A Progress Report on the Large Block Test

Lawrence Livermore National Laboratory

This paper was prepared for submittal to the
1996 International High Level Radioactive Waste Management Conference
Las Vegas, NV
April 29 - May 3, 1996

October 27, 1995

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.
DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.
A Progress Report on the Large Block Test

(Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550)

Introduction

The Yucca Mountain Site Characterization Project is investigating Yucca Mountain, Nevada, for its suitability as a potential repository for high-level nuclear waste. When emplaced in a repository, the radioactive decay heat of the waste may cause coupled thermal-mechanical-hydrological-chemical (TMHC) processes in the near field. These processes must be understood before model calculations can be performed to confidently predict the near-field environment.

The Large Block Test (LBT) is designed to permit the conduct of experiments with controlled boundary conditions so that they will be more useful for testing some of the concepts of the coupled TMHC processes. Specifically, the LBT will study the dominant heat transfer mechanism, condensate refluxing, binary diffusion, rewetting of the dryout zone following the cool-down of the block, displacement in fractures, and rock–water interaction. The LBT will also evaluate test methodologies and instruments that may be used in future tests at the Exploratory Studies Facility and will evaluate the corrosion/oxidation potential of coupons of candidate waste package materials. This is a progress report on the LBT.

Description of the LBT

The LBT consists of two parts: tests of individual processes in small blocks in the laboratory, and integrated tests for the macroscopic coupled processes in the large block. An outcrop area at Fran Ridge was selected because of its suitable rock type and accessibility.

Test on the Large Block

A 3 × 3 × 4.5 m block of nonlithophysal Topopah Spring tuff was isolated at Fran Ridge. The block will be heated from within to reach a steady state of 140°C at the heater horizon and about 60°C at its top for at least two months, then cooled down naturally, which may take six months. Zero-moisture-flux and zero-heat-flux boundary conditions will be maintained on the sides of the block throughout.
heating and cool-down. Vapor that leaves the top of the block will be collected and measured. The block will be restrained by straps to keep it from falling apart during the test.

Instruments will be installed in boreholes (which will be sealed) and on the block surfaces to monitor the responses of the block in three dimensions. The following parameters will be measured continuously: temperature, displacement, moisture content, thermal conductivity and diffusivity, pore gas pressure, acoustic emission, and acoustic velocities. Air permeability will be measured before and after the heating. Coupons of candidate waste package materials will be placed in strategic locations, and will be examined before and after the test for evidence of corrosion. After the test, the block will be dismantled to examine for evidence of rock–water interactions.

Small Block Tests in the Laboratory

Small blocks of the rock adjacent to the large block have been collected for tests to be conducted in the laboratory. The tests include thermal-mechanical deformations, fracture flow and matrix imbibition, drying and imbibition of intact and fractured blocks, vapor diffusion in the rock matrix, and condensation along a fracture. The water that flows through the test samples will be analyzed for chemical changes. Samples will be examined before and after each test for direct observation of rock–water interactions.

Progress and Status

Fractures on the four vertical sides and the top of the block have been carefully mapped. All horizontal boreholes have been drilled. Figure 1 shows a schematic of all the boreholes in the block. Video images were taken in each hole. The fracture distribution in those holes will be used determine instrument placement. Grooves were machined on the block surfaces to accommodate surface instruments and cables from instruments in boreholes.

Some of the instruments have been procured and calibrated. These include RTD, Humicaps, pressure transducers, packers, main heaters, guard heaters and insulation material, liners for some of the neutron and observation holes, hardware for a data acquisition system, heat exchanger, and hardware for the ERT measurements.
Small block laboratory tests are in progress. These include measuring matrix permeability, studying fracture healing, investigating fracture flow and matrix imbibition, measuring relative humidity as a function of water saturation, and investigating vapor condensation along a fracture.

Three scoping 2-dimensional model calculations have been conducted: homogeneous porous medium, horizontal permeable layers, and vertical permeable zones. In addition, a three-dimensional finite element model has been set up to run NUFT codes for thermal-hydrological calculations.

The LBT was stopped just before instruments were to be installed in the block. The large block is mothballed with plastic wraps and insulation material. All holes are plugged. All instruments are shelved.

Acknowledgment

Work performed under the auspices of the US. Department of Energy by Lawrence Livermore National Laboratory under contract W-7405-ENG-48. The authors thank P. Murphy for editing this summary and K. Jackson for timely review it. This work is supported by Yucca Mountain Site Characterization Project, LLNL.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Figure 1. Schematic diagram of the block with all of the instrument and heater holes.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.