PHOBOS experiment at RHIC

PDF Version Also Available for Download.

Description

The study of relativistic heavy nuclei collisions at RHIC opens a new area of physics--the physics of hadronic matter at very high energy densities. The conditions necessary to create a new state of matter, never before seen in the laboratory, may be reached. It gives a chance to study the quantum chromodynamics predictions of the phase transition from hadronic matter to a quark-gluon plasma. The PHOBOS experiment will investigate almost all predicted signals of the QGP formation. General event properties (angular distribution of charged particles, total multiplicity) will be combined with detailed information on particles emitted in the central rapidity ... continued below

Physical Description

10 p.

Creation Information

Wozniak, K. & Collaboration, PHOBOS December 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The study of relativistic heavy nuclei collisions at RHIC opens a new area of physics--the physics of hadronic matter at very high energy densities. The conditions necessary to create a new state of matter, never before seen in the laboratory, may be reached. It gives a chance to study the quantum chromodynamics predictions of the phase transition from hadronic matter to a quark-gluon plasma. The PHOBOS experiment will investigate almost all predicted signals of the QGP formation. General event properties (angular distribution of charged particles, total multiplicity) will be combined with detailed information on particles emitted in the central rapidity region (particle ratios {pi}/K/p, p{sub t} spectra, correlations, {phi} meson properties). Similar studies will be done also in the other three experiments at RHIC, but there are many important observables for which PHOBOS will provide unique information. The multiplicity detector covers almost a full phase space, recording all charged particles with pseudorapidities {vert_bar}{eta}{vert_bar} {le} 5.4. In the PHOBOS spectrometer particles emitted in the central rapidity region will be measured and identified starting from lowest transverse momenta (20 MeV/c for pions). The high rate unbiased trigger gives a chance to see unpredicted phenomena and enables the study of very rare processes that require large statistics. The measurements of the converting photons planned for some runs will be used to study the {pi}{sup 0}/({pi}{sup +} + {pi}{sup {minus}}) ratio in selected phase space intervals.

Physical Description

10 p.

Notes

INIS; OSTI as DE96008459

Source

  • 25. international symposium on multiparticle dynamics, Stara Lesna (Slovakia), 12-16 Sep 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96008459
  • Report No.: ANL/PHY/CP--89441
  • Report No.: CONF-9509307--1
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 219386
  • Archival Resource Key: ark:/67531/metadc664658

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 1, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • June 24, 2016, 1:27 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Wozniak, K. & Collaboration, PHOBOS. PHOBOS experiment at RHIC, article, December 1, 1995; Illinois. (digital.library.unt.edu/ark:/67531/metadc664658/: accessed November 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.