GOMA - A full-Newton finite element program for free and moving boundary problems with coupled fluid/solid momentum, energy, mass, and chemical species transport: User`s guide

PDF Version Also Available for Download.

Description

GOMA is a two- and three-dimensional finite element program which excels in analyses of manufacturing processes, particularly those involving free or moving interfaces. Specifically, the full-Newton-coupled heat, mass, momentum, and pseudo-solid mesh motion algorithm makes GOMA ideally suited for simulating processes in which the bulk fluid transport is closely coupled to the interfacial physics. Examples include, but are not limited to, coating and polymer processing flows, soldering, crystal growth, and solid-network or solution film drying. The code is based on the premise that any boundary can be (1) moving or free, with an apriori unknown position dictated by the distinguishing ... continued below

Physical Description

128 p.

Creation Information

Schunk, P.R.; Sackinger, P.A. & Rao, R.R. January 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

GOMA is a two- and three-dimensional finite element program which excels in analyses of manufacturing processes, particularly those involving free or moving interfaces. Specifically, the full-Newton-coupled heat, mass, momentum, and pseudo-solid mesh motion algorithm makes GOMA ideally suited for simulating processes in which the bulk fluid transport is closely coupled to the interfacial physics. Examples include, but are not limited to, coating and polymer processing flows, soldering, crystal growth, and solid-network or solution film drying. The code is based on the premise that any boundary can be (1) moving or free, with an apriori unknown position dictated by the distinguishing physics, (2) fixed, according to a global analytical representation, or (3) moving in time and space under user-prescribed kinematics. The goal is to enable the user to predict boundary position or motion simultaneously with the physics of the problem being analyzed and to pursue geometrical design studies and fluid-structure interaction problems. The moving mesh algorithm treats the entire domain as a computational Lagrangian solid that deforms subject to the physical principles which dictate boundary position. As an added benefit, the same Lagrangian solid mechanics can be exploited to solve multi-field problems for which the solid motion and stresses interact with other transport phenomena, either within the same material phase (e.g. shrinking coating) or in neighboring material phases (e.g. flexible blade coating). Thus, analyses of many fluid-structure interaction problems and deformable porous media problems are accessible. This document serves as a user`s guide and reference for GOMA and provides a brief overview of GOMA`s capabilities, theoretical background, and classes of problems for which it is targeted.

Physical Description

128 p.

Notes

OSTI as DE96004537

Source

  • Other Information: PBD: Jan 1996

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96004537
  • Report No.: SAND--95-2937
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/176768 | External Link
  • Office of Scientific & Technical Information Report Number: 176768
  • Archival Resource Key: ark:/67531/metadc664509

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • April 13, 2016, 2 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 8

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Schunk, P.R.; Sackinger, P.A. & Rao, R.R. GOMA - A full-Newton finite element program for free and moving boundary problems with coupled fluid/solid momentum, energy, mass, and chemical species transport: User`s guide, report, January 1, 1996; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc664509/: accessed October 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.