A New Perspective on Hydrogen Production
by Photosynthetic Water-Splitting

James Weifu Lee and Elias Greenbaum¹
Chemical Technology Division
Oak Ridge National Laboratory²
Oak Ridge, TN 37831-6194

To be published in the 1996 ACS Symposium Series

¹To whom correspondence should be addressed.

"The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE-AC05-84OR21400. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes."
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
A NEW PERSPECTIVE ON HYDROGEN PRODUCTION BY
PHOTOSYNTHETIC WATER-SPLITTING

James Weifu Lee and Elias Greenbaum¹
Chemical Technology Division
Oak Ridge National Laboratory²
Oak Ridge, TN 37831-6194

Abstract

Present energy systems are heavily dependent on fossil fuels. This will eventually lead to the foreseeable depletion of fossil energy resources and, according to some reports, global climate changes due to the emission of carbon dioxide. In principle, hydrogen production by biophotolysis of water can be an ideal solar energy conversion system for sustainable development of human activities in harmony with the global environment. In photosynthetic hydrogen production research, there are currently two main efforts: 1) Direct photoevolution of hydrogen and oxygen by photosynthetic water splitting using the ferredoxin/hydrogenase pathway; 2) Dark hydrogen production by fermentation of organic reserves such as starch that are generated by photosynthesis during the light period. In this chapter, the advantages and challenges of the two approaches for hydrogen production will be discussed, in relation to a new opportunity brought by our recent discovery of a new photosynthetic water-splitting reaction [Nature, 373, 438-441 (1995)], which, potentially, has twice the energy efficiency of conventional water-splitting via the two light reaction Z-scheme of photosynthesis.

¹To whom correspondence should be addressed.
Hydrogen is a versatile, clean and environmentally acceptable energy carrier. It can be produced by photolysis of water, an inexpensive and inexhaustible raw material. Photolysis can be performed using either inorganic systems such as semi-conductors or living organisms such as cyanobacteria or green microalgae. It is now clear that green algae are probably better for H₂ production than cyanobacteria, since the latter use the more energy-intensive enzyme, ATP-requiring nitrogenase for production of H₂. Based on a recent feasibility analysis (1), H₂ production by green algae can be more cost-effective than semi-conductor photovoltaic-electronics. The discussion in this article is focused on H₂ production by photosynthetic water splitting.

Fundamentals of photosynthesis and H₂ production

Photosynthesis is the fundamental biological process that converts the electromagnetic energy of sunlight into stored chemical energy that supports essentially all life on Earth. In green algae as in higher plants, photosynthesis occurs in a specialized organelle, the chloroplast. Light energy captured by the photosynthetic reaction centers is stored predominately by reduction of CO₂, using water as the source of electrons. As illustrated in Fig. 1, the key components of the photosynthetic apparatus involved in light absorption and energy conversion are embedded in thylakoid membranes inside the chloroplast. They are two chlorophyll (chl)–protein complexes, Photosystem I (PSI) with a reaction center, P₇₀₀, and Photosystem II (PSII) with another distinct reaction center, P₆₈₀. According to the current and prevailing concept of oxygenic
photosynthesis, the Z-scheme, first proposed by Hill and Bendall (2) and now described in many textbooks (3-7), PSII can split water and reduce the plastoquinone (PQ) pool, the cytochrome (Cyt) b/f complex, and plastocyanin (PC), while PSI can reduce ferredoxin (Fd)/nicotinamide adenine dinucleotide phosphate (NADP\(^{+}\)) and oxidize PC, the Cyt b/f complex, and the PQ pool. As a result, the electrons derived from water splitting are transferred to Fd/NADP\(^{+}\) which provide the reducing power for reduction of CO\(_2\) to carbohydrate in the stromal region of the chloroplast by a series of enzymatic reactions collectively called the Calvin cycle. Electron transport in the membrane is coupled with proton transport from the stroma into the lumen, generating a proton gradient across the thylakoid membrane. The proton gradient drives phosphorylation through the coupling factor CF\(_5\)-CF\(_1\) to make essential adenosine triphosphate (ATP) for the reduction of CO\(_2\). This is the common description of oxygenic photosynthesis.

In many green algae, such as *Chlamydomonas*, there is a hydrogenase that can be induced under anaerobic conditions (8, 9). The hydrogenase can catalyze the reduction of protons to produce H\(_2\) using electrons from the reduced Fd as shown in Fig 1. Since protons are also produced by water splitting at PSII, the net result of this Fd/hydrogenase pathway is simultaneous photoevolution of H\(_2\) and O\(_2\) using water as the substrate and light energy as the driving force.

Under anaerobic conditions and darkness, H\(_2\) may be produced by fermentative metabolic degradation of organic reserves such as starch (Fig. 1). This fermentative metabolic process has been well studied (10, 11). Since the substrate of the fermentative pathway is generated photosynthetically by reduction of CO\(_2\), the net result of the sequential process, photosynthesis and fermentation, is still splitting water to H\(_2\) and O\(_2\), with CO\(_2\) as an intermediate.
Hydrogen Production by Direct Photosynthetic water splitting

The discovery of photosynthetic H₂ production is based on the classic work of Gaffron and Rubin in 1942 (12). However, only since 1973 at the time of the energy crisis, photosynthetic H₂ production has been investigated as a potential source of energy (13-35). Sustained photoevolution of H₂ and O₂ by microalgae was first demonstrated by Greenbaum in 1980 (15). Under anaerobic conditions, sustained photoevolution of H₂ and O₂ in microalgae can be readily demonstrated using a reactor-flow-detection system (Fig. 2). Figure 3 presents a typical measurement of H₂ and O₂ production in Chlamydomonas under helium atmosphere using the reactor-flow-detection system. The data clearly demonstrate that photoevolution of H₂ and O₂ can occur stably with a stoichiometric ratio of H₂ to O₂ of nearly 2:1 as expected for water-splitting. Photoevolution of H₂ and O₂ can be sustained for weeks.

The advantage of the simultaneous H₂ and O₂ photoevolution is that it can potentially have a high energy conversion efficiency since electrons energized by the light reactions are used directly in the reduction of protons to produce H₂ by the Fd/hydrogenase pathway (Fig. 1). However, H₂ production by this mechanism requires gas product separation since both H₂ and O₂ are produced simultaneously in the same volume. Furthermore, until an O₂-insensitive hydrogenase is developed, the O₂ concentration in the algal suspension has to be kept low to maintain H₂ production since the hydrogenase is sensitive to O₂. Therefore, an efficient and inexpensive technique to separate and remove gas products is needed.

Another important aspect is that the photoevolution of H₂ and O₂ in microalgae is often saturated at a relatively low actinic intensity. This is probably due to three factors: 1) Accumulation of a back-proton gradient because of the limited permeability of thylakoid
membrane to protons and loss of ATP utilization due to the inactivation of the Calvin cycle; 2) Partial inactivation of PSII activity owing to loss of CO₂ binding at a regulatory site on the PSII reaction center in the absence of CO₂; 3) The normal non-linear response of the light saturation curve of photosynthesis. Therefore, the potential still exists to improve the efficiency of photosynthetic H₂ production. Further research is needed to eliminate these limiting factors. The first limitation may be solved on a short basis by using an appropriate proton uncoupler that dissipates the proton gradient across the thylakoid membrane (36), whereas the second could be overcome by eliminating the requirement of CO₂ binding through molecular engineering. The third limitation can, in principle, be overcome by reducing the antenna size of the photosynthetic reaction centers.

To avoid gas product separation and to increase efficiency, we have previously proposed a PSI and PSII reactor system that can potentially produce H₂ and O₂ in two separate compartments (32). This reactor system is based on the structure and function of isolated PSI and PSII reaction centers, and on the catalytic activity of metallic platinum and osmium for H₂ production (37-41). As illustrated in Figure 4, O₂ and protons are produced by water splitting by an array of PSII reaction centers in the PSII compartment. The electrons acquired from water splitting are wired to the reducing side of a PSI array where the electrons are energized again by PSI photochemistry. The PSI-energized electrons are then used to evolve H₂ by platinum (or osmium)-catalyzed reduction of protons that come from PSII compartment through a proton conducting channel. As described previously, this system should be able to operate continuously since the number of protons and electrons generated can be balanced with the number of them consumed. We believe, this is an important direction for future research. In this laboratory,
research progress has been made in this direction (42-44). Recently, we have constructed a two dimensional spatial array of PSI reaction centers on a gold surface at nanometer scale by a platinization anchoring technique (44).

Hydrogen Production by Dark Fermentation of Photosynthetic Product

An advantageous feature of fermentative H$_2$ production is its temporal separation from photosynthesis (Figure 1). That is, O$_2$ evolution and CO$_2$ photoassimilation by photosynthesis occurs during the day, whereas fermentative H$_2$ production by degradation of photosynthetic product (starch) can occur during the night. By taking advantage of this temporal separation between O$_2$ evolution (day) and H$_2$ production (night), one can potentially develop an algal H$_2$ production technology that avoids the problem of gas product separation. This approach is a major project by a group of Japanese scientists (22, 29, 33, 34). Important progress has been made. Miura et al (34) have demonstrated algal fermentative H$_2$ production that is temporally separated from photosynthesis (CO$_2$ fixation and O$_2$ evolution) using a combination of green algae and photosynthetic bacteria comprising over 100 L of green algae.

The challenge, as always, in this fermentative H$_2$ production approach is the efficiency. Figure 5 presents a typical measurement of photosynthesis and fermentative H$_2$ production in wild-type Chlamydomonas in helium atmosphere in the presence of CO$_2$ under cycles of 12 hr of moderate actinic illumination (PAR, 200 µE·m$^{-2}$·s$^{-1}$) and 12 hr of darkness, using the flow-detection system (Fig. 2). From the data, it can be clearly seen that the rate of fermentative H$_2$ production is very slow --- less that 5% of the rate of oxygen evolution during the day. Therefore, enhancing the rate of dark fermentative H$_2$ production is the key challenge.
New Opportunities Brought by a Recent Discovery

In this laboratory, our current research has focused on improving the energy efficiency of photosynthetic hydrogen production. Using mutants of *Chlamydomonas* that lack PSI but contain PSII, we have demonstrated a new type of photosynthesis. That is, photoevolution of O$_2$ and H$_2$, and photoassimilation of CO$_2$ by PSII light reaction alone (35). Based on studies of electron transport pathway (Lee and Greenbaum, 1996, unpublished), the newly discovered water-splitting reaction for H$_2$ and O$_2$ production (1) or for CO$_2$ fixation and O$_2$ evolution (2) may require only half the number of photons of conventional Z-scheme photosynthetic reactions (3) and (4).

Newly Discovered PSII photosynthesis:

(1) \[H_2O + 2 \text{hv} \rightarrow H_2 + \frac{1}{2} O_2 \quad \Delta G^* = -115 \text{kJ/mol} \]

Energy efficiency = 67.4% (\(\lambda = 680 \text{ nm}\))

(2) \[CO_2 + H_2O + 4 \text{hv} \rightarrow \frac{1}{6}(C_6H_{12}O_6) + O_2 \quad \Delta G^* = -224 \text{kJ/mol} \]

Energy efficiency = 68.2% (\(\lambda = 680 \text{ nm}\))

Conventional Z-scheme Photosynthesis:

(3) \[H_2O + 4 \text{hv} \rightarrow H_2 + \frac{1}{2} O_2 \quad \Delta G^* = -446 \text{kJ/mol} \]

Energy efficiency = 33.7% (\(\lambda = 680 \text{ nm}\))

(4) \[CO_2 + H_2O + 8 \text{hv} \rightarrow \frac{1}{6}(C_6H_{12}O_6) + O_2 \quad \Delta G^* = -927 \text{kJ/mol} \]

Energy efficiency = 34.1% (\(\lambda = 680 \text{ nm}\))

Both reactions (1) and (2) have a significantly large negative value of \(\Delta G^*\). They should be able to occur spontaneously. Therefore, although the discovery is surprising and novel, it still obeys
the laws of thermodynamics. Since reactions (1) and (2) require half number of photons of reactions (3) and (4), the discovery can potentially lead to a H₂ production and/or CO₂ fixation technology with twice the energy conversion efficiency of conventional Z-scheme photosynthesis.

The demonstration of photosynthesis by a single light reaction proved that a single light reaction can span the potential difference between water oxidation and proton reduction for sustained evolution of H₂ and O₂, which was previously thought to be impossible (45). Therefore, we can now propose a new reactor system containing biometallocatalysts that requires only a single type of photochemical reaction center (Fig. 6), but is able to perform the same function of the reactor system in Fig. 3. As illustrated in Fig. 6, when water is split to O₂ and protons by PSII, electrons from the reducing side of PSII should, neglecting resistive loss, be able to reduce protons on a platinum catalyst surface to evolve H₂ in a separate compartment without PSI.

At low light intensity and under ideal laboratory conditions, the maximum sunlight to H₂ energy conversion efficiency for Z-scheme photosynthesis has been measured to be about 10% (46). From a practical point of view, application of "PSII photosynthesis" can potentially double the sunlight conversion efficiency from 10% to 20% (35). This potentially higher efficiency (20%) can put photosynthetic H₂ production in a much more competitive position vis-à-vis other solar technologies. Moreover, since PSII photosynthesis can also photoassimilate CO₂, it should also be able to improve the energy efficiency of photosynthesis (CO₂ fixation) in general. Therefore, the discovery also provides a new opportunity to improve energy efficiency for production of H₂ by the photosynthesis/fermentation combined system of Miura et al (34).
Acknowledgement

This research was supported by the U.S. Department of Energy, the Pittsburgh Energy Technology Center, and the ORNL Laboratory Director’s R&D Fund. Oak Ridge National Laboratory is managed by Lockheed Martin Energy Research Corp., for the U.S. Department of Energy under contract DE-AC05-96OR22464.

Literature Cited

Caption for Figures

Fig. 1. Conventional photosynthetic pathway based on the Z-scheme.

Fig. 2. Schematic illustration of a dual-reactor-flow system for simultaneous detection of H₂, O₂ and CO₂.

Fig. 3. Sustained photoassimilation of H₂ and O₂ in Chlamydomonas 137c under anaerobic conditions and in the absence of CO₂ [E. Greenbaum, J. W. Lee, C. V. Tevault, S. L. Blankinship, L. J. Mets, Nature, 376, 438 (1995)].

Fig. 4. A photosynthetic reactor system made of PSI and PSII electro-optical cells for production of H₂ and O₂ in separate compartments.

Fig. 5. Photoassimilation of CO₂, evolution of H₂ and O₂ by Chlamydomonas 137c in the presence 700 ppm CO₂ in helium.

Fig. 6. A proposed biometallocatalytic reactor system for production of H₂ and O₂ in separate compartments by a single light reaction (PSII).

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
PRODUCTION OF H₂ AND O₂ BY Chlamydomonas
137c (3 μg chl/mL) IN PURE HELIUM

Fig. 3
Lee & Greenbaum
ORNL DWG 94A-604
Fig. 4
Lee & Greenbaum
ORNL DWG 93A-865
Fig. 5
Lee & Greenbaum
ORNL DWG 96-77R
Fig. 6
Lee & Greenbaum
ORNL DWG 98A-88R