Mechanisms and Determinants of RNA Turnover in Higher Plants
R.B. Meagher, Department of Genetics, University of Georgia
Athens, GA 30602


We began an investigation of the post-transcriptional mechanisms controlling plant gene expression several years ago, by demonstrating that RNA levels for ribulose bisphosphate carboxylase small subunit (rbcS) are partially controlled by the rate of RNA degradation (Shirley and Meagher, 1990; Thompson and Meagher, 1990). Plants supply all their carbon requirements by the fixation of carbon dioxide using the rbc enzyme. More recently it has become clear that a large number of plant genes are controlled at the post-transcriptional level and many at the level of RNA turnover. The determinants of RNA turnover were explored during the last four years with two diverse systems: the first dealt with the specific mechanisms by which rbcS mRNA was degraded in soybean, petunia and Arabidopsis; the second examined the roles of poly(A) binding proteins (PABP) in translation and RNA metabolism.

We have shown that rbcS mRNA is degraded into a discreet set of 5' proximal products (Thompson et al., 1992) and developed an in vitro system which would generate the same products from endogenous and exogenous rbcS mRNA (Tanzer and Meagher, 1994). Both the 5' and 3' proximal products are generated in random orders from full length RNA. More recently we mapped the precise 5' and 3' ends generated in vivo and in vitro by adapting a deoxynucleotide RNA sequencing technique, primer extension, RNase protection, and S1 mapping. Aligning the 5' and 3' processing sites demonstrated that these products are generated by endonucleolytic cleavage. Furthermore, the endonucleolytic cleavage precedes 3' poly(A) tail removal or 5' decapping, suggesting that this cleavage is the initial event in rbcS mRNA degradation (Tanzer and Meagher, 1995). These data clearly distinguished the processing of rbcS mRNA from the degradation of the majority of yeast mRNAs where deadenylation is followed by decapping and then by 5' to 3' exonucleolytic decay.

The poly(A) binding proteins (PABPs) are believed to regulate poly(A) tail length, mediate reinitiation of translation by interacting with initiation factors on the ribosomal subunits, and in link deadenylation with decapping and decay. This view is based on biochemical genetic studies in yeast. They are thought to be
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
central elements in building post-transcriptional machinery effecting mRNA activity and stability. The Arabidopsis PABPs are encoded by a large diverse gene family whose members are differentially expressed (Belostotsky and Meagher, 1993). One of these genes, PAB5, is specifically expressed in developing pollen and ovules (Belostotsky and Meagher, submitted), while another PAB2 is more constitutive. The PAB2 and PAB5 proteins are extremely diverse in sequence both from each other and from the yeast PAB1 protein sharing only about 50% amino acid identity in any pairwise comparison. Thus, it was not clear if higher eukaryotic PABPs would share all the functions of the yeast PAB1. Both PAB2 and PAB5 bound poly(A) with specificity over other oligoribonucleotides. When expressed from a yeast promoter, both PAB2 and PAB5 rescued the viability of a yeast PAB1 deletion (Belostotsky and Meagher, submitted). We are examining the specific properties of the plant PABPs using this yeast system and a combination of regulated yeast promoters and a temperature sensitive mutations in the plant PABPs which were constructed in yeast. So far we have demonstrated that in yeast, Arabidopsis PAB5 restores nearly normal polysome structure and poly(A) tail processing (PABP dependent deadenylation), but did not restore the link between deadenylation and decay (Belostotsky and Meagher, submitted). This demonstrates that some of the major activities of PABPs previously identified only for yeast PAB1 are conserved in PABPs from other eukaryotic kingdoms. Similar experiments are under way to determine if PAB2 shares these properties. Since PABPs have been proposed to be at the center of the post-transcriptional apparatus we were interested in identifying other proteins to which they bound. Using the yeast dihybrid cloning system we have identified candidate proteins which may interact with PAB2. They passed the genetic tests for a "correct" dihybrid interaction and we are now in the process of exploring the biochemical validity of these interactions with co-immune precipitations reactions. Examining the role of PABPs in post-transcriptional regulation has become the major focus of our future DOE funded research.

Publications resulting from this research


DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.