SANDIA REPORT

SAND96-0842 » UC-505
Unlimited Release
Printed April 1996

A User’s Guide to SABLE 2.0: The Sandia
Automated Boolean Logic Evaluation
Software

K. M. Hays, G. D. Wyss, S. L. Daniel

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy

under Contract DE-AC04-94AL8S!

Approved for public release; distribution |s unlimited.

SF2800Q(8-81)

DISTRIBUTION OF THIS DOCUMENT g UNLIMTRD A
;’J\.

Issued by Sandla National Laboratones operated for the United States
Department of Energy by Sandia: Corporatlon

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency, thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, ' makes any warranty,
express or 1mphed or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any mfomatxon, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rlghts Reference herein to any specific commercial product,
process, or service by:trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency t thereof or any of their contractors.

Printed in the Umted States of Amenca This report has been reproduced
directly from the best ava.llable copy

Available to DOE and DOE contractors from
Office of Sclentxﬁc and ’Ibchmca] Informahon
PO Box 62
Oak Radge TN 37831

Prices avmlable from (615) 576 8401, FTS 626- 8401

Available to the pubhc from
National Techni¢al Information Semce
US Department of Commerce -
5285 Port Royal Rd
Spnngﬁeld VA 22161

NTIS pnce codes
Printed copy: A04 -
Microfiche copy: AO1

DIS AIMER

‘Portions of this:document-may: be: iliegibie
in electronic image products. :Images:-are
‘produced -fromthe best:available original
‘document.

SAND96-0842 Distribution
Unlimited Release Category UC-505
Printed April, 1996

A User’s Guide to SABLE 2.0:
The Sandia Automated Boolean Logic Evaluation Software

K.M. Hays, G.D. Wyss, and S.L. Daniel
Risk Assessment and Systems Modeling Department
Sandia National Laboratories
Albuquerque, NM 87185

‘Abstract

This document is a reference guide for the Sandia Automated Boolean Logic Evaluation
software (SABLE) version 2.0 developed at Sandia National Laboratories. SABLE 2.0
is designed to solve and quantify fault trees on IBM - compatible personal computers
using the Microsoft Windows operating environment. SABLE 2.0 consists of a
Windows user interface combined with a fault tree solution engine that is derived from
the well - known SETS fault tree analysis code. This manual explains the fundamentals
of solving fault trees and shows how to use the Windows SABLE 2.0 interface to
specify a problem, solve the problem, and view the output.

Acknowledgments

The authors wish to recognize and thank Mike Baird (formerly of Sandia National
Laboratories) for his work to develop the SABLE Windows user interface and for his
efforts to document, modernize and otherwise upgrade the original SETS software into
the more useable SABLE FORTRAN analysis engine. We would also like to thank
Desmond Stack of Los Alamos National Laboratories, as well as Marty Fuentes and
Todd Jones of Sandia for their technical contributions in testing and providing
suggestions for improvements to the software. We would also like to thank Dave
Carlson and Kevin Maloney of Sandia’s Assessment Technologies Department, and
Allen Camp of Sandia’s Risk Assessment and Systems Modeling Department for their
technical and managerial support in this project. -

Much of this document is derived from material that was developed for a two-day
training course on the SEATREE and SABLE software. We appreciate the many
comments and suggestions from course participants that helped improve both the course
and this manual. Finally, we would like to thank Donnie Whitehead and Kevin
Maloney for their review of this manuscript in preparation for publication.

ii

DNF
ISTS
LANL
LHS
MDI
SABLE
SIPRA
SNL
TEMAC3
UNM

Acronyms

Disjunctive Normal Form

Independent SubTreeS

Los Alamos National Laboratory

Latin Hypercube Sampling

Multiple Document Interface

Sandia Automated Boolean Logic Evaluation Software
Sandia Integrated Probabilistic Risk Assessment
Sandia National Laboratories

Top Event Matrix Analysis Code

University of New Mexico

Contents

1 INSTALLATION INSTRUCTIONS - ' 1
1.1 MACHINE REQUIREMENTS..........oeevoreneusseesesesseessssassssmases basssssssssesesesssasenesasenssssasusesssesenssasesssesesesesassasessases 1
1.2 INSTALLING SABLE 2.0 ivesrasessssssuseeisssntieseanraeesesateserarttetesabare s nratn e e st se e naa et ae ants e senenrnesessnsasesesre 1
1.3 TROUBLE SHOOTING oot e areoceeos O OO 2
2 FAULT TREE ANALYSIS OVERVIEW... 3
2.1 DEVELOPING A FAULT TREE ,

2.2 DEVELOPING QUANTIFICATION INFORMATION

2.3 SOLVING A FAULT TREE.....c0cccerciteesrrseerecssrenessssnseesasesesssossnsersessasasssssnsesesssssesssersnsssssssanesssssesesesssosamenessssanes

2.5 QUANTIFICATION OF CUT SETS

2.6 ADVANCED FAULT TREE ANALYSIS TOPICS......cccoevrcssriinrirsresaresssseiossssierassrarassessaseressaresssesssasssasessesssesssees 6
3 OUTLINE OF THE SABLE INTERFACE ; 8
3.1 WHAT SABLE DOES.....cooiiiiriniiereirisiisiistsesenenssssssisis e nesesebesssenestststsssssosasssssst st sseaeacses sesssesenasssssnsacstss 8
3.2 ANALYSIS SUMMARY SCREEN......ceeocerrueeruaerssssarsescssssressnrressssenssessnsssssssasassassssssssssssessessens sonsesssssasessnssrnses 8
3.3 THE SOLVE BUTTON.........coverurrivienrereonsenerornsssssessenensnsssionsanns OOaCOBEa00A000ACOEOAON0a0C00AONAICAGACACO000GA00000 9
3.4 FILE HANDLING....cococoiiriitrticetieisessnenenssessssssnienssasssssssssescosatstsssassesincssosassnsnsasssssasasesessaesessssosssessenstssesses 10
4 FAULT TREES : 12
4.1 TYPES OF FILES THAT CAN CONTAIN FAULT TREEScociiiitinrticcenneninniinteeseneestsnsesesesenesesanossasasasens 12
4.2 FAULT TREE SELECTION SCREENccceceerseressasaeasesssessserersnasesssseronsassossssssssessesssssss sosssesses srassasonsasessnssnse 12
5 QUANTIFICATION VALUES : 15
5.1 TYPES OF FILES THAT CAN CONTAIN QUANTIFICATION INFORMATION..‘............, 15
5.2 VALUE BLOCK SELECTION SCREENcoceivremeiiecrassesessmessessessassessasssessssstsscasssssssssesserssssasssssssossossessssssans 15
5.3 THE SABLE VALUE BLOCK EDITOR.......c.coieuiiriinnniiiniistineninascsestssssneenssesssnsnesessssessssasssesssnnonsnssones 17

5.3.1 The Editing Box................ R ————— feeeeertet et a et e st st et et e e e neete st e s 18

5.3.2 Inserting Event Names QA VAIUEScouveceeccionerercirieceiiinesririeiecasisseeessatessssssasaesssssaessssesessens 18

5.3.3 Changing the Name or Value of an EXiSting EVERLc..cooomummenenescncncnieenesesisaseesesessssesesssens 19

5.3.4 Deleting EVERLS..........ccouueeienepererieeieslenssossseest et entesnesseastestestsasasseessantsasasaassesssesaassssss sesnassesssesassnsnen 19

5.3.5 COPYING AN EVEIL VAIUE ..ottt ser et sevs st sase st nassssssssesetestesnasassnensns 20

5.3.6 Pasting an EVent VAlUe..................ccoirccrromrinneciistiete e sis st sesesestsesesassnsasessnsnsnsnss 20

5.3.7 Finding an Event Name or VAIUEerceecirioneceereieeeeteseeeserssaesestesesessnsssasmssesnasasessnses 20

5.3.8 DatA FOFMAL TYPE ..ottt eiersetseeeeeisaase st esse e sesara e saseme e s s sassessesntssasaansasessresessarasnsanes 21

5.3.9 Saving the Value Block and Returning 10 SABLE ...t 21
6 HOW FAULT TREES ARE SOLVED 22
6.1 THEORY OF FAULT TREE SOLUTION........ooceccrrsverrrsrreirene iR R e e R A 22
6.2 FORM STEM AND INDEPENDENT SUBTREES......c.ccceeceetrereusreranenesessassssasesascsssssnssesssssssarsasasesessssssssssnasesees 23
6.3 COALESCE GATESccevurriririirinsessininirinssssssasssssssmsssssesssssssssssssasssassssssssssssssesssesssssssssasssnsesssssssssarssases 24
6.4 REMOVE SINGLE INPUT GATES 24
6.5 TRUNCATION........coouriremcriemnninsssassnsnnnensens PO T PP P T e T T TP OO X T 24
6.6 TOP-DOWN VERSUS BOTTOM-UP SOLUTIONccccceriutmemeersisesssesonesssisessnssessnsasesesssssansassasessnssessssaresasssn 24
7 DATA PROCESSING OPTIONS 26
7.1 BLOCK PRINTOUT OPTIONSuuuteciiiiirrieesscseressnsnesssossssissansassssonssesssenssossntasesssssssssesasssassssssnssssessasesssssossaes 26
7.2 SUBSTITUTION OF INDEPENDENT SUBTREES .. 27
7.3 PRINT OR WRITE UNQUANTIFIED CUT SETS IR T —— 27

iv

7.4 PLACE CUT SET RESULTS IN THEIR OWN BLOCKccceverreneneneraenes T —————— 27

7.5 PRINT QUANTIFIED CUT SETS ...cveueeserterareseeniesestensesesssosessesassersvasssessessonsessassssassssnessstesnossersessassossesessansn 28
7.6 SABLE OUTPUT FILES....ccocecstrerrererereesreesssessessssissrasssssssssssesssossessssesssassssssassssssesssessssssse sessssssnsesssesasssnes 29
8 VIEWING SABLE OUTPUT WITH THE VIEW UTILITY 30
8.1 PURPOSE OF THE VIEW UTILITYccoccveerueerurreeranessseesssusserssessssssssssssssasssssesssessssnsesssessssansssssssasnstssssns soeneas 30
8.2 MANEUVERING IN A MULTIPLE - DOCUMENT INTERFACEcoc0ccorrnerieiessneesavessrsnessnsasssssesornessssasosssssassness 31
8.3 OPENING FILES......uceoverteerenreensrrersesssnessessenessessssssessssssssesasessssssessssassessssessssssasssnassasssesssesansasssnensnesssossseses 31
8.4 CLOSING FILESccuuviiiieineeiteecivessscressseessseesssteesssessnssesssssssssensnsesssscasssassssasssssssssnerssaasssssnsessstssssns sesenonse 32
8.5 PRINTING....cctiirrieeririresrnerereeeessesssrsssantesssasssnsessssessssossanessrssssssesnsnsssssesssasssssasssssosssesessassssssasossasssssnsessssnes 32
8.6 THE EDIT MENU....coocciereriererererisnerssssresesssssesessstsasasaresassssntscsssassvessssnsssssssasssorsssssssssntassessssnnnsssasassnsssssres 32
9 ADDITIONAL TOPICS. 34
9.1 LEGAL SABLE NAMESccocceisuiisieressseessseressssasssnssesesssssssssessssesssasasesssessessssessssssssssssssesssnsesssesssesssesasses 34
9.2 FUNCTION OF OK AND CANCELceerteerteitierercnersseresesssessassensssnesssessssosssssssssssessessessstssssesssnessnsassensasasasens 34
9.3 KEYBOARD AND MOUSE OPERATIONSccovueerererererseeseessessssssesssasssessnersasssasesarevasesasasassessasssassasssnsssasase 34
Q.4 GETTING HELPcooceeeeeeetieereeeietesteesesesesstsssmsessesssssessssessssssssssesessesssnsserensasssasssnssssssosnsnseessnsossssssnanes 34
9.5 LEAVING SUGGESTIONScoreverevereuesssereressnsssnessasssaessaossasssssssasssssssesssesssesssessasssnsosssssssssssssssessnssssessnssanessn 35
APPENDIX A: A SAMPLE PROBLEM 36
A.] GRAPHING THE FAULT TREEuoieireereeereenrisrereressessseesssessssssessassssessssessesssesssssansonsaonsssssssssesssensssesssssnsen 36
A.2 DEVELOPING QUANTIFICATION INFORMATION.......ccuoirierresnrssassessessnesssssessassassasssessssssassessassasssasssesssasssses 41
A.3 CREATING AN ANALYSIS INSIDE SABLE.......coorriiitreimiieneeesieseseeesssesssessssnessssnsssnsssssnesssssaesnsesesasss 41
A4 SABLE OUTPUT occvetierierrereniesreessssssesssesssenssossesssesassrssssssssssesasessnsesssesssssasasasasssssssssssesssssonsssnesansessossnen 46
APPENDIX B: SABLE 2.0 PROBLEM REPORTING FORM 59
APPENDIX C: INDEX 61

A USER’S GUIDE TO SABLE 2.0:
The Sandia Automated Boolean Logic Evaluation Software

1 Installation Instructions

1.1 Machine Requirements

To install SABLE 2.0, verify that your computer meets the following minimum
hardware and software requirements:

A 386 IBM - compatible PC or higher.

387 or higher math co-processor (the WEITEK math co-processor is not an
acceptable substitute).

8 MB of RAM, preferably 12 MB.

Approximately 1 MB of free hard drive space.

DOS Version 5.0 or later.

Microsoft Windows 3.1 or higher.

The installation program will ensure that your computer meets the above requirements
before installing SABLE. NOTE: Although only 1 MB of hard drive space is required
Jor the SABLE software, remember that SABLE generates large output files. To run
SABLE you will need more than 1 MB of free hard drive space.

1.2 Installing SABLE 2.0

To install SABLE:

Run Windows.
Place the SABLE 2.0 Installation Disk #1 in Drive A or Drive B.
Choose the “Run” command from the Program Manager file menu. Type

a:\setup
or
b:\setup

in the Command line edit box and choose “OK”. This starts the SABLE 2.0
setup program.

e You will be asked where you want to install SABLE. By default, all programs in
Sandia’s risk assessment code suite will be installed in “C:\SIPRA”. You may
change this directory; however, you must install each of Sandia’s risk assessment
codes in the same directory.

o After installation, you must modify your AUTOEXEC.BAT file to include the
following line:

SET SIPRA_PGM=C:\SIPRA
where “C:\SIPRA” is the directory in which SABLE was installed.
e Reboot your computer.

NOTE: Do not redistribute the SABLE Installation software without written permission
Jfrom Department 6412; these secondary users would not be registered users and could
not be contacted for upgrades.

1.3 Trouble Shooting

In case of problems, please contact:

Risk Assessment and Systems Modeling Department
Organization 6412, MS 0747

PO Box 5800

Sandia National Laboratories

Albuquerque, NM 87185

Phone: (505) 844 - 0056
Fax: (505) 844 - 3321

Appendix B contains a “SABLE Problem Repofting Form” that can be filled out and
sent via mail or fax to the Risk Assessment and Systems Modeling Department.

2 Fault Tree Analysis Overview

The SABLE 2.0 Fault Tree Analysis package is but one part of a larger suite of codes
developed by Sandia National Laboratories in conjunction with Los Alamos National
Laboratory and the University of New Mexico for use by risk analysts. The process of
performing a fault tree analysis consists of several steps, and this brief tutorial explains
how the various Sandia software products work together to form a complete fault tree
risk assessment package. Figure 2-1 shows how the various codes in the risk
assessment package work together.

SANET
SEATree (Develop Sequence
(Develop Fauit Event Tree Logic)
Tree) + = =
v SEQUENCE g oma-Pi
SABLE (Sequence Cut Sets ™ of Cut Sets).
(Solve & Quan. - Optional)
Faulit Tree) *
LHS / LHSPost TEMAC3
(Enter & Sample {Uncertainty &
Primary Event Data) Importance Calc's)
y
SETAC

{Solve Accident
Progression
Event Trees)

Figure 2-1: Sandia’s Risk Analysis Code Suite

2.1 Developing a Fault Tree

The fault tree analysis begins with the construction of one or more fault trees to
represent the system(s) being modeled. Sandia’s SEATREE software provides a
friendly Windows-based facility for building and graphing fault trees. Fault tree
construction occurs in a collapsible list-based view (not unlike the familiar collapsible
directory listing found in the Windows “File Manager” application). This view allows
a user to enter new events and subtrees, cut and paste subtrees and tree structures, and
import fault tree modules from libraries of common components. Users can then
switch to an on-screen galley page layout system to develop publication-ready fault tree

graphics. SEATREE exports fault tree logic in ASCII-formatted files that are fully
compatible with the SABLE fault tree analysis engine.

2.2 Developing Quantification Information

If the fault tree analysis is to be quantitative, probability or frequency data must be
entered for each primary event in the fault tree. Sandia’s software code suite currently
supports three different methods for entering this information.

SEATREE. The SEATREE package (described above for fault tree
development) has a data storage mode which allows a user to enter quantification
information in a spreadsheet-like format. SEATREE features warn the user of missing
values. SEATREE exports the quantification information in ASCII-formatted files that
are fully compatible with the SABLE fault tree analysis engine.

LHS. If an integrated fault tree uncertainty analysis is to be performed, it is
important that any point estimate quantification information used by SABLE is
consistent with the sampled uncertainty data generated by LHS for use in the TEMAC3
cut set importance analysis code. SABLE is able to read the point estimate block in the
LHS output file and convert it to a traditional SABLE value block internally.

Text Editor. The format of the quantification data required by SABLE is very
simple. Thus, a user could use any ASCII text editor to enter the quantification for a

small problem, or to make minor modifications to specific values in the file exported
by SEATREE for a larger problem.

2.3 Solving a Fault Tree

The SABLE software described in this manual is used to solve and quantify a fault tree.
SABLE is capable of solving multiple fault trees simultaneously to generate minimal
cut sets and global independent subtrees. SABLE can perform point estimate cut set
quantification using the rare event approximation, and can truncate cut sets that fall
below a user-defined probabilistic cut-off level. The cut sets generated by SABLE can
be imported directly into the cut set importance analysis code TEMAC3.

2.4 Fault Tree Importance Analysis

Once a fault tree has been solved and minimal cut sets have been obtained, it is
important to extract as much useful information as possible from these results.
Customers typically want answers to questions such as:

Which are the most likely combinations of events that can lead to system failure?

e To which primary events is the top event frequency most sensitive?
Are there some components that do not make a significant contribution to system
reliability?

¢ Which components should I concentrate on improving to achieve the greatest
reliability improvement?
Which events are associated with the greatest fraction of the total failure frequency?
How sure are we that our results are “close” to the true answer (or, what is the
uncertainty in our answer)?

These questions are answered by a cut set uncertainty and sensitivity analysis. These
functions are performed by Sandia’s LHS code (to sample statistical distributions) and
TEMACS3 (developed by Los Alamos, Sandia, and the University of New Mexico to
calculate the cut set and event sensitivity and uncertainty results). TEMAC3 can read
the cut sets directly from SABLE as well as the same LHS output file that may have
been input to SABLE. TEMACS3 can generate output that is suitable for direct
inclusion in event tree analyses as performed by Sandia’s SETAC package.

2.5 Quantification of Cut Sets

Each cut set generated by a fault tree analysis consists of a group of primary events that
is joined by the logical AND operator. If these primary events are independent of one
another, the probability of the cut set can be computed as the product of the individual
event probabilities. There is no approximation involved in this calculation aside from
any assumptions that were used in generating the individual event probabilities.
However, special note must be taken in the development of the fault tree to ensure that
the assumption of independence is actually true for all primary events.

A cut set expression is a group of cut sets that is joined together by the logical OR
operator. To compute the exact probability that results from an OR operation, one
must apply the following formula:

P(A or B) = P(A) + P(B) - P(A gnd B).

If A and B are both “rare events” (i.e., they have small probabilities), then the final
cross term P(A gnd B) becomes very small. If we neglect this term, we obtain the
“rare event approximation,” which can be stated as:

P(A gr B)=P(A) + P(B).

A related formula known as the “minimum cut set upper bound,” which neglects
similar terms, can be stated as:

PA or B)= 1-{ [1-PA)] * [1-P@®)] }.

This formula is essentially the rare event approximation computed in complement
space. It is esoterically more pleasing than the rare event approximation because it can
not produce a result that is greater than unity, but it is not really more accurate. Both
approximation techniques break down when there are probabilities greater than
approximately 0.1, especially if the fault tree results contain a significant number of cut
sets with only one or two events each. Most fault tree analysis software, including
SABLE and TEMAC3, implement one of these approximations due to the large amount
of computational effort and computer memory required to identify and properly account
for the cross product terms in the exact solution. Note that each of these
approximations will overpredict the actual probability of the cut set expression. Thus,
while they yield results that are conservative, one has no idea of exactly how
conservative unless an exact quantification of the cut set expression can be achieved.

In certain classes of problems such as lethality studies and success state studies (where
it is expected that the probabilities in the cut sets are large), these approximations can
break down and yield highly erroneous results. The Sigma Pi code has been
incorporated into the Sandia code suite to allow an analyst to compute the exact
probability of a top event from a cut set expression, should that computation be
required for a particular analysis. It is also instructive to run Sigma Pi on routine cut
set expressions in order to determine exactly how conservative the results obtained
from other codes may be.

2.6 Advanced Fault Tree Analysis Topics

Fault tree analysis is a powerful tool by itself, but it becomes even more powerful
when it is used in conjunction with event tree analysis techniques. This is typically
done in two ways: through the use of sequence event trees, and by feeding quantitative
fault tree analysis results into a follow-on event tree analysis.

Developing Sequence Event Trees. In large fault tree analyses it is often

difficult to build a single fault tree for the entire analysis because of the multiplicity of
ways that individual systems can interact. Many risk analysts find it easier to develop
one fault tree for each system and to use an event tree representation to model the
interactions between systems. These event trees can be constructed using Sandia’s
SANET event tree graphics software. In such a model, each event in the event tree
represents the success or failure of one system. Each path through the event tree is
called a sequence, and represents one possible combination of system successes and
failures that can occur in the analysis. The analyst examines each sequence to
determine whether it leads to a favorable or an unfavorable result. Each “unfavorable”
sequence is solved to determine which cut sets contribute to the unfavorable condition.

Solving Sequences. Typically there are several sequences in each event tree that
lead to unfavorable outcomes. In the interest of minimizing the amount of effort
required to find cut sets for these sequences, the following method has been developed.

1. Before sequence solution begins, solve all of the individual system fault trees
individually for cut sets.

2. For each sequence, use a logical AND operation to combine the cut sets for all of
the systems that are found to be in the “failed” state on the event tree path that
defines the sequence. Thus, the unfavorable sequence outcome is only achieved
when all of these systems fail.

3. Consider the systems that are found to be in the “successful” state on the event tree
path that defines the sequence. Since these systems are known to be successful (by
the definition of the sequence), we must assure that none of the cut sets for our
sequence will inadvertently imply that this system has failed. This is done by

" deleting any cut sets from the sequence that would make such an implication.

Solving sequences using the Sandia fault tree analysis software is a three part
process.

1. SEATREE and SABLE are used to develop and solve the initial system fault trees
for system cut sets.

2. SANET is used to develop the event trees that describe the interactions between the
systems (i.e., to develop the “sequence logic™).

3. The SEQUENCE code takes the cut sets from SABLE and the sequence logic from
SANET and performs the solution algorithm described above using the SABLE
analysis engine.

Using Fault Tree Results in an Event Tree Analysis. It is not unusual for a

question in an event tree analysis to ask, “Does system X work?” It makes sense to
find the probability for such an event using a fault tree model. To accomplish this one
would simply construct and solve the fault tree model “off-line” and transfer the result
into the event tree analysis using SANET. If a point estimate event tree analysis is
being performed and the systems are independent, one can simply quantify the fault
tree in SABLE and copy the single value into the SANET event tree model input. If
the event tree is being analyzed as part of an uncertainty analysis, one would perform
an uncertainty analysis on the fault tree results using LHS and TEMACS3 to obtain
uncertainty input for the event tree question. Sandia’s SETAC event tree analysis
software reads TEMACS3 output directly, so it is not necessary to manually transfer this
data into the event tree model.

3 Outline of the SABLE Interface

This overview of SABLE explains how SABLE is constructed, the purpose of the
Analysis Summary Screen, how the Solve button works, and explains various file
handling capabilities of SABLE.

3.1 What SABLE Does

SABLE is designed to provide a friendly facility for solving fault trees. It takes as its
input ASCII-formatted files that contain fault tree logic and quantification information
and processes those files to obtain cut set solutions. At the user’s option, these cut sets
can be quantified and printed in order of decreasing frequency.

SABLE consists of two major parts: the Windows user interface and the FORTRAN
analysis engine. The interface is designed to provide a friendly environment to specify
input files, fault trees and solution methods, values and quantification schemes, and
data processing and output options. The analysis engine provides a powerful tool to
solve and quantify fault trees and generate reports of the results. The interface writes
files containing SABLE user code which provide instructions for the SABLE
FORTRAN analysis engine to execute in solving the designated fault trees.

3.2 Analysis Summary Screen

The Analysis Summary Screen, shown in Figure 3-1, is the first screen which appears
when you invoke the SABLE interface.

SABLE Analysis Setup

File Help

Program Name |DEF-PROG i

Figure 3-1: The Analysis Summary Screen

This screen gives an overview of the currently selected options, which include the fault
trees and value blocks selected and all solution, quantification, and reporting options.
Options cannot be changed on this screen. You must press the Modify buttons to bring
up detail screens. The only changes that can be made on this screen are the program
and block names. You can use this screen to browse the summary information to
determine whether the currently selected options will cause SABLE to perform the fault
tree solution that you desire. When you are satisfied with the options that you have
selected, press the “Solve” button to cause SABLE to run the fault tree analysis. You
may then view the results by pressing the “View” button.

3.3 The Solve Button

The Solve button is located at the bottom of the Analysis Summary Screen. When then
Solve button is pressed, SABLE performs the following operations:

o SABLE checks the options and names specified by the user to assure that they are
complete and consistent.

e SABLE writes a “user code” file that contains instructions for the analysis engine.

¢ SABLE invokes the analysis engine and waits in the background for it to finish (the
analysis engine runs in a DOS window).

¢ SABLE checks for run-time errors in the analysis engine output.

If a run time error occurs, a diagnostic message is displayed. SABLE will tell you
where the results and/or error files can be found for viewing and printing.

3.4 File Handling

The following options are available through the File menu on the Analysis Setup
screen.

Starting a New Analysis. When you first enter SABLE, you are ready to start a
new analysis. If you have already selected options and wish to start over with a new
analysis, select “File | New” from the menu on the Analysis Setup screen. A
verification screen will appear; you may either continue with the existing analysis or
start a new one. '

Opening a Pre-existing Analysis. To open a pre-existing analysis, select “File |
Open” from the menu on the Analysis Setup screen. A standard Windows dialog box
will allow you to browse through drives, directories, and files until you select the file
you wish to open. Files containing a SABLE analysis usually have a *. PGM
extension.

Saving an Analysis. To save an existing analysis, select “File | Save” from the
menu on the Analysis Setup screen. If you have previously named the analysis, the file
will be saved automatically. If you have not previously named the analysis, a standard
Windows dialog box will allow you to specify the name of the analysis and its path.

If you wish to save an analysis under a different name, select “File | Save As”
from the menu on the Analysis Setup screen. A standard Windows dialog box will
allow you to specify the name of the analysis and its path.

Viewing a File. To view a file, either select “File | View” from the menu on
the Analysis Setup screen or press the “View” button on the bottom of the Analysis
Setup screen. Both actions will activate a standard Windows dialog box, allowing you
to select a file for viewing.

10

Setting the Default Directory. The default directory is the starting location for

file searches and specifications in the standard Windows dialog box. To set the default
working directory, select “File | Default Directory” from the menu on the summary
screen. A screen will appear which allows you to scroll through the directories and
disk drives on your machine. Double-click on the desired directory and press “OK” to
specify the new default directory.

11

4 Fault Trees

This section describes the various types of files that can contain fault trees and how to
specify fault trees by invoking the Fault Tree Selection screen.

4.1 Types of Files that can Contain Fault Trees

There are three types of files that can contain fault trees. They can be found in any
combination.

SEATREE Files. These files usually end with a file extension of *.SET. Only
one fault tree exists in each file. You can select fault trees from multiple files to be
solved in a single SABLE run.

ASCII Files. These files are created manually using an ASCII text editor to
enter fault tree logic. There may be many fault trees in each file, and trees from
multiple files may be solved in a single SABLE run.

SABLE Block Files. These binary files usually have a file extension of * . BLK
or *.SBF. They may contain many fault trees in each file. SABLE can only use one
block file in each run. If you select fault trees to be solved from a SABLE block file,
SABLE will not allow you specify a different block file name on the “Data Processing
Options” screen. '

4.2 Fault Tree Selection Screen

You must tell SABLE where to find the fault trees to solve. From the Analysis Setup
screen, go to the area of the screen marked “Input Fault Trees” and press the

“Modify” button. This will bring up the Fault Tree Selection screen, shown in Figure
4-1.

12

SABLE Fault Tree Selection

Figure 4-1: The Fault Tree Selection Screen

This screen contains two columns. The column on the left contains the names of the
fault trees that have already been selected for analysis. Unless a name is deleted from
the column, SABLE will attempt to solve it. The column on the right contains the
names of all fault trees in the currently selected file. The buttons between the columns
allow you to either add fault trees to the solve list or delete fault trees from the solve
list.

Selecting a Fault Tree File. To select a fault tree file, press the “Tree(s)

Located In . . .” button above the right hand column. This will bring up a Windows
common dialog box for selecting an input file.

Adding Fault Trees to the List. Once you have selected a file, the names of the

fault trees in the file are listed in the column on the right. To select a tree to solve,
either double click the tree name, or select it and press the “Add” button. To add all
the trees in the file, press the “Add All” button. The name(s) of the selected tree(s)
will be placed in the column on the left.

Deleting Fault Trees from the List. To remove a fault tree from the solve list,

either double click the name in the column on the left, or select the name and press the
“Delete” button. To remove all fault trees from consideration, press the “Delete All”
button.

Seeing Fault Tree File Names. To see the name of the input file that contains a

specific fault tree, select the fault tree in the left hand column. The file name
corresponding to the selected tree appears below the column containing the list of
selected fault trees.

14

5 Quantification Values

This section describes the various types of files that contain quantification information,
how to include value blocks using the Value Block Selection screen, and how to create
and/or edit a value block using the SABLE Value Block Editor.

5.1 Types of Files that Can Contain Quantification Information

Four main file types can contain value block information. Value blocks can be in any
combination of files from the following forms.

SEATREE Files. These files have a file extension of *.EDT. They usually
contain only one value block per file. Value blocks from multiple SEATREE, ASCII,
and LHS files may be used in a single SABLE run.

ASCII Files. These files are created manually using an ASCII text editor to
enter quantification data. They may have many value blocks per file. Value blocks
from multiple SEATREE, ASCII, and LHS files may be used in a single SABLE run.

LHS Files. LHS files have only one value block per file. Value blocks from
multiple SEATREE, ASCII, and LHS files may be used in a single SABLE run.

SABLE Value Block Files. These binary files usually have an extension of
* VAL or *.SVF. They may contain multiple value blocks in each file. SABLE can
use only one value block file in each run. If you select value blocks from a SABLE
value block file, SABLE will not allow you to specify a different value block file name
on the “Data Processing Options” screen.

5.2 Value Block Selection Screen

For SABLE to quantify your analysis, you must specify one or more value blocks.
From the Analysis Setup screen, go to the area marked “Input Value Blocks” and press
the “Modify” button. This will bring up the Value Block Selection screen, shown in
Figure 5-1.

SABLE ¥alue Block Selection

Figure 5-1: The Value Block Selection Screen

This screen is similar to the Fault Tree Selection screen. The value blocks to be
processed are listed in the left column, and the value blocks in the currently selected
file are listed in the right column.

Selecting a Quantification Input File. To select a value block file, press the
“Block(s) Located In . . .” button above the right hand column. This will bring up a

Windows common dialog box for selecting an input file.

Adding Value Blocks to the List. Once you have selected a file, the names of

the value blocks in the file are listed in the column on the right. To select a value
block for use in cut set quantification, either double click the value block name, or
highlight (select) it and press the “Add” button. To add all the blocks in the file, press
the “Add All” button. The name(s) of the selected block(s) will be placed in the
column on the left.

Deleting Value Blocks from the List. To remove a value block from the input

list, either double click the name in the column on the left or select the name and press
the “Delete” button. To remove all blocks from consideration, press the “Delete All”
button.

16

Seeing Value Block File Names. To see the input file that contains a specific

value block, select the block in the left hand column. The file name corresponding to
the selected value block appears below the column containing the list of selected
blocks.

5.3 The SABLE Value Block Editor

The SABLE Value Block Editor is accessed from the "Create" and "Edit" buttons on
the Value Block Selection Screen.

The "Create" button is clicked to begin the process of building a new value block. A
screen will appear for you to provide a value block name that follows the SABLE
naming conventions. Pressing “OK” will bring up the SABLE Value Block Editor
Screen, shown in Figure 5-2; a "Cancel" button is provided if you wish to abort the
creation of a new value block.

To edit an existing value block, you must first select a value block from the list of
value blocks listed on the left-hand side of the Value Block Selection Screen and then
click the "Edit" button. Editing occurs in a spreadsheet-like format, with each row
containing an event name and the value for that event.

Figure 5-2: Value Block Editor Screen

Whether you are creating or editing a value block, the process of maneuvering in the
SABLE Value Block Editor is the same.

5.3.1 The Editing Box

The editing box, located above the grid on the Value Block Editor screen, is the
location for naming events, defining values, and changing text. To the left of this box
are two buttons: the “Cancel” button (“X”) and the “OK” button (check mark). The
Cancel button will cancel any changes made in the editing box; the OK button will
save any changes to the current selection you are modifying. Pressing “Enter” or
“Return” will also activate the OK button. The Value Block Editor will check your
entry after you have pressed the OK button to ensure that the name or value conforms
to SABLE standards.

5.3.2 Inserting Event Names and Values

To insert a new event, select “Edit | Insert” from the menu on the Value Block Editor
screen. A small dialog box, shown in Figure 5-3, will appear asking how many values
you wish to add.

Figure 5-3: Insertion Dialog Box
Either type the number of values you wish to insert or increase/decrease the number
with the spinner on the right. The default value is “1”. Press “OK” to insert the
row(s) or press “Cancel” to cancel the operation.

You may also access the editing window, shown in Figure 5-4, by clicking the right
mouse button when on the grid.

18

Figure 5-4: Editing Window

Either type the number of values you wish to insert or increase/decrease the number
with the spinner on the right. The default value is “1”. Press “OK” to insert the
value(s) or press “Cancel” to cancel the operation.

Both of the above operations will insert blank rows. You must then type the event
name and event value using the editing box. To enter the name and value, select the
grid entry and type the information; the text will be sent to the editing box.

5.3.3 Changing the Name or Value of an Existing Event

To change an existing name or value, click on the cell containing the information you
wish to change. The text in the grid will be placed in the editing box. You may either
start typing, which will delete the text in the editing box, or place the cursor in the
editing box where you wish to begin typing. NOTE: The text in the grid will not
change unless you press the OK button or press “Return”.

5.3.4 Deleting Events

To delete an event and its associated value from the value block, highlight the event
you wish to delete and select “Edit | Delete” from the menu bar. You may select
multiple events. A confirmation message will appear ensuring you wish to delete the
highlighted event(s).

You may also use the Editing window to delete an event(s). Select the event(s) you
wish to delete and press the right mouse button. The Editing window will appear;
select “Delete Highlighted Value(s)” and press “OK”.

Note: If a value is already included in a value block FILE, deleting an event will not
erase the value IN THE FILE since SABLE will ignore values for events that do not
exist in the fault tree. Therefore, the delete option is mainly used as an editing tool
when adding and changing values in a block. There is no undo option for deletions or
value changes!

19

5.3.5 Copying an Event Value

To copy an event value, highlight the row that contains the value you wish to copy and
select “Edit | Copy” from the menu on the Value Block Editor screen. The value will
be copied into an internal buffer and will remain there until you copy another value.

You may also use the Editing window to copy a value. Select the value you wish to

copy and press the right mouse button. The Editing window will appear; select
“Copy” and press “OK”.

5.3.6 Pasting an Event Value

To paste an event value, select the row(s) where you wish to paste a value and select
“Edit | Paste” from the menu on the Value Block Editor screen. The value will be
pasted into the selected row(s).

You may also use the Editing window to paste a value. Select the location of the value
you wish to paste and press the right mouse button. The Editing window will appear;
select “Paste” and press “OK”.

NOTE: You must first copy a value before pasting.

5.3.7 Finding an Event Name or Value

To find an event name or value, select “Edit | Find” from the menu on the Value
Block Editor screen. The Find dialog box, shown in Figure 5-5, will appear.

Figure 5-5: Find Dialog Box

Type the text string you wish to find. If you select the “Find Whole Name/Value
Only,” the program will search for only whole words or values matching what you
have typed. The search process begins at the currently selected row. If the text is

20

found, the row containing the text will be highlighted. If no occurrence is found, you
will be asked if you wish to start searching from the beginning of the value block.

If you have selected multiple events (by highlighting a group of rows with the mouse),
the program will only search in the highlighted section. If no occurrence of the text is
found, you will be asked if you wish to search the entire block.

5.3.8 Data Format Type

The data associated with each event in a SABLE Value Block can be displayed in either
scientific or floating pointing format.

The scientific format can be in two forms:

1) X XXXXXXE-XX
or
@) XE-XX

Floating point entries must be of the form:
X XXXXXXX
The leading digit is required even if it is zero.
Some examples of the formats for scientific and floating point values are:

1E-5
1.5E-10
0.257595E-2
1.0
0.5
0.12345

Some examples of invalid formats are:
.5 (no leading zero)

1.E-2 (no number following the decimal point)
1.01 (value greater than one)

5.3.9 Saving the Value Block and Returning to SABLE

To save the changes, select “File | Save” from the menu. From the File menu, choose
"Exit" to return to SABLE when you have completed your editing.

6 How Fault Trees are Solved

This section discusses the theory of fault tree solution and how to select various options
pertaining to the solution of the selected fault trees.

6.1 Theory of Fault Tree Solution

The SABLE fault tree analysis code takes several steps in preparing fault trees for
solution and executing the solution process. First, SABLE brings all of the fault trees
to be solved into memory at the same time. This allows SABLE to assemble large
trees from constituent pieces and to check the trees for consistency. If one tree has a
“developed event” with the same name as a gate in another tree, SABLE assumes that
these are different representations of the same event and substitutes the actual gate logic
for the developed event. SABLE also assures that, if there is more than one
development for a particular event name, all of the developments are consistent.

Once the fault trees are assembled and checked, SABLE can change the structure of the
fault tree to increase solution speed. In this process, which is controlled through user
input, single input gates can be removed from the trees. The trees may also be
modified through a process known as “coalescing.” The coalescing process looks for
cascaded gates of the same type and replaces them with a single gate. Thus, if SABLE
finds an AND gate whose children are also all AND gates, it replaces the AND gate
and its children with a logically equivalent structure that contains a single AND gate.
The same process occurs for OR gates. Transfer gates, i.e. a multiple occurrence
event, cannot be coalesced.

The final step SABLE can take in preparing fault trees for solution is to identify and
remove independent subtrees (ISTS). An IST is a subtree whose basic events are found
only within that subtree (i.e., no primary event in the subtree exists anywhere in any of
the fault trees except in that subtree, hence it is “independent” of the rest of the fault
tree structure). SABLE prunes the IST from the fault tree stems and replaces them
with developed events. This allows SABLE to work on the stem portion separately
from the ISTS and reduces the computational complexity of the problem dramatically.

Now that the fault trees are prepared, SABLE uses the following method to accomplish
the fault tree solution. First, SABLE solves any IST, quantifies the IST results (if
necessary), and saves the cut sets and values for later use. SABLE then solves and, if
necessary, quantifies the stem fault trees using only the values for the IST developed
events. Finally, SABLE will substitute the IST cut sets into the stem cut sets to obtain
the final global cut set expressions for the fault trees. Note that the user may
optionally tell SABLE not to perform this final substitution if they are comfortable

22

reading cut sets that contain IST names instead of cut sets that contain only primary
events.

You must tell SABLE ’hOW the fault trees will be solved. From the Analysis Setup
screen, go to the area of the screen marked Fault Tree Solution Options and press the
Modify button. Figure 6-1 shows the Fault Tree Solution Options Screen.

SABLE Fault Tree Solution Options

EF-NEWNAME

Figure 6-1: The Fault Tree Solution Options Screen

6.2 Form Stem and Independent Subtrees

SABLE will have an easier time solving larger fault trees if the independent subtrees
(ASTS) are pruned from the stem fault tree and solved separately. To cause this to
occur, you must select the “Form Stem and Independent Subtrees” option on the Fault
Tree Solution Options screen. If this option is selected, you must also select to remove
single input gates. You must also provide a stem fault tree name, an IST fault tree
name, and an IST prefix. Default names are provided.

6.3 Coalesce Gates

Selecting the “Coalesce” option on the Fault Tree Solution Options screen will
combine cascading AND gates and cascading OR gates to form equivalent logical
structures containing fewer gates. If this option is selected, you must also select to
remove single input gates.

6.4 Remove Single Input Gates

Selecting the “Remove Single Input Gates” option on the Fault Tree Solution Options
screen will cause SABLE to restructure the fault tree to remove all gates that do not
have more than one input. This reduces the number of gates in the fault tree and
allows SABLE to solve it in a more efficient manner. This option must be selected if
“Form Stem and Independent Subtrees” is selected. If you want to remove single gates
without forming ISTS, you must specify a name for the fault tree created by this
process. A default name is provided.

6.5 Truncation

Even simple fault trees can sometimes generate a large number of cut sets. Many of
these cut sets will have values (probabilities or frequencies) that are extremely small
and, hence, are of little value to the analyst. In order to both speed the solution
process and reduce the amount of clutter in the program output, an analyst may wish to
delete (truncate) all cut sets that do not meet a particular minimum value criterion.

To enable cut set truncation, select the “Truncation” option check box on the Fault
Tree Solution Options screen and enter the probability or frequency below which cut
sets are not to be retained. Truncation is performed based on the value calculated for
each cut set individually. Any cut set with a value less than the value specified will be
truncated. Note that, since truncation is based on cut set quantification, you must
provide quantification information (a value block) if you want SABLE to perform
truncation.

6.6 Top-Down Versus Bottom-Up Solution

An objective for SABLE is to keep the number of intermediate cut sets small in order
to dramatically reduce the solution time. Each solution method (top-down vs. bottom-
up) causes SABLE to solve the fault tree in smaller pieces to keep the number of
intermediate cut sets small. Selecting top-down causes SABLE to solve the top piece

24

of the tree first and work its way to the bottom in stages. Selecting bottom-up causes
SABLE to solve pieces near the bottom of the tree first and to work its way up to the
top in stages. It is difficult to predict which method will work better for a particular
problem, but bottom-up is often best for a first attempt to solve a large tree. It is also
usually preferred for a tree with many OR gates. Generally, a tree with many AND
gates near the top is better suited for the top-down solution method. You must select
one or the other, but not both. By default the program will use a top-down solution
method.

25

7 Data Processing Options

You must tell SABLE which files to use and what types of information are to be
included in the program output. These are specified on the Data Processing Options
screen. From the summary screen, go to the area of the screen marked “Data

Processing Options” and press the Modify button. This brings up the Data Processing
Options screen, which is shown in Figure 7-1.

SABLE Data Processing Options

| C:\SIPRAAWINDRUN.SCO :

C:\SIPRA\WINDRUN.SMO ?

CASIPRAAWINDRUN BLK

\SIPRA\WINDR ”

Figure 7-1: Data Processing Options Screen

7.1 Block Printout Options

These options allow you to take an inventory of the contents of the block file and the
value block file at the beginning of a SABLE run, at the end of a run, or both. The
“Print Name of Blocks . . .” option on the Data Processing Options screen prints out a
directory list containing the names of the blocks in the block and value block files. The

26

“Print Values . . .” options print the actual fault tree, cut sets, or values that reside in
the block files. The “Print Values . . .” options can produce large output files when
big fault trees are being used. You may select to print any of these options before
and/or after the analysis has been completed.

7.2 Substitution of Independent Subtrees

This option may only be exercised if the fault tree solution option “Form Stem and
Independent Subtrees” was selected. By default, SABLE leaves the cut sets for the
“stem” fault trees in terms of IST developed event names (it does not expand these IST
developed events to include their constituent primary events and cut sets). To have
SABLE generate cut sets in terms of only primary events, check the “Substitute
Independent Subtrees . . .” option on the Data Processing Options screen. You may
also requantify the equations after substitution by selecting the “Requantify Equation(s)
.. .” option. Since ISTS are independent, there is no need to requantify; the results of
the initial calculation are already correct. However, if the ISTS were solved without
truncation (or using a different truncation value), requantification will produce uniform
truncation of all cut sets.

7.3 Print or Write Unquantified Cut Sets

To include the unquantified cut sets in the program output, select either the “Print
Unquantified Cut Sets” option or the “Write Unquantified Cut Sets to a Separate File”
option on the Data Processing Options screen. The cut sets are printed as a disjunctive
normal form (DNF) of the top event equation. DNF is the fully expanded form of a
cut set equation (it contains no parenthesis). The events in each individual cut set are
separated by AND operators (typically “*” symbols), and the cut sets are separated
from one another by OR operators (typically “+” symbols). Thus, it is a “sum of
products” representation of the minimal cut sets. Printing the DNF to the standard
output file is for the analysts to see. Writing the equations to a separate file is used
generally by other programs, such as TEMAC3. In each case, the cut sets are ordered
such that cut sets containing only one term are placed first, followed by cut sets
containing two terms, and so forth.

7.4 Place Cut Set Results in their Own Block

When SABLE is asked to solve multiple fault trees simultaneously, it usually places all
of the cut set expressions for all of the fault trees into a single entry in the block file.
For most analysts this is OK, and it allows SABLE to execute a little faster. However,
when the SANET and SEQUENCE codes are used to generate cut sets for event
sequences, a different procedure must be used. The SEQUENCE software uses the cut

27

set results from SABLE and combines them using the logic from event trees generated
by SANET. SEQUENCE assumes that the minimal cut sets for each fault tree in the
event sequence are stored in a separate block that is named after the top event in the
fault tree whose cut sets it contains. For example, if a SANET event sequence model
is based on fault trees with top events named T1, T2 and T3, then SEQUENCE
assumes that the fault trees with these top events have been solved by SABLE, and that
their minimal cut sets reside in separate blocks within the SABLE block file, and that
these blocks are named T1, T2 and T3, respectively.

In order to facilitate the linkage between these codes, an option has been installed in
SABLE to allow the cut sets from different fault trees to be placed into their own
separate blocks following the SEQUENCE naming convention. This is accomplished
by selecting the “Place Final Equation’s Cut Sets into its own Block” option on the
Data Processing Options screen. When this option is selected, each cut set expression
is placed in its own block, and each block name is the same as the name of the top
event in the cut set expression.

7.5 Print Quantified Cut Sets

In order for SABLE to show you any quantification information for the cut sets it
generates, you must select the “Print Quantified Cut Sets” option on the Data
Processing Options screen. This option will place the quantified cut set values in the
standard output file. Cut set values can be calculated by any or all of several methods:

Probability. The cut set value is the product of the primary event values. You
may also specify a lower limit for values; this number is a truncation value for
printing purposes alone.

Sum. The cut set value is the sum of the primary event values.

Maximum. The cut set value is the maximum value among the primary events.

Minimum. The cut set value is the minimum value among the primary events.

Count. The cut set value is the number of primary events in the cut set.

Note that quantification input must be present in order for these quantification requests
to be carried out.

28

7.6 SABLE Output Files

SABLE can write information to four different files: a standard output file for analyst
viewing, a cut set file for input to other codes, a block file, and a value block file.

QOutput File. This file contains program output for user viewing. It is an
ASCII-formatted file containing all program output intended for user viewing. The file
name may be specified; by default, the name is WINDRUN.SMO. You may either
type in a file name or press the button “Output File” on the Data Processing Options
screen to bring up a standard Windows dialog box.

Write File. This file contains information SABLE wants to pass on to another
code. It is an ASCII file containing cut sets or values for transfer to other software.
The file name may be specified; by default, the name is WINDRUN.SCO. You may
either type in a file name or press the button “Write File” on the Data Processing
Options screen to bring up a standard Windows dialog box.

Block File. This file is like a hard disk for storing fault trees, Boolean
equations, and cut sets. It is a binary file containing SABLE blocks (fault trees, cut
sets, and equations). The file name may be specified; by default, the name is
WINDRUN.BLK. You may either type in a file name or press the button “Block File”
on the Data Processing Options screen to bring up a standard Windows dialog box.

Yalue Block File. This file is like a hard disk for storing event values. Itis a
binary file containing SABLE value blocks (quantification values). The file name may
be specified; by default, the name is WINDRUN.VAL. You may either type in a file
name or press the button “Value Block File” on the Data Processing Options screen to
bring up a standard Windows dialog box.

8 Viewing SABLE Output with the View Utility

Once the program has run, you may view your output file by either pressing the
“View” button on the bottom of the summary screen or selecting “File | View” from
the menu. This activates the Sandia Integrated Probabilistic Risk Assessment (SIPRA)
File Viewer utility, which was designed specifically to allow a user to view and move
quickly through very large ASCII-formatted files. Using this utility you can select
portions of the file to be printed or placed on the Windows clipboard to be pasted into
other Windows applications.

8.1 Purpose of the View Utility

The View Utility is a multiple-document interface (MDI) that allows the user to view
large ASCII-formatted text files. In this program the user may print, change the font,
search for text, and copy to the Windows clipboard. No editing is allowed. The View
Utility screen with an open file is shown in Figure 8-1.

File Yiewer

File Edit Window Help
C:XIPFIMW UN.SHU
Top Of Data

SABLE(11/12/93) D4/17/95
FILES BEING USED FOR THIS SABLE RUN ARE:

SABLE PROGRAM FILE: WINDRUN.PGM
BLOCK FILE: CASIPRA\WINDRUN.BLK
VALUE BLOCK FILE: CASIPRAVWINDRUN.VAL
WRITE FILE: CASIPRAATEMACTES.SCO
EMS FILE: WINDRUN_EMS
SCRATCH FILE: WINDRUN.SCR
OUTPUT FILE: CASIPRAVWINDRUN.SMO

Group 1 of 2

Figure 8-1: The View Utility

Depending on the size of the file, it may be broken into groups. The groups are
approximately 32 Kbytes in size. When the document is first brought up, the first
group is shown. To proceed to the next group, push the “Next” button below the text
screen. Likewise, to return to a previous group, select the “Previous” button.

30

8.2 Maneuvering in a Multiple-Document Interface

Viewing more than one file at a time is possible with a multiple-document interface.
When multiple files are being viewed, each file populates its own window. The title of
each window (the top bar) is the path and name of the file.

A window is active (the current window) after you have selected that window with the
mouse.

Minimization. To reduce the window to an icon, press the button in the upper
right hand corner of the window with the down arrow.

Maximization. To expand the window to take up the full screen, press the
button in the upper right hand corner of the window with the up arrow. To make the
window occupy less than the entire screen once again, press the button in the upper
right hand corner of the window with both the up and down arrows.

Resizing. To resize a window, position the mouse at any corner or side. When
the pointer becomes a double-headed arrow, move the arrow to the desired size with
the mouse button depressed. The expandable border will be visible as a dotted gray
line. Release the mouse button when you have finished resizing.

Window Manipulation. You can expand any window or cause it to revert to an
icon by selecting the appropriate item from the Window menu. From the keyboard,
press Alt-W to activate the Window menu, then use the appropriate hot key (Alt plus
an underlined letter) to activate or deactivate the desired window. You may arrange
multiple documents from the “Window” menu item. The document windows can be
cascaded or tiled horizontally or vertically. When the windows are reduced to icons,
you may line them up evenly with the “Arrange Icons” option.

8.3 Opening Files

To open a file for viewing in the View Utility, select the “File” menu item and then the
“Open” option. A dialog box will appear allowing you to select the path and name of
the file you wish to view. After selecting the file name, a window with the contents of
the file is displayed.

To open multiple files, follow the same procedure for each file to be viewed. A
separate window is created for each file.

31

8.4 Closing Files

To close a file, select the window containing the file you wish to close and choose the
“Close” option from the “File” menu. You may also double click on the control
button in the upper left-hand corner of the window. The View Utility will ask you for
confirmation before it closes the file and deletes its window.

8.5 Printing

To print the file in the active window, select the “Print” option from the “File” menu.
A dialog box will appear with options for printer setup, number of copies, and printing

quality.

To print a selected portion of the file, highlight the desired text before you select the
Print option from the menu. When the dialog box is displayed, be sure that
“Selection” is chosen before you press “OK”.

You may also print the current page of text by choosing the “Print Current Page”
option from the “File” menu. On completion of this function, the page that was
printed remains highlighted in the current window.

If you have changed the font of a document, the new font is used in printing.
Otherwise, the default printer font is used.

NOTE: A selected page is based on form feed characters or FORTRAN carriage
controls, not on the length of a standard page. If you try to print a selected page and
you have Landscape as the printing orientation instead of Portrait, the selected page
will probably not fit on only one printed page. The same is true if a large font has
been selected for the current window. You may want to adjust the font size and/or the
printer page orientation to compensate.

A known deficiency in Visual Basic exists. The sequence (to change the printer setup)
of “File | Print | Printer Setup” does not work unless a change has been made and

saved using the sequence “File | Printer Setup.” Thus, to change the settings for the
printer, select “File | Printer Setup” the first time.

8.6 The Edit Menu

The edit menu allows for copying, finding text, and font selections. No alterations to
the file can be made; you may only view the file.

32

Copv. To copy a section of the current file to the Windows Clipboard,
highlight the desired portion with the mouse and select “Copy” from the “Edit” menu.
You may then paste this text into another Windows application for further processing.

Selecting the Current Page. To select the current page, make sure that the

cursor is placed somewhere in the page you wish to select and choose “Edit | Select
Current Page”. This page will be highlighted.

Selecting the File Type. When you open a document, the program automatically
identifies the file type by the presence of either form feed characters or FORTRAN

carriage controls. If you wish to see what type of file you have opened or you would
like to change the type of file, choose the “Select File Type” option from the “Edit”
menu. A dialog box explaining which file type with an option to change the type will
appear.

Finding Text. To find a selection of text, select the “Find” option from the
“Edit” menu. A dialog box will appear; type the text string that you wish to find.
This routine is case-insensitive. The next occurrence (after the last current mouse
position in the document) will be highlighted.

The “Find Next” routine will find the next occurrence of the last text string
searched for. This option can also be accessed with the F3 button.

If you searching in a document with multiple groups and no occurrence is found
in the current group, you will be asked if you wish to continue the search in the next
group. If an occurrence is not found before the end of the document, you will be asked
if you wish to continue the search from the beginning of the document.

Selecting a Font. To change the font type and/or size, select the “Select Font”
from the “Edit” menu. You may select any font available on your computer and the
size. Any change you select will apply to the entire document. You may, however,
select different fonts for different documents if desired.

If you select a font for a document, any printing from that document will also
be performed in this font.

33

9 Additional Topics

9.1 Legal SABLE Names

A SABLE name must meet the following requirements: it may not exceed 16
characters (12 characters for a “prefix”), it may not contain embedded blank spaces,
and it may contain only upper case letters, numbers, and the special characters dash,
underscore, colon, or backward slash (-, _, :, \). SABLE file names may be any valid
DOS file name. SABLE will check all names for validity.

9.2 Function of OK and Cancel

Pressing the OK button on any screen will save the information on the current screen
and summarize it on the main screen. The Cancel button will revert to the “old”
information before alterations were made.

9.3 Keyboard and Mouse 4Operations

For those who prefer using a keyboard to a mouse, several options are built into this
program to allow flexibility between the two input devices.

If a caption on an option (such as a button or a menu option) has a letter that is
underlined, pressing that letter and the ALT key simultaneously is equivalent to
clicking the mouse on that option. For example, pressing “ALT - S” is the same as
clicking Solve on the summary screen with the mouse.

The Tab key will move you forward around the screen to all valid options. The
combination of the Shift and Tab keys will move you backward around the screen.

Pressing the Enter Key when positioned on a button will press the button. Pressing the
space bar when positioned on a check box will check the box.

9.4 Getting Help

Five help options are available in SABLE, four of which are available through the
“Help” menu on the Analysis Setup Screen.

To learn how to use help files in a Windows environment, select “Help | How to Use
Help” from the menu on the Analysis Setup screen.

34

To get a listing of all help topics for SABLE, select “Help | Contents” from the menu
on the Analysis Setup screen.

To get help by searching for a specific keyword relative to SABLE, select “Help |
Search for Help On . . .” from the menu on the Analysis Setup screen.

To obtain a quick overview of the SABLE interface, select “Help | SABLE Quick
Start” from the menu on the Analysis Setup screen.

If you need help on a current screen or control, pressing “F1” will activate the help

files and display the portion related to the current screen or control.

9.5 Leaving Suggestions

If you have suggestions for this program, select “Help | Suggestion Box” from the
menu. This will activate a screen , Figure 9-1, allowing you to enter your comments.
Pressing “Place in Suggestion Box” will save your comments in a text file. N

Suggestion Box

Figure 9-1: The Suggestion Screen

Appendix A: A Sample Problem

This appendix will take you through a sample problem by showing all stages of solving
a fault tree.

A.1 Graphing the Fault Tree

Using SEATREE 2.6, the fault tree (titled PLT1-EX) was graphed and saved in the file
PLT1-EX.SET (for input to SABLE) and PLT1-EX.TRE (as a native SEATREE file).
Figure A-1 shows the list view of the fault tree, Figure A-2 shows the galley view of
the fault tree, and Figure A-3 shows the ASCHI PLT1-EX.SET file.

36

01/31/96 PLT1-EX.TRE Page 1 of 1
AD-FLOW({}
L~ D-FLOW.
—OD.
L~ D-SUPPLY.
A B-FLOW.
-OB.
-~ B-SUPPLY.
LA A-FLOW.
A & NO-SIGNAL.
A C-FLOW.
-0 C.
L& C-SUPPLY.
LA QNA-FLOW.
LA O NO-SIGNAL.
A <& NO-SIGNAL.
A A-FLOW { B-SUPPLY, C-SUPPLY }
LA A-FLOW.
— A & NO-SIGNAL.
—OA.
L~ A-SUPPLY.
A X-SUPPLY.
O PUMP-FTS.
EA & NO-SIGNAL.
O PUMP-FTR.
~ DIVERSION.
t A O NO-SIGNAL.
OE.

A NO-SIGNAL { D-FLOW, X-SUPPLY, B-FLOW, C-FLOW, A-FLOW, DIVERSION }
L& NO-SIGNAL.

|NMNNNMNNMNNNMMNNM_\'__.N'N_;_;_;___;_‘

@

I__Junoison |

Ld ~<—Cd o
Z-Alddns-xX
| -MO1d4-a
JUNOISON

% Q

sy

AdddDz

|]]
v, O O

| Addnsv | | vy 1 L__wnoison |

L - AlddNS-0
k- AlddNS-g
[mowv] -

FAULT TREESPLT1-EX.

0G$ D-FLOW.
INS$D,NO-SIGNAL,D-SUPPLY.
0G$ X-SUPPLY.
INSPUMP-FTS, PUMP-FTR, NO-SIGNAL.
OUT$A-SUPPLY.

UES$ NO-SIGNAL.
OUT$D-FLOW, X-SUPPLY, B- FLOW, C-FLOW, A-FLOW, DIVERSION.
0G$ A-FLOW. :
INSNO-SIGNAL,A-SUPPLY,A.
OUT$B-SUPPLY, C-SUPPLY.
BES D.

QUTSD-FLOW.

AGS$ D-SUPPLY.

INSB-FLOW, C-FLOW.
QUTS$D-FLOW.

0G$ B-FLOW.
INS$B,NO-SIGNAL,B-SUPPLY.
OUTS$D-~SUPPLY.

BES$ B.

OUTS$B-FLOW.

0G$ C-FLOW.
INSC,NO-SIGNAL, C-SUPPLY.
OUT$D-SUPPLY.

BES C.

OUTS$C-FLOW.

BE$ PUMP-FTS.
OUTS$X-SUPPLY.

0GS$ A-SUPPLY.
IN$X-SUPPLY, DIVERSION.
OUTS$A-FLOW.

0OG$ B-SUPPLY.

INSA-FLOW.

OUTS$B-FLOW.

0G$ DIVERSION.
INSNO~SIGNAL,E.
OUTSA-SUPPLY.

0G$ C-SUPPLY.

INSA-FLOW.

OUTS$C-FLOW.

BES$ E.

OUT$DIVERSION.

BE$ PUMP-FTR.
OUTS$X-SUPPLY.

BES A.

OUTS$A-FLOW.

EOF

Figure A-3: “PLT1-EX.SET”, Fault Tree Input to SABLE

40

A.2 Developing Quantification Information

Using SEATree 2.6, a value block named “FAIL-VAL” containing values for each
event was constructed. An ASCII view of this data is shown below in Figure A-4.

VALUE BLOCKS$ FAIL-VAL.
.0E-3$ AS

.0E-5% BS

.0E-2$ C$

.0E-2$ D%

.0E-28$ E$

.0E-3$ PUMP-FTSS
.0E-3$ PUMP-FTRS
.0E-3$ NO-SIGNALS$

OF

HMERRPRSR PP

Figure A-4: “PLT1-EX.EDT”, Value Block Input to SABLE

A.3 Creating an Analysis inside SABLE

To solve this fault tree, the following options were selected.

Fault Tree Selection. The fault tree “PLT1-EX” was imported from the file
“PLT1-EX.SET”. Figure A-5 shows the Fault Tree Selection screen after the fault
tree was imported.

41

SABLE Fault Tree Selection

Figure A-5: Fault Tree Selection Screen after importing “PLT1-EX”

Yalue Block Selection. The value block “FAIL-VAL” was imported from the
file “PLT1-EX.EDT” for quantification. Figure A-6 shows the Value Block Selection
Screen after selecting the value block.

42

_ ‘opew 9I9M
SUONII3[9S 9A0QE 9} J9)Je UaaI1os suond(p uonnjos 9917, e, 9y} SMOYS /-V 2InSi]

‘poyawr uonnjos dn - UI0130qQ 3} YIM 391} J[Ne] Y} JA[OS e
"6~ T JO Sn[BA B MO[2q S13S INO 9)BOUNILY, e

*s91e3 Jndur 9[SUIS JAOWIY e

"S9JeS 90S9[B0))

" JITId-J9d » Jo xya1d SIST ue pue ‘ SISI-IAd, JO duwreu a1 Jjnej SIS ue
¢ JNHLS-JA{,, JO SWelu 9213 JjneJ Wals © YIIM S9a1qns juopusdopur pue wals WO o

19911 J[Ne] SIY) SAJOS

0] Pa199[as a1am suondo uonnjos SUIMOL[0] U], “SHOTd() UOLN]OS 991 1D,

«TVA-TIVd,, Suniodu Isyje UssIo§ UONIA[AS YOOI e :9-V dInsiy

YAV

uonas|a; Ja0ig 3njep J1gvs

SABLE Fault Tree Solution Optinns

| DITS 5

EETTEE

Figure A-7: Fault Tree Solution Options Screen.

Data Processing Options. The following data processing options were selected
for this analysis:

e Write the unquantified cui sets to the file “PLT1-EX.SCO”.

o Print the quantified cut sets in the output file, truncating at 1E-9.
e Write the SABLE general output to “PLT1-EX.SMO”.

e Write the SABLE block file to “PLT1-EX.BLK”.

Figure A-8 shows the Data Processing Options screen after selecting the above options.

SABLE Data Processing Options

C:ASIPRAVPLY 1-EX.SCO

CASIPRAVPLT1-EX.SMO

C:\SIPRA\PLT1-EX.BLK

Figure A-8: Data Processing Options screen after selecting options

Analysis Setup Screen. After pressing “OK” on the above screens, the
corresponding summary boxes on the Analysis Screen were populated accordingly.

Figure A-9 shows the Analysis Setup screen after the above-mentioned options were
selected.

45

SABLE Analysis Setup

File Help

Program Name lDEF-PFIDE I

DEF-BLOCK

|New Fault Trees will be Formed Using:
¢ The Stem Fault Tree Name of DEF-STEM
The ISTS Fault Tree Name of DEF-ISTS
The ISTS Prefix of DEF-PREF
_Coalescing Appropriate put E vents

Final Fault Tree Printout Options to be used are:
Wiite Final Equation{s] in DNF to file:
C:ASIPBA\PLT1 SCO
ompute Final

Figure A-9: Analysis Setup screen after selecting all options

A.4 SABLE Output

After the above analysis was run, two user-readable output files were produced:
“PLT1-EX.SMO?”, the standard SABLE output file, and “PLT1-EX.SCO”, the file
containing the unquantified cut sets to be used as input to other PRA codes such as
TEMAC3. Figure A-10 shows the contents of “PLT1-EX.SMO”.

46

FILES BEING USED FOR THIS SABLE RUN ARE:

SABLE PROGRAM FILE: WINDRUN.PGM
BLOCK FILE: C:\SIPRA\PLT1-EX.BLK

VALUE BLOCK FILE: WINDRUN.VAL
WRITE FILE: C:\SIPRA\PLT1-EX.SCO

EMS FILE: WINDRUN.EMS

SCRATCH FILE: WINDRUN.SCR
OUTPUT FILE: C:\SIPRA\PLT1-EX.SMO

BEGIN EXECUTION OF SABLE.

READ SABLE USER PROGRAM.

PROGRAMS$ DEF-PROG.
COMMENTS$ BEGINNING OF WINDOWS RUN INFORMATION

NUMBER OF FAULT TREES TO READ: 1
FAULT TREE: PLT1-EX
LOCATED: C:\SIPRA\PLT1-EX.SET

NUMBER OF VALUE BLOCKS TO READ: 1
VALUE BLOCK: FAIL-VAL
LOCATED: C:\SIPRA\PLT1-EX.EDT

WRITE FILE: C:\SIPRA\PLT1-EX.SCO
OUTPUT FILE: C:\SIPRA\PLT1-EX.SMO
BLOCK FILE: C:\SIPRA\PLT1-EX.BLK
VALUE BLOCK FILE: C:\SIPRA\WINDRUN.VAL
PROGRAM: DEF-PROG

USER BLOCK: DEF-BLOCK

DATA PROC OPTIONS:
BEFORE ANALYSIS:
AFTER ANALYSIS:
WRTBLKEQNDNF
WRITE FILE: C:\SIPRA\PLT1-EX.SCO
COMPUTERBLOCK
COMPUTE OPTIONS: PROB /10E-10/

FAULT TREE OPTIONS:
FORM3
NEW TREE: DEF-NEWNAME
STEM TREE: DEF-STEM
IST TREE: DEF-ISTS
IST PREFIX: DEF-PREF
TRUNCATION
TRUNC VALUE: 1E-9

Figure A-10: Output file of SABLE, “PLT1-EX.SMO”, Page 1 of 12 -

SABLE(11/12/93)

08/03/95 10:02:04.49 PAGE NO. 2

TOP DOWN
BOTTCM UP

END OF WINDOWS RUN INFORMATION $

DLTBLK (PLT1-EX).
RDFT (PLT1-EX).
DLTVALBLK (FAIL-VAL).
RDVALBLK (FAIL-VAL).
DLTBLK (DEF-BLOCK,

S-DEF-STEM,

I-DEF-ISTS,

DEF-STEM,

DEF-ISTS).
DLTEQN.
FRMNEWFT (FORM3$ (DEF-PREF)

PLT1-EX/ DEF-STEM, DEF-ISTS).
DLTEQN.
GENFTEQN (METHOD1$ DEF-ISTS/ I-DEF-ISTS* SAVES
PROBABILITY/1E-9, FAIL-VAL).
DLTEQN.
GENFTEQON (METHOD1$ DEF-STEM/ S-DEF-STEM*
PROBABILITY/1E-9, FAIL-VAL).

LDBLK (S-DEF-STEM) .
COMPUTEBLOCK (PROBABILITY/10E-10, FAIL-VAL) .
WRTBLKEQNDNF .

Figure A-10: Output file of SABLE, “PLT1-EX.SMO”, Page 2 of 12

48

SABLE(11/12/93) 08/03/95 10:02:04.49 PAGE NO. 3

EXECUTE SABLE USER PROGRAM DEF-PROG

DLTBLK (PLT1-EX).

STATEMENT EXECUTION REQUIRED 0.441 SECONDS FOR DLTBLK

RDFT (PLT1-EX).

FAULT TREE$PLT1-EX.

0G$ D-FLOW.
IN$D,NO-SIGNAL,D-SUPPLY.
0G$ X-SUPPLY.
IN$PUMP-FTS, PUMP-FTR, NO- SIGNAL.
OUT$A-SUPPLY.

UE$ NO-SIGNAL.
OUT$D-FLOW, X-SUPPLY, B-FLOW, C~-FLOW, A- FLOW, DIVERSION.
0G$ A-FLOW.
IN$NO-SIGNAL, A- SUPPLY, A.
OUT$E-SUPPLY, C-SUPPLY.
BE$ D.

OUT$D-FLOW.

AG$ D-SUPPLY.

INSB-FLOW, C-FLOW.
OUT$D-FLOW.

0G$ B-FLOW.
IN$B,NO-SIGNAL, B- SUPPLY.
OUT$D-SUPPLY.

BE$ B.

OUT$B-FLOW.

0G$ C-FLOW.

IN$C, NO-SIGNAL, C-SUPPLY.
OUTS$D-SUPPLY.

BE$ C.

OUTS$C-FLOW.

BE$ PUMP-FTS.
OUT$X-SUPPLY.

0G$ A-SUPPLY.
IN$X-SUPPLY, DIVERSION.
OUT$A-FLOW.

0G$ B-SUPPLY.

INSA-FLOW.

OUTS$B-FLOW.

0G$ DIVERSION.
IN$NO-SIGNAL, E.
OUT$A-SUPPLY.

0G$ C-SUPPLY.

INSA-FLOW.

OUTS$C-FLOW.

BES E.

OUT$DIVERSION.

BE$ PUMP-FTR.

Figure A-10: Output file of SABLE, “PLT1-EX.SMO”, Page 3 of 12

49

SABLE(11/12/93) 08/03/95 10:02:04.49 PAGE NO. 4

OUT$X-SUPPLY.
BE$ A.
OUT$A-FLOW.

THE FOLLOWING EVENTS ARE EQUIVALENT

1. B-SUPPLY
2. C-SUPPLY

THERE ARE NO CYCLES IN PLT1-EX

FAULT TREE BLOCK PLT1-EX
HAS BEEN ADDED TO THE BLOCK FILE

STATEMENT EXECUTION REQUIRED 1.320 SECONDS FOR RDFT

DLTVALBLK (FAIL-~VAL).

STATEMENT EXECUTION REQUIRED 0.219 SECONDS FOR DLTVALBLK

RDVALBLK (FAIL-VAL).

VALUE BLOCKS$ FAIL-VAL.
CREATE VALUE BLOCK FAIL-VAL
1.0E-3$ A$

1.0E-5$ BS

1.0E-2§ C$

1.0E-2% D$

1.0E-2§ E$

1.0E-3$ PUMP-FTS$

1.0E-3$ PUMP-FTRS

1.0E-3$ NO-SIGNALS

STATEMENT EXECUTION REQUIRED 0.172 SECONDS FOR RDVALBLK

DLTBLK (DEF-BLOCK, S-DEF-STEM, I-DEF-ISTS, DEF-STEM, DEF-ISTS).

STATEMENT EXECUTION REQUIRED 0.270 SECONDS FOR DLTBLK
DLTEQN.
STATEMENT EXECUTION REQUIRED 0.000 SECONDS FOR DLTEQN

FRMNEWFT (FORM3$ (DEF-PREF) PLT1-EX/ DEF-STEM, DEF-ISTS).

Figure A-10: Output file of SABLE, “PLT1-EX.SMO”, Page 4 of 12

50

SABLE(11/12/93) 08/03/95 10:02:04.49 PAGE NO. 5
FAULT TREES MERGED
1. PLT1-EX
ITERATION 1
SINGLE-INPUT EVENTS REMOVED

1. B-SUPPLY
2. C-SUPPLY

EVENTS REMOVED BY COALESCING
1. X-SUPPLY
2. A-SUPPLY
3. DIVERSION

NO EVENTS WERE COMBINED

ITERATIONS COMPLETED

TOP EVENTS AND THEIR INPUTS
FOR CREATED LSIP SUBTREES

DEF-PREF1
PUMP-FTS
PUMP-FTR
aA
E

THERE WERE 4 EVENTS REMOVED
TO FORM THE STEM FAULT TREE DEF-STEM

THERE ARE NO CYCLES IN DEF-STEM
TOP EVENTS OF DEF-STEM
1. D-FLOW

FAULT TREE BLOCK DEF-STEM
HAS BEEN ADDED TO THE BLOCK FILE

THERE WERE 9 EVENTS REMOVED
TO FORM THE COLLECTION OF LSIP
SUBTREES FAULT TREE DEF-ISTS

THERE ARE NO CYCLES IN DEF-ISTS

TOP EVENTS OF DEF-ISTS

1. DEF-PREF1l

Figure A-10: Output file of SABLE, “PLT1-EX.SMO”, Page 5 of 12

51

SABLE(11/12/93) 08/03/95 10:02:04.49 PAGE NO. 6

FAULT TREE BLOCK DEF-ISTS
HAS BEEN ADDED TO THE BLOCK FILE

STATEMENT EXECUTION REQUIRED 0.660 SECONDS FOR FRMNEWFT

DLTEQN.
STATEMENT EXECUTION REQUIRED 0.000 SECONDS FOR DLTEQN

GENFTEQN (METHOD1$ DEF-ISTS/ I-DEF-ISTS* SAVE$ PROBABILITY/ 1E-9,
FAIL-VAL) .

TOP EVENTS OF DEF-ISTS
1. DEF-PREF1
SABLE USER PROGRAM SEGMENT PRODUCED BY GENFTEQN

DLTEQN.

LDBLK (DEF-ISTS).

SUBINEQN (DEF-PREFl, DEF-PREF1).

TRNTRMVAL (PROBABILITY/ 1E-9, FAIL-VAL* DEF-PREF1,
DEF-PREF1) .

FRMBLK (I-DEF-ISTS* ONLY$ DEF-PREF1).

LDBLK (I-DEF-ISTS).

COMTRMVAL (PROBABILITY/ 1E-9, FAIL-VAL* DEF-PREF1).

SVISTVL (FAIL-VAL).

STATEMENT EXECUTION REQUIRED 0.219 SECONDS FOR GENFTEQN
DLTEQN.
STATEMENT EXECUTION REQUIRED 0.000 SECONDS FOR DLTEQN

LDBLK (DEF-ISTS) .

STATEMENT EXECUTION REQUIRED 0.059 SECONDS FOR LDBLK

SUBINEQN (DEF-PREF1, DEF-PREF1).

STATEMENT EXECUTION REQUIRED 0.113 SECONDS FOR SUBINEQN

TRNTRMVAL (PROBABILITY/ 1E-9, FAIL-VAL* DEF-PREF1, DEF-PREF1).

Figure A-10: Output file of SABLE, “PLT1-EX.SMO”, Page 6 of 12

52

SABLE(11/12/93) 08/03/95 10:02:04.49 PAGE NO. 7

THE MAXIMUM NUMBER OF TERMS THAT CAN BE
GENERATED BY EXPANSION IS 4.

TERMS GENERATED BY EXPANSION
4 TERMS CONTAIN 1 VARIABLES
TOTAIL: TERMS GENERATED 4.

THE MAXIMUM TERM VALUE FOR COMPUTATION 1 IS 9.999999780000E-03
(THE SUM OF THE TERM VALUES IS 1.300000030000E-02)

%% WARNING *** THE SUM OF TERM VALUES WAS DERIVED BEFORE

SIMPLIFICATION.

IF TERM(S) ARE REMOVED IN THE SIMPLIFICATION STEP
BELOW, THEN THIS CUT SET

EXPRESSION SHOULD BE REQUANTIFIED TO OBTAIN THE
CORRECT SUM OF TERM VALUES.

EXPANSION TOOK 0.000 SECONDS.

TERMS RETAINED BY SIMPLIFICATION

4 TERMS CONTAIN 1 VARIABLES

TOTAL TERMS RETAINED 4.
SIMPLIFICATION TOOK 0.000 SECONDS.
FACTORIZATION TOOK 0.000 SECONDS.

STATEMENT EXECUTION REQUIRED 0.098 SECONDS FOR TRNTRMVAL

FRMBLK (I-DEF-ISTS* ONLY$ DEF-PREF1) .

EQUATION BLOCK I-DEF-ISTS
HAS BEEN ADDED TO THE BLOCK FILE

STATEMENT EXECUTION REQUIRED 0.281 SECONDS FOR FRMBLK

LDBLK (I-DEF-ISTS).

STATEMENT EXECUTION REQUIRED 0.109 SECONDS FOR LDBLK

COMTRMVAL (PROBABILITY/ 1E-9, FAIL-VAL* DEF-PREF1).

THE MAXIMUM NUMBER OF TERMS THAT CAN BE
GENERATED BY EXPANSION IS 4.

TERMS GENERATED BY EXPANSION
4 TERMS CONTAIN 1 VARIABLES
TOTAL TERMS GENERATED 4.
EXPANSION TOOK 0.109 SECONDS.

Figure A-10: Output file of SABLE, “PLT1-EX.SMO”, Page 7 of 12

SABLE (11/12/93) 08/03/95 10:02:04.45 PAGE NO. 8

* * * * VARIABLE OCCURRENCE TABLE * * * &

NONCOMPLEMENT NUMBER OF ' COMPLEMENT

NUMBER OF

VARIABLE OCCURRENCES VARIABLE
OCCURRENCES

PUMP-FTS 1

PUMP-FTR 1

A 1

E 1

THERE ARE 4 DIFFERENT VARIABLES IN THE
EQUATION FOR DEF-PREF1

TERM PROB.
NUMBER OF TERM

DEF-PREF1 =
1 1.0000E-02 E +
2 1.0000E-03 A+
3 1.0000Ej03 PUMP-FTR +
4 1.0000E-03 PUMP-FTS

THE MAXIMUM TERM VALUE FOR COMPUTATION 1 IS 9.999999780000E-03
(THE SUM OF THE TERM VALUES IS 1.300000030000E-02)

STATEMENT EXECUTION REQUiRED 0.160 SECONDS FOR COMTRMVAL

SVISTVL (FAIL-VAL).

SAVE IST VALUES TO VALUE BLOCK FAIL-VAL

STATEMENT EXECUTION REQUIRED 0.281 SECONDS FOR SVISTVL
DLTEQN.
STATEMENT EXECUTION REQUIRED 0.000 SECONDS FOR DLTEQN

GENFTEQN (METHOD1S$ DEF-STEM/ S-DEF-STEM* PROBABILITY/ 1E-9, FAIL-VAL).

Figure A-10: Output file of SABLE, “PLT1-EX.SMO”, Page 8 of 12

54

SABLE (11/12/93) 08/03/95 10:02:04.49 PAGE NO. 9
TOP EVENTS OF DEF-STEM
1. D-FLOW
SABLE USER PROGRAM SEGMENT PRODUCED BY GENFTEQN

DLTEQN.

LDBLK (DEF-STEM) .

SUBINEQN (D-FLOW, D-FLOW* STOP$ A-FLOW).

TRNTRMVAL (PROBABILITY/ 1E-9, FAIL-VAL* D-FLOW,
D-FLOW* EXCEPTNONCMPS A-FLOW) .

SUBINEQN (D-FLOW, D-FLOW).

TRNTRMVAL (PROBABILITY/ 1E-9, FAIL-VAL* D-FLOW,
D-FLOW) .

FRMBLK (S~-DEF-STEM* ONLY$ D-FLOW) .

STATEMENT EXECUTION REQUIRED 0.160 SECONDS FOR GENFTEQN
DLTEQN.
STATEMENT EXECUTION REQUIRED 0.000 SECONDS FOR DLTEQN

LDBLK (DEF-STEM) .

STATEMENT EXECUTION REQUIRED 0.168 SECONDS FOR LDBLK

SUBINEQN (D-FLOW, D~FLOW* STOPS$ A-FLOW).

STATEMENT EXECUTION REQUIRED 0.051 SECONDS FOR SUBINEQN

TRNTRMVAL (PROBABILITY/ 1E-9, FAIL-VAL* D-FLOW, D-FLOW* EXCEPTNONCMP$
A-FLOW) .

THE MAXIMUM NUMBER OF TERMS THAT CAN BE
GENERATED BY EXPANSION IS 11.

TERMS GENERATED BY EXPANSION
4 TERMS CONTAIN 1 VARIABLES
7 TERMS CONTAIN 2 VARIABLES
TOTAL TERMS GENERATED 11.

THE MAXIMUM TERM VALUE FOR COMPUTATION 1 IS 1.000000000000E+00
(THE SUM OF THE TERM VALUES IS 1.024020200000E+00)

*** WARNING *** THE SUM OF TERM VALUES WAS DERIVED BEFORE
SIMPLIFICATION.
. IF TERM(S) ARE REMOVED IN THE SIMPLIFICATION STEP
’ BELOW, THEN THIS CUT SET .
EXPRESSION SHOULD BE REQUANTIFIED TO OBTAIN THE
CORRECT SUM OF TERM VALUES.

Figure A-10: Output file of SABLE, “PLT1-EX.SMO”, Page 9 of 12

SABLE(11/12/93) 08/03/95 10:02:04.49 PAGE NO. 10
EXPANSION TOOK 0.168 SECONDS.
TERMS RETAINED BY SIMPLIFICATION
3 TERMS CONTAIN 1 VARIABLES
-1 TERMS CONTAIN 2 VARIABLES
TOTAL TERMS RETAINED 4.
SIMPLIFICATION TOOK 0.051 SECONDS.
FACTORIZATION TOOK 0.000 SECONDS.

STATEMENT EXECUTION REQUIRED 0.391 SECONDS FOR TRNTRMVAL

SUBINEQN (D-FLOW, D-FLOW).

STATEMENT EXECUTION REQUIRED 0.000 SECONDS FOR SUBINEQN

TRNTRMVAL (PROBABILITY/ 1E-9, FAIL-VAL* D-FLOW, D-FLOW).

THE MAXIMUM NUMBER OF TERMS THAT CAN BE
GENERATED BY EXPANSION IS 5.

TERMS GENERATED BY EXPANSION
4 TERMS CONTAIN 1 VARIABLES
1 TERMS CONTAIN 2 VARIABLES
TOTAL TERMS GENERATED S.

THE MAXIMUM TERM VALUE FOR COMPUTATION 1 IS 1.300000030000E-02
(THE SUM OF THE TERM VALUES IS 2.500010100000E-02)

%* WARNING * THE SUM OF TERM VALUES WAS DERIVED BEFORE
SIMPLIFICATION.

IF TERM(S) ARE REMOVED IN THE SIMPLIFICATION STEP
BELOW, THEN THIS CUT SET

EXPRESSION SHOULD BE REQUANTIFIED TO OBTAIN THE
CORRECT SUM OF TERM VALUES.
EXPANSION TOOK 0.109 SECONDS.
TERMS RETAINED BY SIMPLIFICATION
3 TERMS CONTAIN 1 VARIABLES
1 TERMS CONTAIN 2 VARIABLES
TOTAL TERMS RETAINED 4.
SIMPLIFICATION TOOK 0.000 SECONDS.
FACTORIZATION TOOK 0.000 SECONDS.

STATEMENT EXECUTION REQUIRED 0.160 SECONDS FOR TRNTRMVAL

FRMBLK (S-DEF-STEM* ONLYS$ D-FLOW) .

EQUATION BLOCK S-DEF-STEM
HAS BEEN ADDED TO THE BLOCK FILE

Figure A-10: Output file of SABLE, “PLT1-EX.SMO”, Page 10 of 12

56

SABLE(11/12/93) 08/03/95 10:02:04.49 PAGE NO. 11

STATEMENT EXECUTION REQUIRED 0.219 SECONDS FOR FRMBLK

LDBLK (S-DEF-STEM) .

STATEMENT EXECUTION REQUIRED 0.109 SECONDS FOR LDBLK

COMPUTEBLOCK (PROBABILITY/ 10E-10, FAIL-VAL).
SABLE USER PROGRAM SEGMENT PRODUCED BY COMPUTEBLOCK
COMTRMVAL (PROBABILITY/ 10E-10, FAIL-~VAL* D-FLOW) .

STATEMENT EXECUTION REQUIRED 0.000 SECONDS FOR COMPUTEBLOCK

COMTRMVAL (PROBABILITY/ 10E-10, FAIL-VAL* D-FLOW).

THE MAXIMUM NUMBER OF TERMS THAT CAN BE
GENERATED BY EXPANSION IS 4.

TERMS GENERATED BY EXPANSION
3 TERMS CONTAIN 1 VARIABLES
1 TERMS CONTAIN 2 VARIABLES
TOTAL TERMS GENERATED 4.
EXPANSION TOCK 0.109 SECONDS.

® * e + VARIABLE OCCURRENCE TABLE ® ® * *

NONCOMPLEMENT NUMBER OF COMPLEMENT

NUMBER OF

VARIABLE OCCURRENCES VARIABLE
OCCURRENCES

D 1

NO-SIGNAL 1

B 1

(o] 1

DEF-PREF1 1

THERE ARE 5 DIFFERENT VARIABLES IN THE
EQUATION FOR D-FLOW

Figure A-10: Output file of SABLE, “PLT1-EX.SMO”, Page 11 of 12

57

SABLE(11/12/93) 08/03/95 10:02:04.49 PAGE NO. 12
TERM PROB.
NUMBER OF TERM
D-FLOW =
1 1.3000E-02 DEF-PREF1 +
2 1.0000E-02 D+
3 1.0000E-03 NO-SIGNAL +
4 1.0000E-07 B * C

THE MAXIMUM TERM VALUE FOR COMPUTATION 1 IS 1.300000030000E-02
(THE SUM OF THE TERM VALUES IS 2.400010080000E~02)

STATEMENT EXECUTION REQUIRED 0.172 SECONDS FOR COMTRMVAL

WRTBLKEQNDNF .

THE MAXIMUM NUMBER OF TERMS THAT CAN BE
GENERATED BY EXPANSION IS 4.

TERMS GENERATED BY EXPANSION
3 TERMS CONTAIN 1 VARIABLES
1 TERMS CONTAIN 2 VARIABLES

TOTAL TERMS GENERATED 4.
EXPANSION TOOK 0.059 SECONDS.

THERE IS NO EQUATION FOR DEF-PREF1
STATEMENT EXECUTION REQUIRED 0.160 SECONDS FOR WRTBLKEQNDNF

END EXECUTION OF SABLE.
Figure A-10: Output file of SABLE, “PLT1-EX.SMO”, Page 12 of 12

Figure A-11 contains the output of the file “PLT1-EX.SCO”, which contains the
unquantified cut sets.

D-FLOW =

D +)
NO-SIGNAL +
DEF-PREF1l +
B * C

Figure A-11: Unquantified Cut Set File, “PLT1-EX.SCO”.

58

Appendix B: SABLE 2.0 Problem Reporting Form

Name: Date:
Organization: Phone:
Address:

Code Version:
(Found under “Help | About SABLE . . .”)

Problem Information

Type of Problem (check appropriate items): __ Unclear Documentation
__ Inadequate User Protection
___ Obvious Coding Error
__ Missing Feature
__ Suggested Improvement
___ Other/Unknown

Problem Description:

(Use additional pages if necessary. Also, when possible, attach copies of results or
screen dumps that demonstrate the error or send a disk containing the program file and
all input fault tree and value block files with the error).

Severity of problem (check appropriate items): __ Inconvenience
__ Program Died
__ Lost Data and Results

Urgency of Fix (check appropriate items): __ Can Work Around It for Now
__ Can’t Use Program Until it’s
Fixed
__ Need Immediate Fix and
Willing to Supply Funding

59

Computer System Information

CPU: __ 80386
o ' __ 80486
Pentium
__P6
Other: (Please specify)

Hardware Manufacturer:

Memory: " Conventional: kB
Expanded: MB
Extended: MB -

Printer: __ HP Series I
___ HP Series IIT
__ HP Series IV
__ Other: (Please specify)

Other Peripherals:

For Department Use Only

Date Logged in:

Priority Assigned:

Receipt Acknowledged to Sender:

Date Resolved:

Resolution:

Resolution Acknowledged by Sender:

Appendix C: Index

A

ALT KEY ceerriereerrrresenenenseeseneaecsssnsssesesanenens 34
Analysis Summary SCreen.........ccevreervereraenns 8,9
B -

BIOCK FilE vvvvereeerecnsnesesssesssssecsessecsn 17,29
DOLEOMI-UP .ottt saseseses 24
C

Cancel button..........ccceeeverveecreerenrernenescnenenecens 34
COALESCING ..veerrereeereieeereserene s nteaeenens 22
D

Data Processing Options12, 15, 26, 27, 28, 29, 44, 45
default direCtory......ccvennineinisenseseencrecreseseens 11
disjunctive normal formcccocevrvvviieiunnnne 27
F

Fault Tree Selection screen................... 12, 16, 41
Fault Tree Solution Options Screen............ 23,44
fault trees3, 4, 7, 8, 9, 12, 13, 14, 22, 23, 24, 27, 28, 29
H

REIP - e 34, 35
I

ISTS......22, 23, 24, 27, 43, 47, 48, 50, 51, 52, 53
L

LHS ccoteeeteecrerreeneeeneseseseoseonenens 4,5,7,15
logical AND......cccccorurmrenmiserireninnrinssisessrsens 57
Iogical OR......uoiireviireeiererencesiceneneneenesecenerenennes 5
M

minimum cut set upper bound............cceeeeeeee. 5
multiple - document interface..................... 30, 31
o

OK Buttonc..oereecemervenirerenmsnsnencneranns 18, 19, 34

61

OUtPUt File .coeoveerieereeenrecnrnanerisenserssnreraenesenens 29
P

2151 11 YU TOORU RO 27,30,32
Print Unquantified Cut Sets.........c.cccoevrccevercnnne 27
0o

quantification........ccuuirieecnnereeneeseraenes 4,6,8,9
R

rare event approximation..............cceeveeverenee 4,5,6
Remove Single Input Gatescccoceererceararenens 24
S

SABLE name.........ccceeeevvueerrerrennererraseeesssneeenans 34
SABLE 0UtPULcoereiiiiireeeeereneernerneesenenes 46
SANET ...cooerieeeccrceneestertersesesssssnosssesess 6,7,27
SEATIEE ..ccvevvieereecrecvenrennes 3,4,7,12, 15,36, 41
SEQUENCEcocrveererernierererererenvenens 7,27,28
SETAC ... iieireinesrerrrerectenrecsesssessnossssnssesesens 5,7
37241 F: 1) o TR, 6
S0IVE BULON.......cveerereticrerirrreerereeeeerenieenens 8,9
Stem and Independent Subtrees............ 23,24,27
SUZEESHIONS. ... ceererenererementrnenerereceererenesessesaeseases 35
T

TEMAGCS ...ooeerecireeeereenenneneens 4,5,6,7,27,46
LOP-AOWIL...oererreirnreeeeeceteeene e ctearesenerasaenanen 24
TTUNCAION ...oeveveeeeectrevesseeerarererereresseensans 24,27,28
| 4

Value Block Editorcccevveneeennnen. 15,17, 18,20
Value Block File.....ccccovnevivvrineernrreeiennens 17,29
Value Block Selection screen.........coevevevevennns 15
View UtIlILY ...ccooenrveernenencernernneenseeneenes 30, 31, 32
w

Wt File...uueeeneeeeeeercreeceveecerrennesenesaesseesseees 29

Write Unquantified Cut Sets to a Separate File27

Distribution

Copies Org. Name MS
Mike Baird 1 5415 Arthur Payne 0425
PO Box 4946 1 5417 Dave Kunsman 0423
Glen Allen, VA 23058-4956 1 6412 Allen Camp 0747
1 6412 Vince Dandini 0747
Joseph M. Butner 1 6412 Sharon Daniel 0747
PO Box 1663 1 6412 Susan Dingman 0747
TAS-11, MS K557 1 6412 John Forester 0747
Los Alamos National Laboratory 20 6412 Kelly Hays 0747
Los Alamos, NM 87545 6412 Don Michell 0747
6412 Steve Nowlan 0747
Mary Hall 6412 Heather Shriner 0747
PO Box 1663 6412 Bevan Staple 0747
TAS-11, MS K557 6412 Tina Tanaka 0747

6412 Ellen Walroth 0747
6412 Donnie Whitehead 0747

Los Alamos National Laboratory
Los Alamos, NM 87545

6412 Greg Wyss 0747
Eric Haskin 6413 Tom Brown 0748
Chemical and Nuclear Engineering 6413 Julie Gregory 0748
FEC, Rm. 217 6613 Chris Atcitty 0746
University of New Mexico 6613 Maria Armendariz 0746
Albuquerque, NM 87131 6613 Jim Campbell 0746

6613 Jim Martinez 0746
Sharif Heger 6613 Laura Painton 0746
Chemical and Nuclear Engineering 6613 Dave Robinson 0746
FEC, Rm. 217 6613 Hugh Whitehurst 0746
University of New Mexico 7316 Gwen Pirtle 1036
Albuquerque, NM 87131 12333 Dave Carlson 0405

12333 Paul Demmie 0405
Desmond Stack 12333 Nancy Dhooge 0405
PO Box 1663 12333 Michael Dvorack 0492

TAS-11, MS K557
Los Alamos National Laboratory
Los Alamos, NM 87545

12333 Martin Fuentes 0405
12333 Todd Jones 0405
12333 Kevin Maloney 0405
12333 Keri Sobolik 0405
12333 Robert Winchester 0491
8523-2 Central Technical Files 9018
4414 Technical Library 0899
7613-2 Document Processing 0100
12615 Print Media 0619

Dale Talbott

PO Box 1663

TAS-11, MS K557

Los Alamos National Laboratory
Los Alamos, NM 87545

[N I I T S G R R el i e i I R i e T el T

	1 INSTALLATION INSTRUCTIONS
	1.1 MACHINE REQUIREMENTS
	1.2 INSTALLING SABLE
	1.3 TROUBLE SHOOTING

	2 FAULT TREE ANALYSIS OVERVIEW
	DEVELOPING A FAULT TREE
	SOLVING A FAULT TREE
	2.4 FAULT TREE IMPORTANCE ANALYSIS
	2.5 QUANTIFICATION OF CUT SETS
	2.6 ADVANCED FAULT TREE ANALYSIS TOPICS

	3 OUTLINE OF THE SABLE INTERFACE
	WHAT SABLE DOES
	3.2 ANALYSIS SUMMARY Sc REEN
	3.4 FILE HANDLING

	4 FAULT TREES
	TYPES OF FILES THAT CAN CONTAIN FAULT mES
	4.2 FAULT TREE SELECTION SCREEN

	5 QUANTIFICATION VALUES
	5.1 TYPES OF FILES THAT CAN CONTAIN QUANTIFICATION INFORMAnON
	5.2 VALUE BLOCK SELECTION SCREEN
	5.3 THE SABLE VALUE BLOCK EDITOR
	5.3 I The Editing Box
	5.3.2 Inserting Event Names and Values
	5.3.3 Changing the Name or Value of an Existing Event
	5.3.4 Deleting Events
	5.3.5 Copying an Event Value
	5.3.6 Pasting an Event Value
	5.3.7 Finding an Event Name or Value
	5.3.8 Data Format Type
	5.3.9 Saving the Value Block and Returning to SABLE

	6 HOW FAULT TREES ARE SOLVED
	6.2 FORM STEM AND INDEPENDENT SUBTREES
	6.3 COALESCE GATES
	6.4 REMOVE SINGLE INPUT GATES
	6.5 TRUNCATION
	6.6 TOP-DOWN VERSUS BO'ITOM-UP SOLUTION

	7 DATA PROCESSING OPTIONS
	BLOCK PRINTOUT OPTIONS
	7.2 SUBSTITUTION OF INDEPENDENT SVSlllEES
	7.3 PRINT OR WRITE UNQUANTIFIED CUT SETS
	7.4 PLACE CUT SET RESULTS IN THEIR OWN BLOCK
	7.5 PRINT QUANTIFIED CUT SETS
	7.6 SABLE OUTPUT FILES

	8 VIEWING SABLE OUTPUT WITH 'IIFE VIEW UTILITY
	PURPOSE OF THE VEW UTILrry
	8.2 MANELJVEFSNG IN A MULTIPLE - DOCUMENT DE ACE
	8.3 OPENING S
	8.4 CLOSING FILES
	8.5 PRINTING
	8.6 THE EDITMENU

	9 ADDITIONAL TOPICS
	LEGAL SABLE NAMES
	9.2 FUNCTION OF OK AND CANCEL
	9.3 KEYBOARD AND MOUSE OPERATIONS
	9.4 GETTING HELP
	9.5 LEAVING SUGGESTIONS

	APPENDIX A: A SAMPLE PROBLEM
	GRAPHING THE FAULT TREE
	A.2 DEVELOPING QUANTIFICATION INFORMAnoN
	CREATINGAN ANALYSIS INSIDE SABLE
	A.4 SABLE OUTPUT
	SABLE 2.0 PROBLEM REPORTING FORM
	APPENDIX C: INDEX

