can then be set as desired in each module, either to print or not to print the
contents of this include file.

Similarly, the DECLARE . . . EXTERNAL statement is used to declare a data type (and
length) for a variable or constant declared to be PUBLIC elsewhere. For procedures
which are dispersed throughout the program — such as those called from the main
program — a separate file of external declarations should be maintained and included in
files as needed. Some degree of control over these dispersed elements is thus maintained.
An exception to this is discussed in the paragraph below.

8-33 NUREG/CR-6463

• Dispersion of general utility procedures. Procedures that are general to the program and
used throughout to provide some minor function are refened to as general utility
procedures. These procedures are similar in nature to the built-in functions. General utility
procedures should be grouped together in one or more modules. For code review or
maintenance purposes, all of these routines will then be conveniently located in one
listing. As a further convenience in identifying these general subroutines, they may be
prefixed with a lower case character as in: uBCDTO$BINARY, or s$MULT$32 (see
also Section 8.4.1.2).

The general utilities module(s) should maintain an $ INCLUDE file of external
declarations for these publicly declared routines. This file should be included in any
module that calls or invokes any of these general procedures. Thus, dispersion of these
declarations is localized to one source-file module.

• Use of headerfilesfor imports and exports. Header files should be used to group module
exports. Imports should only use header files.

In summary, code element dispersion should be rninimized where possible by proper grouping
and use of included files. These $ INCLUDE files should have adequate header comment
documentation describing the purpose of the include file and where each element is used.

8.4.1.8 Minimizing the Use of Literals

The generic guidelines apply. Use of literals in the PL/M source code impacts safety because it
decreases readability and complicates the maintainability of code. Use of literals often causes
different representations of the same value to be dispersed throughout one or more program
modules. It is far easier to change one set of values located at the beginning of a file, or included
with the file with an $ INCLUDE statement, than to guarantee that aU literal values associated with
an item have been successfully located and properly changed.

Literals are often used by programmers because they show an actual value which is easier to use
during debug time. This often occurs when a certain bit pattern must be passed to a hardware port
to accomplish some I/O task, such as turning an LED indicator on or off. This code may be
convenient for a brief time while hardware and software team members debug a hardware unit.
This convenience is short lived, however, as the following two examples illustrate.

The first example below shows a section of code that is intended to turn on an LED indicator and
later turn it off. During a coding session, it is relatively easy for a programmer to glean
information from an electrical schematic diagram quickly, then directly code this information into
the program. Suppose later that some change has been made to the hardware requiring all of the

NUREG/CR-6463 8-34

code associated with this LED to be modified. Using a text editor search for "OUTPUT(3)"
would not find the second occunence, which is coded as "OUTPUT(03H)."

OUTPUT(3) = 00000100B; /* Turn power LED on */

OUTPUT (03H) = OFBH; /* Turn power LED off */

The next example shows a better method of handling the above situation with literals. PL/M has
a DECLARE... LITERALLY statement that allows literals to be assigned to a label. In this example
all literal data are grouped together in one place, and all of the commands and data associated with
that I/O device are defined. Should a change be made later to the hardware system, all of the
necessary software changes can be accomplished by changing just three DECLARE... LITERALLY
lines of code.

/* Commands and
DECLARE PWR$LED
DECLARE LED$ON
DECLARE LED$OFF

OUTPUT(PWR$LED)

OUTPUT(PWR$LED)

data for Power
LITERALLY '03H
LITERALLY '04H
LITERALLY 'NOT

= LED$ON;

= LED$OFF;

LED device */

LED$ON';

In addition, the code is more readable and somewhat self-documenting. In larger programs, the
declaration of these literals would probably occur in a file that would be included with the
INCLUDE compiler control statement. The sequence for the example above might appear as
follows:

8-35 NUREG/CR-6463

$INCLUDE (I0DEFS
*/

OUTPUT(PWR$LED) =

OUTPUT(PWR$LED) =

PLM) /* Commands

= LED$ON;

= LED$OFF;

and data for Power LED device

Literals that are exported by a module should be grouped in the module's header file.

8.4.2 Data Abstiaction

Data abstraction involves combining both the data and the allowable operation on that data
(procedures or functions) into a single entity. Furthermore, data abstraction calls for the
establishment of an interface that allows access to, manipulation of, and storage of the data only
through allowable operations. Data abstraction is an important contributor to safety in that it
reduces or eliminates the side effects of variables being changed inappropriately during run time
or inadvertently or inconectly changed during software maintenance.

The PL/M language pre-dates the cunent concepts of data abstraction. Hence, PL/M does not have
any built-in mechanisms for implementing data abstiaction directly. However, it will also be
shown that the PL/M program module can provide an appropriate and acceptable container for
data abstiaction as discussed in Section 8.4.3.

8.4.2.1 Minimizing the Use of Global Variables

The generic guidelines apply. It is desirable to limit the scope of variables in safety-related
programs. Variables that are made available to all program segments increase the potential for
unintended side effects. However, global variables may be the simplest way to represent some
sort of global state or other data that must be accessed by most or all functions." The alternative
is to pass the variable as a parameter, which increases the complexity of the procedure and
function interfaces. Global variables may also be necessary to share data from separately
compiled modules.

The following are specific guidelines related to global variables.

• Initialization of global variables. All global variables used in a program should be

NUREG/CR-6463 8-36

initialized in exactly one place.

Imports and exports from separately compiled modules. All exports from a module
should be explicitly global, and eveiything else should be made local to the module by
being explicitly declared static. Exports from a particular module should be specified in
one and only one header file. All importing modules should use the header file. They
should not import variables, functions or procedures independently from the header file
by using externals. Headers should use prototypes unless there is a good reason not to, in
which case, the reason should be documented.

Use macros for local variables in emulators, simulators, and debuggers. In-circuit
emulator (ICE) tools, debuggers, and simulators complicate use of local variables because
of the length of their identifiers. One such emulator, the Intel I2ICE system, uses a naming
convention as follows:

[: module . -name.] [procedure-name.] [var iab le -name][expr [, expr]]

However, it is also possible to construct a temporary macro which would reference this
variable with just one or two characters while debugging this code section.

8.4.2.2 Minimizing Interface Complexity

The generic guidelines apply. Interfaces between procedures, functions, and program modules
are often a source of software failures. If an interface becomes too complicated, it will be difficult
to review, understand, and maintain. Complex interfaces are not desirable in a safety-related
program and should be avoided. Specific guidelines include the following:

• Limit the number of arguments used in the calling program. Requirements for a large
number of arguments can cause confusion and enors in a safety-related program. If a
programmer must set up a large number of parameters to invoke a procedure, some of the
choices may not be properly thought out. It is better to have a programmer understand the
meaning of the parameters than to require that they be blindly and rotely specified.

Procedures that require a number of arguments may be indicative of a design in which
excessive functionality has been allocated. A better design may be two or more smaller
procedures, each of which accomplishes a nanower task. The example in the section on
data abstraction illustiates this point by showing how one or more method procedures
allows a user to understand more clearly how laser ranging data are obtained. This method
requires the programmer to think through how the instrument obtains ranging data.

8-37 NUREG/CR-6463

• Do not use ambiguous or terse expressions. Use of meaningless expressions for modes
or options can confuse the programmer. Both of the example procedure invocations below
will accomplish the same results. However, the second form is better because it
immediately provides information on the parameters. A person reading and checking code
is more likely to question the conectness of a parameter choice in the second invocation
than in the first.

(1) CALL FIRE$LASER (2, 3.0, 1000);

(2) CALL FIRE$LASER (CHANNEL$1, MSEC$3, ONE$WATT);

• Explicitly state restrictions and limitations. Lack of easily understood restrictions and
limitations on the use of allowable operations can also complicate an interface. The above
example can be expanded to remove ambiguities about parameter usage and limitations.
In the following example, a table of valid parameter settings for invoking the
FIRE$LASER procedure is provided. In this example, we assume that the laser
manufacturer only recommends these settings for this model. By declaring a list of valid
settings, an improper invocation of the procedure is less likely.

/* VALID PARAMETER SETTINGS FOR THIS LASER

/* There are only 3 Laser channels defined
DEFINE
DEFINE
DEFINE

CHANNEL$1 LITERALLY '1';
CHANNEL$2 LITERALLY 12';
CHANNEL$3 LITERALLY *3';

UNIT */

for

/* There are 5 power settings defined for this
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE

/* The
DEFINE

ZERO$WATT LITERALLY '0';
QUARTER$WATT LITERALLY ,249';
HALF$WATT LITERALLY *502';
THREEQTRWATT LITERALLY ,754';
ONE$WATT LITERALLY '998';

pulse width should always be set to
MSEC$3 LITERALLY '2998';

this instrument */

instrument

3 milliseconds

*/

*/

6*. 4.2.3 Use Modules to Facilitate Data Abstraction

NUREG/CR-6463 8-38

PL/M modules can be used to enhance maintainability through limiting data visibility and
achieving a measure of data abstraction in PL/M. The foUowing example of a laser ranging
instrument demonstrates this concept. To use the laser ranging instrument, the calling program
need only turn on the instrument, aim the instrument through an allowable range, and activate and
receive the range data. The methods used to obtain the range data are hidden from the calling
program. The calling program cannot misuse the instrument by tinkering with the laser power
levels and pulse durations. In addition, the calling program can aim the laser unit only through
a valid domain of coordinates.

The laser functions are coUected in a separate source module. In doing so, the procedures that are
public and available to the code outside of this module are controlled. Procedures not declared
EXTERNAL will remain hidden and private to this module. No other code except the laser
control code will be placed in this source module. In the example below, lines 3 through 11 define
the cunent constant parameters for the laser instrument. If these values change in the future, due
to hardware modifications, they can be easily modified. Line 12 has local variables that contain
the cunent power settings and pulse duration times for the instrument. The variables are local to
this module and cannot be "seen" or used by other routines outside this module, that is, these
variables are hidden or encapsulated within this module.

8-39 NUREG/CR-6463

13
14
15

16
17

18
19

20
21

1
2
2

2
2

1
2

2
2

1 RANGINGSLASER: DO; /* Module */

2 /* Private Procedures & Data */

3 1 DECLARE 2ER0$WATT LITERALLY "S"; /* Zero watt = S counts */
4 1 DECLARE ONE$HATT LITERALLY '123'; /* One watt - 123 counts ♦/
5 1 DECLARE MSEC$0 LITERALLY '0'; /* 0 milliSec */
6 1 DECLARE MSEC$3 LITERALLY '3000'; /* 3000 uSec = 3 milliSec */
7 1 DECLARE ON LITERALLY '0FFH';
8 1 DECLARE OFF LITERALLY '00H';
9 1 DECLARE Tl LITERALLY '23H';

10 1 DECLARE T2 LITERALLY '41H';
11 1 DECLARE T3 LITERALLY '84H';

12 1 DECLARE (L$POWER, L$D0RATION) REAL;

SETSSERVO: PROCEDURE (CHAM, AMOUNT) BYTE;
DECLARE AMOUNT REAL;
DECLARE (CHAN, STATUS) BYTE;

/* ...other statements... */
/* check for valid coordinates */

RETURN (STATUS);
END; /* SETSSERVO */

FIRE$LASER: PROCEDURE BYTE;
DECLARE STATUS BYTB;

/* ...other statements... */
RETURN (STATUS);

END;

/* Public Procedures & Data */

OPERATE$LASER: PROCEDURE (ON$OFF) PUBLIC-
DECLARE ON$OFF BYTE;

IF (ONSOFF = ON) THEN
DO;

LSFOHER - ONESHATT;
LSDURATION = MSECS3;

END;
ELSE

DO;
LSPOWBR • ZEROSWATT;
L$DURATION » MSECS0;

END;
/* other statements */
END;

AIMSLASER: PROCEDURE (X. Y, Z) BYTE PUBLIC-
DECLARE (SX, SY, Si, STATUS) BYTE;
DECLARE (X,Y,Z) REAL;

SX = SETSSERVO (1, X) ,-
SY > SETSSERVO (2, Y) ;
SZ n SETSSERVO (3, Z);

/* ...other statements... */
RETURN (STATUS) ;

END;

GBTSRANGE: PROCEDURE REAL PUBLIC-
DECLARE RANGE REAL;

IF (FIRESLASER) THEN
DO;

/* ...Calculate RANGE... */
END;

ELSE RANGE - 0; /* Error */
RETURN (RANGE);

END;

EXCEPTION$LASER: PROCEDURE EXTERNAL;
/* ...handle laser exception here... */

END EXCEPTIONSLASER;

END; /* End of RangingSLaser Module */

END OF PL/M COMPILATION

22
23

24
25
26
27
28

29
30
31
32

1
2

2
2
3
3
3

2
3
3
3

34
35
36

37
38
39

40
41

42
43

44
45

46
47
48
49

50

51

52

1
2
2

2
2
2

2
2

1
2

2
2

3
2
2
2

1

1

1

NUREG/CR-6463 8-40

Lines 13 through 21 in the example contain two support procedures that are used only by the
procedures contained within this source module. The two procedures FIRE$LASER and
SET$SERVO are hidden from other code outside this module and are thus protected from being
used by other code outside this module. Thus the laser can neither be aimed in an inappropriate
direction nor inadvertently fired. Lines 22 through 51 of the example shown are public
procedures. These are the methods available to code outside this module that allow the data to be
properly manipulated and the laser instrument to be used safely.

Thus module RANGING$LASER is the closest we can come to generating a software object in
PL/M. We have forced a procedural language in a disciplined manner to behave like and produce
some of the benefits of, an object-oriented language. The short main program in the following
example demonstrates how this object will work. The main program is defined on line 1 of the
example. Lines 2 through 11 declare and define the external procedures located publicly within
module RANGING$ LASER. These are the only procedures (methods) available to the main program
to manipulate and operate the laser instrument. Lines 14 and 15 define the meaning of ON and
OFF commands to the laser. These could be placed in a common INCLUDE file in a larger
program. Line 16 defines a set of directional coordinates for the laser, and line 17 is a variable to
contain the distance data received from the instrument.

The laser can now be properly manipulated. It can acquire range data safely by using the code
in lines 18 through 24. Simply, if the coordinates of the target are valid, as determined by method
AIM$LASER returning TRUE, the code within the I F . . . THEN clause will execute, turn the laser
ON, fire the laser and obtain range data, and turn the laser unit OFF . If the coordinates are invalid,
the enor exception handler EXCEPTlON$LASER is called to conect, notify, or otherwise handle
the enoneous situation.

The code in this main program has no way of inadvertently changing the laser power levels and
pulse duration times.

8-41 NUREG/CR-6463

PL/M

1

2

3
4
5

6
7
8

9
10
11

12
13

14
15
16
17

18
19
20

*/
21

*/
22

*/
23
24

*/

25

COMPILATION OF MODULE MAINPROGRAM

1
2
2

1
2
2

1
2
2

1
2

1
1
1
1

1
1
2

2

2

2
1

1

END OF PL/M

MAIN$PROGRAM: DO; /* Main Program Module */

/* Declare External Procedures */

OPERATE$LASER: PROCEDURE (ON$OFF) EXTERNAL
DECLARE ON$OFF BYTE;

END OPERATE$LASER;

AIM$LASER: PROCEDURE (X, Y, Z) BYTE EXTERNAL;
DECLARE (X,Y,Z) REAL;

END AIM$LASER;

GET$RANGE: PROCEDURE REAL EXTERNAL;
DECLARE RANGE REAL;

END GET$RANGE;

. EXCEPTION$LASER: PROCEDURE EXTERNAL;
END EXCEPTION$LASER;

/* Main Program Segment */

DECLARE ON LITERALLY 'OFFH';
DECLARE OFF LITERALLY 'OOH';
DECLARE (XI, Yl, Zl) REAL INITIAL (4.1, 5.7, -6.1);
DECLARE DISTANCE REAL;

IF (AIM$LASER (XI, Yl, Zl)) THEN
DO;

CALL OPERATE$LASER (ON); /* Turn on laser unit

DISTANCE = GET$RANGE; /* Fire & get range value

CALL OPERATE$LASER (OFF); /* Turn off laser unit

END;
ELSE CALL EXCEPTION$LASER; /* or handle exception

END; /* End of Main Program Module */

COMPILATION

NUREG/CR-6463 8-42

8.4.3 Functional Cohesiveness

There should be a clear conespondence between the function of a program and the stracture of
its components. Review and maintenance of program codes are facilitated when every function
is implemented in a procedure and when that procedure implements only one function.

As a guideline for using PL/M in safety-oriented systems, it is further recommended that program
modules contain only procedures of like functions. Each PL/M module can limit the scope of
variables and procedures within that module. The following is an example of a recommended
stracture:

M0DULE$1: DO;
/* Global Declarations
PR0CEDURE$1A:
END;
PR0CEDURE$1B:
END;

END;
M0DULE$2: DO;

/* Global Declarations
PR0CEDURE$2A:
END;
PR0CEDURE$2B:
END;

END;

for M0DULE$1

for M0DULE$2

*/

*/

Each module above can contain one or more related functions or methods. The scope of the
variables and procedures defined in each module is limited to that module unless it is explicitly
defined as PUBLIC. Therefore, each PL/M module can cohesively contain related procedures and
variables, and it can make available to functions outside of this module only those entities that
are explicitly declared as PUBLIC. This concept is also discussed in the section on data
abstraction.

8.4.4 Malleability

Malleability is a measure of the ease with which a software system can accommodate changes
in its function. Malleability depends upon data abstraction, encapsulation, and cohesiveness built
into the program. It extends those attributes in order to isolate and identify areas of potential
change. Most of these issues have already been discussed. Two topics that may be of interest to
reviewers are covered below.

8-43 NUREG/CR-6463

8.4.4.1 Isolation of Alterable Functions

PL/M functions that are likely to be altered should be placed in separate DO; -END; modules
within the source code file to which they belong. Potentially alterable functions should, in most
cases, remain in the same module with related functions and code. Attempts to place all
potentially alterable functions in one file may result in a collection of unrelated procedures that
only have alterability in common. Such attempts may destroy the cohesiveness and data
abstraction attributes designed into the system. Functions likely to be altered should be isolated
and marked as such with comments within the module in which they were designed.

8.4.4.2 Isolation of Hardware-Specific Functions

Another area of possible change and alterability in embedded systems is hardware-specific
functions, such as those specific to a peripheral device or a model of an attached instrument. If,
during maintenance, a different or upgraded peripheral device replaces an existing device, the
change over will be easier and safer if the code is localized to a subset of modules or functions.

It is recommended that code for these peripheral devices be written in the form of device drivers,
and that they be loosely coupled to the remainder of the system. The associated CALLs to these
device drivers should remain transparent so that the calling code is not impacted by a change in
the device driver code.

8.4.5 Portability

The benefits of portability are that programming constructs yield predictable and consistent
results across different operating platforms. Thus, code that is to be reused or converted to run
on a different platform will be easier to maintain. Attributes related to portability discussed
elsewhere in this report include the following:

• Minimizing the use of built-in functions
• Minimizing the use of compiled libraries
• Minimizing dynamic binding
• Minimize tasking
• Minimize asynchronous constructs such as interrupts.

PL/M code is processor specific, and thus has inherently limited portability. Also, it is an
obsolescent language, and any new applications should plan for migration to another language
(see Appendix A.4).

NUREG/CR-6463 8-44

References

U.S. Department of Defense, DoD Std 2167A, Software Development Standard, Appendix D,
1986.

Institute of Electrical and Electronics Engineers, IEEE-Std-7-4.3.2-1993, Appendix F, IEEE
Standard Criteria for Digital Computers in Safety Systems of Nuclear Power Generating Stations.

Intel Corporation, PL/M Programming Manual, 9800268B, Chandler, AZ, 1977.

Intel Corporation, PL/M-86 Programming Manual, 9800466-02B, 1980.

Intel Corpovation, 8086 Software Tool Box, Volume II, 122310-001, December 1984.

Intel Corporation, PL/M-86 User's Guide, 121636-004, August 1985.

Intel Corporation, 8086 Software Tool Box, 122203-002, January 1985.

Intel Corporation, PL/M-96 User's Guide for DOS Systems, 481644-001, December 1988.

Intel Corporation, PL/M Programmer's Guide, pg 5-34,452161-002, May 1990.

Intel Corporation, PL/M-386 Programmer's Guide, 611052-001,1992.

Kopetz, H., "Real Time Systems," In Software Engineer's Reference Book, J.D. McDermid, ed.,
CRC Press, Inc., Cleveland, OH, 1993.

Liao, Y., "Requirements for Directed Automatic Instrumentation Generation for Program
Monitoring and Measuring," In IEEE Transactions on Software Engineering, 1991.

Leveson, N.G, and C.S. Turner, An Investigation of the Therac-25 Accidents, University of
California, Irvine Techmcal Report 92-108, Irvine, CA, 1992.

McGarry, F., "The Impacts of Software Engineering," briefing presented to the NRC Advisory
Committee on Reactor Safeguards (ACRS), August 21,1992.

Meek, B.L.,"Early High-level Languages," In Software Engineer's Reference Book, J.D.
McDermid, ed., CRC Press Inc., Cleveland, OH, 1993.

8-45 NUREG/CR-6463

APPENDIX A. Language Descriptions

This Appendix contains brief descriptions of the languages, run-time environments, and
programming platforms12 that are widely used in the industrial computing environment but are
less known in the larger software development community. The intention of this appendix is to
provide an introduction and overview of the issues. References at the end of the Appendix section
provide more detailed information.

Section A.l discusses Programmable Logic Controllers (PLCs). Section A.2 discusses PLC
ladder logic, their most widely used programming language. Section A.3 discusses IEC 1131
Sequential Function Charts (SFCs), whose main significance is to allow Ladder Logic to be
combined with other languages recognized by the IEC 1131 standard. Section A.4 discusses
PL/M and some of the issues associated with Intel RMX, the operating system that supplements
the prograrnming language.

l2As will be discussed in this Appendix, it is sometimes difficult to'distinguish between the language,
development environment, and run-time environment.

A-l NUREG/CR-6463

A.1 PLC Description

A Programmable Logic Controller (PLC) is an industrial computer specialized for real time
applications. The PLC is an integrated system containing a processor, power supply, input
modules, output modules and special purpose modules. Input modules interface with plant
equipment and convert the field signals to logic levels for the processor to read. The processor
uses these input to solve the logic in the application software (Ladder Logic), and to perform
contiol functions. Output modules transmit the signals via an interface with the plant equipment.
In addition there are special modules for communication with other computers, specialized
dedicated functions, and conventional high level language co-processors.

PLC vendors provide the software tools necessary to program the system. The PLC has
specialized instructions implementing control functions such as logic, PID, and numerical
operation. Prograrnming is done on a PC using a programming language that in most cases is
Ladder Logic, but other options are also available. After the application program is completed
it is downloaded to the PLC memory for execution. The PLC also provides software packages
for operator interface (HMI) and supervisory control and data acquisition (SCADA), to be used
on engineering stations interfacing the PLC.

A. 1.1 Prograrnming Environment

The diagram in Figure A-l graphically depicts the use of PLC programming environment to
develop and execute the application software (which is most usually implemented in Ladder
Logic). The programming environment is composed of a "shell" that enables the programmer
to develop the application software using functions supported by the processor hardware and
firmware. This "shell" acts as:

: • Programmer interface (editor)
• File manager to store and retrieve programs and data
• Commumcation interface with the PLC to download/upload programs
• Documentation and reporting tool
• On-line momtoring of application program. •

The application software itself is contained in a binary file executable on the PLC. This file may
be either edited (development process), or downloaded to the PLC processor to run (execution
process). Once loaded into the PLC memory, the application software is executed by the PLC
whenever it is in the "RUN" mode.

The structure of the binary file is specified by the PLC manufacturer. It can be viewed as a

NUREG/CR-6463 A-2

database file that defines the exact state of the PLC program and data. This model of the binary
file is useful for the discussion of the prograrnming "shell" given below.

r R I N A R Y
FILE

LADDER LOGIC
(APPLICATION SOFTWARE)

/
/

/

SUPPLEMENT
FILE

ALD/
:S

O-AB/ VSE

LADDER LOGIC PROJECT DATABASE

Figure A-l General description of a PLC software environment.

A. 1.2 Runtime Environment

The PLC runtime environment is firmware which provides the operating system services and
library functions associated with the PLC. In the RUN mode, the PLC firmware runs as real-time
executive which processes the (Ladder Logic) instructions that have been loaded into the program
RAM area. The program runs in a continuous loop which consists of the foUowing major phases:

• Input read and output write scan
Housekeeping

• Program scan (logic solve).

These are described in the following subsections and depicted in Figure A-2.

PROGRAMMING!
SHELL

PLC PROCESSOR

t
PRINTED

LADDER LOGIC
REPORT

A-3 NUREG/CR-6463

FEMHEI/O

R£K3

R£K2

R4K1

Hlffiffl lNj

FBGIEI/O
BUFFER

HffDItmS

WEOIFUS

W&L I/O
HPFER

EEOINUS

\HTEOEUS

mxoEi/o
SON

HORM
SON

BSD

Figure A-2 Real time execution of PLC program.

A. 1.1.1 Input Read and Output Write Scan

During the input/output (I/O) scan, the processor updates its internal input and output buffers with
data being read from or written to local or remote I/O devices. Local I/O devices are the input and
output cards residing in the same physical chassis as the PLC processor. Remote I/O devices
reside external to this chassis and are communicated with the processor's Peer Communications
Interface port13.

I/O data for input and output cards used in the application are maintained in input and output
image tables. Typically the PLC will organize the I/O image tables. This means that the inputs
which are present will read into an area in memory. The program will write into another area of

13In some PLCS, remote I/O devices communicate over a remote I/O link, not the Peer Communications
Interface port which is reserved for inter-processor communications.

NUREG/CR-6463 A-4

file:///HTEOEUS

memory which is used to represent the outputs. It can be said that the input image table is
representative of 'how the inputs are perceived', and the output image table is 'the desired state'
of the outputs. These tables are accessible to the Ladder Logic program as data files. During the
I/O scan, data read from input cards are placed in appropriate locations in the input image table.
At the same time, output data written to the output image table by the Ladder Logic are
transfened to the appropriate output cards14.

A. 1.1.2 Housekeeping

Following the I/O scan, the PLC performs what is refened to as "housekeeping." This portion of
the program cycle is used by the real-time executive to maintain and update its own internal state.

A. 1.1.3 Program Scan

The program scan is the portion of the overaU cycle where Ladder Logic instructions of the user's
application software are executed. Here, the embedded firmware program operates on the
portions of memory (RAM) that have been loaded previously with the application software from
the binary file.

Program files contain the actual instructions to be executed. Data files are used to maintain
program variables and other data structures required by the logic. It is the responsibility of the
firmware program to properly decode and execute instructions in the program files. The program
must also properly update the contents of the data files based on these instructions.

Detailed information about the specific Allen Bradley PLC firmware selected for description in
the report can be found in the references (Allen Bradley, 1991a).

A.2 PLC Ladder Logic Language Description

Ladder Logic is an instruction set to provide services of real time, I/O, user interface, and similar
services. These services are associated with the special requirements of the PLC applications
domain. Because Ladder Logic is targeted toward special applications it provides features that
are compatible with real-time contiol application requirements. These features when used
conectiy and appropriately can contribute to the safe operation of the program.

The origins of Ladder Logic or the Relay Ladder Logic notation which was first introduced to

In some PLCs, the output image table data is written to the outputs all at once, and this occurs AFTER
the completion of a full program scan.

A-5 NUREG/CR-6463

represent combinations of contacts and coils of relays using specific notation. These
combinations implemented logical functions (e.g., AND or OR). The introduction of PLCs
transformed Ladder Logic from a hardware design notation to a high level language, specialized
for process and logic control. The Ladder Logic language, in the case of the PLC, is not the
traditional limited Ladder Logic implemented with relays, but an advanced language supported
by the numerical capabilities of the processor, while the Ladder Logic notation serves only a
graphical user interface. Ladder Logic supports all types of programming structures from
advanced subroutines, parameter passing, loops, mathematical functions, proportional plus
integral plus derivative (PID) controllers, I/O calls, timers, and any other features of a high-level
language. Although changed from their original purpose and implementation, cunent forms of
Ladder Logic are still similar to relay logic, allowing electrical engineering personnel who have
tiaditionaUy have been in charge of factory automation to review and understand the code. This
is an important advantage throughout the development process.

Ladder Logic is not a formally defined programming language. Each manufacturer has its own
variation of Ladder Logic. In addition, many of the features associated with programming the
PLC are not features of Ladder Logic itself, but the prograrnming environment, the "shell," and
the firmware mentioned above. The variety of ladder logic implementations is due to the strong
coupling between software and hardware dictated by the requirements of the industrial contiol
applications domain.

A.2.1 Elements of Ladder Logic

Ladder Logic programs consist of the following types of elements (TEC, 1993):

• Power rails: Ladder Logic networks are delimited on the left and right by vertical lines
known as left and right power rails, respectively. The right power rail may be explicit or
implied.

• Link elements and states: Links indicate power flow in the rungs of the Ladder Logic
diagram. A link element may be horizontal or vertical. A horizontal link transmits the
state of the element to its immediate left to the element to its immediate right. The state
of an element can be either ON or OFF. A vertical link intersects with one or more
horizontal links on each side and its state is the inclusive OR of the states of the horizontal
links on its left. This state is transmitted to all horizontal links attached to the vertical link
on its right.

• Contacts: A contact is an element which imparts a state to the horizontal link on its right
side equal to the AND of the state of the horizontal link on its left side with an appropriate
function. A contact does not modify the value of the associated Boolean variable. There
are four types of contacts as described in Table A-l.

NUREG/CR-6463 A-6

Coils: A coil copies the state of the link on its left to the link on its right without
modification, and stores an appropriate function of the state or tiansition of the left link
into the associated Boolean variable. There are nine types of coils as described in Table
A-2.

Functions and junction blocks: A function is a program unit which, when executed,
yields exactly one result. A function block may yield more than one result. Internal
variable of a function or function block are not accessible to users of the function. In
Ladder Logic, at least one Boolean input and one Boolean output is shown for each
function block to allow for power flow through the block.

Table A-l. Contacts

Static Contacts

— 1 1-

~ l / | -

Normally open contact
A normally open contact is one for which the state of its left link is copied
to the right link only if the associated Boolean variable is ON.

Normally closed contact
A normally closed contact is one for which the state of its left link is
copied to the right link only if the associated Boolean variable is OFF.

Transition-Sensing Contacts
_ _ | P | _

~ - | N | -

Positive transition-sensing contact
A positive transition-sensing contact is one for which the state of the right
link is ON only if a tiansition from OFF to ON is sensed when the left link
is ON.

Negative transition-sensing contact
A negative-transition sensing contact is one for which the state of the right
link is ON only if a tiansition from ON to OFF is sensed when the left link
is ON.

A-7 NUREG/CR-6463

Table A-2. Coils

Momentary Coils

1

2

- - (
) - -

(/) —

Regular Coil
The state of the left link is copied to the associated Boolean variable
and to the right link.

Negated coil
The state of the left link is copied to the right link. The inverse of the
state of the right link is copied to the associated Boolean variable.

Latched Coils

3

4

(S) —

(R) —

SET Gatch) coil
The associated Boolean variable is set to the ON state when the left
link is in the ON state, and remains set until reset by a RESET coil.

RESET (unlatch) coil
The associated Boolean variable is set to the OFF state when the left
link is in the ON state, and remains reset until set by a SET coil.

Retentive Coils*

5

6

7

(M) —

(SM)-

(RM)-

Retentive (memory) coil

SET retentive (memory) coil

RESET retentive (memory) coil

Transition-Sensing Coils

8

(P) —

Positive transition-sensing coil
The state of the associated Boolean variable is ON from one
evaluation of this element to the next when a transition of the left link
from OFF to ON is sensed. The state of the left link is always copied

NUREG/CR-6463 A-8

(N) ~

Negative transition-sensing coU
The state of the associated Boolean variable is ON from one
evaluation of this element to the next when a transition of the left link
from ON to OFF is sensed. The state of the left link is always copied
to the right link.

* The action of Coils 5,6, and 7 is identical to that of Coils 1,3, and 4, respectively, except that the
associated Boolean variable is automatically declared to be in retentive memory without the use of the VAR
RETAIN declaration.

A.2.2 PLC Ladder Logic Example

(if)

Kl
If input Kl is closed

or
logic bit is set (=1)

(then)

()
K2

energize output K2
or

set logic bit K2 =1

Figure A-3 Ladder logic "rung" with IF/THEN configuration.

Ladder Logic language provides a unique representation for computer programs. In ladder logic
each line of code is graphically displayed as a "rung" of a ladder. The top rung instructions
are performed first and then each consecutive rung instructions are performed in their
respective sequence. As shown in Figure A-3, each rung consists of an
IF(input)/THEN(output) decision. The left half of the rung contains a condition that must be
trae for any output instructions) on the right half of the rung to be performed. If the left side
of the rung does not contain a condition, the output instruction on the right side is performed
continuously.

A problem with ladder logic program structure is the potential for unintended behavior. This
can be shown even in the simple example above using the distinction between retentive and non-
retentive output instructions. A non-retentive output wUl reset or turn off. A retentive output
wiU remain in its last state. Although Logic rungs are logic elements and need to be logically
true in order to execute the output (or outputs) on that rung, should the rung NOT be logically

A-9 NUREG/CR-6463

true, then the output could stUl perform an action if the output is retentive.

NUREG/CR-6463, A-10

Figure A-4 is another example
which presents the
implementation of two-out-of-
three (2oo3) voting in Ladder
Logic. The first "rung",
numbered 0, implements the
2oo3 voting in Ladder Logic.
Any two of the tree inputs being
ON will the two contacts in one
of the three parallel paths and
energize the coil labeled
ACTUAL_INPUT.

The value of ACTUAL_INPUT
is defined by:

+
+

AC T T J A L _ I N P U T
(INPUT_1*INPUT_2)
(INPUT_2 *INPUT_3)
(INPUT_1*INPUT_3)

where:
* = AND operand
+ = OR operand

Rungs 1 and 2 of the subroutine
are for annunciation only. The
coil in rung 1 is energized if the
three inputs are either all ON or
all OFF. Rung 2 identifies the
input which differs from the
other two if all three are not
identical. Note that all six
permutations of the three inputs
are present in rung 2. Rung 3
simply outputs the results
generated by the previous rungs.

HSUBROUTINE
INPUT PAR
INPUT PAR
INPOT PAR

SUBROUTINE: NAME REV 0 10/28/93

INPUTS: N10:0/0 INPUT_1
N10:1/0 INPUT_2
N10:2/0 INPDT_3

FUNCTION: Three system inputs are received by the SBR instruction and
used to calculate the output based on 2-out-of-3 voting.
The subroutine also indicates if all input are identical.

Calculate
input state.
2_0UT_0F_3_SUBR INPUT_1 INPUT_2 ACTOAI._INPUT

SBR 1 N10:0/0 N10:l/0 N10:3/0

-\ I 1 I—I < >-N10:0
N 1 0 : l
N10:2

INPUT_2 INPUT_3
N10:l/0 N10:2/0
' I 1 I —

INPUT_1 INPUT_3
N10:0/0 N10:2/0

If all three inputs are not the same value, set INPTS_TDENTICAL low.

INPTS_IDENTICAL
N10:4/0
()

INPUT_1 INPUT_2 INPUT.3
N10:0/0 N10:l/0 N10:2/0

— 1 I 1 I 1 I —
INPUT.! INPUT_2 INPUT_3

N 1 0 : 0 / 0 N 1 0 : l / 0 1110:2/0

-H/l l/l 1/"
If the inputs are not identical, check which input does not match.
INPTS_IDENTICAL

N10:4/0 I/I
INPUT_1 INPUT_2 INPUT.3
N10:0/0 N10:l/0 N10.-2/0
— l / l 1 I 1 h -
INPUT.1 INPUT_2 INPUT_3
N10:0/0 N10:l/0 N10:2/0
" " l/l 1/'

INPUT_1 INPUT_2 INPUT.3
N10:0/0 N10:l/0 N10:2/0

— I I l/l 1 I —
INPDT_1 INPUT_2 INPUT_3
N10:0/0 N10:l/0 N10:2/0

"/I 1 I 1/'
INPUT.1 MPUT_2 INPUT_3
N10:0/0 N10:l/0 N10:2/0

— \ I 1 I l/h-
INPUT.1 INPUT.2 INPUT.3
N10:0/0 N10:l/0 N10:2/0
-H/l l/l 1 h-

INPUT_l_ERROR
N10:5/0
()

INPUT_2_BRROR
N10:5/l ()

INPUT_3_ERROR
N10:S/2 ()

OUTPUTS: N10:3/0 ACTUAL.INPUT
N10:4/0 INPTS IDENTICAL

N10:5 INPT_ERROR_CODE
N10:5/0 INPUT_1_ERR0R
N10:S/1 INPUTJ2~ERR0R
N10:5/2 INPUT_3~BRR0R

2_0UT_0F_3_RET
I RET
RETURN ()
RETURN PAR
RETURN PAR
RETURN PAR

N10:3
N10:4
N10:5

-[END]-

Figure A-4 Example of Ladder Logic.

A.2.3 General Description - Ladder Logic Programming Shell

As noted above, the ladder logic application development environment, or prograrnming "shell"
provides functions for the development of the Ladder Logic application software. This shell

A-ll NUREG/CR-6463

features are a key factor in the development, testing, and verification of ladder logic programs and
include:

• Ladder Logic editing

• On-line communication with PLC processor for:

- Uploading/downloading Ladder Logic files to processors memory
- On-line Ladder Logic editing of program in processors memory
- Real-time momtoring of PLC status for debugging

• Generation of printed Ladder Logic reports.

A development platform is used to run the Ladder Logic programming shell and maintain the
Ladder Logic files. (In most cases the platform used is an IBM PC/AT compatible.) The shell
commumcates from the development platform to the PLC via a specialized hardware
communications link. At no time does any shell software run on the target PLC processor.

Editing of the Ladder Logic may be performed in either an OFF-LINE or an ON-LINE mode.
In both cases, the shell software converts the binary Ladder Logic information into a graphic
screen display that may be modified by the user. Changes made to the Ladder Logic in the OFF
LINE mode are saved in the binary file. In the ON-LINE mode, changes are made directly to the
PLC program/data memory via a Uve commumcations link. (Changes made in this manner must
subsequently be uploaded from the PLC if they are to be saved in the binary file for configuration
management purposes.)

The programming shell software maintains a number of supplemental files in addition to the
binary file to form a complete Ladder Logic project database. These files primarily contain
symboUc and comment information used strictly to aid the user in the development process. They
have no impact on the data structures contained in the binary file or the PLC memory.

The on-line communication capability of the prograrnming shell is required to move Ladder Logic
(appUcation software binary file) information between the PLC processor and the development
platform, where the user interface resides. As mentioned above, this feature can be used to edit
Ladder Logic15. It can also be used to download a Ladder Logic program residing in the binary
file to the PLC or to upload a binary from the PLC to file.

Run-time debugging is another function performed using the on-line communication feature.

15This may possible in the PLC memory directly. However, some PLC's require that a copy of the
program on the hard disk or operator interface computer be identical to the PLC's memory. Changes are made
to the disk or offline copy. Once completed, the shell software interacts with the PLC, gaps memory and inserts
the new/changed rung.

NUREG/CR-6463 A-12

Here, various "windows" into the PLC memory can be set up to view memory contents updated
dynamically as the processor is running the appUcation software. A "histogram" function, which
can record the changes to a particular memory location over time to a log file, is also available.

Generation of printed Ladder Logic reports is the final key function of the programming shell
software that is required for the development of the Ladder Logic application software. The
printed report is the output of a conversion from the binary Ladder Logic data files to a human-
readable text format. The accuracy of this conversion is critical because it provides the only
written documentation of application as resident within the PLC.

A.2.4 Ladder Logic Modularization

JSR
Hie #10

ftss Rrantters
Kcei\e Rramters

R-ogram (Hie #10)

(ftceivs Fferarnters)

Some Ladder Logic provides the feature of
subroutines. These are Ladder Logic
programs that can be called by another
program. When a subroutine is called,
control is transfened to the subroutine, until
encountering a RETURN command16, which
transfers contiol to the next rung. Each
subroutine is stored in a different file. With
each subroutine it is possible to associate
unique files of local variables17. Subroutines
can also access all the global variables
defined in the program. Figure A-5 shows
the mechanism of calling a subroutine in Figure A-5 Subroutine calling in Ladder Logic.
Ladder Logic. In this example the "main"
program in file #2 calls a subroutine in file #10.

SER

Logic

JEE-

16, Or END OF PROGRAM statement
17Not all PLCs support local variables

A-13 NUREG/CR-6463

-SBR
H SUBROUTINE
INPUT PAR: N10:0
INPUT PAR: N10:l
INPUT PAR: N10:2

-RET-
RETURN {)
RETURN PAR: N10:3
RETURN PAR: N10:4
RETURN PAR: N10:5

-[END] —
Figure A-6 Subroutine interface (parameter passing).

Encapsulation is defined as a technique of isolating a system function within a module and
providing a precise specification for the module (Allen Bradley, 1991a). Some Ladder Logic
languages provide an interface between the calling program and the subroutine. The subroutine
call specifies which parameters should be passed to the subroutine, and which parameters are
returned by the subroutine. For example, Figure A-6 shows a subroutine that accepts three input
parameters words (N10:0, N10:l, and Nl 0:2), and returns three output parameters words
(N10:3, N10:3, and N10:5).

The caUing instruction, shown in Figure A-7, passes the parameter stored in N9:2 to N10:0, N9:3
toN10:l, and N9:5toNlO:2. The subroutine returns parameter N10:3 toN9:ll, N10:4
t0N9:13, andN10:5 tON9:14.

I—JSR-
JUMP TO SUBROUTINE
INPUT PAR
INPUT PAR
INPUT PAR
RETURN PAR
RETURN PAR
RETURN PAR

N9:2
N9:3
N9:5
N 9 : l l
N9:13
N9:14

Figure A-7 Subroutine call interface (parameter passing).

NUREG/CR-6463 A-14

A.3 Description of Sequential Function Charts

This section describes SFCs and is included to provide basic information for readers not familiar
with the IEC 1131 standard. The first section discusses SFCs in the context of the IEC 1131
standards (IEC1131-1, IEC 1131-3). The second section discusses SFC structures and syntax.

A.3.1 Sequential Function Charts in the Context of IEC 1131

IEC 1131 defines the requirements for Programmable Controllers (PCs), known in the United
States as PLCs. IEC 1131, Part 3, specifies the semantics and syntax of a unified suite of
programming languages for PLCs. Textual languages consist of a defined set of characters, rules
for combining characters with one another to form words or other expressions; and the assignment
of meaning to some of the words or expressions. There are two textual languages defined in the
standard:

• Instruction List (IL). Instruction List is a textual programming language using instructions
for representing the application program for a PLC. IL is a low-level language, and may
be considered as a standard Assembly Language for PLCs.

Structured Text (ST). Stractured text is a textual programming language using
assignment, sub-program control, and selection and iteration statements to represent the
application program for a PLC. ST, as distinguished from IL, is the high-level text-based
language for PLCs. Much of its syntax is derived from Pascal.

Graphical languages are based upon graphical representation, that is, lines, boxes and text.
Appropriate quantities flow along lines between elements according to well defines rules. Ladder
logic is an example of a graphical language. Function Block Diagram is another programming
language that uses block diagrams to represent specific relations among inputs and outputs. The
application program is composed by interconnecting the function block diagrams.

A.3.2 SFC Structure and Syntax

SFC is not a language but a structuring tool for the organization of programs. SFC elements
provide a means of partitioning a program into a set of "steps" and "transitions." Each step is
associated with a set of operations that are performed while this step is active.. Under certain
conditions a transition becomes active, the cunent step is not executed anymore, and another step
is executed. The SFC helps to modularize programs that can be broken into exclusive steps, each
step executed under different conditions.

In sequential function chart programs, steps and transitions are ananged in series and parallel
paths, and they are numbered with the file numbers that contain their ladder logic. The

A-15 NUREG/CR-6463

programmable controller scans the logic of a step repeatedly until its tiansition logic goes trae.
Then the program scan moves to the next step or steps, and the previously active step is turned
off.

At a high level of abstraction, without considering the detail, SFCs are similar to subroutines.
Benefits of using SFC for prograrnming PLCs include:

• SFC, as a dedicated sequencing language, has a closer cognitive fit than any of the other
PLC languages to the types of sequencing operations commonly performed by PLCs.
This makes reading and writing SFC programs simpler than programs written solely in
Ladder Logic.

• , As the machine sequence is represented directly by the SFC program, both machine and
prograrnming problems are typically easier to find and conect.

• As inactive SFC steps and transitions are not scanned by the PLC program, the program
scan time of the PLC is typically reduced.

The actual code executed in a Step or Transition can be written in Ladder Logic, IL, ST, Function
Block, or, in some PLCs, SFC. In the case where a Step's actions are written in SFC, that step
is refened to as a macro-step. The necessity for specifying the actions of a Step and a
Transition's condition in a language other than SFC is why SFC is sometimes described as a
meta-language. SFC is, however, a sequencing language in its own right.

An example sequential function chart program is shown in Figure A-8 (Hughes, 1989) to explain
the symbols used in a typical program. The top of the program contains a start block to define the
beginning of the program. The next block is the initial step, where the programmable controller
starts function chart execution and returns to this step from the end Of program unless directed
otherwise by the program logic. This block is identified by a double-sided box.

NUREG/CR-6463 A-16

OR PATH

009

005

START

002

INITIAL

003

PROCESS STEP A

007

PROCESS STEP B

010

006

004

PROCESS STEP D

A k i r > n i T l l

PROCESS STEP C

001

END

008

Figure A-8. Example of Sequential Function Chart

As noted above, the step block is the function chart's basic unit and contains ladder logic for each
independent stage of the process or machine operation. It is identified by a single-sided box.

The transition is the logic condition that the processor checks after completing the active step.
When the tiansition logic is true, the step preceding the tiansition is disabled, and the step
following it becomes active. The tiansition is normally a single logic rung, identified by a short

A-17 NUREG/CR-6463

horizontal line below its conesponding stop (see Figure A-8).

The OR (divergence of sequence) path is identified by a single horizontal line at the beginning
and end of a logic zone. The processor selects one of several parallel paths depending on which
tiansition goes true first. Normally, the number of parallel paths is limited to seven.

The AND (simultaneous sequence) path is identified by a horizontal double line at the beginning
and end of a zone. The processor can normally execute up to seven paths at the same time.

The following sections provide additional details on each of these constructs.

A.3.2.1 SFC Steps

A step represents a situation in which the behavior of a program follows a set of rules defined by
the associated actions of the step. A step can be either active or inactive. An active step is
executed (scanned). An inactive step is not executed (not scanned). At any given moment a
program might have more than one active step. A step can be seen as a subroutine that is called
when the active condition occurs. The call to the subroutine is avoided when the inactive
condition occurs. At any given time the state of the program is defined by the response of the
active steps to their respective inputs.

Each step is identified by a label and has a program that invokes the actions performed by the
step. Steps are represented as boxes containing an identifying number. A Step must always be
followed by a tiansition.

A.3.2.2 SFC Transitions

A Transition represents the condition whereby control passes from steps preceding the tiansition,
to one or more successor steps. When a transition is trae it causes the exit from the preceding step
and entry into the following step. The transition is represented by a horizontal line across the
vertical link. Each tiansition has an associated tiansition condition which is the result of the
evaluation of a boolean expression. The IEC standard states that it shall be an enor if any side
effect (such as the assignment of a value to a variable other than the transition name) occurs
during the evaluation of a transition condition. Most PLC SFC implementations expressly prevent
this from occurring, however, even if a particular implementation allows side effects in transition
expression execution, this type of programming construct should be strictly avoided. Every
Transition must be followed by a Step.

NUREG/CR-6463 A-18

A.3.2.3 SFC Actions

Zero or more actions can be associated with each step. A step that has zero actions should be
considered as having a WAIT function, that is, waiting for a successor tiansition condition to
become trae.

A.3.2.4 SFC Contiol Stractures

The contiol stractures used in Sequential Function Charts include Divergence of Sequence
Selection, Simultaneous Sequences, and Directed Links.

• Divergence of Sequence Selection: A Divergence of Sequence is described by the case
where a single Step has multiple, alternate, Transition conditions and associated
sequences following it. When the Step is active, all of these Transition conditions are
scanned by the PLC. The first of these to become trae 'selects' the single sequence that
will be followed subsequently.

• Simultaneous Sequences: Simultaneous Sequences are used when a number of parallel
machine sequences need to be started and stopped simultaneously. A Simultaneous
Sequence is represented by a double horizontal line foUowing a Transition, and followed
by several Steps. The number of Steps aUowed to foUow a Simultaneous Sequence is
an implementation dependent issue. Different implementations of SFC will scan the
active steps in a Simultaneous Sequence in different orders. Therefore, it is considered
poor programming practice to have the proper operation of a Simultaneous Sequence
depend upon the order of processing of active steps in these sequences within a single
scan. The PLC program auditor should explicitly check for this. Simultaneous Sequences
are used when parallel processes need to be expUcitly synchronized at their beginning and
their ending. Where asynchronous sequences that do not require this kind of
synchronization are desired, they should be coded as independent SFC Charts.

Directed Link: The Directed Link is used to move control from one portion of a SFC
program to another. It has two forms. The first, is as a continuous line with anows
indicated the direction of contiol flow. The second form uses a 'goto' anow and an
associated 'label' in place of the continuous line. In this form, each goto has a single
unique label to receive the control flow. Directed Links cannot be used to jump into, out
of, or between paths of a simultaneous sequence.
Each SFC program must contain at least one Directed Link, to return contiol flow back
to the designated Initial Step.

Figure A-9 is an example of an SFC program that uses Divergence of Sequence Selection,
Simultaneous Sequences, and Directed Links. This example concerns the operation of a traffic
light, with normal operation during high traffic hours, and blinking lights after midnight. The

A-19 NUREG/CR-6463

Divergence of Sequence Selection selects between these two modes based on the time of day:
a daytime mode with the familiar Red, Green, Yellow sequence, and a late night mode where
blinking yellow or red lights are substituted for this sequence. The Simultaneous Sequence is
used to start the East/West sequence of lights at the same time as the North/South sequence, and
to ensure that they end at the same time, so that the action of these two sequences remains
synchronized (important for traffic control applications). The directed link is shown leading
from the last process step back to the beginning of the application.

j Direc ted
A t o s t a r t

l i n k
T
1

! ' Time=00-06

; ! 117
i i
i i
i i

i i
i i

i i

; i us
i i
i i
i i .
i i

i i
i i

i

All on !

0.3 sec

Al l off |

0.3 sec

i

110 No Action

(Time i s >06,
i
i

111
T
1
1
1

T
1

1

|12

i
i

T

1
1

113
■ i —
i

V

N/S Red

15 sec

N/S Green

10 sec

N/S Yellow

5 sec

<24)
i
i

■i
i

—r
i
i
i

i

T
1

1
1
1

1
1
1

T —

—r
i

<

<

114

115

116

<-(

-Divergence of Sequence

-Simultaneous Sequence

E/W Green

10 sec

E/W Yellow

5 sec

E/W Red

Convergence of Sequence

Figure A-9. Sequential Chart for Traffic Light

A Divergence of Sequence selection occurs under Step 10, as indicated by a single horizontal line.
The two Transitions involved in the Divergence of Sequence Selection are programmed to be
mutually exclusive, by the time of day. The Sequence including Steps 11 through 16 is an
example of simultaneous sequences, with one sequence for the East/West lights (Steps 14,15,and
16), and one sequence for the North/South Lights (Steps 11,12, and 13). This Simultaneous
Sequence is indicated by a double horizontal line at both the beginning and ending of the

NUREG/CR-6463 A-20

construct, as specified in IEC standards 1131-3 and 848.

The transition under Step 13 is a 5 second timer, which begins activation when ALL of the final
steps in the preceding Simultaneous Sequence (in this case, 13 and 16) are active. This is stan
dard behavior for the transition condition immediately following the end of a Simultaneous
Sequence - the tiansition is only executed when ALL of the prior Steps are active.

Steps 17 and 18, which are only active between midnight and 6:00 AM because of the preceding
divergence of sequence selection, blink red lights on the North/South sides, and yellow lights on
the East/West side for 0.3 seconds apiece. Finally, the directed link returns contiol of program
flow to the initial Step, Step 10. As one of the transitions under Step 10 will ALWAYS be trae,
the small amount of time spent in Step 10 does not affect proper operation of the traffic light.

A.4 PL/M Language Description

This appendix section discusses the PL/M programming language. The first section describes its
history, the second describes how executable code is generated, the third section contains a top-
level description of the language itself, and the final section provides additional language-specific
recommendations on the project level.

A.4.1 Language History

The Programming Language for Microcomputers (PL/M) was introduced in 1976 by the Intel
Corporation. It was introduced to provide a higher-level language for their 8-bit, 8080
microprocessor. PL/M was modeled after IBM's popular PL/1 stractured programming language.
At that time BASIC and FORTRAN V were the dominant popular higher-level languages. PL/M
was the first block-stractured language available for microcomputers and encouraged the use of
structured programming techniques developed and promoted by the IBM Corporation, and others
such as E. Dijkstia and C.A.R Hoare.

Intel developed the PL/M Language, compiler, linker, and simulator as a proprietary language.
They did not seek to standardize the language.

PL/M has evolved with and in support of the Intel microprocessor product line. The following
table is a partial list of PL/M compilers:

A-21 NUREG/CR-6463

Table A-3. PL/M Compilers
Processor

8080/8085/Z80

8051/8052

8096/80196
8086/80186

80286
80386/80486

Compiler
Intel PL/M-80
BSO Tasking 80/PL
Intel PL/M-51
BSO Tasking 8051 PL/M
Intel PL/M-96
Intel PL/M-86
BSO Tasking 80/PL
Intel PL/M-286
Intel PL/M-386

Status
In public domain
Available
Discontinued
Available
Discontinued
Discontinued 3/94
Available
Discontinued 3/94
Discontinued 12/94

A.4.2 Generation of Executable PL/M Programs

PL/M compilers translate source code into relocatable object modules. These modules can then
be combined with other modules coded in PL/M, assembly language, or other higher-level
languages. The compilers provide listing outputs, enor messages, and a number of compiler
controls that aid in developing and debugging programs.

To complete a software program, the object modules developed are combined with any necessary
support libraries using a Linkage Editor program such as LINK86, BND286, or BND386. The
resulting program is still in relocatable format and requires one last step to make it executable
ready.

A Locate program transforms the relocatable program module into a program with absolute
addresses. This locator program properly divides the program into EPROM / ROM sections and
into RAM data memory sections. The locator also assigns the system STACK address. After the
program modules are combined and located, the program can be debugged using an ic-circuit
emulator system (such as ICE-386), or a software debugger such as DB86 or DB386. L/M is a
data typed language. The compiler does data-type compatibility checking during compilation to
help detect logic enors in programs.

A.4.3 Language Overview

Unlike ANSI standard languages such as "C," the syntax and semantics of certain areas of PL/M
vary according to the processor intended for use. PL/M can be grouped into families that have
similar attributes. For example, PL/M-80, PL/M-86, and PL/M-96 are somewhat similar; and an
upgrade chapter is provided in the manuals. PL/M-286 and PL/M-386 are also similar. However,
PL/M-51 for the 8051/8052 microcontroller family is different from the those mentioned
previously.

NUREG/CR-6463 A-22

All of the PL/M languages maintain the same control stracture elements. The major areas in
which each PL/M compiler seems to differ are: data types, addressing mechanisms, interrupt
structures, I/O schemes, and hardware flags.

A.4.3.1 PL/M Program Stracture

PL/M is a block structured language. Every statement in a PL/M program is a part of at least one
block. A block is a well-defined group of statements that begin with a DO statement or a
PROCEDURE declaration statement, and end with an END statement.

Every PL/M program consists of one or more modules, each containing one or more DO-END
blocks. Each program module must begin with a labeled DO statement and end with an END
statement. A module DO-END block can contain other nested DO-END blocks; however, it cannot
itself be contained or nested inside of another block.

Between the DO and END statements there are other PL/M statements that provide the makeup of
the program logic. These PL/M statements are said to be a part of the conesponding DO-END
block that sunounds it. DO-END blocks can be nested inside each other within the module block.

The second type of block in a PL/M program is the Procedure Definition Block. This block begins
with a procedure definition statement (PROCEDURE) and ends with an END statement. Like the
DO-END block, other PL/M statements can be placed within the procedure block to form
procedure program logic.

In PL/M, procedure blocks can be nested. This feature allows PL/M to keep support procedures
local and hidden from other procedures and code blocks outside the containing procedure.

A.4.3.2 Data Types

In the PL/M-80 compiler, there were only two data types defined: BYTE (unsigned 8-bit), and
ADDRESS (a 16-bit unsigned value), ADDRESS values were store in high-byte, low-byte reverse
order according to the 8080 architecture. These data types conesponded with the register data
width of the basic 8080/8085 microprocessor.

As PL/M evolved, more data types were added according to the new processors. PL/M-86 added
datatypes of WORD, INTEGER, REAL, and POINTER. Datatype ADDRESS became synonymous
with WORD for compatibility, and use of WORD was encouraged over ADDRESS .

PL/M-286 and 386 further added new data types including OFFSET and SELECTOR. Data types
often became confusing as WORD was a 16-bit number in PL/M-286, but became a 32-bit number
in PL/M-386. Data-type mapping compiler controls of $WORD!6 and $WORD32 were introduced

A-23 NUREG/CR-6463

in an attempt to provide some basic data-type compatibility for the 80x86 processor family.

A.4.3.3 Addressing Mechanisms

Addressing in PL/M-80 was rather straightforward and simple. In the 80x86 processors and
above, keeping the segmented address mechanisms hidden from the user became a problem. In
using pointers, the user had to deal with SELECTORS and OFFSETS and their differences
between processors. Use of these addressing mechanisms required detailed attention, as they all
differed among the 8086, 80286, and the 80386.

A.4.3.4 Interrupt Stractures, I/O Schemes, and Flags

Depending upon the compiler and processor being supported, interrupt causing / handling
functions were added. PL/M-86 defines methods for setting up interrapt vectors for the 8086.
PL/M-286/386 defines an Interrapt Descriptor Table for handling interrupts in 80286/80386
applications. In general, the handling of interrapts are not tiansparent and compatible. They must
be given specialized attention for each processor. I/O schemes also differ according to processor
family-some confined to 8-bits only while others allow multi-byte I/O.

Hardware flags such as SIGN, CARRY, and numerous others are also hardware dependent. They
are often contained entities which vary in width from 8-bits to 32-bits. Bit assignments for like
flags are not necessarily found in the same order between processors.

A.4.4 General Guidelines for Using PL/M

PL/M is a language that has experienced a decline in use and popularity in the industry over the
past few years. As a result, those cunently using or those intending to use PL/M should be aware
of this trend in the industry. Part of the reason for the decline may be the proprietary nature of the
language; it is not supported by any outside standards committees such as ANSI or the IEEE.

In the late 1980s and early 1990s, "C", Ada, and other more advanced languages became popular.
Market pressures, in conjunction with the popularity of the new languages, gradually caused Intel
to phase out and diminish support for the PL/M language set. The user should be aware of this
trend when choosing to make long-term plans to use and support products with PL/M.
Recommendations and guidelines are discussed in the sections below.

NUREG/CR-6463 A-24

A.4.4.1 An Almost Obsolete Language

The PL/M language has sparse support among SW tool vendors. This fact should be weighed
carefully by organizations desiring to use or continue using this language. Although some third-
party vendors may continue supporting PL/M into the future as part of their product line, no
vendor focuses on providing PL/M as its prime or flagship product.

Intel has discontinued support of all its PL/M compUers. The PL/M-386 was the last of the PL/M
products in its software development product line. The PL/M-86/286 product had aheady been
discontinued in March 1994. And, although no final date was provided, PL/M-51 has apparently
been discontinued for some time. Intel's oldest PL/M product, PL/M-80 for the 8080/8085, has
been placed in the public domain. Copies are available for download from the Intel BBS
electronic bulletin board system18 Intel offers information and support to customers on a PL/M
to "C" source-code converter program to facilitate the conversion.

A.4.4.2 New Project Guidelines and Recommendations

If the project directorate decides to use the PL/M language for new development, these guidelines
should be followed:

• Ensure the existence of an adequate supply of PL/M language.

• Archive or store additional tools to last the expected duration of the system or
product.

• Search for and become acquainted with companies, individuals, or consultants
which can provide continued support for the PL/M language.

• Prepare for a migration path to an alternate language.

A.4.4.3 Existing Project Guidelines and Recommendations

For those individuals or groups that must maintain systems, project software developers and
project leaders should make long-term plans to ensure that an adequate toolset and techmcal base
can be sustained.

NUREG/CR-6463

Intel Embedded Control Systems Electronic Bulletin Board, (916)356-3605.

A-25

References

Allen Bradley, PLCS Programming Software - Programming, Publication 6200-6.4.7 November,
1991.

AUen Bradley, PLC-5 Programming Software - Software Testing and Maintenance, Publication
6200-6.4.10 November, 1991.

ICOM PLC-5 Ladder Logic, User's Manual, 1989..

ANSI/IEEE 729-1983, Glossary of Software Engineering Terminology, Institute of Electrical and
Electronic Engineers, 1983

International Electiotechnical Commission (IEC), Programmable Controllers General
Information, IEC Standard 1131, Parti, 1992. (Available in the U.S. from the American National
Standards Institute, New York.)

International Electrotechmcal Commission (TEC), Programmable Controllers Programming
Languages, IEC Standard 1131,Part3,1993. (Available in the U.S. from the American National
Standards Institute, New York.)

Intel Corporation, PL/M Programming Manual, 9800268B, Chandler, Arizona, 1977.

Intel Corporation, PL/M-86 Programming Manual, 9800466-02B, Chandler, Arizona, 1980.

Intel Corporation, 8086 Software Tool Box, Volume II, 122310-001, Chandler, Arizona, 1984.

Intel Corporation, PL/M-86 User's Guide, 121636-004, Chandler, Arizona, 1985.

Intel Corporation 8086 Software Tool Box, 122203-002, Chandler, Arizona, 1985.

Intel Corporation, PL/M-96 User's Guide for DOS Systems, 481644-001, Chandler, Arizona,
1988.

Intel Corporation, PL/MProgrammer's Guide, 452161-002, Chandler, Arizona, 1990.

Intel Corporation, PL/M-386 Programmer's Guide, 611052-001, Chandler, Arizona, 1992.

NUREG/CR-6463 A-26

Appendix B. Summary of Language Guidelines

This Appendix contains tabular summaries of the language guidelines for the languages discussed
in the main body of the report. In addition to the summary, a relative weighting for the guideline
is provided. These weightings are general and may change based on the specifics of each project.

B-l NUREG/CR-6463

Generic(Language Independent) Attributes

NUREG/CR-6463 B-2

Generic (Language Independent) Attributes

Generic
Characteristics

2.1.1.1 Dynamic
Memory Allocation

2.1.1.2 Memory Paging
and Swapping

2.1.2.1 Structure

2.1.2.2 Control Flow
Complexity

2.1.2.3 Initialization of
Variables

2.1.2.4 Single Entry
and Exit Points

2.1.2.5 Interface
Ambiguities

2.1.2.6 Data Typing

2.1.2.7 Precision and
Accuracy

2.1.2.8 Order of
Precedence

Significance

High

High

Medium

High

High

Medium

Medium

High

High

Medium

Guideline

Minimize dynamic
memory allocation.

Minimize memory
paging and swapping.

Avoid goto's.

Minimize control flow
complexity.

Initialize variables
before use.

Use single entry and
exit points in
.subprograms.

Minimize interface
ambiguities.

Use data typing.

Provide adequate
precision and accuracy.

Use parentheses rather
than default order of
precedence.

Rationale

Use of dynamic memory can result
in memory leaks.

Memory paging and swapping can
cause significant delays in response
time.

goto's make execution time behavior
difficult to fully predict as well as
introducing uncertainty into control
flow.

Excess complexity makes it difficult
to predict the program flow and
impedes review and maintenance.

Uninitialized variables can cause
anomalous behavior.

Multiple entries and exits introduce
control flow uncertainties.

Interface errors account for many
coding errors.

Data typing prevents misuse of data.

Correct results needed in safety
critical calculations.

Incorrect precedence assumptions
cause errors; source code open to
misinterpretation.

Mitigation

Release allocated memory as
soon as possible.

Not Applicable.

Clearly document, justify, and
test.

Project guidelines should set
specific limits on nesting levels.

Not Applicable.

Document secondary entry and
exit points.

Not Applicable.

Not Applicable.

Not Applicable.

Use other forms to enhance
readability if parentheses are
excessive.

B-3 NUREG/CR-6463

Generic (Language Independent) Attributes

Generic
Characteristics

2.1.2.9 Side Effects

2.1.2.10 Separating
Assignment from
evaluation

2.1.2.11 Program
Instrumentation

2.1.2.12 Library Size

2.1.2.13 Dynamic
Binding

2.1.2.14 Operator
Overloading

Significance

Medium

Medium

Medium

Medium

High

Medium

Guideline

Avoid functions or
procedures with side
effects.

Separate assignments
from evaluation
statements.

Minimize run-time
perturbations.

Maintain visibility of
instrumentation in run
time source code.

Conform to software
instrumentation
guidelines.

Control class library
size.

Minimize dynamic
binding.

Control operator
overloading.

Rationale

To avoid unplanned dependencies
and bugs.

Incorporation of assignments into
evaluation statements can cause
unanticipated side effects.

These practices improve checkout
and verification of code.

Large class libraries are
unmanageable and have
performance penalties.

Dynamic binding causes
unpredictability in name/class
association and reduces run-time
predictability.

Operator overloading is problematic
for predictability.

Mitigation

Not Applicable.

Not Applicable.

Intrusive instrumentation is
sometimes necessary for problem
resolution. Remove
instrumentation and perform
regression testing.

Not Applicable.

Justify dynamic binding.

Sometimes acceptable for
achieving uniformity across
different data types.

NUREG/CR-6463 B-4

Generic (Language Independent) Attributes

Generic
Characteristics

2.1.3.1 Tasking

2.1.3.2 Interrupt Driven
Processing

2.2.1.1 Internal
Diversity

2.2.1.2 External
Diversity

2.2.2.1 Local Handling
of Exceptions

2.2.2.2 Maintain
External Control Flow

Significance

High

High

Medium

Medium

High

High

Guideline

Minimize the use of
tasking.

Minimize the use of
interrupt driven
processing.

When internal diversity
is used, all interface
versions must be
identical.

External diversity
should be implemented
in a disciplined manner.

Handle exceptions
locally.

Preserve external
control flow by
handling the exception
in the responsible
module.

Rationale

Timing uncertainties, sequence on
execution uncertainties and
vulnerability to race conditions and
deadlocks may result.

Interrupts lead to non-deterministic
response times.

Internal diversity minimizes the
possibility of design or
implementation-related failure.

External diversity minimizes the
possibility of design or
implementation-related failure.

Local exception handling helps
isolate problems more easily and
more accurately.

Interruption of control flow creates
uncertainty in execution.

Mitigation

Tasking requires compelling
justification.

Minimize processing for
handling interrupts. Return to
primary program control as soon
as possible.

Deviation from common
interfaces should be documented
and justified.

Not Applicable.

If not possible, thorough testing
and analysis to verify behavior
during exception handling is
required.

If not possible, thorough testing
and analysis to verify behavior
during exception handling is
required.

B-5 NUREG/CR-6463

Generic (Language Independent) Attributes

Generic
Characteristics

2.2.2.3 Uniform
Exception Handling

2.2.3.1 Input Data
Checking

2.2.3.2 Output Data
Checking

2.3.1 Built-in Functions

2.3.2 Compiled
Libraries

2.4.1.1 Indentation
Guidelines

2.4.1.2 Descriptive
Identifier Names

2.4.1.3 Comments and
Internal Documentation

Significance

High

High

High

Low

Low

Medium

Medium

Medium

Guideline

Use general and
defined exceptions,
conform to specific
project guidelines on
exceptions and uniform
placement.

Check input data
validity.

Check output data
validity.

Control the use of built-
in functions through
project specific
guidelines.

Control the use of
precompiled libraries.

Conform to indentation
guidelines.

Use descriptive
identifier names.

Conform to comment
guidelines.

Rationale

Undisciplined use of exception
handling can result in inconsistent
processing of the same exception
condition in different parts of the
code.

Checks reduce the probability of
crashes and incorrect results.

Checks reduce the probability of
crashes and incorrect results.

Built-in functions have unknown
internal structure, limitations,
precision and exception handling.

Precompiled libraries have unknown
internal structure, limitations,
precision and exception handling.

Indentation guidelines improve
readability and maintainability.

Descriptive identifier names
improve readability and
maintainability.

Necessary to verify conformance to
requirements, code inspections and
maintenance.

Mitigation

Not Applicable.

May not be applicable if input
can be "trusted."

May not be necessary if
downstream input checking
performed.

Conduct thorough testing and
error tracking.

Conduct thorough testing and
error tracking.

Not Applicable.

Not Applicable.

Not Applicable.

NUREG/CR-6463 B-6

Generic (Language Independent) Attributes

Generic
Characteristics

2.4.1.4 Subprogram
Size

2.4.1.5 Mixed
Language
Programming

2.4.1.6 Obscure or
Subtle Programming
Constructs

2.4.1.7 Dispersion of
Related Elements

2.4.1.8 Use of Literals

2.4.2.1 Global
Variables

2.4.2.2 Complexity of
Interfaces

2.4.3.1 Single Purpose
Function and Procedure

2.4.3.2 Single Purpose
Variables

Significance

Medium

Medium

High

Medium

Medium

Medium

Medium

Medium

Medium

Guideline

Limit subprogram size
in accordance with
project coding
standards.

Minimize mixed
language programming.

Minimize obscure and
subtle programming
constructs.

Minimize the
dispersion of related
elements.

Minimize the use of
literals.

Minimize the use of
globals.

Minimize the
complexity of
interfaces.

Use single purpose
functions and
procedures.

Use each variable for a
single purpose only.

Rationale

Facilitate review and maintenance.

Mixed language programming is
hard to read and maintain.

Obscure coding presents problems in
review and maintenance and raises
safety concerns.

Dispersed elements necessitate
multiple accesses to review or
maintain code and are therefore
susceptible to errors.

The use of symbolic constants
enhances code reliability and
consistency.

Globals have the potential for
undesired side effects.

Complex interfaces are a frequent
cause of software failures.

Functional cohesion facilitates
review and maintenance.

To facilitate review and
maintenance.

Mitigation

Justify larger sizes. Provide with
additional documentation and
comments.

Separate "foreign" code so that
readability is enhanced.

When it cannot be avoided, use
comments to minimize the
impact of obscure or subtle code.

Provide clear references,
rationale and overall source code
organization.

Associate comment with each
literal to facilitate search/replace.

Clearly identify global variables.

Closely inspect and clearly
identify interfaces.

Clearly identify and rationalize
groupings of functions.

Not Applicable.

B-7 NUREG/CR-6463

Generic
Characteristics

2.4.4.1 Isolation of
Alterable Functions

2.4.5.1Isolation of
Non-Standard
Constructs

Significance

Medium

Medium

Guideline

Isolate alterable
functions.

Isolate implementation
dependent constructs.

Rationale

Isolation of alterable functions
facilitates review and maintenance.

Simplifies porting to changed
hardware configurations.

Mitigation

Clearly comment alterable
sections.

Not Applicable.

NUREG/CR-6463 B-8

Ada

B-9 NUREG/CR-6463

Ada

Generic
Characteristics

3.1.1.1 Dynamic
Memory Allocation

Significance

High

Guideline

Dynamic use of memory should
be strongly discouraged.

Avoid dynamically created
tasks.

Minimize use of unconstrained
types.

Avoid recursion.

Do not instantiate generic units
during runtime.

Minimize use of large
composite objects.

Use length clauses if dynamic
memory allocation is necessary.

Rationale

Dynamic memory can cause the
heap to grow too large and crash

-the system.

Dynamic tasks use up unknown
and potentially large amounts of
dynamic memory. Memory
allocated to dynamic tasks
cannot be explicitly deallocated.

Due to their impact on memory
allocation.

Recursion uses up unknown and
potentially large amounts of
dynamic memory.

Generic units are not desirable
in any safety-significant
software.

Large objects can cause stack
overflows.

To reserve memory in advance.

Mitigation

Release allocated memory
as soon as possible.
Utilize the length clause
feature to pre-allocate
dynamic memory pools.
Put STORAGE_ERROR
exception handlers in
program units which
allocate dynamic memory.

Not applicable.

Use with caution and
justify.

Put exception handlers for
STORAGE_ERROR in
recursive subprograms.

Not Applicable.

Not Applicable.

Not Applicable.

NUREG/CR-6463 B-10

Ada

Generic
Characteristics

3.1.1.2 Memory
Paging and Swapping

3.1.2.1 Structure

3.1.2.2 Control Flow
Complexity

Significance

High

Medium

High

Guideline

Provide handlers for the
predefined exception
STORAGE_ERRORif
dynamic memory allocation is
necessary.

Explicitly deallocate dynamic
memory.

Do not assign values of
dynamically allocated access
objects to other access objects.

No Ada specific guideline, see
the generic guideline.

Do not use goto's.

No more than one exit
statements for a loop.

Minimize return statements.

Minimize control flow
complexity.

■ Rationale

To provide a graceful recovery
from memory exhaustion.

The run-time executive's
garbage collector should not be
relied upon.

They may point to invalid
addresses if the original memory
is deallocated.

Not Applicable.

The use of goto's clouds the
code structure and should be
avoided.

More than one or two exit
conditions from a loop indicate
lack of cohesion, i.e., more than
one purpose for loop.

Multiple return statements can
confuse meaning of subprogram.

Excess complexity makes it
difficult to predict the program
flow and impedes review and
maintenance.

Mitigation

Not Applicable.

Not applicable.

Not applicable.

Not Applicable

Clearly document, justify,
test.

Clearly document, justify.

Clearly document and
justify.

Project guidelines should
set specific limits on
nesting levels.

B-ll NUREG/CR-6463

Ada

Generic
Characteristics

3.1.2.3 Initialization
ofVariables

3.1.2.4 Single Entry
and Exit Points

Significance

High

Medium

Guideline

Use if., e/si/instead of nested
//"statements.

Use case statements in
preference to if., elsif
statements whenever possible.

When using case, also use
when others to catch unplanned
or unknown alternatives.

Initialize all variables.

If initialization is via function
call, perform initialization in
program unit body, not
declaration section.

Do not initialize large objects
via aggregates.

One normal (non-exception)
entry and exit per subprogram.

Limit the number of exception
entry/exit points.

Rationale

Reduces complexity and nesting
levels.

Reduces complexity and nesting
levels.

when others traps unplanned and
unknown alternatives.

Ada compilers will not generally
initialize variables, therefore the
contents are undefined.

Body of function may not have
been elaborated when
declaration section of program
unit is being elaborated;
PROGRAM_ERROR exception
could be raised.

Could cause system crash in
some implementations.

Single entry and return points
are easier to understand, test,
and less expensive to design,
build, and maintain than
multiple entries and returns.

To avoid complicating the
control flow.

Mitigation

Not applicable.

Use //statements if only
two branches or if control
path not dependent upon
discrete value.

Clearly document, justify,
test.

The access type is always
initialized to null.

Elaborate pragma can be
used to ensure body of
function elaborated before
declaration section.

Not applicable.

Document secondary entry
and exit points.

Clearly document each
entry/exit point.

NUREG/CR-6463 B-12

Ada

Generic
Characteristics

3.1.2.5 Interface
Ambiguities

Significance

Medium

Guideline

Avoid multiple task entry
points.

Minimize interface
ambiguities.

Explicitly specify the modes of
parameters.

Restrict the use of in out mode.

Use named parameters for
calling functions and
procedures.

Use target type instead of
access type when data of the
target type only is to be
processed.

Rationale

To minimize program
complexity.

Interface errors account for
many coding errors.

Aids understandability for those
who do not know default mode.

Reduces ambiguity; makes plain
the intention regarding changes
in parameter.
Results in safer coding; objects
passed into subprograms and
meant to be unchanged cannot
unintentionally be changed.

Using named parameters for
calling functions and
procedures, improves readability
and reliability.

Reduces ambiguity; makes plain
which data, pointer or target
data, is to be processed.
Results in safer coding; objects
of a target type passed into
subprograms and meant to be
unchanged cannot
unintentionally be changed.

Mitigation

Not Applicable.

Not Applicable.

Not Applicable.

Objects of limited type
cannot be out mode.

Not Applicable.

Clearly justify, document,
and test.

B-13 NUREG/CR-6463

Ada

Generic
Characteristics

3.1.2.6 Data Typing

Significance

High

Guideline

Avoid aliased parameters.

Take advantage of Ada's strong
typing.

Do not suppress Ada's run-time
constraint checks.

Define scalar data types with
the narrowest possible limits.

Use care in scalar
subexpressions in Ada 83
implementations.

Minimize the use of type
conversions.

Avoid use of unchecked
conversions.

Rationale

When aliased parameters are
used, results from subprograms
frequently incorrect and
implementation dependent.

Strong typing catches range
errors as well as typing errors,
making safer code.

Strong typing conducts run-time
range checks of parameters
entering procedures and
functions and of copy operations
to variables.

Enhances early detection of
out-of-range data values.

Some implementations check
intermediate values for
out-of-range conditions.

Type conversions subvert the
benefits of strong typing.

This may lead to assigning
illegal values to objects.

Mitigation

Clearly document, justify,
and test any use.

Not Applicable.

Clearly document and
justify any deviation.

Not Applicable.

Use implementations that
do not have this problem.

Justify and document.

Not Applicable.

NUREG/CR-6463 B-14

Ada

Generic
Characteristics

3.1.2.7 Precision and
Accuracy

3.1.2.8 Order of
Precedence

Significance

High

Medium

Guideline

Limit the use of access type
data.

Avoid declaring variables in
package specifications.

Do relational tests on real
values with <= and >= rather
than <, >, =, and /=.

Use Ada attributes in
comparisons and checking for
small values for real numbers.

Test carefully using Ada
attributes around special values
such as 0.0.

Use parentheses or other
mechanisms for ensuring that
the order of evaluation of
operations is explicitly stated.

Use parentheses to separate
operations of different
precedence.

Rationale

Access data is harder to verify
and maintain.

To increase data abstraction and
reduce coupling.

The values of fixed point and
floating point numbers only
approximate the specific
numbers. The operations on
these numbers are also
approximations. Therefore,
proper precision and accuracy
are necessary for critical
systems.

The default order of precedence
should not be depended on if any
misinterpretation can be made.

Less chance of misinterpretation.

Mitigation

Limit direction to situations
where there are no other
reasonable alternatives,
performing validation on
indirectly accessed data
prior to setting or use to
ensure the correctness of
the accessed data.

Not Applicable.

Not Applicable.

Use other forms to enhance
readability if parentheses
are excessive.

Not Applicable.

B-15 NUREG/CR-6463

Ada

Generic
Characteristics

3.1.2.9 Side Effects

3.1.2.10 Separating
Assignment from
Evaluation

3.1.2.11 Program
Instrumentation

3.1.2.12 Library Size

3.1.2.13 Dynamic
Binding

3.1.2.14 Operator
Overloading

Significance

Medium

Medium

Medium

Medium

High

Medium

Guideline

Use parentheses or other
mechanisms for ensuring that
the order of evaluation of
operands is correct.

Verify that functions do not
have side effects.

Separate assignments from
evaluations.

No Ada specific guideline, see
the generic guideline.

No Ada specific guideline, see
the generic guideline.

Minimize dynamic binding.

Guidance on use of operator
overloading should be included
in a project specific standards
manual and coding should
comply with this standard.

Rationale

If expressions contain functions
with side effects that affect each
other, results of expressions will
be implementation dependent.

Side effects can lead to problems
with unplanned dependencies
and can cause bugs that are hard
to find.

To avoid side effects.

Not Applicable.

Not Applicable.

Dynamic binding causes
unpredictability in name/class
associations and reduces
run-time predictability.

Operator overloading can be
problematic from the perspective
of predictability because it is
unclear how a compiler would
bind code for different
polymorphic code.

Mitigation

Avoid functions with side
effects.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

All cases where dynamic
binding is required should
be justified.

Sometimes acceptable for
achieving uniformity across
different data types.

NUREG/CR-6463 B-16

Ada

Generic
Characteristics

3.1.3.1 Tasking

Significance

High

Guideline

Avoid operator overloading
when the inherent precedence
of the operator is different from
that desired.

Preserve conventional meaning
of overloaded operators.

Minimize the use of tasking.

Avoid using the abort
statement.

Avoid dynamic tasking.

Use fife/ay. only for waiting, not
synchronization.

Rationale

Misinterpreting operator
precedence could lead to
incorrect results for expressions.

Failure to preserve conventional
meaning results in confusing
code.

Timing uncertainties, sequence
of execution uncertainties, and
vulnerability to race conditions
and deadlocks.

If a task is aborted, then all tasks
dependent on it are aborted.
Furthermore subprograms and
blocks which were called by it
will also be aborted. If the task
was suspended, the abort will
cause it to appear to have been
completed. Delays are canceled
by aborts.

Dynamic tasking complicates the
predictability of the run
time behavior of the program.

delay sets a minimum time
delay.

Mitigation

Use parentheses to override
inherited precedence.
Document usage.

Not Applicable.

Tasking requires
compelling justification.

Aborts require compelling
justification.

Thoroughly justify dynamic
tasking and thoroughly test
that all problems it can
cause are handled.

Not Applicable.

B-17 NUREG/CR-6463

Ada

Generic
Characteristics

Significance Guideline

Minimize the number of accept
and select statements per task.
Minimize the number of accept
statements per entry.

Avoid conditional entry calls.
Avoid selective waits with else
parts.
Avoid timed entry calls.
Avoid selective waits with
delay alternatives.

Minimize the use of the
PRIORITY pragma.

Rationale

These guidelines are motivated
by the reduction of conceptual
complexity and the need to
control the task body size.
Additionally, a large number of
accept and select statements
carries with it a large amount of
inter-task communication and
overhead.

Use of these constructs always
poses a risk of race conditions.
Their use in loops, particularly
with poorly chosen task
priorities, can have the effect of
busy waiting. Also these
constructs are implementation
dependent.

Ada tasking is based on
preemption and requires that
tasks be synchronized only by
features of the language. The
scheduling algorithm is not
defined by the language and may
vary from time slice to
preemptive priority. Some
implementations provide several
choices that a user may select for
the application.

Mitigation

Not applicable.

Justify any usage.
Thoroughly test for
occurrence of race
conditions.

In real-time systems it is
often necessary to tightly
control the tasking
algorithm in order to obtain
the required performance.
This may require
non-preemptive tasking.
Program such tasking in
Ada.

NUREG/CR-6463 B-18

Ada

Generic
Characteristics

3.1.3.2 Interrupt
Driven Processing

3.1.3.3 Runtime
Environment

3.1.3.4 Automatic
Memory Management

3.2.1 Software
Diversity

3.2.2.1 Local
Handling of
Exceptions

Significance

High

Medium

Medium

Medium

High

Guideline

Declare interrupt values using
named constants and isolate
them from other declaration
clauses.

Isolate interrupt receiving tasks
into implementation dependent
package bodies.

Pass interrupts to tasks via
normal entries.

Do not use task entry points for
interrupt processing.

Characterize timing for the Ada
Runtime Environment (RTE).

Avoid automatic memory
management.

No Ada specific guideline, see
the generic guideline.

Minimize propagation of
exceptions.

Localize handling of
predefined exceptions.

Rationale

Interrupts lead to
non-deterministic response
times. Interrupt entries are
implementation dependent
features that may not be
supported.

The RTE is delivered by vendors
and needs to be tested to ensure
that it is deterministic,
functionally correct, and satisfies
timing requirements.

Automatic garbage collection if
a source of timing uncertainty.

Not Applicable

It may obscure program logic.

System failures can be avoided
if exceptions are handled locally.

Mitigation

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable

Justify and document
clearly.

If not possible, use
thorough testing and
analysis to verify behavior
during exception handling.

B-19 NUREG/CR-6463

Ada

Generic
Characteristics

3.2.2.2 External Flow
Control

3.2.2.3 Uniform
Exception Handling

Significance

High

High

Guideline

Declare exceptions to be .
handled in calling program
units alongside declaration of
called unit.

Clearly express and document
exception handling.

Handle predefined exceptions.

Do not raise predefined
exceptions explicitly.

Handle all program-defined
exceptions.

Use exception handling only
for abnormal events.

Minimize side effects.

Avoid compiler vendor specific
exceptions.

Use and flag other in exception
handler definitions.

Rationale

Allows calling program unit to
choose what action to take upon
raising of exception.

To clarify control flow.

To catch unexpected error
conditions.

To avoid unanticipated behavior.

It is not good practice to ignore
exceptions in safety critical
systems; they can be propagated
to the Real Time Executive and
cause the system to come down.

Exceptions increase control flow
complexity and should not be
used where inappropriate.

Eliminates side effects in case of
exceptions.

Inhibits portability and
understandability.

All conditions in exception
handling must be well defined.

Mitigation

Not Applicable

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable

Not Applicable.

May increase time and
memory requirements by
unallowable amounts.

Justify and document any
use of compiler specific
exceptions.

Not Applicable.

NUREG/CR-6463 B-20

Ada

Generic
Characteristics

3.2.3 Input and Output
Data Checking

3.3.1 Built-in
Functions

3.3.2 Compiled
Libraries

3.3.4 Traceability
between Source and
Compiled Code

3.3.5 Generic Units

3.4.1.1 Indentation
Guidelines

Significance

High

Low

Low

High

Medium

Medium

Guideline

Check input data.

Ada has few built-in functions.
Therefore no Ada specific
guideline. See the generic
guideline.

Avoid built-in libraries.

Maintain traceability between
source code and compiled
code.

Minimize the use generic units.

Indentation improves
readability and allows the
reader to see the structure of
the program.

Rationale

Input data should be regarded as
untrustworthy until proven
otherwise.

Not Applicable

Libraries prevent the
programmer from knowing the
accuracies, limitations,
robustness, and exception
handling of the built-in
functions.

To avoid configuration
management problems.

Generic units obscure
traceability.

This is especially useful for
finding the beginnings and ends
of data structures and control
flow structures.

Mitigation

May not be applicable if
input can be "trusted".
Output checking may not be
necessary if downstream
input checking is
performed.

Not Applicable

Thorough testing and error
tracking.

If separate compilation is
needed, use the with clause
and appropriate tools.

If using generic units,
- Instantiate only during

initialization
- Avoid global variables
- Document the restrictions

on parameters.

Not Applicable.

B-21 NUREG/CR-6463

Ada

Generic
Characteristics

3.4.1.2 Descriptive
Identifier Names

3.4.1.3 Comments and
Internal
Documentation

Significance

Medium

Medium

Guideline

Indent and align nested control
structures, continuation lines,
and embedded program units
consistently. Also, distinguish
between indentations for
nesting and for continuation
lines.

Follow project-specific
guidelines on naming.

Separate words in compound
names with underscores.

Use underscore"_" to promote
readability on numbers.

Use abbreviations with care.

Source code should be
supplemented with Ada
comments that explain the
code.

Use comments to relate code to
higher level design.

Use blank lines to delineate
related statements.

Rationale

Improves readability.

Not Applicable.

This will improve reliability
because the reader will be able
to more easily read the names.

This will improve reliability
because the reader will be able
to more easily read the numbers
for verification.

Avoid jargon, use the names
given by the application.

Comments clarify code and help
code maintenance.

Comments should clarify data
structure, not repeat what source
code states.

Improves understandability.

Mitigation

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

NUREG/CR-6463 B-22

Ada

Generic
Characteristics

3.4.1.4 Subprogram
Size

3.4.1.5 Mixed
Language
Programming

Significance

Medium

Medium

Guideline

Avoid use of escapes from
language restrictions.

Indicate the scope of renaming.

Provide comments on
exception handling.

Provide comments on dynamic
memory allocation.

Provide comments on tasking.

No Ada specific guideline, see
the generic guideline.

Avoid machine code inserts.

Rationale

Justified on individual basis
elsewhere.

To improve reviewability.

To improve flow control.

Dynamic memory allocation is
discouraged and need proper
justification and documentation.

To provide traceability.

Not Applicable.

There is no requirement on how
machine code should be
implemented. It is possible that
two different vendors' syntax
would be different for an
identical target and, certainly,
differences in lower-level details
such as register conventions
would hinder portability.

Mitigation

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

If machine code inserts
must be used to meet a
project requirement,
recognize the portability
decreasing effects and
isolate and highlight their
use.

B-23 NUREG/CR-6463

Ada

Generic
Characteristics

3.4.1.6 Obscure or
Subtle Programming
Constructs

3.4.1.7 Dispersion of
Related Elements

3.4.1.8 Use of Literals

Significance

High

Medium

Medium

Guideline

Minimize interfaces with other
languages.

Isolate and clearly document
machine language inserts.

Isolate all subprograms
employing pragma
INTERFACE to an
implementation-dependent
(interface) package.

No Ada specific guideline, see
the generic guideline.

No Ada specific guideline, see
the generic guideline.

Use symbolic constants instead
of literals.

Use Ada attributes instead of
literals.

Rationale

The problems with employing
pragma INTERFACE are
complex. These problems
include pragma syntax
differences, conventions for
linking/binding Ada to other
languages, and mapping Ada
variables to foreign language
variables, among others.

Not Applicable.

Not Applicable.

It is far easier to change one
value set at the beginning of a
source code file than it is to
guarantee that all literals
associated with such a parameter
have been changed completely
and correctly throughout all
relevant source code files.

Improves portability. Removes
need to change source code
whenever a value obtainable by
Ada attribute occurs.

Mitigation

It is often necessary to
interact with other
languages, if only an
assembly language to reach
certain hardware features.
In these cases, clearly
document the requirements
and limitations of the
interface and pragma
INTERFACE usage.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

NUREG/CR-6463 B-24

Ada

Generic
Characteristics

3.4.1.9 Renaming

3.4.1.10 Bitmaps

3.4.2.1 Global
Variables

3.4.2.2 Complexity of
Interfaces

3.4.2.3 Avoid
coupling

Significance

Medium

Medium

Medium

Medium

Medium

Guideline

Avoid obscuration when
renaming.

Use representation clauses for
bit mapping.

Minimize the use of global
variables.

No Ada language specific
guidelines, see the generic
guidelines.

Avoid declaring variables in
library package specifications.

Rationale

Do not use renaming if
obscuration will occur.

To facilitate reviews and reduce
the possibility of coding errors.

Global variables obscure the
passage of data between the
inner and outer subprograms.

Not Applicable

Low coupling should be a goal
because 1) the fewer the number
of connections between
modules, the less chance of a
failure in one module to
propagate; 2) the fewer the
number of connections between
modules, the less chance a
change in one module will cause
problems in another and
therefore increasing reusability;
and 3) the fewer the number of
connections between modules,
the easier the learning curve is
for the programmer to learn
about the other modules.

Mitigation

Use only one level of
renaming. Have project
specific rules and
conventions for renaming.
Keep a registry of renamed
identifiers for a project.

Not Applicable.

Clearly identify globals.

Closely inspect and clearly
identify interfaces.

Not Applicable.

B-25 NUREG/CR-6463

Ada

Generic
Characteristics

3.4.3 Functional
Cohesiveness

3.4.4 Malleability

3.4.5 Portability

Significance

Medium

Medium

Medium

Guideline

Every subprogram should have
one clearly discernible purpose.

No Ada specific guideline, see
the generic guideline.

Do not use busy loops to
suspend execution.

Validate assumptions about the
implementation of language
feature when specific
implementation is not
guaranteed or specified. Do not
assume a correlation between
SYSTEM. TICK and package
CALENDAR or type
DURATION.

Avoid the use of package
SYSTEM constants except in
attempting to generalize other
machine dependent constructs.

Rationale

Every subprogram should have
one clearly discemable purpose
with input and output parameters
related to that purpose.

Not Applicable.

The timing of a loop cannot be
determined when the code is
ported to a different compiler,
different machine, or even
different operating system.

Although such a correlation may
exist, it is not required to exist.

Since the values in this package
are implementation provided,
unexpected effects can result
from their use.

Mitigation

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Do not use package
SYSTEM constants to
parametrize other
implementation dependent
features and access
collection size.

NUREG/CR-6463 B-26

Ada

Generic
Characteristics

Significance Guideline

Use only pragmas and
attributes defined by the Ada
Standard.

Avoid the direct invocation of
or implementation dependence
upon an underlying host
operating system or Ada run
time support system.

Minimize and isolate the use of
the predefined package
LOW_LEVEL_IO.

Restrict and isolate variables of
the type SYSTEM.ADDRESS.

Rationale

The Ada LRM permits an
implementor to add pragmas and
attributes to exploit a particular
hardware architecture or
software environment. These
are obviously even more
implementation specific and
therefore less portable than are
an implementor's interpretation
of the predefined pragmas and
attributes.

Features of an implementation
not specified in the Ada LRM
will usually differ between
implementations.

LOWJLEVELJO is intended to
support direct interaction with
physical devices that are usually
unique to a given host or target
environment. In addition, the
data types provided to the
procedures are implementation
defined. This allows vendors to
define different interfaces to an
identical device.

These variables are hardware-
specific.

Mitigation

Some implementation
dependent features are
gaining wide acceptance in
the Ada community to help
alleviate inherent
inefficiencies in some Ada
features.

In real-time embedded
systems, often it is not
possible to avoid making
calls to low-level support
system facilities. Isolate
the uses of these facilities.

Those portions of an
application that must deal
with this level of I/O, e.g.,
device drivers and real-time
components dealing with
discretes, are inherently
non-portable.

Not Applicable.

B-27 NUREG/CR-6463

C and C++

NUREG/CR-6463 B-28

C and C++

Generic
Characteristics

4.1.1.1 Dynamic
Memory Allocation

4.1.1.2 Memory
Paging and Swapping

4.1.1.3 Parameter
Passing

4.1.1.4 Recursion

4.1.1.5 Boundary
Checking

4.1.1.6 Memory Block
Move

4.1.1.7 Memory at
Power Up

4.1.1.8 Wrapping of
built-in functions

Significance

High

High

Medium

Medium

Medium

Medium

Medium

High

Medium

Guideline

Avoid dynamic memory
allocation.

No C or C++ specific
guidelines, see generic
guidelines.

Limit the number and size of
parameters passed to routines.

Minimize recursive function
calls.

Utilize functions with boundary
checking.

Do not use gets. Preferred to
write user specified function.

Use memmove, not memcpy.

Examine memory at power up.

Wrap built-in functions to
include error checking.

Rationale

Dynamic memory allocation
could cause unpredictable
memory utilization and system
failure.

Not Applicable

Parameter passing to functions
takes stack memory and can
cause unpredictable stack
memory utilization.

Recursive function calls can
cause unpredictable stack
memory utilization and stack
overflow.

Automatic boundary checking is
not strong in C and C++.

Gets does not have adequate
limit checks. Writing own
routine allows better error
handling.

To avoid problems with memory
overlap.

Ensure correct functioning of
memory.

Most built-in functions do not
include safety features.

Mitigation

Release allocated memory
as soon as possible.

Not Applicable

Pass large structures by
pointer or reference. Use
class definitions for related
parameters.

Ensure finite recursion.
Check stack overflows.

Not Applicable.

Use fgets with caution.

Not Applicable.

Not Applicable.

Not Applicable.

B-29 NUREG/CR-6463

C and C++

Generic
Characteristics

4.1.1.9 Proper Array
Indexing

4.1.2.1 Structure

4.1.2.2 Control Flow
Complexity

4.1.2.3 Initialization
of Variables and
pointers

Significance

Medium

Medium

High

High

Guideline

Ensure that array indices are in
the range 0 to n-1.

goto should be eliminated in
safety systems.

Functions with a nature similar
to goto, such as setjmp and
longjmp, should be eliminated.

switch .. case should be used to
replace multiple if.. else if...
else if.. else if possible.

When utilizing if... else, the
code block should be bounded
by brackets.

When utilizing switch .. case,
default should be explicitly
defined.

Check for dead code.

Reinitialize automatic variables.

Initialize global variables in
separate routines.

Rationale

Index origins differ among
languages.

The instruction goto is
considered unstructured code.

These two functions can jump
from one subroutine location to
another subroutine and make
programs unstructured.

Complicated control flow makes
the program difficult to
understand and maintain and is

" the source of unpredictable
control.

Brackets avoid mismatches
between //and else.

default sometimes represents an
error condition and should be
examined carefully.

Unreachable code causes
confusion.

Variables with automatic scope
will contain "garbage" before
explicit initialization and
between function calls.

To ensure that variables are
properly set at warm reboot.

Mitigation

Not Applicable.

Clearly document and
justify.

Clearly document and
justify.

Clearly document and
justify.

Clearly document and
justify.

Clearly document and
justify.

Not Applicable.

Not Applicable.

Not Applicable.

NUREG/CR-6463 B-30

C and C++

Generic
Characteristics

4.1.2.4 Single Entry
and Exit Points

4.1.2.5 Minimizing
Interface Ambiguities

. .Significance

Medium

Medium

Guideline

Initialize global variables only
once.

Do not use pointers to variables
outside their scope.

Initialize pointers.

Ensure presence of indirection
operator for pointers.

Use the ~ operator to initialize
to all l's.

Avoid multiple returns.

Avoid setjmp and longjmp.

Avoid pointers to functions.

Restrict the use of throw and
catch.

Prototype functions and
procedures.

Rationale

Global variables may or may not
be initialized by compiler.

Variables may contain garbage
outside their scope.

Using an uninitialized pointer
can overwrite the memory
pointed by the pointer.

Compiler may not catch type
mismatches.

To be compatible with all word
sizes.

Multiple returns cause
uncertainties similar to gotos.

These commands jump outside
function boundaries and deviate
from the normal control flow.

Pointer to functions cannot be
initialized and may point to non
executable code.

Though preferable to setjmp and
longjmp, these are relatively
new features of C++ and may not
be stable.

Avoids changing the order of
arguments in C++.

Mitigation

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Document and justify
secondary exit points.

Use only for exception
handling; document and
justify.

Document and justify.

Validate compiler
implementation.

Not Applicable.

B-31 NUREG/CR-6463

C and C++

Generic
Characteristics

4.1.2.6 Data Typing

Significance

High

Guideline

Avoid functions with indefinite
numbers of arguments.

Alternate data types.

Avoid variable argument lists.

Ensure consistency of variable
types with the function
prototype.

Test inputs and outputs.

Use byte alignment for small
systems or if the CPU allows it.

Do not pass expressions as
parameters to subroutines and
macros.

Eliminate increment ++ and
decrement — operators in
parameter passing to
subroutines or macros.

Use bit masks instead of bit
fields.

Limit the use of implementation
dependent types.

Rationale

These functions are difficult to
verify.

Avoids changing the order of
arguments.

Using default arguments is
preferable

To avoid unintended type
conversions or casts.

Avoids changing the order of
arguments.

Byte alignment saves resources
and makes it easy to examine
files.

Minimizes the complexity of the
interface.

Increment ++ and decrement - -
can create some undefined
expressions when they are used
as parameters, thus raising safety
concerns.

Bit fields are implementation
dependent.

To increase portability.

Mitigation

Not Applicable.

Not Applicable

Not Applicable.

Not Applicable.

Not Applicable

Not applicable.

Not Applicable

Not Applicable

Not Applicable.

Not Applicable

NUREG/CR-6463 B-32

C and C++

Generic
Characteristics

Significance Guideline

Minimize type conversions, and
eliminate implicit or
automated type conversions. A
pointer should not be cast to a
different type of pointer.

Avoid use of mixed-mode
operations.

Use a single data type in
evaluations and relational
expressions.

Avoid the use of typedef s for
unsized arrays.

Avoid multiple declarations of
the same identifier with several
types.

Avoid mixing signed and
unsigned variables.

Limit the use of indirect
addressing.

Avoid using the same identifier
for different types.

Rationale

These practices reduce strong
typing and can cause safety
problems.

Mixed-mode operations reduce
strong typing and can cause
safety problems.

Enhances strong typing and can
avoid safety problems.

This feature is badly supported
and error-prone.

This may be a source of
confusion.

This raises safety concerns.

Strongly typed array indices and
pointers reduce the possibility of
referencing invalid locations.

May result in undefined
behavior.

Mitigation

Use explicit casting.

If necessary, they
should be clearly identified
and described using
prominent comments in the
source code.

Not Applicable.

Not Applicable.

Use explicit casts.

Not Applicable.

Not Applicable.

B-33 NUREG/CR-6463

C and C++

Generic
Characteristics

4.1.2.7 Precision and
Accuracy

4.1.2.8 Order of
Precedence

4.1.2.9 Side Effects

Significance

High

Medium

High

Guideline

Provide adequate precision and
accuracy for the intended safety
application.

Use double precision.

Account for floating point
properties in relational
operations.

Account for truncation integer
operations.

Account for optimization.

Ensure that arithmetic results
are representable by the
destination type.

Use parentheses rather than
default order of precedence in
macros and bitwise and
relational operations.

Ensure that values in an
expression do not depend on the
order of evaluation.

Generic guidelines apply.

Rationale

This practice preserves the
integrity of the algorithms.

To ensure adequate precision.

The equality comparison is
unreliable for floating point.

Truncation in division of
negative numbers is
implementation dependent.

Subexpressions may be moved or
eliminated by optimizing
compilers.

Conversion to shorter types may
have unpredictable results.

Avoid hard to find computational
errors.

The order of evaluation is
implementation dependent.

Not Applicable.

Mitigation

Not Applicable

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Use other forms to enhance
readability if parentheses
are excessive.

Not Applicable.

Not Applicable.

NUREG/CR-6463 B-34

C and C++

Generic
Characteristics

4.1.2.10 Separating
Assignment from
Evaluation

4.1.2.11 Program
Instrumentation

4.1.2.12 Library Size

4.1.2.13 Dynamic
Binding

4.1.2.14 Operator
Overloading

Significance

Medium

Medium

Medium

High

Medium

Guideline

Separate assignments from
evaluation statements.

Generic guidelines apply.

Control class library size.

Avoid multiple inheritance.

Minimize dynamic binding.

The meaning of an overloaded
operator should be natural, not
clever.

Keep operator precedence by
parentheses, not by default
order.

Explicitly define class operators
and declare them private.

Rationale

Mixing assignments with
evaluation statements causes side
effects.

Not Applicable.

A system becomes
unmanageable or has large
performance penalties if it has
too many classes and objects.

Multiple inheritance may cause
ambiguities and maintenance
problems.

The unpredictability of the
name/class association reduces
the predictability of the run-time
behavior and it hampers
debugging, understanding, and
tracjng.

Operator overloading can
obscure predictability.

Operator overloading can
obscure predictability.

Built-in definitions may not
remain consistent between
implementations.

Mitigation

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

All cases where dynamic
binding is required should
be justified.

Sometimes acceptable for
achieving uniformity across
different data types.

Sometimes acceptable for
achieving uniformity across
different data types.

Not Applicable.

B-35 NUREG/CR-6463

C and C++

Generic
Characteristics

4.1.2.15 Compiler
Warnings

4.1.3.1 Tasking

4.1.3.2 Interrupt
Driven Processing

4.2.1 Software
Diversity

4.2.2.1 Local
Handling of
Exceptions

Significance

Medium

High

High

Medium

High

Guideline

Ensure consistency of class
operators.

Enable and heed compiler
warnings.

Minimize tasking

Minimize interrupt driven
processing.

Limit function calls within
interrupt service routines.

No C or C++ specific
guidelines, see generic
guidelines.

Handle exceptions locally.

Rationale

Built-in definitions may not
remain consistent between
implementations.

Any warning may be a potential
safety concern.

C and C++ do not support multi
tasking. Their standard library
functions may not
be re-entrant. Using those
functions in tasking
environments can generate
unspecified results.

Interrupt driven processing leads
to non-deterministic maximum
response times.

To reduce control flow
complexity.

Not Applicable

System failures can be avoided if
exceptions are handled locally.

Mitigation

Not Applicable.

Not Applicable.

Tasking requires compelling
justification.

If used, the code and
processing time within the
interrupt should be
minimized.

Only re-entrant functions
should be called by interrupt
service routines.

Not Applicable

If not possible, use thorough
testing and analysis to verify
behavior during exception
handling.

NUREG/CR-6463 B-36

C and C++

Generic
Characteristics

4.2.2.2 External Flow
Control

4.2.2.3 Uniformity of
Exception Handling

4.2.3 Input and Output
Data Checking

4.3.1 Built-in
Functions

Significance

High

High

High

Low

Guideline

Preserve control flow external
to the module responsible for
the exception.

Rely on signals and traps
instead of operating system
features.

Use throw and catch in C++
instead of setjmp and longjmp.

Perform run-time checks on
input data. Check pointers
before use.

Minimize the use of built-in
functions.

Rationale

Safety is enhanced by
preservation of control flow
external to the module
responsible for the exception.

To avoid non-portable vendor-
specific features.

setjmp and longjmp are difficult
to recover from.

Accidental data corruption in one
module can have serious
consequences on subsequent
processing if allowed to
propagate to other modules.

Requirements for developing
those built-in functions,
exception handling, and the
characteristic of those functions
may not be the same as the ones
in the safety systems. The
number of built-in functions may
vary from one compiler to
another.

Mitigation

If not possible, use thorough
testing and analysis to verify
behavior during exception
handling.

Not Applicable.

Not Applicable.

May not be applicable if
input can be "trusted". May
not be necessary if
downstream input checking
is performed.

Thorough testing, and error
tracking.

B-37 NUREG/CR-6463

C and C++

Generic
Characteristics

4.3.2 Compiled
Libraries

4.3.3 Utilizing Control
Tools

4.4.1.1 Indentation
Guidelines

4.4.1.2 Descriptive
Identifier Names

4.4.1.3 Comments and
Internal
Documentation

4.4.1.4 Limiting
Subprogram Size

Significance

Low

Medium

Medium

Medium

Medium

Medium

Guideline

Minimize the use of compiled
libraries.

Use version control tools.

Conform to indentation
guidelines.

No C or C++ specific
guidelines, see generic
guidelines.

Conform to comment and
documentation guidelines.

Project guidelines are required
on subprogram size.

Rationale

Concerns in 4.3.1 Built-in
Functions applv. Functions with
same names but different
characteristics among vendors
raises portability concerns.

Avoids errors due to interfacing.

Code for safety systems should
be reviewed by peers or
supervisors. The readability is
essential for such reviews.

Not Applicable

Incomplete, outdated, and
inconsistent comments impede
review and maintenance.

Large subprogram units are hard
to read and maintain.

Mitigation

- Ensure that names in
externally developed
libraries are distinct.
- Document all cases of
dynamic binding.
- Ensure that development
and runtime shared libraries
are identical.

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Justify larger size and
provide additional
documentation and
comments.

NUREG/CR-6463 B-38

C and C++

Generic
Characteristics

4.4.1.5 Minimizing
Mixed Language
Programming

4.4.1.6 Minimizing
Obscure or Subtle
Programming
Constructs

Significance

Medium

High

Guideline

Minimize mixed language
programming.

Minimize obscure or subtle
programming constructs.

Avoid the use of the ? :
operator.

Use table-driven alternatives
when appropriate.

Avoid using default parameters
to combine functions.

Avoid complex expressions
inside a condition.

Maximize the use the scope
resolution operator.

Avoid pointers to members.

Use the virtual keyword
wherever necessary.

Rationale

Mixed language programming
presents difficulties for
reviewers and maintainers and is
therefore a safety concern.

Such coding practices present
problems in review, and
maintenance and hence, are
safety concerns.

This operator makes the code
more difficult to read.

To create code which is easier to
review and maintain.

This will make code difficult to
maintain.

This will make the code more
error-prone.

To avoid ambiguities.

They unnecessarily complicate
the code.

To avoid unintended calls to
member functions.

Mitigation

When this practice cannot
be avoided, minimize
difficulties by placing the
"foreign" language code
adjacent to the dominant
language routine with which
it interfaces.

When it cannot be avoided,
use comments to minimize
the impact of obscure or
subtle code.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Use virtual functions.

Not Applicable.

B-39 NUREG/CR-6463

C and C++

Generic
Characteristics

4.4.1.7 Minimizing
the Dispersion of
Related Elements

4.4.1.8 Minimizing
the Use of Literals

4.4.2.1 Minimize the
use of Global
Variables

4.4.2.2 Minimize the
Complexity of
Interfaces

Significance

Medium

Medium

Medium

Medium

Guideline

Place ̂ include directive at the
beginning of programs.

Place all external function
prototypes in close proximity.

Segregate base from derived
classes.

Safety systems should utilize
const variables or #deflne
instead of literals.

Use parentheses to avoid
expansion problems on
#defines.

Enumeration constants are
preferred to #defines in
sequences of several integer
numbers.

Minimize the use of global
variables.

Limit the number of parameters

Use structures or classes

Rationale

To make it easier to trace
dependencies.

To make it easier to update the
code.

To avoid unintended changes to
the class hierarchy.

Literals are more difficult to
find during modification and
maintenance and can cause
safety problems.

Corrects improper expansion of
#defines.

It is easier to modify code when
a new number needs to be
inserted in a sequence.

This avoids side effects.

Complex interfaces are difficult
to review and maintain and can
cause safety problems.

Mitigation

Clearly document and
justify.

Clearly document and
justify.

Not Applicable.

Associate comment with
each literal to facilitate
search/replace.

Not Applicable.

Not Applicable

- Keep global variables and
associated functions in the
same file.
- Declare global variables in
one header file.
- Initialize global variables
in one place.

Closely inspect and clearly
identify interfaces.

NUREG/CR-6463 B-40

C and C++

Generic
Characteristics

4.4.3 Functional-
Cohesiveness

4.4.4 Malleability

4.4.5.1 Avoid
Implementation
dependent types

4.4.5.2 Avoid
Reserved Words

4.4.5.3 Minimize
Hardware
Dependencies

Significance

Medium

Medium

Medium

Medium

Medium

Guideline

Avoid expressions in parameter
lists

Generic guidelines apply.

Generic guidelines apply.

Avoid the use of
implementation dependent types
such as int.

Avoid using reserved words,
including standard library
function names and names
starting with underscores.

Define hardware-dependent
addresses symbolically.

Use the volatile attribute for
data items that are mapped to
hardware.

Avoid use of bit fields.

Do not measure time by
counting clock cycles.

Rationale

Not Applicable.

Not Applicable.

To ensure portability among
platforms.

The misuse of reserved words
can lead to serious problems.

To ensure portability among
different platforms.

Mitigation

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable

Not Applicable

B-41 NUREG/CR-6463

I

PLC Ladder Logic

NUREG/CR-6463 B-42

PLC Ladder Logic

Generic
Characteristics

5.1.1 Dynamic
Memory Allocation

5.1.2.1 Structure

5.1.2.2 Control Flow
Complexity

5.1.2.3 Initialization
of Variables

5.1.2.4 Single Entry
and Exit Points

5.1.2.5 Interface
Ambiguities

5.1.2.6 Data Typing

Significance

High

Medium

High

High

Medium

Medium

High

Guideline

No PLC specific guidelines, see
generic guidelines.

Use engineering judgement
with gotos.

Use watchdog timers or scan
counters with backward jumps.

Ensure that initialization has
occurred before the jumps.

Reduce complex logic by
breaking into cohesive subunits
and limiting nesting levels.

Audit all relevant variables that
are initialized.

Single returns only. Project
guidelines strictly limit multiple
returns.

Verify that interfaces are well
defined and documented.

Ensure that data table properly
accounts for variable types.

Ensure that type conversion will
not result in an error.

Rationale

Not Applicable

Use gotos only if the structure is
clear although structured
programming is preferred.

PLCs do not limit directions,
leading to timer faults.

Otherwise data words can be left
uninitialized.

Simple structure is easy to
understand and predict real-time
behavior.

There exists no explicit
assignment in Ladder Logic.

Ladder Logic only supports
single entry points, but allows
multiple returns.

Ladder Logic does not support
interface checking, only type
checking.

PLCs do not support range
checking or strong data typing.

Mitigation

Not Applicable

Clearly document, justify,
test.

Not Applicable

Not Applicable

Document all multiple
returns.

Not Applicable

Not Applicable

B-43 NUREG/CR-6463

PLC Ladder Logic

Generic
Characteristics

5.1.2.7 Precision and
Accuracy

5.1.2.8 Order of
Precedence

5.1.2.9 Side Effects

5.1.2.10 Separating
Assignment from
Evaluation

5.1.2.11 Program
Instrumentation

5.1.2.12 Library Size

5.1.2.13 Dynamic
Binding

5.1.2.14 Operator
Overloading

Significance

High

Not
Applicable

Medium

Not
Applicable

Not
Applicable

Not
Applicable

Not
Applicable

Not
Applicable

Guideline

Develop project-specific
guidelines.

Verify that the processor and
language support the floating
point accuracy needed.

Order of precedence does not
exist.

Generic guidelines apply.

Assignment is usually separate
from evaluation in PLCs.

No application level support is
needed.

Classes and objects are not
supported.

No run-time binding permitted.

Overloading and polymorphism
are not supported.

Rationale

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

This is provided by the PLC
environment.

Not Applicable.

Not Applicable.

Not Applicable.

Mitigation

Not Applicable.

Not Applicable.

Not Applicable.

If it is not possible to
separate the two:
- Use buffer variables or
output coils
- Develop project-specific
guidelines.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

NUREG/CR-6463 B-44

PLC Ladder Logic

Generic
Characteristics

5.1.3.1 Tasking

5.1.3.2 Interrupt
Driven Processing

5.1.3.3
Synchronization

5.1.3.4 Self Modifying
Code

5.2.1 Functional
Diversity

5.2.2.1 System Health
Monitoring

5.2.2.2 Fault Routines
and Shutdown
Behavior

5.2.2.3 Watch-Dog
Timer

Significance

Not
Applicable

High

High

High

Medium

Medium

Medium

High

Guideline

Tasking is usually not supported
on PLCs

If interrupts are used, show that
all timing and safety function
requirements are met.

Account for interrupts in critical
response times.

Avoid synchronization.

Avoid self changing code.

Generic guidelines apply.

Ensure completeness,
correctness and observability of
parameters.

Ensure completeness,
correctness and observability of
parameters.

Initialize when needed. Ensure
adequate fault routine. Use
external timer when needed.

Rationale

Not Applicable.

Interrupts are not widely
supported. PLCs and Ladder
Logic use deterministic polling.

Race conditions and deadlocks
are hard to predict.

On-line program changes are not
permanent.

Not Applicable.

Need to ensure adequacy of
monitoring.

Need to ensure adequacy of
failure handling.

Need to ensure adequacy of
failure handling.

Mitigation

If tasking is supported:
- Account for processing
capacity
- Account for concurrent
access to global variables.

Not Applicable.

When synchronization is
required, select the best
platform that supports it.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

B-45 NUREG/CR-6463

PLC Ladder Logic

Generic
Characteristics

5.2.3 Error
Containment

5.3.1 Built-in
Functions

5.3.2 Compiled
Libraries

5.4.1.1 Notation

5.4.1.2 Conformance
to Indentation
Guidelines

5.4.1.3 Descriptive
Identifier Names

5.4.1.4 Comments and
Internal
Documentation

5.4.1.5 Subprogram
Size

5.4.1.6 Mixed
Language
Programming

Significance

High

Low

Not
Applicable

Medium

Medium

Medium

Medium

Medium

Not
Applicable

Guideline

See guidelines on data types
and parity bits.

No PLC specific guidelines, see
generic guidelines.

Compiled libraries are not
supported.

Use standard notation.

No PLC specific guidelines, see
generic guidelines.

No PLC specific guidelines, see
generic guidelines.

Document the hierarchy of
subroutines and the flow of data
and information among
subroutines.

Limit subroutines to 10 to 50
rungs.

Ladder Logic does not support
"foreign" languages.

- Rationale

No explicit Ladder Logic
capabilities.

Not Applicable

Not Applicable

Required by PLC.

Not Applicable.

Not Applicable

These two items are important to
understand the system and
enable independent review.

Small programs represent a large
screen area, which makes
debugging and review
cumbersome.

Not Applicable.

Mitigation

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

NUREG/CR-6463 B-46

Generic
Characteristics

5.4.1.7 Obscure or
Subtle Programming
Constructs

5.4.1.8 Dispersion of
Related Elements

5.4.1.9 Use of Literals

5.4.2.1 Modularity

5.4.2.2 Information
Hiding

5.4.2.3 Global
Variables

5.4.2.4 Complexity of
Interfaces

5.4.3 Functional
Cohesiveness

5.4.4 Malleability

5.4.5 Portability

5.5 Security

Significance

High

Not
Applicable

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

High

Guideline

No PLC specific guidelines, see
generic guidelines.

Dispersion is not possible in
Ladder Logic.

Use symbolic constants instead
of literals.

Use subroutines if available.

See Appendix A.

No PLC specific guidelines, see
generic guidelines.

No PLC specific guidelines, see
generic guidelines.

No PLC specific guidelines, see
generic guidelines.

No PLC specific guidelines, see
generic guidelines.

No PLC specific guidelines, see
generic guidelines.

Use locks and passwords.

Rationale

Not Applicable.

Not Applicable.

To protect literals, and control
the uniformity of the value.

Changes are easier.

See Appendix A.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

To prevent unauthorized access.

Mitigation

Not Applicable.

Not Applicable.

Not Applicable.

Not applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

B-47 NUREG/CR-6463

IEC 1131 Sequential Function Charts

NUREG/CR-6463 B-48

EEC 1131 Sequential Function Charts

Generic
Characteristics

6.1.1 Memory
Utilization

6.1.2.1 Structure

6.1.2.2 Control Flow
Complexity

6.1.2.3 Initialization
of Variables

6.1.2.4 Single Entry
and Exit Points

6.1.2.5 Interface
Ambiguities

6.1.2.6 Use of Data
Typing

6.1.2.7 Precision and
Accuracy

Significance

N/A

Medium

High

High

Medium

Medium

N/A

N/A

Guideline

SFCs do not allocate
memory.

Avoid the use of goto's

Minimize control flow
complexity

Account for initialization
as part of the program
design.

Account for initialization
of process steps and
transitions.

Single entry and exit
points are enforced by the
SFC grammar.

Latch all bits which need
to stay on between steps.

Not applicable to SFCs.

Not applicable to SFCs.

Rationale

Not applicable.

Use of goto statements that result
in an unstructured shift of execution
are difficult to trace and
understand.

Excess complexity makes it
difficult to predict the program flow
and impedes review and
maintenance.

To ensure that variables are
properly initialized by both the SFC
and the underlying language.

Multiple entries and exits introduce
control flow uncertainties

Non-retentive bits are reset during
the post-scan.

Not Applicable.

Not Applicable.

Mitigation

Not applicable.

Clearly document, justify, and
test.

Not applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

B-49 NUREG/CR-6463

IEC 1131 Sequential Function Charts

Generic
Characteristics

6.1.2.8 Order of
Precedence

6.1.2.9 Avoiding
Side Effects

6.1.2.10 Separating
Assignment from
Evaluation

6.1.2.11 Program
Instrumentation

6.1.2.12 Library Size

6.1.2.13 Dynamic
Binding

6.1.2.14 Operator
Overloading

6.1.3.1 Use of
Tasking

6.1.3.2 Interrupt
Driven Processing

Significance

Medium

Medium

N/A

N/A

N/A

N/A

N/A

N/A

High

Guideline

All transitions in a
divergence of selection
sequence should be
mutually exclusive.

Generic guidelines apply.

Not applicable to SFCs.

Not applicable to SFCs.

Not applicable to SFCs.

Not applicable to SFCs.

Not applicable to SFCs.

Not applicable to SFCs.

Demonstrate that
system/software can meet
all requirements under
most demanding
conditions of interrupt
occurrence.

Rationale

To avoid ambiguities when multiple
transitions are evaluated as true
simultaneously.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

To satisfy safety requirements.

Mitigation

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

NUREG/CR-6463 B-50

EEC 1131 Sequential Function Charts

Generic
Characteristics

6.1.3.3 Divergence
ofSequence

6.1.3.4 Simultaneous
Sequences

6.1.3.5 Post Scan
Timing

6.2.1 Transparency
of Diversity

Significance

High

High

High

Medium

Guideline

Define Mutually exclusive
transition conditions.

Ensure convergence of
sequence following
divergence of sequence.

Account for limits on the
number of transitions.

Avoid dependence on
execution order.

Use simultaneous
sequences only where
synchronization is
required.

Do not set timers in a
transition.

Account for the safety
impact of the order of
execution of diverse steps.

Account for all local and
global variables necessary
to support replicated
processing in transition
files.

Rationale

To explicitly exclude the possibility
of multiple transitions in such a
structure being evaluated as true
simultaneously.

Predictability of control flow.

Portability and predictability of
control flow.

Portability and predictability of
control flow.

Predictability of control flow.

The processor does not postscan
transition files.

To avoid unintended outcomes.

To ensure that no variable in
transition files are uninitialized or
overwritten.

Mitigation

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

B-51 NUREG/CR-6463

IEC 1131 Sequential Function Charts

Generic
Characteristics

6.2.2 Exception
Handling

6.2.3 Input and
Output Checking

6.3.1 Use of Built-in
Functions

6.3.2 Use of
Compiled Libraries

6.4.1.1 Indentation
Guidelines

6.4.1.2 Descriptive
Identifier Names

Significance

High

N/A

High

Low

Medium

High

Guideline

Use G07/0 or ./MP to
handle interruption of
flow control with care.

Ensure that two events,
transitions, and exception
handling do not conflict
with each other.

Ensure the safety of
exception handling during
a process step.

Ensure the safety of
exception handling during
a transition.

Ensure the safety of restart
after an exception.

Not applicable to SFCs.

Minimize the use of built-
in functions.

Generic guidelines apply.

Not applicable to SFCs.

Generic guidelines apply.

Rationale

These commands are not intended
for interrupt processing.

To satisfy safety requirements.

To satisfy safety requirements.

' To satisfy safety requirements.

To satisfy safety requirements.

Not Applicable.

The requirements and definitions
may not be the same for different
platforms.

Not Applicable.

Not Applicable.

Not Applicable.

Mitigation

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Verify the exact .performance of
steps and transitions under
normal and abnormal conditions

Not Applicable

Not Applicable.

Not Applicable

NUREG/CR-6463 B-52

EEC 1131 Sequential Function Charts

Generic
Characteristics

6.4.1.3 Comments
and Intemal
Documentation

6.4.1.4 Limitations
on Subprogram Size

6.4.1.5 Mixed
Language
Programming

6.4.1.6 Obscure or
Subtle Language
Constructs

. Significance

High

High

Medium

Medium

Guideline

Provide clear and
unambiguous descriptions
of steps.

Provide clear and
unambiguous descriptions
of interfaces.

Provide clear and
unambiguous descriptions
of transitions.

Enforce through external
administrative procedures.

Use SFC for sequencing.

Do not use SFC for
interlocking or evaluation
of logical relationships.

Do not use SFC for
mathematical operations
or evaluation of
mathematical
relationships.

Avoid nesting of
subroutines within an SFC
step.

Rationale

Incomplete, outdated, and
inconsistent comments impede
review and maintenance.

Large subprograms are hard to
review and maintain.

SFC notation is clearer than Ladder
Logic.

SFC is not suited for this purpose.

Structures Text is more suitable for
this purpose.

The assumption isthat an SFC step
is one subroutine.

Mitigation

Not Applicable.

Justify larger size and provide
additional documentation and
comments.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

B-53 NUREG/CR-6463

IEC 1131 Sequential Function Charts

Generic
Characteristics

6.4.1.7 Dispersion of
Related Elements

6.4.1.8 Use of
Literals

6.4.1.9 Use of
Macro-Steps

6.4.2.1 Use of
Global Variables

6.4.2.2 Complexity
• of Interfaces

6.4.3 Functional
Cohesiveness

6.4.4 Malleability

6.4.5 Portability

Significance

Medium

Medium

Low

Medium

Medium

Low

Low

Medium

Guideline

Do not use SFC constructs
which are not related to
sequencing.

Avoid backward directed
links in parallel paths.

Generic guidelines apply.

Not applicable to SFCs.

Follow project guidelines
in the use of macro-steps.

Use local variables for
internal operations if
supported by the language.

Generic guidelines apply.

Each step should have one
clearly discernible
purpose related to the time
in which it is executed.

Segregate constants from
what is expected to be
changed.

Only IEC 1131 compliant
SFCs should be used.

Rationale

Sequencing is the main purpose of
SFC.

This makes SFC programs difficult
to maintain.

Not Applicable.

Not Applicable.

There is a potential for misuse of
macro-steps.

Use of global variables may have
unanticipated side effects.

Not Applicable.

To enhance reviewability and
maintainability.

To improve and clarify interfaces.

The SFC will not be portable
otherwise.

Mitigation

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

Justify and clearly identify global
variables.

Not Applicable.

Not Applicable.

Macro-steps must be used with
care (see 6.4.1.9).

Not Applicable.

NUREG/CR-6463 B-54

C3

Vi

Pi
■

PQ

Pascal

Generic
Characteristics

7.1.1.1 Dynamic
Memory Allocation

7.1.1.2 Memory
Paging and Swapping

7.1.1.3 Avoiding
Recursion

7.1.1.4 Use of
Handles with Pointers

7.1.1.5 Use of Direct
Memory Access

7.1.2.1 Maximizing
Structure

7.1.2.2 Control Flow
Complexity

Significance

High

High

High

High

Medium

Medium

High

Guideline

Dynamic use of memory should
be strongly discouraged.

No Pascal specific guideline,
see the generic guideline.

Do not use recursion.

If pointers must be used, use
handles whenever possible.

Do not use direct memory
access under Windows in
Turbo Pascal.

Minimize gotos.

Use else (/"whenever possible.

If exits from within loops can
not be avoided, use gotos.

Rationale

If the program heap grows too
large while it is running, then the
computer will crash.

Not Applicable

Recursion uses stacks and can
use up available memory in the
heap.

Handles allow memory
management to recapture and
compact free memory.

Although Turbo Pascal permits
access to memory directly, this is
not a safe practice under
Windows.

The use of goto clouds the
structure of the code and
therefore should be avoided.

The use of else //where
appropriate helps to avoid
program structure and logical
errors.

In Pascal the loops can be
labeled in order to clarify the
meaning of multiple loops and
the code structure.

Mitigation

Release allocated memory
as soon as possible.

Not Applicable

Release allocated memory
as soon as possible.

Release allocated memory
as soon as possible.

Release allocated memory
as soon as possible.

Clearly document and
justify.

Clearly document and
justify.

Project guidelines should
set specific limits on
nesting levels.

NUREG/CR-6463 B-56

Pascal

Generic
Characteristics

7.1.2.3 Initialization
of Variables

7.1.2.4 Single Entry
and Exit Points

7.1.2.5 Interface
Ambiguities

7.1.2.6 Data Typing

7.1.2.7 Precision and
Accuracy

Significance

High

Medium

Medium

High

High

Guideline

Initialize all variables.

One return per subprogram.

Avoid use of function or
procedure parameters which
depend on the order of
evaluation.

The limits on data types should
not be excessive.

Minimize the use of implicit
type conversions.

Limit the use of indirection
(pointers).

Precision and accuracy issues
include the meaning and use of
fixed point and floating point
numbers, round off errors, type
declarations and digital

■ accuracy, and portability.

Rationale

Variables should be initialized to
some known value before using
them.

Single exit points from
procedures and functions are
easier to understand, test, and
less expensive to design, build
and maintain than multiple
entries and exits.

Do not expect the evaluation of
function or procedure parameters
to occur in any particular order,
since this is compiler
implementation dependent.

It forces unnecessary errors to be
generated by unanticipated but
not unsafe computational
inaccuracies.

Use of type conversions is
strongly discouraged by most
authors.

Pointers are a form of dynamic
memory and should be avoided.

Precision and accuracy must be
sufficient to assure proper
functioning of algorithms.

Mitigation

Not Applicable

Document secondary exit
pointer if used.

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

B-57 NUREG/CR-6463

Pascal

Generic
Characteristics

7.1.2.8 Order of
Precedence

7.1.2.9 Functions or
Procedures with Side
Effects

7.1.2.10 Separating
Assignment from
Evaluation

7.1.2.11 Program
Instrumentation

7.1.2.12 Library Size

7.1.2.13 Dynamic
Binding

Significance

Medium

Medium

Medium

Medium

Medium

High

Guideline

Use parentheses for ensuring
that the order of evaluation of
operations is explicitly stated.

Do not depend on the order of
evaluation.

Use care in multiple condition
flow statements.

Verify that functions do not
have side effects.

No Pascal specific guidelines,
see generic guidelines.

No Pascal specific guidelines,
see generic guidelines.

No Pascal specific guidelines,
see generic guidelines.

Dynamic binding should be
avoided if possible.

Rationale

The default order of precedence
such as left to right with
multiplication and addition
should not be depended on.

As permitted by the Pascal
standards, operands of an
expression are frequently
evaluated differently from the
left to right order in which they
are written.

The order of evaluation cannot
be guaranteed.

Side effects can lead to problems
with unplanned dependencies
and can cause bugs that are hard
to find.

Not Applicable

Not Applicable

Not Applicable

Dynamic binding use the
memory heap and is therefore are
susceptible to problems.

Mitigation

Use other forms to enhance
readability if parentheses
are excessive.

Not Applicable.

Not Applicable.

Use other forms to enhance
readability if parentheses
are excessive.

Not Applicable

Not Applicable

Not Applicable

All cases where dynamic
binding is required should
be justified.

NUREG/CR-6463 B-58

Pascal

Generic
Characteristics

7.1.2.14 Operator
Overloading

7.1.3.1 Tasking

7.1.3.2 Interrupt
Driven Processing

7.2.1 Transparency of
Functional Diversity

7.2.2 Exception
Handling

7.2.3 Input and Output
Data Checking

7.3.1 Built-in
Functions

7.3.2 Compiled
Libraries

Significance

Not
Applicable

Not
Applicable

High

Medium

Not
Applicable

High

Low

Low

Guideline

Pascal does not support
operator overloading.

Pascal does not support tasking.

Isolate interrupt receiving tasks
into implementation dependent
packages.
Pass the interrupt to the main
tasks via a normal entry.

No Pascal specific guidelines,
see generic guidelines.

Standard Pascal does not
support exception handling.

No Pascal specific guidelines,
see generic guidelines.

The project should control
which functions are available
for project work.

Avoid the use of compiled
libraries.

Rationale -

Not Applicable

Not Applicable

Interrupt entries are
implementation dependent
features that may not be
supported.

Not Applicable

Not Applicable

Not Applicable

Pascal functions are portable to
other compilers; the Turbo
Pascal functions are not portable
to other compilers.

Libraries prevent the
programmer from knowing the
accuracies, limitations,
robustness, and error handling of
the built-in functions.

Mitigation

Not Applicable

Not Applicable

Interrupt isolated entries
can increase the interrupt
latency time. Where this is
unacceptable, the interrupt
entries must be
proliferated.

Not Applicable

Not Applicable

Not Applicable

Through testing and error
checking.

Thorough testing and error
checking.

B-59 NUREG/CR-6463

Pascal

Generic
Characteristics

7.4.1.1 Indentation
Guidelines

7.4.1.2 Descriptive
Identifier Names

7.4.1.3 Comments and
Internal
Documentation

7.4.1.4 Subprogram
Size

7.4.1.5 Mixed
Language
Programming

7.4.1.6 Obscure or
Subtle Programming
Constructs

7.4.1.7 Dispersion of
Related Elements

7.4.1.8 Use of Literals

Significance

Medium

Medium

Medium

Medium

Medium

High

Medium

Medium

Guideline

Conform to indentation
guidelines

Choose names that are self-
documenting as possible.
Separate words in compound
names with underscores.

Source code should be
supplemented with Pascal
comments that explain the
code.

No Pascal specific guidelines,
see generic guidelines

No Pascal specific guidelines,
see generic guidelines.

No Pascal specific guidelines,
see generic guidelines.

Minimize dispersion of related
elements. Use compilation units
to group related elements.

Use symbolic constants instead
of literals.

Rationale

Indentation improves readability
and allows the reader to see the
structure of the program.

These improve readability.

This improves readability.

Not Applicable

Not Applicable

Not Applicable

When elements are disperse
throughout the code, it is hard to
check, validate, and maintain the
code.

Hard coded numeric constants
decrease readability and
complicates maintainability

Mitigation

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Provide clear reference,
rationale, overall source
code organization.

Associate comment with
each literal to facilitate
search/replace.

NUREG/CR-6463 B-60

Generic
Characteristics

7.4.2.1 Global
Variables

7.4.2.2 Complexity of
Interfaces

7.4.3 Malleability

7.4.4 Functional
Cohesiveness

7.4.5 Portability

Significance

Medium

Medium

Medium

Medium

Medium

Guideline

Minimize the use of global
variables.

No Pascal specific guidelines,
see generic guidelines.

No Pascal specific guidelines,
see generic guidelines.

No Pascal specific guidelines,
see generic guidelines.

Avoid to use of the mod
operator.

Rationale

Global variables obscure the
passage of data between the
inner and outer subprograms.
Variables should be kept local to
the routines which set and use
them.

Not Applicable

Not Applicable

Not Applicable

Not all compilers follow the
Standard in this respect.
Therefore use caution when
porting mod.

Mitigation

If coupling is required "
between modules, make
those dependencies visible
and document to avoid
problems.

Not Applicable

Not Applicable

Not Applicable

Not Applicable

B-61 NUREG/CR-6463

PL/M

NUREG/CR-6463 B-62

PL/M

Generic
Characteristics

8.1.1.1 Dynamic
Memory Allocation

8.1.1.2 Memory Paging
and Swapping

8.1.1.3 Memory Bank
Switching and Shadow
Memory

8.1.2.1 Maximizing
Structure

8.1.2.2 Minimizing
Control Flow
Complexity

8.1.2.3 Initializing
Variables Before Use

8.1.2.4 Single Entry
and Exit Points in
Subprograms

8.1.2.5 Minimizing
Interface Ambiguities

8.1.2.6 Data Typing

8.1.2.7 Precision and
Accuracy

Significance

High

High

Medium

Medium

High

Medium

Medium

Medium

High

High

Guideline

Minimize dynamic
memory allocation

Minimize memory
paging and swapping

Avoid hardware bank-
switching.

Eliminate goto's.

Generic guidelines
apply.

Initialize all variables.

Use single entry and
exit points.

Use procedure CALL
templates and Cut and
Paste to avoid argument
list errors.

Use data typing

Account for different
hardware.

Rationale

Use of dynamic memory can cause
crashes

Memory paging and swapping can
cause significant delays in response
time.

Bank switching is a source of
unreliability.

.The instruction goto is considered
unstructured code.

Not Applicable.

Uninitialized variables can be a
source of latent software bugs.

Multiply entry and exit points
introduce uncertainties in control
flow.

Interface errors account for many
coding errors.

Data typing prevents misuse of data;
contains errors

Correct results needed in safety
critical calculations

Mitigation

Release allocated memory as
soon as possible.

Clearly document, justify, and
test.

Clearly document and justify.

Not Applicable.

Not Applicable.

Document and justify secondary
entry and exit points.

Not Applicable.

Not Applicable.

Not Applicable.

B-63 NUREG/CR-6463

PL/M

Generic
Characteristics

8.1.2.8 Order of
Precedence

8.1.2.9 Side effects

8.1.2.10 Separating
Assignment from
Evaluation

8.1.2.11 Program
Instrumentation

8.1.2.12 Class Library
Size

Significance

Medium

Medium

Medium

Medium

N/A

Guideline

Account for
optimization in floating
point computations.

Verify numeric
precision in ported
code.

Express precision in
terms of numeric
ranges.

Use parentheses rather
than default order of
precedence

Generic Guidelines
apply.

Separate assignments
from evaluation
statements

Minimize run-time
perturbations
Maintain visibility of
instrumentation in run
time source code
Conform to software
instrumentation
guidelines

Not applicable to PL/M.

Rationale

Compilers may rearrange or delete
subexpressions.

Different platforms may have
different precision limitations.

Terms such as word are platform
dependent.

Incorrect precedence assumptions
cause errors; source code open to
misinterpretation

Not Applicable.

Incorporation of assignments into
evaluation statements can cause
unanticipated side effects

These practices improve checkout
and verification of code.

Not Applicable.

Mitigation

Not Applicable.

Not Applicable.

Not Applicable.

Use other forms to enhance
readability if parentheses are
excessive.

Not Applicable.

Not Applicable.

Intrusive instrumentation is
sometimes necessary for problem
resolution. Remove
instrumentation and perform
regression testing.

Not Applicable.

NUREG/CR-6463 B-64

PL/M

Generic
Characteristics

8.1.2.13 Dynamic
Binding

8.1.2.14 Operator
Overloading

8.1.2.15 Compiler
Optimization and
Hardware Flags

8.1.3.1 Use of Tasking

8.1.3.2 Interrupt
Driven Processing

8.2.1 Software
diversity

8.2.2 Handling of
Exceptions

Significance

High

N/A

Medium

N/A

High

Medium

High

Guideline

Eliminate overlay or
shadow ROM code.

Not applicable to PL/M.

Account for compiler
optimizations in
sequence of operations
and hardware flags.

PL/M does not support
concurrent processing.

Minimize the use of
interrupt driven
processing

Interrupt handlers
should be as short and
simple as possible.

Avoid nested interrupts.

Interrupt handlers
should not alter shared
data.

Generic guidelines
apply.

Handle exceptions
locally.

Rationale

Difficult to test and debug.

Not Applicable.

Compilers can rearrange or eliminate
subexpressions.

Not Applicable.

Interrupts lead to non-deterministic
response times.

To reduce control flow complexity.

To reduce control flow complexity.

To reduce control flow complexity.

Not Applicable.

Local exception handling helps
isolate problems more easily and
more accurately.

Mitigation

Not Applicable.

Not Applicable.

Use assembly language for
functions that use hardware flags.

Not Applicable.

Minimize processing for handling
interrupts. Return to primary
program control as soon as
possible.

Not Applicable.

Not Applicable.

Not Applicable.

Not Applicable.

If not possible, thorough testing
and analysis to verify behavior
during exception handling is
required.

B-65 NUREG/CR-6463

PL/M

- •• Generic
Characteristics

8.2.3 Input and Output
Checking

8.3.1 Built-in
Functions

8.3.2 Compiled
Libraries

8.4.1.1 Indentation
Guidelines

8.4.1.2 Descriptive
Identifier Names

8.4.1.3 Comments and
Internal Documentation

8.4.1.4 Subprogram
Size

8.4.1.5 Mixed
Language
Programming

8.4.1.6 Obscure or
Subtle Programming
Constructs

Significance

High

Low

Low

Medium

Medium

Medium

Medium

Medium

High

Guideline

Check input and output
data.

Control the use of built-
in functions through
project specific
guidelines

Control the use of
compiled libraries

Conform to indentation
guidelines

Use descriptive
identifier names

Conform to comment
guidelines

Generic guidelines
apply.

Minimize mixed
language programming.

Minimize obscure and
subtle programming
constructs

Rationale

Accidental data corruption in one
module can have serious
consequences on subsequent
processing if allowed to propagate to
other modules.

Built-in functions have unknown
internal structure, limitations,
precision, exception handling,

Compiled libraries have unknown
internal structure, limitations,
precision, exception handling,

Indentation guidelines improve
readability and maintainability.

Descriptive identifier names improve
readability and maintainability.

Necessary to verify conformance to
requirements, code inspections,
maintenance

Not Applicable.

Mixed language programming is
hard to read and hard to maintain.

Obscure coding presents problems in
review and maintenance and raises
safety concerns.

Mitigation

May not be applicable if input
can be "trusted". May not be
necessary if downstream input
checking is performed.

Conduct thorough testing and
error tracking.

Conduct thorough testing and
error tracking.

Not Applicable

Not Applicable

Not Applicable

Not Applicable.

Isolate second language functions
and couple as loosely as possible

When it cannot be avoided, use
comments to minimize the impact
of obscure or subtle code.

NUREG/CR-6463 B-66

PL/M

Generic
Characteristics

8.4.1.7 Dispersion of
Related Elements

8.4.1.8 Use of Literals

8.4.2.1 Global
Variables

8.4.2.2 Complexity of
Interfaces

Significance

Medium

Medium

Medium

Medium

Guideline

Minimize the dispersion
of related elements

Minimize the use of
Literals.

All global variables
should be initialized in
exactly one place.

All exports from a
module should be
explicitly global all
other explicitly
declared static. All
importing modules
should use the header
file only.

Use macros for local
variables in emulators,
simulators, and
debuggers.

Limit the number of
arguments used in the
calling program.

Do not use ambiguous
or terse expressions.

Rationale

Dispersed elements necessitate
multiple accesses to review or
maintain code, and therefore are
susceptible to errors.

The use of constants enhances code
reliability and consistency.

To avoid multiple definitions.

To avoid multiple definitions.

To avoid complicating the use of
local variables.

Large number of arguments can
cause confusion and errors in a
safety-related program.

Use of meaningless expressions for
modes or options can cause
confusion to the programmer.

Mitigation

Provide clear reference,
rationale, overall source code
organization.

Associate comment with each
literal to facilitate search/replace.

Not Applicable.

Not Applicable.

Not Applicable.

Use smaller functions.

Not Applicable.

B-67 NUREG/CR-6463

Generic
Characteristics

8.4.2.3 Use of modules

8.4.3 Functional
Cohesiveness

8.4.4.1 Isolation of
Alterable Functions

8.4.4.2 Isolation of
Hardware Specific
Functions

8.4.5 Portability

Significance

Medium

Medium

Medium

Medium

Medium

Guideline

Explicitly state
restrictions and
limitations.

Use-modules to
facilitate data
abstraction.

Function of a program
and structure of its
components should
have clear
correspondence.

Place functions in DO;-
END modules within
source code file to
which they belong.

Write code for
peripheral devices in
the form of device
drivers.

PL/M is obsolescent
and of limited
portability.

Rationale

Lack of clear restrictions and
limitations can complicate the
interface.

To enhance maintainability by
limiting data visibility.

To facilitate review and maintenance
of the program.

Placing alterable function in one file
may result in collection of unrelated
procedures.

Calling code will not be impacted by
a change in the device driver code.

Not Applicable.

Mitigation

Not Applicable.

Not Applicable.

Not Applicable.

Clearly comment alterable
sections.

Not Applicable.

Plan for migration to another
language.

NUREG/CR-6463 B-68

Appendix C: Glossary

The definitions in this glossary were derived from the following sources:

• ANSI/MIL-STD-1815 A, Reference Manual for the Ada Language,, American National
Standards Institute/U.S. Department of Defense, 1983.

• ANSI/IEEE 729-1983, Glossary of Software Engineering Terminology, Institute of
Electrical and Electronic Engineers, 1983

• Allen-Bradley, PLCS Programming Software - Programming, Publication 6200-6.4.7
November, 1991

• Digital1 Equipment Corporation, Programming in VAX-11 C, Publication AA-L370A-TE,
Maynard, MA, May, 1982.

C-l NUREG/CR-6463

accept statement
In Ada, See entry.

access type
In Ada, a value that designates an object created by an allocator. The designated object
can be read and updated via the value of the access type. The definition of an access type
specifies the type of the objects designated by values of the access type. If uninitialized,
a value of an access type (an access value) is a null value. See also collection.

actual parameter
See parameter.

aggregate
In Ada, the evaluation of an aggregate yields a value of a composite type. The value is
specified by giving the value of each of the components. Either positional association or
named association may be used to indicate which value is associated with which
component.

allocator
In Ada, an allocator creates an object and returns a new access value which designates the
object.

arithmetic operator
An operator that performs an arithmetic operation. Examples include the unary minus (-),
multiplication (*), division (/), addition (+) and subtraction (-).

array
An aggregate data type consisting of subscripted elements of the same type. Elements of
an array can have one of the fundamental types or can be structures, unions, or other
arrays (to form multidimensional arrays).

array type
A value of an array type consists of components which are all of the same subtype (and
hence, of the same type). Each component is uniquely distinguished by an index (for a
one-dimensional array) or by a sequence of indices (for a multidimensional array). Each
index must be a value of a discrete type and must lie in the correct index range.

assignment
Assignment is the operation that replaces the current value of a variable by a new value.
An assignment statement specifies a variable on the left, and on the right, an expression
whose value is to be the new value of the variable.

NUREG/CR-6463 C-2

assignment expression
In C/C++,an expression of the form:

El asgnop El

where El must be an lValue, asgnop is an assignment operator, and E2 is an expression.
The type of an assignment expression is that of its left operand. The value of an
assignment expression is that of the left operand after the assignment has taken place. If
the operator is of the form "op=", then the operation El op (E2) is performed, and the
result is assigned to the object referred to by El; El is evaluated only once.

asterisk (*)
In C/C++, as a unary operator, treats its operand as an address and results in the contents
of that address. As a binary operator, multiplies .two operands, performing the usual
arithmetic conversions. As an assignment operator (*=), multiplies an expression by the
value of the object referred to by the left operand, and assigns the product to the object.

attribute
In Ada, the evaluation of an attribute yields a predefined characteristic of a named entity;
some attributes are functions.

binary operator
An operator that is placed between two operands. The binary operators include arithmetic
operators, shift operators, relational operators, equality operators, bitwise operators (AND,
OR, and XOR), logical connectives, and the comma operator, in that order of precedence.
All binary operators group from left to right. (Note: C has no operator for
exponentiation.)

bitwise operator
In C/C++, an operator that performs a bitwise logical operation on two operands, which
must be integral. The usual arithmetic conversions are performed. Both operands are
evaluated. All bitwise operators are associative, and expressions using them may be
rearranged. The set comprises, in order of precedence, the single ampersand ([&] bitwise
AND), the circumflex ([A] bitwise exclusive OR), and the single vertical bar ([|] bitwise
inclusive OR).

block
See compound statement.

block statement
A block statement is a single statement that may contain a sequence of statements. It may
also include a declarative part, and exception handlers; their effects are local to the block
statement.

C-3 NUREG/CR-6463

body
A body defines the execution of a subprogram, package, or task. A body stub is a form
of body that indicates that this execution is defined in a separately compiled subunit.

cast
In C/C++, an expression preceded by a cast operator of the form"(typename)". The cast
operator forces the conversion of the evaluated expression to the given type. The precise
meaning of a cast is as if the expression were assigned to a variable of the specified type,
which is then used in place of the whole construction. The cast operator has the same
precedence as the other unary operators. See also type conversion.

character
(1) A member of the ASCII character set.
(2) An object of the C data type char — that is, a byte. (An object of type char always
represents a single character, not a string.)
(3) A constant of type char, consisting of up to four ASCII characters enclosed hi single
quotes (', not ")• See also string.

cohesiveness
The manner and degree to which the tasks performed by a single software module are
related to one another.

collection
In Ada, a collection is the entire set of objects created by evaluation of allocators for an
access type.

comma operator
In C/C++, an operator used to separate two expressions: El, E2

The expressions El and E2 are evaluated left to right, and the value of El is discarded.
The type and value of the comma expression are those of E2.

comment
In C/C++, a sequence of characters introduced by the pair /* and terminated by */.
Comments are ignored during compilation. They may not be nested.

In C++, in addition to /* ... */, a sequence of characters starting with // and ending with
a newline. In Ada, a sequence of characters starting with — and ending with a newline.

NUREG/CR-6463 C-4

compilation unit
A compilation unit is the declaration or the body of a program unit, presented for
compilation as an independent text. It is optionally preceded by a context clause, naming
other compilation units upon which it depends by means of one more with clauses.

component
In Ada, a component is a value that is a part of a larger value, or an object that ispart of
a larger object.

composite type
In Ada, a composite type is one whose values have components. There are two kinds of
composite type: array types and record types. Records are called structures in C/C++.

compound statement
A compound statement consisting of valid C/C++ statements enclosed in braces ({}).
Compound statements can also include declarations. The scope of these variables is local
to the block.

conditional operator
The C/C++ operator (? :), which is used in conditional expressions of the form:

E1?E2:E3

where El, E2, and E3 are expressions. El is evaluated, and if it is nonzero, the result is the
value of E2; otherwise, the result is the value of E3. Only one of E2 and E3 is evaluated.

constant
A primary expression whose value does not change. A constant may be literal or
symbolic.

constant expression
An expression involving only constants. Constant expressions are evaluated at compile
time and may therefore be used wherever a constant is valid.

constraint
In Ada, a constraint determines a subset of the values of a type. A value in that subset
satisfies the constraint.

context clause
See compilation unit.

C-5 NUREG/CR-6463

conversion
The changing of a value from one data type to another. Conversions take place in
assignments by changing the type of the right operand's result to that of the object referred
to by the left operand; that type is also the type of the assignment expression. In C/C++,
conversions are also performed when arguments are passed to functions: char and short
become int; unsigned char and unsigned short become unsigned int; float becomes
double. Conversions can also be forced by means of a cast (see). Conversions are
performed on operands in arithmetic expressions by the usual arithmetic conversions.

data definition
The syntax that both declares the data type of an object and reserves its storage. For
variables that are internal to a function, the data definition is the same as the declaration.
For external variables, the data definition is external to any function (an external data
definition).

declaration
A statement that defines the characteristics (such as data type) of one or more variables.

declarative part
In Ada, a declarative part is a sequence of declarations. It may also contain related
information such as subprogram bodies and representation clauses.

derived type
In Ada, a derived type is a type whose operations and values are replicas of those of an
existing type. The existing type is called the parent type of the derived type.

designate
In Ada, See access type, task.

direct visibility
See visibility.

discrete type
A discrete type is a type which has an ordered set of distinct values. The discrete types
are the enumeration and integer types. Discrete types are used for indexing and iteration,
and for choices in case statements and record variants. Discrete types are also called sets
in Pascal.

discriminant
In Ada, a discriminant is a distinguished component of an object or value of a record type.
The subtypes of other components, or even their presence or absence, may depend on the
value of the discriminant.

NUREG/CR-6463 C-6

discriminant constraint
In Ada, a discriminant constraint on a record type or private type specifies a value for each
discriminant of the type.

diversity
The realization of the same function by different means.

elaboration
In Ada, the elaboration of a declaration is the process by which the declaration achieves
its effect (such as creating an object); this process occurs during program execution.

entry
In Ada, an entry is used for communication between tasks. Externally, an entry is called
just as a subprogram is called; its' internal behavior is specified by one or more accept
statements specifying the actions to be performed when the entry is called.

enumerated type
An enumerated type is a discrete type whose values are represented by enumeration
literals which are given explicitly in the type declaration. These enumeration literals are
either identifiers or character literals.

equality operator
In C/C++, one of the operators = (equal to) or != (not equal to). They are analogous to
the relational operators, but at the next lower level of precedence. In Ada, these are = and
/= respectively.

evaluation
The evaluation of an expression is the process by which the value of the expression is
computed. This process occurs during program execution.

exception
An exception is an error situation which may arise during program execution. To raise
an exception is to abandon normal program execution so as to signal that the error has
taken place. An exception handler is a portion of program text specifying a response to
the exception. Execution of such a program text is called handling the exception.

expanded name
In Ada, an expanded name denotes an entity which is declared immediately within some
construct. An expanded name has the form of a selected component: the prefix denotes
the construct (a program unit; or a block, loop, or accept statement); the selector is the
simple name of the entity.

exponentiation operator

C-7 NUREG/CR-6463

The C language does not provide an exponentiation operator. In Ada, it is

expression
An expression (i.e., series of tokens) that the compiler can use to produce a value.
Expressions have one or more operands and, usually, one or more operators. (An
identifier with no operator is an expression that yields a value directly.) Operands are
either identifiers (such as variable names) or other expressions, which are sometimes
called subexpressions. See also operator.

external variable
A variable that is defined externally to any function. External variables provide a means
other than argument passing for exchanging data between the functions that comprise a
C/C++ program.

fixed point type
See real type.

floating point type
See real type.

formal parameter
See parameter.

function
The primary unit from which C programs are constructed. A function definition begins
with a name and argument list, which are followed by the declarations of the arguments
(if any) and the body of the function enclosed in braces ({ }). The function body consists
of the declarations of any local variables and the set of statements that perform its action.
Functions need not return a value to the caller. All C functions are external; that is, a
function may not contain another function. See also function call.

function call
A primary expression followed by parentheses. The parentheses contain a (possibly
empty) comma-separated list of expressions that are the arguments to the function. In C,
any previously undeclared identifier followed immediately by parentheses is contextually
declared as a function returning int. A function may call itself recursively.

fundamental type
In C/C++, the set of arithmetic data types plus pointers. The fundamental types in C/C++
comprise those data types that can be represented naturally on a particular machine;
usually, this means integers and floating-point numbers of various machine dependent
sizes, and machine addresses.

NUREG/CR-6463 C-8

generic unit
In Ada, a generic unit is a template either for a set of subprograms or for a set of packages.
A subprogram or package created using the template is called an instance of the generic
unit. A generic instantiation is the kind of declaration that creates an instance. A generic
unit is written as a subprogram or package but with the specification prefixed by a generic
formal part which may declare generic formal parameters. A generic formal parameter
is either a type, a subprogram, or an object. A generic unit is one of the kinds of program
unit.

handler
See exception.

identifier
A sequence of letters and digits used as the name of an entity. In C/C++, the first 31 of an
identifier must be unique. In Ada, the length is limited to that of a line in the source code.
The underscore (J is considered a letter in this context. The first character of an identifier
must be a letter. Upper- and lowercase letters specify different identifiers in VAX-11 C.
Note, however, that all external names are converted to uppercase to be consistent with
VAX/VMS.

index
See array type.

index constraint
An index constraint for an array type specifies the lower and upper bounds for each index
range of the array type in Ada.

indexed component
An indexed component denotes a component in an array. It is a form of name containing
expressions which specify the values of the indices of the array component. An indexed
component may also denote an entry in a family of entries.

initializer
The part of a declaration that gives the initial value(s) for the preceding declarator. In
C/C++, an initializer consists of an equal sign (=) followed by either a single expression
or a comma-separated list of one or more expressions in braces.

instance
An object created according to a given definition. See also generic unit.

integer type
1 An integer type is a discrete type whose values represent all integer numbers within a

specific range in Ada or Pascal.

C-9 NUREG/CR-6463

integral type
In C/C++, one of the data types char or int (all sizes, signed or unsigned).

keyword
A word (series of characters) that is reserved by the language and cannot be used as an
identifier. Keywords identify statements, storage classes, data types, and the like.

label
A label is the target of a goto statement.

lexical element
A lexical element is an identifier, a literal, a delimiter, or a comment.

limited type
In Ada, a limited type is a type for which neither assignment nor the predefined
comparison for equality is implicitly declared. All task types are limited. A private type
can be defined to be limited. An equality operator can be explicitly declared for a limited
type.

literal
A literal represents a value literally, that is, by means of letters and other characters. A
literal is either a numeric literal, an enumeration literal, a character literal, or a string
literal.

logical expression
An expression made up of two or more operands separated by logical connectives. Each
operand must be of a fundamental type or must be a pointer or other address expression.
Operands do not have to be of the same type. In C/C++, logical expressions always return
1 or 0 (type int) to indicate a true or false value, respectively. Logical expressions are
always evaluated from left to right, and the evaluation stops as soon as the result is
known.

lvalue
In C/C++, an lvalue is an expression which can be assigned to. An lvalue is required on
the left-hand side of an assignment operator (hence its name) and as the operand of certain
other operators, such as the increment (++) and decrement (—) operators. A variable
name is an example of an lvalue, since its address can be taken (with &), and values can
be assigned to it. A constant is an example of an expression that is not an lvalue.

macro
Used primarily in C/C++, a text substitution that is defined with the #define preprocessor
control line and includes a list of "parameters." The parameters in the #define control line
are replaced at compile time with the corresponding arguments from a macro reference

NUREG/CR-6463 C-10

encountered in the source text.

mode
In Ada, see parameter.

model number
In Ada, a model number is an exactly representable value of a real type. Operations of
a real type are defined in terms of operations on the model numbers of the type. The
properties of the model numbers and of their operations are the minimal properties
preserved by all implementations of the real type.

multiplicative operator
An operator that performs multiplication (*), division (/), or modulo arithmetic. It
performs the usual arithmetic conversions on its operands. The modulo operator (% in
C/C++, MOD in Ada) yields the remainder of the division of the first operand by the
second.

name
A name is a construct that stands for an entity: it is said that the name denotes the entity,
and that the entity is the meaning of the name. See also declaration, prefix.

named association
A named association specifies the association of an item with one or more positions in a
list, by naming the positions.

Programmable Logic Controller (PLC)
A special purpose computer having a central processing unit (CPU), power supply,
programming panel, inputs and outputs. A PLC also provides the capability to support
remote Input/Output, special purpose Input/Output, Input/Output housing, connection
cables, and communication boards.

object
One of the basic elements that the language can manipulate — that is, the elements
to which operators can be applied. In objects include'data (such as integers, real numbers,
or characters), data structures (arrays, structures, unions), and other user-defined data
types.

operation
An operation is an elementary action associated with one or more types. It is either
implicitly declared by the declaration of the type, or it is a subprogram that has a
parameter or result of the type.

operator
An operator is an operation which has one or two operands. A unary operator is written

C-ll NUREG/CR-6463

before an operand; a binary operator is written between two operands. This notation is
a special kind of function call. An operator can be declared as a function. Many operators
are implicitly declared by the declaration of a type (for example, most type declarations
imply the declaration of the equality operator for values of the type).

overloading
An identifier can have several alternative meanings at a given point in the program text:
this property is called overloading. For example, an overloaded enumeration literal can
be an identifier that appears in the definitions of two or more enumeration types. The
effective meaning of an overloaded identifier is determined by the context. Subprograms,
aggregates, allocators, and string literals can also be overloaded.

package
In Ada, a package specifies a group of logically related entities, such as types, objects of
those types, and subprograms with parameters of those types. It is written as a package
declaration and a package body. The package declaration has a visible part, containing
the declarations of all entities that can be explicitly used outside the package. It may also
have a private part containing structural details that complete the specification of the
visible entities, but which are irrelevant to the user of the package. The package body
contains implementations of subprograms (and possibly tasks as other packages) that have
been specified in the package declaration. A package is one of the kinds of program unit.

parameter
A variable declared in an external function definition, between the function name and the
body of the function. In Ada, the mode of a parameter, i.e. whether it is an input, an
output, or both, is indicated in the functions call.

parent type
See derived type.

pointer
In C/C++, a variable that contains the address of another variable or function. A pointer
is declared with the unary asterisk operator. Called access type in Ada.

portability
The ease with which a system or component can be transferred from one hardware or
software environment to another.

pragma
A pragma is a specific kind of compiler directive.

prefix
A prefix is used as the first part of certain kinds of name. A prefix is either a function call

NUREG/CR-6463 C-12

or a name.

preprocessor directives
Lines of text in a C/C++ source file that change the order or manner of subsequent
compilation. The control lines are a previous #define), #include (for inclusion of
external source text), #Iine (to specify a line number to the compiler),#module (to specify
a module name to the linker), and #if, #ifdef, #ifhdef, #else, and #endif (to conditionalize
the compilation of the program).

primary expression
An expression mat contains only a primary-expression operator, or no operator. Primary
expressions include previously declared identifiers, constants, strings, function calls,
subscripted expressions, and references to structure or union members.

primary-expression operator
A C/C++ operator that qualifies a primary expression. The set of such operators consists
of paired brackets (to enclose a single subscript), paired parentheses (to enclose an
argument list or to change the associativity of operators), a period (to qualify a structure
or union name with the name of a member), and an arrow (to qualify a structure or union
member with a pointer or other address-valued expression).

private part
See package (Ada specific term)

private type
A private type is a type whose structure and set of values are clearly defined, but not
directly available to the user of the type. A private type is known only by its discriminants
(if any) and by the set of operations defined for it. A private type and its applicable
operations are defined in the visible part of a package, or in a generic formal part.
Assignment, equality, and inequality are also defined for private types, unless the private
type is limited (Ada specific term)

procedure
See subprogram.

program
A program is composed of a number of compilation units, one of which is a subprogram
called the main program. Execution of the program consists of execution of the main
program, which may invoke subprograms declared in the other compilation units of the
program.

program unit
In Ada, a program unit is any one of a generic unit, package, subprogram, or task unit.

C-13 NUREG/CR-6463

qualified expression
A qualified expression is an expression preceded by an indication of its type or subtype.
Such qualification is used if, in its absence, the expression would be ambiguous (for
example as a consequence of overloading).

raising an exception
See exception.

range
In Ada, a range is a contiguous set of values of a scalar type. A range is specified by
giving the lower and upper bounds for the values. A value in the range is said to belong
to the range.

range constraint
A range constraint of a type specifies a range, and thereby determines the subset of the
values of the type that belong to the range.

real type
A real type is a type whose values represent approximations to the real numbers. There
are two kinds of real type: fixed point types are specified by absolute error bound; floating
point types are specified by a relative error bound expressed as a number of significant
decimal digits.

record type
In Ada, a value of a record type consists of components which are usually of different
types or subtypes. For each component of a record value or record object, the definition
of the record type specifies an identifier that uniquely determines the component within
the record.

recursion
The process in which a software module calls itself.

relational operator
One of the operators <, >, <=, or >=. In C/C++, the result (type int) is 1 or 0, indicating
a true or false relation, respectively. The usual arithmetic conversions are performed on
the two operands. Relational operators group from left to right.

reliability
The ability of a system or component to perform its required functions under stated
conditions for a specified period of time.

renaming declaration
A renaming declaration declares another name for an entity.

NUREG/CR-6463 C-14

rendezvous
rendezvous is the interaction that occurs between two parallel tasks when one task has
called an entry of the other task, and a corresponding accept statement is being executed
by the other task on behalf of the calling task.

representation clause
In Ada, a representation clause directs the compiler in the selection of the mapping of a
type, an object, or a task onto features of the underlying machine that executes a program.
In some cases, representation clauses completely specify the mapping; in other cases, they
provide criteria for choosing a mapping.

robustness
The capability of the software to survive off-normal or other unanticipated conditions, or
the degree to which a system or component can function correctly in the presence of
invalid inputs or stressful environmental conditions.

satisfy
See constraint, subtype.

scalar
A single object (as opposed to aggregate), that is, an object or value of a scalar type does
not have components. A scalar type is either a discrete type or a real type. The values of
a scalar type are ordered.

scope
The portion of a program in which a particular name has meaning. The scope of names
declared in external definitions extends from the point of the definition's occurrence to
the end of the compilation unit in which it appears. The scope of the names of function
parameters is the function itself. The scope of names declared in any block (that is, after
the brace beginning any compound statement) is restricted to that block. Names declared
in a block supersede any other declaration of the name, including external definitions, for
the extent of that block. In C/C++, struct, union, typedef, and enum tags are identifiers
that are subject to the same scope rules as other identifiers. Member names in structure
or union references are not subject to the same scope rules (see uniqueness). The scope
of a label is the entire function containing the label.

selected component
In Ada, a selected component is a name consisting of a prefix and of an identifier called
the selector. Selected components are used to denote record components, entries, and
objects designated by access values; they are also used as expanded names.

selector
See selected component.

C-15 NUREG/CR-6463

simple name
See declaration, name.

shift operator
In C/C++, one of the binary operators < < or > >. Both operands must have integral types.
The value of E1«E2 is El (interpreted as a bit pattern) left-shifted by E2 bits. The value
of El » E 2 is El right shifted by E2 bits.

statement
A statement specifies one or more actions to be performed during the execution of a
program. Statements include expression statements (an expression followed by a
semicolon in most languages), null statements (the semicolon by itself), compound
statements (blocks), and an assortment of statements identified by keywords.

storage class
The attribute that, with its type, specifies C's interpretation of an identifier. The storage
class determines the location and lifetime of an identifier's storage. Examples are static,
external, and auto.

string
(1) An array of characters
(2) A constant consisting of a series of ASCII characters enclosed in quotation marks.
Such a constant is declared implicitly as an array of char, initialized with the given
characters, and terminated by a NULL character (ASCII 0, C escape sequence \0).

structure
In C/C++, an aggregate type consisting of a sequence of named members. Each member
may have any type. A structure member may also consist of a specified number of bits,
called a field.

subcomponent
A subcomponent is either a component or a component of another subcomponent.

subprogram
In Ada, a subprogram is either a procedure or a function. A procedure specifies a
sequence of actions and is invoked by a procedure call statement. A function specifies a
sequence of actions and also returns a value called the result, and so a function call is an
expression. A subprogram is written as a subprogram declaration, which specifies its
name, formal parameters, and (for a function) its result; and a subprogram body which
specifies the sequence of actions. The subprogram call specifies the actual parameters that
are to be associated with the formal parameters. A subprogram is one of the kinds of
program unit.

NUREG/CR-6463 C-16

subtype
A subtype of a type characterizes a subset of the values of the type. The subset is
determined by a constraint on the type. Each value in the set of values of a subtype
belongs to the subtype and satisfies the constraint detennining the subtype.

subunit
See body.

symbolic constant
In C/C++, an identifier assigned a constant value by a #deflne directive. A symbolic
constant may be used wherever a literal is valid.

task
In Ada, a task operates in parallel with other parts of the program. It is written as a task
specification (which specifies the name of the task and the names and formal parameters
of its entries), and a task body which defines its execution. A task unit is one of the kinds
of program unit. A task type is a type that permits the subsequent declaration of any
number of similar tasks of the type. A value of a task type is said to designate a task.

tokens
The fundamental elements making up the text of a C program. Tokens are identifiers,
keywords, constants, strings, operators, and other separators. White space (such as spaces,
tabs, newlines, and comments) is ignored except where it is necessary to separate tokens.

type
A type characterizes both a set of values, and a set of operations applicable to those
values. A type definition is a language construct that defines a type. A particular type is
dependent on the language used (e.g. in Ada a type is either an access type, an array type,
a private type, a record type, a scalar type, or a task type).

type name
In essence, the declaration of an object of a given type that omits the name of the object.

unary operator
An operator that takes a single operand. In C/C++, some unary operators can be either
prefix or postfix. The set includes the asterisk (indirection), ampersand (address of),
minus (arithmetic unary minus), exclamation (logical negation), tilde (one's complement),
double plus (increment), double minus (decrement), cast (force type conversion), and
sizeof (yields size, in bytes, of its operand).

union
In C/C++, an aggregate type which can be considered a structure all of whose members
begin at offset 0 from the base and whose size is sufficient to contain any of its members.

C-17 NUREG/CR-6463

uniqueness
A property of the names used for certain structure and union members. A name is unique
if either of these conditions is true:

• The name is used only once.
• It is used in two or more different structures (or unions), but each use denotes a

member at the same offset from the base and of the same data type.

The significance of uniqueness is that a unique member name can be used to refer to a
structure in which the member name was not declared (although a warning message is
issued).

use clause
In Ada, a use clause achieves direct visibility of declarations that appear in the visible
parts of named packages.

variable
An identifier used as the name of an object (see object).

variant part
A variant part of a record specifies alternative record components, depending on a
discriminant of the record. Each value of the discriminant establishes a particular
alternative of the variant part.

visibility
At a given point in a program text, the declaration of an entity with a certain identifier
is said to be visible if the entity is an acceptable meaning for an occurrence at that
point of the identifier. The declaration is visible by selection at the place of the
selector in a selected component or at the place of the name in a named association.
Otherwise, the declaration is directly visible, that is, if the identifier alone has that
meaning.

visible part
See package.

with clause
See compilation unit.

NUREG/CR-6463 C-18

Appendix D. Relationship of Generic Attributes
to Other Work

This Appendix compares the attributes defined in Chapter 2 to relevant standards and published
research in software safety and quality. As such, it supports the technical basis of the work
through the third item defined in Chapter 1 ("A substantive body of knowledge exists and the
preponderance of the evidence supports a technical conclusion"). Sections D. 1 and D.2 show the
relationship among these criteria and IEEE Std 603 and IEC Publication 880, respectively.
Section D.3 shows the relationship to IEEE Std 7-4.3.2-1993. Section D.4 compares the attributes
to a widely cited software quality framework developed by the U.S. Air Force Rome Laboratory.
Finally, section D.5 shows how the work of other researchers in high integrity and safety related
software corresponds to the attributes.

D.l IEEE Standard 603

IEEE Std 603-1991, "IEEE Standard Criteria for Safety Systems for Nuclear Power Generating
Stations", is a significant standard for system level safety. In its earlier (1980) version, this
standard represents one of the foundations of assessing the safety of I&C systems in general; the
1991 version added items pertinent to digital systems. Currently, the NRC uses Regulatory Guide
1.152, "Criteria for Programmable Digital Computer System Software in Safety-Related Systems
of Nuclear Power Plants" and ANSI-ANS-7-4.3.2-1982, "Application Criteria for Programmable
Digital Computer Systems in Safety Systems of Nuclear Power Generating Stations" for guidance
when performing reviews of digital systems. The 1993 version of 7-4.3.2, makes that standard
a "daughter" to IEEE Std. 603-1991. Thus, the safety criteria defined in Section 5 of IEEE Std.
603 are a basis for assessing digital systems.

Table D-l compares the top level generic attributes relates to the safety issues identified in IEEE
Std. 603-1991. Since each column contains at least one entry, this demonstrates that the top level
attributes described in Chapter 2 pertain to safety issues. Because lower level attributes are
traceable to the top level attributes shown in the table, all the generic attributes identified in this
report can be associated with safety relevant criteria. The detailed entries in the table show that
the generic attributes described in Chapter 2 address all safety criteria 603 except the following
inapplicable criteria:

• Equipment qualification: This is a hardware issue with minor effects on system software.
• Information displays: This is a requirements and design issue.
• Auxiliary features: This is a requirements and design issue.
• Multi-unit stations: This is a requirements and design issue.
• Human factors considerations: This is primarily a design issue.

D-l NUREG/CR-6463

Table D-l. Comparison of Generic Attributes with IEEE Std-603-1991 Criteria

IEEE 603
Criterion

5.1 Single failure

5.2 Completion of
protective action

5.3 Quality

5.5 System Integrity

5.6 Independence

5.7 Test and
Calibration

5.9 Control of access

5.10 Repair

5.11 Identification

5.15 Reliability

Top Level Generic Attributes
Rel
ia-
bili
ty

all

2.1
.2

2.1
.3

all

Rob
ust-
ness

all

2.2.
2,

2.2.
3

2.2.
3

2.2.
1,

2.2.
3

Tra
ce-

abili
ty

all

all

all

Maintain
ability

-

2.4.1, "
2.4.2

see note
2

2.4.4

all

2.4.4

Remarks

see note 1

Control flow, exception
handling,

error containment

Readability, data abstraction

Timing, error containment

Diversity, error containment

Instrumentation, data
abstraction

cohesiveness, malleability

Malleability

Malleability

Notes:

(1) Software can cause single point failures when (a) the program crashes on encountering an unusual data value
or control state, and (b) the program returns wrong results under unusual conditions. Safety concerns arising
from (a) are minimized when memory utilization, control flow, and timing are predictable as discussed in
Section 2.1. Concerns arising from (b) are minimized by controlled of software diversity and exception
handling, and by error containment all of which are discussed in Section 2.2

NUREG/CR-6463 D-2

(2) Software testing in the operational environment is required only after changes are made (software does not
deteriorate with use). The cited attributes permit isolation of areas affected by changes, and thus permit
focusing the test effort on these areas. The presence of the attributes facilitates assessment of the
completeness of test and enhances safety.

D.2. IEC Publication 880

Paragraph 5.2 of IEC 880 contains the essential requirements for languages, translators, and other
tools. Additional guidance on these subjects (not mandatory) is provided in Appendix D of IEC
880. Table D-2 summarizes relevant provisions from these two sections of the document and
shows how they are related to the generic attributes identified in the previous section. Appendix
D guidance is denoted by an asterisk (*), and only the priority 1 (highest priority)
recommendations are shown. The notation in this table is identical to that used in Table D-l. The
following provisions of IEC Document 880 are not addressed by the attributes identified in
Chapter 2 of this report:

• Problem-oriented languages are preferred to machine-oriented ones: The selection of
a development language is the responsibility of the I&C vendor and is not within the
scope of an NRC audit.

• Automated test tools should be available and The use of automated tools is
recommended: These are development process issues which are not related to the specific
language in which the safety software has been written.

Similar to the preceding subsection, the presence of an entry in each narrow column signifies that
the corresponding top level attribute has been found relevant to safety in the IEC document. The
presence of an entry for each row in at least one of the narrow columns indicates that the Chapter
2 attributes cover the IEC 880 document concerns.

D-3 NUREG/CR-6463

Table D-2. Relationship between Top Level Generic Attributes
and TEC 880 Recommendations

IEC 880 Provision

A thoroughly tested translator
shall exist and be used

The language shall be
unambiguously defined.
Features with respect to
which there may be
ambiguities shall not be used.

The language and its
translator should not preclude
the use of error-limiting

"constructs

The language and its
translator should not preclude
the use of Translation-time
type checking

The language and its
translator should not preclude
the use of Run-time type and
array bound-checking, and
parameter checking

Where auxiliary system
programs (documentation
aids) are used, they should be
thoroughly tested.*

The recommendations of
Appendix B (structured
design, etc.) should be
supported*

Run-time exceptions should
be raised for exceeding anay
boundaries, exceeding a
declared range, and passing
parameters of the wrong
type.*

The range of each variable
should be determinable at
translation time.*

During expression

Top Level Generic Attributes
R
eli
a-
bil
ity

2.
1.
2.
6

2.
1.
2.
6

2.
1.
2.
1

2.
1.
2.
6

2.
1.
2.

2.

Rob
ust-
ness

2.2.2

2.2..
3

2.2.2

2.2.3

Tr
ac
e-

abi
Iity

all

all

all

Maint
ain-

ability

2.4.2,
2.4..5

2.4.1

Remarks

Data abstraction,
portability

Exception handling,
error containment

Data typing

Data typing

Structure, readability

Data typing, exception
handling, error

containment

Data typing

Separating assignment
NUREG/CR-6463 D-4

D.3. IEEE Std 7-4.3.2 1993, Appendix F

Appendix F of IEEE Std-7.4.3.2 (IEEE, 1993) lists items of concern in the identification and
resolution of abnormal conditions and events. Most of these concerns relate to requirements,
system-level design, hardware design, and software design, and are therefore not within the scope
of this document. However, Section F.2.3.5 identifies abnormal conditions and events related to
computer code. Table D-3 shows how the attributes support the concerns of Appendix F.

Table D-3. Support Provided by Attributes of Chapter 2 to Items of Concern in ACES
Analysis of IEEE 7-4.3.2

Items of Concern in IEEE 7-4.3.2
Evaluate equations, algorithms, and control logic for
potential problems, including forgotten cases or
steps, duplicate logic, neglect of extreme conditions,
unnecessary functions, misinterpretation, missing
condition tests, wrong variable checked, incorrect
iteration of loop, etc.

Confirm correctness of algorithms, accuracy,
precision, discontinuities, out of range conditions,
breakpoint, erroneous inputs, etc.

Evaluate the data structure and usage in the code to
provide adequate confidence that the data items are
defined and used properly

Provide adequate interface compatibility of software
modules with each other and with external hardware
and software

Provide adequate confidence that the software
operates within the constraints imposed upon it by
the requirements, design, and the target computer

Examine non-critical code to provide adequate
confidence that it does not adversely affect the
function of critical software. As a general rule,
safety software should be isolated from non-safety
software. The intent is to prove that this isolation is
complete

Provide adequate confidence that the results of
coding activities are within timing and sizing
constraints

Support from Attributes of Chapter 2
Predictability of control flow (2.1.2) and
readability (2.4.1)

Precision and accuracy (2.1.2.7) and
all base attributes under robustness (2.2)

Data typing (2.1.2.6)

Data abstraction (2.4.2) and most base attributes
under predictability of control flow (2.1.2)

All base attributes under reliability (2.1)

Data abstraction (2.4.2)

Predictability of memory utilization (2.1.1) and
predictability of timing (2.1.3)

D-5 NUREG/CR-6463

Appendix F does not distinguish between system design, software design, and language issues.
Therefore a one-to-one correspondence with the attributes defined in Chapter 2 of this report
cannot be established. However, that at least one attribute can be associated with each of the
concerns indicates that no major area has been overlooked in the generation of the attributes.

D.4. Rome Laboratory Software Quality Framework

The list of Software Quality Factors generated by the Rome Laboratory metrics framework
(Bowen, 1985; Wigle, 1985) is widely used, has been continuously updated (Murine, 1994), and
is the basis for software metrics evaluation by a consortium that includes large system integrator
and defense organizations. It is not restricted to software quality factors that affect safety, and thus
its principal value for this study is to serve as a check that the safety oriented selection of
attributes in Chapter 2 has not overlooked anything from this broader context that might be
relevant to safety. The top level 13 factors have been stable over the last ten years. The relation
of these factors to the Chapter 2 attributes is shown in Table D-4.

NUREG/CR-6463 D-6

Table D-4 Chapter 2 Attributes and Factors in the USAF Rome Laboratory Framework

Rome
Laboratory
Quality Factor

Reliability

Survivability

Correctness

Maintainability

Verifiability

Expandability

1
Flexibility

i

Portability

Efficiency

Integrity

Usability

Interoperability

Reusability

Top Level Generic Attributes

Reli
a-

bilit
y

all

2.1.2
.7

Robu
st-

ness

all

Tr
ac
e-

abi
lity

all

all

Maintai
n-

ability

all

2.4.3,
2.4.4

2.4.4

2.4.5

Remarks

Precision and accuracy

Cohesiveness, malleability

Malleability

Portability (adherence to
standards)

Not a safety issue; sufficient
resources must be provided

by design

Defined as access
protection; not a language

issue

Defined as not needing
training; not a language

issue

May conflict with
separation requirements of

IEEE Std. 603; not a
language issue

A design rather than a
language issue

D-7 NUREG/CR-6463

D.5 Other Published Research

Significant research on relevance of software attributes to system safety has been published by
(Leveson, 1992; Turner, 1992; Bullock, 1980; Cuthill, 1993; Andersen, 1984; Petersen, 1984).
These references were selected because they span a fairly long time frame (1980 to 1992), are
oriented to nuclear safety, and originate from diverse sources (academia, a U.S. national
laboratory, a European standards organization, and the U.S. NIST). As in Section 3.4, the
references contain a mix of design and implementation issues, with considerable emphasis on the
former. Subject to the restrictions imposed by this mismatch, Table D-5 shows that the issues
raised in these references have not been overlooked in the attribute structure identified in the
Chapter 2.

Table D-5 also demonstrates differences between the approach taken in the generic attributes
developed in this work versus that of previous researchers. For example, this report regards
quality as a complex attribute including elements of reliability, readability, traceability, and
portability (i.e., adherence to standards). Because other researchers were considering a broader
range of issues in the system design and development process, they included issues such as fail
safe operation, minimizing critical data and code, and testability. On the other hand, there are
areas where there is a close correspondence between this work and others. Attributes which
directly correspond include reliability, maintainability, error containment, and diversity.

NUREG/CR-6463 D-8

Table D-5. Relationship between Generic Attributes and Safety Concerns or Criteria
Identified by Other Researchers

Author

Leveson

Bullock

Cuthill

Andersen
and
Petersen

Criterion or Concern

Isolation and protection

Minimizing unsafe failure
modes

Fail safe design

Minimizing safety critical
code and data

Accuracy

Completeness

Understandability

Maintainability

Testability

Reliability

Comments

Modularity

Modularity: Separated
execution sequences with
limited interaction;

Functional diversity:
Provably separate
execution sequences;

Traceability

Removal of ambiguity

High reliability

Safeguards against
handling errors:

Safeguards against
intended misuse:

Fault Correction, Fail to
Safe, Fail to Operational:

Corresponding Attributes from Chapter 2

Robustness (2.2), particularly error containment (2.2.3)

None (design level issues)

Precision and accuracy (2.1.2.7), use of compiled libraries
(2.3.2), readability (2.4.1)

(both accuracy and completeness are partially design issues)

Readability (2.4.1), cohesiveness (2.4.3)

Maintainability (2.4)

Reliability (2.1) maintainability (2.4)
(primarily a design issue)

Reliability (2.1)

Comments (2.4.1.3)

Data abstraction (2.4.2), cohesiveness (2.4.3)

Data abstraction (2.4.2), cohesiveness (2.4.3)

Functional diversity (2.2.1)

Traceability (2.3)

Reliability (2.1)

Reliability (2.1)

Exception handling (2.2.2)

None (design issue)

Diversity (2.2.1), exception handling (2.2.2)

D-9 NUREG/CR-6463

References

Andersen, 0. and P.G. Petersen, Standards and regulations for sojiware approval and
certification, ElektronikCentralen Report ECR154 (Denmark), 1984.

Bowen, T.P. and G.B. Wigle and J.T. Tsai, "Specification of Software Quality Attributes" Report,
3 Vols. RADC-TR-85-37, available fromNTIS, 1985.

Bullock, J.B., briefing charts contained in Working Group Report on Software Reliability
Verification and Validation, IEEE/NRC Working Conference on Advanced Electrotechnology
Applications to Nuclear Power Plants, IEEE Cat. No.TH0073-7, January, 1980.

Campbell, D. and V. Castellano and 0. Cole, et. al., Ada/6000 Tool Set, O.C. Systems, Fairfax,
Virginia, 1994.

Chillarege, R., "Orthogonal Defect Classification," IEEE Trans. SW Engineering, 1992.

Cuthill, B., "Applicability of Object Oriented Design Methods and C++ to Safety Critical
Systems," Proceedings of the Digital System Reliability and Nuclear Safety Workshop, NUREG
CP-0136, NIST SP 500-216,1993.

Dahl, O.J. and E.W. Dijkstra and C.A.R. Hoare, Structured Programming, Academic Press,
London and New York, 1972.

Gottfried, R.and D. Naiditch, Using Ada in Trusted Systems, Proc. of COMPASS 93, May, 1993,
National Institute of Standards and Technology, Washington, DC, 1993.

Henderson, J., "Low level prograrnming," in Sojiware Engineer's Reference Book, J.D.
McDermid, ed., CRC Press, Inc., 1993.

Institute of Electrical and Electronic Engineering, IEEE Std 100-1977, IEEE Standard Dictionary
of Electrical and Electronic Terms.

Institute of Electrical and Electronic Engineers, Nuclear Power Engineering Committee, IEEE
Std. 603-1991, IEEE Standard for Nuclear Power Generating Stations.

Institute of Electrical and Electronic Engineers, IEEE-Std-7 -4.3.2-1993, IEEE Standard Criteria
for Digital Computers in Safety Systems of Nuclear Power Generating Station.

International Electrotechmcal Commission (IEC), "Software for Computers in the Safety Systems
of Nuclear Power Stations," Standard 880-1986.

Kopetz, H., "Real-time systems," in Software Engineer's Reference Book, J.D. McDermid, ed.,
CRC Press, Inc., Cleveland, Ohio, 1993.

NUREG/CR-6463 D-10

Leveson, N.G. and C.S. Turner, An Investigation of the Therac-25 Accidents, University of
California, Irvine Technical Report 92-108, Irvine, California, 1992.

Liao, Y., "Requirements for Directed Automatic Instrumentation Generation for Program
Monitoring and Measuring," in IEEE Trans. SW Engineering, 1991.

McGarry, F., "The Impacts of Software Engineering," briefing presented to the NRC Advisory
Committee on Reactor Safeguards (ACRS), August 21,1992.

Meek, B.L., "Early High-Level languages," in Sojiware Engineer's Reference Book, J.D.
McDermid, ed., CRC Press, Inc., 1993.

Murine, G.E., "Rome Laboratory Framework Implementation Guidebook", RL-TR-94-149, USAF
Rome Laboratory, March 1994.

Parnas, D.L., "On the Criteria to be Used in Decomposing Systems into Modules,"
Communications of the ACM, Vol. 15, No. 12,1972.

Parnas, D.L. and A.J. van Schowen and S.P. Kwan, "Evaluation of Safety Critical Software,"
Communications of the ACM, Vol. 33, No. 6, p. 636, June, 1990.

Royce, W.W., written comments in Proceedings of the Digital Systems Reliability and Nuclear
Safety Workshop, NUREG/CP-0136, NIST SP 500-216,1993.

Smith, D.J. and K.B. Wood, Engineering Quality Sojiware: A review of Current Practices,
Standards, and Guidelines Including New Methods and Development Tools. New York: Elsevier
Applied Sciences, 1989.

Thayer, R., "Software Reliability Study," Rome Air Development Center report RADC TR
76-238, March, 1976.

U.S. Department of Defense, "Weapon System Software Development," MIL-Std-1679 (Navy),
1978.

U.S. Department of Defense, DoD-Std-2167A, Sojiware Development Standard, Appendix C,
1986.

U.S. Department of Defense, DoD Std 2167A, Sojiware Development Standard, Appendix D,
Washington, D.C.

Witt, B.I. and F.T. Baker and W.W. Merritt, Software Architecture and Design. Van Nostrand
Reinhold, New York, 1994.

D-ll NUREG/CR-6463

Appendix E. Backgrounds of Subject Matter Experts and
Reviewers

This Appendix provides brief descriptions of the backgrounds and qualifications of the 18 subject
matter experts who provided substantial technical input or reviews to this document. As the
Principal Investigator, Dr. Herbert Hecht's background appears first. All other participants are
listed in alphabetical order.

1 Herbert Hecht,

Program Manager
PLC Subject Matter Expert

Ph. D., University of California, Los Angeles, 1967
MEE Polytechnic Institute of Brooklyn, 1949
BEE College of the City of New York, BEE, 1944

Dr. Herbert Hecht has been involved with software issues associated with critical real time control
systems since his work on the Titan II Intercontinental Ballistic Missile guidance system in the
middle 1960's. Dr. Hecht's involvement in safety systems for nuclear power plants began in 1980
with his participation in the conference on the application of advanced electrotechnology
application to nuclear power plants. Since that time, he has participated in audits of digital safety
systems including the Arkansas Nuclear One Core Protection Calculator System, the South Texas
Utilities Qualified Parameter Display System, and several others. In addition, he has been the
Principal Investigator of NRC sponsored research on verification and validation guidelines for
high integrity systems (NUREG/CR-6293) and on earlier work on high integrity systems
(NUREG/CR-6113). Dr. Hecht's background in safety critical application of programmable
logic controllers includes design and development of ladder logic code for short range ground
transportation systems. The first appUcation of this software was the Big Thunder Mountain ride
at Disneyland; additional applications are at Houston Intercontinental and other airport people
mover systems. His previous experience includes work on ladder logic diagrams in aircraft
avionics and flight control systems while at Sperry Corporation.

2 Derek Decker

Task 3 Reviewer for PLC Ladder Logic and IEC 1131 Sequential Functional Charts

Mr. Decker is an expert in PLC programming and I&C systems integration. As a PLC application
engineer for Texas Instruments, he installed and programmed PLCs in a wide variety of systems,
both for in-plant use and for customers. Examples include wave solder machines and blood

E-l NUREG/CR-6463

sterilization controls. At Telemecanique, Inc., he was Technical Services Manager serving as the
recognized expert in North American on the usage of advanced PLCs—the first to use what is
now recognized as the IEC 1131-3 PLC language suite. Using these PLCs, he developed
applications for manufacturing and food processing. He also prepared application notes and
courses on the Telemecanique product line. He has written articles for Control Engineering and
PLC Insider.

3 Stephen Graft

Task 2 Subject Matter Expert for Ada, Pascal

M.S., Systems and Control Theory, UCLA, 1973
B.S., Electrical Engineering, University of Maryland, 1969

Steve Graff has experience in real time aerospace computer applications ranging from fighter
aircraft to the Galileo and Ulysses space probes. Mr. Graff supported research in software
complexity metrics and developed routines to analyze complex metrics such as Tsai. and
dataflow. His experience in high integrity systems includes the Oceanic Advanced Automation
System (AOAS), the F14 and F15 fighter avionics controls (in Ada), real time spacecraft ground
control systems, and classified applications. Mr. Graffs experience in Pascal includes teaching
at the university senior and post graduate level where he was responsible for creating and
evaluating prograrnming for classic computer science problems such as linked lists, trees, graphs,
and double linked lists. Mr. Graffs expertise in other languages provides the project with
additional depth and also provides a better perspective from which to judge the relative strengths
and weaknesses of PL/1 and Pascal.

4 William Greene

M.S., Astronomy, San Diego State University, 1975
B.A., Astronomy, University of Minnesota, 1965

Mr. Greene has a total of 22 years' experience as a programmer, with 10 years' experience in Ada
software development. He has designed, coded, modified, and tested programs on Defense
Satellite Program, MILSTAR and other projects in Ada and FORTRAN. This work involved real
time ground-based satellite attitude control. In addition to his real-time background, Mr. Green
has written Ada syntactical and lexical analysis programs in support of the development of
software tools for the measurement of software complexity metrics. Mr. Greene also has an
extensive background in system analysis and software testing in satellite ground support
subsystems in Ada and other languages. This work includes writing, analysis, and criticism of
requirements and design documents, design plans, test plans, and test procedures.

NUREG/CR-6463 E-2

5 Myron Hecht,

Assistant Project Manager, Report Editor
Task 1 Pascal Subject Matter Expert

M.S., University of California, Los Angeles, Nuclear Engineering, 1976
M.B.A., University of California, Los Angeles, Computers & Information Systems, 1982
B.S., University of California, Los Angeles, Chemistry (Cum Laude), 1975

Myron Hecht has 20 years' software development experience in real time, scientific, and high
integrity software prograrnming. He has previously worked on NRC-sponsored research on
design and verification and validation guidelines for high integrity software. He has ten years'
experience supporting the FAA in air traffic control software development in 6 different computer
languages (including Pascal). In this capacity, he analyzed more than ten thousand failure reports
and identified trends and software development practices which negatively affect stability and
reliability. Previously, he directed software development for a fault tolerant distributed control
system implemented in C for the EBRII site. He has performed several studies analyzing
software fault distributions on the basis of error reports generated by NASA/JPL and large aircraft
development organizations. He has also investigated the improvement of software complexity
metrics to predict software failure densities in Ada avionics software as part of a Phase I SBIR
(now in Phase IT for the U.S. Air Force). In earlier work, he developed and demonstrated the
feasibility of fault-tree based design methodologies for fault tolerant software (SIFT and FTMP).
Mr. Hecht received his graduate training in nuclear engineering and began bis career in nuclear
nonproliferation and environmental analyses. In that capacity, he has programmed extensively
in PL/1, Pascal, and FORTRAN.

6 MichaelJustice

Task 3 Reviewer for PL/M

B.S., Computer / Electrical Engineering, University of Illinois, 1975

Michael Justice has worked in industrial automation and process control for Amoco Oil, Intel,
Wizdom Systems, and Synergetic. His experience includes real-time control software,
communications, real-time operating systems, and hardware device drivers. His experience in
PL/M includes:

Support of the language as a software specialist and consulting engineer at Intel,.

Heading the development of a successful line of PC-based PLCs implemented in PL/M,

Serving as a technical consultant in his current position as Vice President at Synergetic
Micro Systems, an engineering services firm serving major electronic and industrial

E-3 NUREG/CR-6463

manufacturers in the Mid-west.

Experience with other languages includes C, and Assembly Languages on single board computers
(SBC) and microprocessors in all major buses (PC, STD, VME, MULTIBUS) and manufacturers
(Intel, NEC, Motorola).

7 Shlomo Koch

Task 2 PLC Ladder Logic and Sequential Functional Chart Subject Matter Expert

Ph.D. Electrical Engineering Rensselaer Polytechnic Institute (RPI), Troy, NY. 1992.
M.Sc. Electrical Engineering Technion - Israel Institute of Technology, 1978.
B.Sc. Electrical Engineering Technion - Israel Institute of Technology, 1973.

Dr. Koch has extensive experience developing safety critical applications for PLC systems.
During the last six years, he was responsible for the development and implementation of
computer-based systems for safety-related applications in the nuclear industry including:

• a PLC-based load sequencer for Northern States Power (NSP), Prairie Island,

• a containment isolation status system for Tennessee Valley Authority (TVA), Browns
Ferry, and

• a study for implementing a PLC-based reactor protection system for NSP.

Two of these systems are now licensed and operational. Dr. Koch has also worked on safety
critical apphcations outside the nuclear industry, such as the pharmaceutical industry and medical
devices that are regulated by the FDA that requires product validation, and the chemical and
petrochemical industry that is regulated by OSHA that requires shutdown systems. Prior to
obtaining bis Ph.D, Dr. Koch developed safety critical systems for 9 real time
microprocessor-based defense systems. He is well versed in hazard analysis using Mil-Std-882B
and MOD-56. Dr. Koch's experience with PLCs extends beyond safety critical systems. He has
designed and programming of PLC-based systems for the local industry that includes paper mills,
water treatment, machinery control, drive control, and sequencing logic, Dr. Koch has obtained
national recognition through his numerous publications and standards activities. He is a member
of the IEEE 7-4.3.2 standard committee, "application criteria for programmable digital computer
systems in safety systems of nuclear power generating stations". He is also a member of the ISA
SP84 standard committee on "appUcation of PES in safety systems for the process industry". He
is a regular participant and speaker at EPRI, NUSMG, IEEE, ACM and other technical
conferences on nuclear I&C system digital upgrades, software V&V and regulatory requirements.

NUREG/CR-6463 E-4

8 James Leivo

Task 1 Nuclear Systems Consultant

B.S. Electrical Engineering, Carnegie Mellon University, 1966

James Leivo is a registered Professional Engineer with over 25 years' experience in the nuclear
power industry and related areas. His past work includes technical direction of the design and
retrofit of I&C and computer systems and project management while employed at Westinghouse,
NUS Corporation, and Los Alamos Technical Associates. Mr Leivo has served as a Consultant
to NRC Instrumentation and Control Systems Branch, performed technical/ safety evaluations of
computer-based reactor protection and safety instrumentation systems for advanced LWR designs
and operating LWR upgrades. For nuclear utilities, Mr. Leivo has provided consulting services
for independent assessment of safety and non-safety related I&C systems, electrical systems, and
computer systems. This work has included thread audits and hazard analyses of safety and non-
safety systems being retrofit into nuclear power plants.

9 Don Lin

Task 2 C/C++ Subject Matter Expert

Ph. D. Computer Engineering, University of Michigan, Ann Arbor, MI, 1988
M.S.E. Computer, Information, and Control Engineering, University of Michigan Ann Arbor, MI, 1985
B. S. Electrical Engineering Beijing Normal University, Beijing, 1982

Dr. Lin's experience in high integrity software comes from his extensive experience in
implantable medical devices, medical instrumentation design, and patient care devices. He has
both developed software and managed software development teams for these devices using C,
C++ and Assembly language. He also has experience in the testing and certification requirements
of high integrity software through the premarket licensing process of the FDA. As part of his
work on medical instrumentation, Dr. Lin has developed expertise in high performance computer
system design, digital signal processing and pattern recognition, real and protected mode
programming, software version control, clinical trial and data collection. Dr. Lin has also
developed printer drivers and barcode readers. The integrity of these devices are of importance
in medicine because of the life critical decisions which are made on the basis of printed output.
Dr. Lin's abilities have been recognized by numerous awards in both his native country (China)
and in the U.S., He holds two patents for medical instrumentation. Dr. Lin's familiarity with C
and C++ comes from his work on a variety of operating systems, microprocessors, and compilers.
His knowledge of potential problems and pitfalls comes from the extensive testing required for
his software and devices in the medical field.

E-5 NUREG/CR-6463

10 Kamran Ossia

Task 3 Reviewer for C and C++

Ph.D. Electrical Engineering, University of Toronto, 1989
M.A.Sc. Electrical Engineering, University of Toronto, 1983
B.Sc. Electrical Engineering, Arya-Mehr (currently Sharif) University of Technology, Tehran, 1979

Kamran Ossia has extensive experience in software development for scientific and nuclear
apphcations. For his Ph.D. dissertation he developed a Matlab package for digital control system
design and analysis. From 1989 to 1995 he was with Atomic Energy of Canada as control system
designer, safety system analyst, and senior design engineer where took part in design and
verification of reactor shutdown system software, control room user interface design, feasibility
study of multiplexing signals inside the reactor building, analysis of nuclear reactor shutdown
systems, updating of nuclear reactor simulation programs, design of a reactor regulating system
on a distributed control system, and optimization of the flux detector layout for nuclear reactors.
Dr. Ossia has coUaborated in pubhcations on stability analysis and control of mechanical systems,
including missiles, rotating beams, gyros and columns.

11 Jeremy Pollard

Task 3 Reviewer for PLC Ladder Logic and IEC 1131 Sequential Function Charts

Jeremy Pollard is the author of a monthly newsletter on PLC prograrnming, and has been
responsible for the teaching of more than 1000 individuals on Allen Bradley equipment. He
established a large Allen Bradley training center in Toronto for that leading manufacturer of
controUers. He has assisted other organizations such as Flexis and TopDOC in developing PC-
based PLC control systems, and developed the control algorithms and supervised implementation
of a control system at Corning Glass Works. In addition to his instruction and consulting on
behalf of AUen Bradley, Mr. Pollard has initiated PLC training at a local college which resulted
in a significant increase in student attendance and revenue. Mr. Pollard publishes regularly in
Control Engineering magazine, and has published in other trade journals as well.

NUREG/CR-6463 E-6

12 Bo Sanden

Task 3 Reviewer for Ada

Ph.D., Computer Science, Royal Institute of Technology, Stockholm, 1978
M.S and B.S., Engineering Physics (combined), Lund Institute of Technology, Sweden, 1970

Dr. Sanden is an Associate Professor, ISSE Department, George Mason University. His Research
areas are in concurrency, use of Ada, course work and thesis direction in Ada, real time software
design, program design, compiler design, software engineering. Prior to entering University
faculty positions, he was technical project manager of a distributed transaction processing system.
This high integrity system included transaction scheduling, recovery, restart mechanisms
constructed by Dr. Sanden. In other language work Dr. Sanden was analyst, designer, and
assembly programming consultant on a high performance JSP compUer. Dr. Sanden's recognition
in software development includes being appointed to develop the curriculum for the newly
established Masters program in Software Systems Engineering at George Mason University. He
is the author of 23 referred papers and books. One of these books on Ada is now being used as
a text at GMU and many other universities. He has authored 4 papers other refereed publications
on Ada. His dissertation research was on restarting of real time systems

13 Eltefaat Shokri

Task 3 Ada and C/C++ Reviewer

Ph.D Electrical & Computer Engineering, University of California, Irvine, 1993
M.S. Computer Science, Sharif University of Technology, Tehran, 1983
B.S. (cum laude) in Computer Science, Meshad University, Meshad (Iran), 1980

Eltefaat Shokri has expertise in distributed object-oriented real time systems. Prior to performing
his dissertation research in this area, Dr. Shokri was a lecturer in computer languages at Meshad
University. While engaged in post-doctoral research at the University of California, Irvine, he
developed DREAM, a real-time, object-oriented kernel for fault tolerant distributed systems in
C and C++. Dr. Shokri is now developing a library of reusable software components for
distributed systems implemented in Ada-95 for the U.S. Air Force Rome Laboratory, and is also
developing a library to support adaptive fault tolerance for extended space missions for
NASA/JPL.

E-7 NUREG/CR-6463

14 Arthur Sorkin

Ph.D., Computer Science, University of California Los Angeles, 1977
Ph.D., Computer Science, University of California San Diego, 1971

Task 3 C/C++, Pascal, and PL/M reviewer

Dr. Arthur Sorkin has extensive experience in writing compilers and instruction in multiple
computer languages. He was the Pascal compiler manager at Gould and author of language
reference manual. He was Project manager, PLM/S86 cross compilation system for IBM 370s,
and designed and implemented the syntax and semantic checker and error recovery routines for
that compiler. He managed the compiler and utility group for the Vitesse mini-supercomputer
company, and was responsible for porting assembler, loader, and debugger to AIX on IBM 370
mainframes. Dr. Sorkin was recipient of an IBM Doctoral fellowship and was appointed Visiting
Associate Professor, U.C. Davis; joint appointment with Lawrence Livermore National
Laboratory. Dr. Sorkin's work in high integrity systems includes performed research in network
computer security at Lawrence Livermore. He also automated portions of a clinical laboratory
automation system, and developed Antisubmarine warfare software. He is the author of 12
refereed publications.

15 Ann Tai

Ph.D., Computer Science, University of California, Los Angeles, 1992
M.S., Computer Science, University of California, Los Angeles, 1986
B.S., Mathematics/Computer Science, University of California, Los Angeles, 1984

Task 2 Subject Matter Expert for C/C++

Dr. Tai has experience prograrnming in real time systems for C. In addition, she has performed
research in verification and validation and modeling for dependable systems. Dr. Tai participated
in the NUREG CR 6113 preliminary language study which involved analyzing Ada, C, C++, and
PL/M and developing performance benchmarks. Her other work includes reliability modeling,
performabiUty modeling (the integration of reliability, fault tolerance, and performance), and has
developed high integrity software in C under SoHaR's SBIR contract with the U.S. Department
of Energy for hierarchical distributed fault tolerant reactor control. Dr. Tai also developed of a
methodology for verification of critical software based on the integration of functional testing,
structural testing, and fault trees. Implemented tool written in Pascal. She participated in earlier
NRC sponsored work on Development of guidelines for development and licensing of software
used in Class IE reactor safety systems. Dr. Tai previously employed at JPL where she
programmed and analyzed the Realtime Weather Processor. She was also on the Computer
Science Faculty of the University of Texas at Dallas for one year.

NUREG/CR-6463 E-8

16 K.S. Tso

Task 3 Review for Ada

Ph.D. Computer Science, University of California, Los Angeles, March 1987,
M.S. Electronic Engineering. Philips International Institute, the Netherlands, June 1981,
B.S. Electronics The Chinese University of Hong Kong, June 1979,

i

Dr. Tso has more than 16 years' experience prograrnming real time and high integrity software
in C, Ada and Assembly. He is currently working on two high integrity R&D projects: a fault
tolerant robotic control system which wiU have a recovery time of less than 40 msec. The initial
application of the controller will be a spaceborne inspection system which continuously scans the
outside of a large spacecraft for meteorite and other damage. The second project is the
development of Ada fault tolerant software components. This contract was awarded in the
competitive Small Business Innovative Research program. Dr. Tso successfully developed
reusable software components which could be integrated on a network of UNIX workstations to
create a fault tolerant radar processing application. Continued work including fault injection
testing, validation, and documentation is now in progress under a Phase II SBIR contract. Dr.
Tso has developed extensive language expertise through earlier projects with SoHaR in which he
created parsers for the C and Ada prograrnming languages. These parsers were the bases of tools
used to create conditional tables, which serve as test specifications for high integrity software, and
for the analysis of Ada source code to analyze metrics such as Halstead, McCabe, and modified
metrics to account for the real-time multitasking properties of Ada (this work was done jointly
with M. Hecht). In earlier work on fault tolerance, Dr. Tso developed the DEDLX test bed which
was used for evaluation of multiversion software fault tolerance. MVS fault tolerance includes
the development of the same application using diverse languages but a single specification. Prior
to engaging in research on fault tolerance, Dr. Tso performed research in networking, and worked
as an engineer at an electronics firm in Hong Kong.

E-9 NUREG/CR-6463

17 Douglas Wendelboe

Task 2 Subject Matter Expert for PL/M

B.S., Electrical Engineering, Pennsylvania State University, 1972

Douglas Wendelboe is active in the design of microprocessor-based products and instrumentation.
He has worked on all major Intel microcontroUers and microprocessors, and has also developed
systems on the Motorola 68HC05 and 68HC11 families. He has developed software in PL/M,
C, C++, and Assembler. Significant real-time control software projects include medical pacing
systems analyzers, in-circuit emulators, meat packing weighing systems, injection mold
temperature controllers, blood analyzers, mine shovel weighing and monitoring systems, vehicle
inventory systems, and immunology software cartridges. Mr. Wendelboe has also been involved
in hardware design and test system development. Prior to founding his own company in 1981,
Mr. Wendelboe was employed at Microchip Technology, Kroy Inc., IBM, Honeywell, and Unisys.

NUREG/CR-6463 E-10

NRC FORM 335 ' U.S. NUCLEAR REGULATORY COMMISSION
12-69}
NRCM1102,
"°>.3202 BIBLIOGRAPHIC DATA SHEET

ISee instructions on the reverse)

2. TITLE AND SUBTITLE

Review Guidelines on Software Languages for Use in
Nuclear Power Plant Safety Systems

Final Report

5. AUTHOR (S)

H. Hecht, M. Hecht, S. Graff, W. Green, D. Lin,
S. Koch, A. Ta i , D. Wendelboe

1. REPORT NUMBER
(Assigned by NRC. Add Vol., Supp.. Rev.,
and Addendum Numbers, If any.)

NUREG/CR-6463

3. DATE REPORT PUBLISHED
MONTH 1 YEAR

June 1996
4. FIN OR GRANT NUMBER

W6208
6. TYPE OF REPORT

Technical
7. PER IOD COVER ED /Inclusive Datesl

8/26/94 t o 5/30/96
8. PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC. provide Division, Oflice or Region, U.S. Nuclear Regulatory Commission, and mailing address: it contractor, provide

name and mailing address.)

SoHaR Incorpora ted
8421 Wi l sh i re Boulevard, S u i t e 201
Beverly H i l l s , CA 90211

9. SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type "Same as above": it contractor, provide NRC Division. Oflice or Region. U.S. Nuclear Regulatory Commission.
and mailing address.)

Division of Systems Technology
Office of Nuclear Regulatory Research
U. S. Nuclear Regulatory Commission
Washinoton. D. C. 20555-0001

10. SUPPLEMENTARY NOTES

R. B r i l l , NRC Pro jec t Manager
11. ABSTRACT 1200 words or less)

Guidel ines for the programming and a u d i t i n g of sof tware w r i t t e n in high
l e v e l languages for s a f e t y systems a r e p r e s e n t e d . The g u i d e l i n e s a r e
de r ived from a framework of i s s u e s s i g n i f i c a n t t o sof tware s a f e ty which
was ga thered from r e l e v a n t s t anda rds and r e s e a r c h l i t e r a t u r e . Language-
s p e c i f i c a d a p t a t i o n s of t h e s e g u i d e l i n e s a r e provided for t h e fo l lowing
high l e v e l l anguages : Ada, C/C++, Programmable Logic C o n t r o l l e r (PLC)
Ladder Logic , I n t e r n a t i o n a l E l e c t r o t e c h n i c a l Commission (IEC) Standard
1131-3 Sequen t i a l Funct ion C h a r t s , P a s c a l , and PL/M. Appendices t o t h e
r e p o r t i nc lude a t a b u l a r summary of t h e g u i d e l i n e s and a d d i t i o n a l
informat ion on s e l e c t e d l anguages .

12. KEY WORDS/DESCR'.PTORS (List words or phrases that will assist researchers in locating the report. 1 13. AVAILABILITY STATEMENT

Unlimited
INSECURITY CLASSIFICATION

(This Page)

Unc la s s i f i ed
lThis Report)

Unc las s i f i ed
15. NUMBER OF PAGES

16. PRICE

NHCtORM3J'j C89 I

Printed
on recycled

paper

Federal Recycling Program

