Energy and environmental research emphasizing low-rank coal: Task 1.7, Hot-water extraction of nonpolar organic pollutants from soils

PDF Version Also Available for Download.

Description

Supercritical water extraction of organic pollutants from solids is extremely effective because supercritical water has a low dielectric constant and can, therefore, efficiently solvate organics. However, the decrease in the dielectric constant of water can be achieved at much milder conditions (pressures of a few bar and temperatures of ca. 200{degrees}{minus}250{degrees}C) than the conditions used for supercritical water (pressure > 221 bar and temperature > 374{degrees}C) extractions. Polycyclic aromatic hydrocarbons (PAHs) were extracted from a highly contaminated soil using using water at temperatures ranging from 50{degrees} to 400{degrees}C, and pressures from 5 to 600 bar. Most PAHs could not be ... continued below

Physical Description

5 p.

Creation Information

Hawthorne, S.B. January 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Supercritical water extraction of organic pollutants from solids is extremely effective because supercritical water has a low dielectric constant and can, therefore, efficiently solvate organics. However, the decrease in the dielectric constant of water can be achieved at much milder conditions (pressures of a few bar and temperatures of ca. 200{degrees}{minus}250{degrees}C) than the conditions used for supercritical water (pressure > 221 bar and temperature > 374{degrees}C) extractions. Polycyclic aromatic hydrocarbons (PAHs) were extracted from a highly contaminated soil using using water at temperatures ranging from 50{degrees} to 400{degrees}C, and pressures from 5 to 600 bar. Most PAHs could not be extracted at 50{degrees}C but were completely removed at a temperature of 250{degrees}C. Additional increases to 300{degrees}C (still subcritical conditions) and 400{degrees}C (supercritical water) did not increase the recoveries significantly. The removal of PAHs had very little dependence on pressure when the temperature was 250{degrees}C, except that steam extraction (at 5 bar) yielded lower recoveries than the liquid water extractions (at 50, 350, and 600 bar). Therefore, the optimal conditions for extracting PAHs using water were 50 bar and 250{degrees}C (hot water). Based on the extraction rates obtained for several of the PAHs, the solubility of high molecular weight PAHs increased at least several thousandfold by increasing the water temperature to 200{degrees}{minus}300{degrees}C. Polychlorinated biphenyls (PCBs) were extracted from an industry soil and a sediment using hot-water (subcritical) extraction at 50 bar and 250{degrees}C. The high removal efficiencies of PCBs from soil and sediment agree very well with those obtained for PAHs from highly contaminated soil at the same extraction conditions, demonstrating that water is a potentially useful extraction solvent for many organics.

Physical Description

5 p.

Notes

OSTI as DE96000610

Source

  • Other Information: PBD: Jan 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96000610
  • Report No.: DOE/MC/30097--5078
  • Grant Number: FC21-93MC30097
  • DOI: 10.2172/206858 | External Link
  • Office of Scientific & Technical Information Report Number: 206858
  • Archival Resource Key: ark:/67531/metadc664486

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • May 2, 2016, 1:25 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hawthorne, S.B. Energy and environmental research emphasizing low-rank coal: Task 1.7, Hot-water extraction of nonpolar organic pollutants from soils, report, January 1, 1995; Grand Forks, North Dakota. (digital.library.unt.edu/ark:/67531/metadc664486/: accessed July 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.