ENVIRONMENTAL ASSESSMENT, FINDING OF NO SIGNIFICANT IMPACT, AND RESPONSE TO COMMENTS

SOLID RESIDUE TREATMENT, REPACKAGING, AND STORAGE

United States Department of Energy
Rocky Flats Environmental Technology Site
Golden, Colorado

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

April 1996

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
ENVIRONMENTAL ASSESSMENT
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PURPOSE AND NEED FOR ACTION</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1</td>
<td>Background</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2</td>
<td>Purpose and Need for Action</td>
<td>1-3</td>
</tr>
<tr>
<td>2</td>
<td>DESCRIPTION OF ALTERNATIVES INCLUDING THE PROPOSED ACTION</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1</td>
<td>General</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2</td>
<td>Proposed Action</td>
<td>2-3</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Construction</td>
<td>2-4</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Operations</td>
<td>2-4</td>
</tr>
<tr>
<td>2.2.2.1</td>
<td>Ash Residues</td>
<td>2-4</td>
</tr>
<tr>
<td>2.2.2.2</td>
<td>Salt Residues</td>
<td>2-8</td>
</tr>
<tr>
<td>2.2.2.3</td>
<td>Wet Residues</td>
<td>2-11</td>
</tr>
<tr>
<td>2.2.2.4</td>
<td>Direct Repackage Residues</td>
<td>2-16</td>
</tr>
<tr>
<td>2.2.2.5</td>
<td>Classified Shape Residues</td>
<td>2-18</td>
</tr>
<tr>
<td>2.3</td>
<td>No Action Alternative</td>
<td>2-18</td>
</tr>
<tr>
<td>2.4</td>
<td>Shipment Offsite For Treatment</td>
<td>2-20</td>
</tr>
<tr>
<td>2.5</td>
<td>Shipment Offsite For Storage</td>
<td>2-20</td>
</tr>
<tr>
<td>3</td>
<td>AFFECTED ENVIRONMENT</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1</td>
<td>Natural Environment</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2</td>
<td>Built Environment</td>
<td>3-4</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Building 371</td>
<td>3-4</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Building 374</td>
<td>3-4</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Building 707</td>
<td>3-5</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Building 771</td>
<td>3-5</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Building 774</td>
<td>3-5</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Building 776/777</td>
<td>3-6</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Building 779</td>
<td>3-6</td>
</tr>
<tr>
<td>3.2.8</td>
<td>Safety Systems</td>
<td>3-6</td>
</tr>
<tr>
<td>3.2.8.1</td>
<td>Ventilation</td>
<td>3-7</td>
</tr>
<tr>
<td>3.2.8.2</td>
<td>Selective Alpha Air Monitors</td>
<td>3-8</td>
</tr>
<tr>
<td>3.2.8.3</td>
<td>Fire Protection</td>
<td>3-8</td>
</tr>
<tr>
<td>3.2.8.4</td>
<td>Life Safety/ Disaster Warning</td>
<td>3-8</td>
</tr>
<tr>
<td>3.2.8.5</td>
<td>Criticality Alarms</td>
<td>3-8</td>
</tr>
<tr>
<td>3.2.8.6</td>
<td>Emergency Power</td>
<td>3-9</td>
</tr>
</tbody>
</table>
4 ENVIRONMENTAL EFFECTS OF THE PROPOSED ACTION AND ALTERNATIVES . 4-1
4.1 Natural Environment .. 4-1
4.2 Human Health ... 4-1
 4.2.1 Routine Operations 4-1
 4.2.1.1 Direct Worker Exposure 4-1
 4.2.1.2 Air Emissions. 4-4
 4.2.2 Accidents ... 4-5
 4.2.2.1 Workers .. 4-6
 4.2.2.2 Collocated Workers 4-6
 4.2.2.3 Maximally-Exposed Offsite Individual 4-7
 4.2.2.4 Area Population 4-8
4.3 Summary of Effects 4-8

5 AGENCIES AND PERSONS CONSULTED 5-1

6 REFERENCES .. 6-1

List of Figures

Figure 2.1 Industrial Area of the Rocky Flats Environmental Technology Site Showing the Location of Buildings That are Part of the Proposed Action .. 2-2

Figure 2.2 Flow Diagram for Treatment of Ash Residues 2-6

Figure 2.3 Flow Diagram for Treatment of Salt Residues 2-9

Figure 2.4 Flow Diagram for Treatment of Wet Aqueous Residues 2-13

Figure 2.5 Flow Diagram for Treatment of Wet Organic Residues 2-14

Figure 2.6 Flow Diagram for Direct Repackaging 2-17

Figure 2.7 Flow Diagram for Treatment of Classified Shape Residues 2-19

Figure 3.1 Location Map of Rocky Flats Environmental Technology Site 3-2

Figure 4.1 Comparison of Risk for Proposed Action and No Action Alternatives 4-3
1. PURPOSE AND NEED FOR ACTION

1.1 Background

From its founding in 1952 through the cessation of production in 1989, the United States Department of Energy's (DOE) Rocky Flats Plant (now the Rocky Flats Environmental Technology Site [the Site]) produced components for nuclear weapons. Some of those components were made of plutonium. As a result of the processes used to recover and purify plutonium and manufacture the components, a variety of materials became contaminated with plutonium. If the level of contamination were low, the material was considered waste. However, if the concentration of plutonium in the material exceeded the "economic discard limit," the materials were classified as "residue" rather than "waste" and were stored for later recovery of the plutonium. While large quantities of residues were processed, others, primarily those more difficult to process, accumulated at the Site in storage.

Two important events regarding residues have occurred at the Site since production activities ceased. One event was the end of the Cold War in 1991, which made the return to production of nuclear weapons, with their Rocky Flats-made components, unnecessary. This event led to DOE's decision to permanently cease production at the Site, clean up and remove radioactive and chemical contamination at the Site, and find alternative uses for the Site.

The other important event was DOE's decision not to recover plutonium from the residues for use in weapons production. This decision, together with the requirements of Settlement Agreement and Compliance Order on Consent No. 93-04-23-01 issued by the Colorado Department of Public Health and Environment requiring that residues be treated as waste, effectively turned the residues into waste. (The materials formerly known as residues are now classified as transuranic waste [waste with more than 100 nanocuries of plutonium per gram of waste]. They are referred to as residues in this document to differentiate them from other wastes at the Site). Reclassification of residues as waste and the decision not to recover the plutonium in the residues meant that the residues must be made safe for interim storage (i.e., storage until long-term disposition of the residues is determined) at the Site and, ultimately, shipment offsite.

The Defense Nuclear Facility Safety Board's Recommendation 94-1 addressed safety issues associated with storage of residues. In response to this recommendation, DOE believes that it is necessary to treat and/or repackage, store, and ultimately remove the residues from the Site for disposition for the following reasons:
To comply with the requirements of Settlement Agreement and Compliance Order on Consent No. 93-04-23-01. This Order compels DOE and its contractors to implement the Mixed Residue Reduction Program in a timely and adequate manner. The Program requires, among other things, the "processing of backlog mixed residues to put them in a shippable and/or disposable form as expeditiously as reasonably possible" and "removal from the Plant of the backlog mixed residues and the TRU [transuranic]-mixed wastes generated by their processing as expeditiously as reasonably possible once a final offsite disposal facility becomes available."

- To minimize the potential for accidental exposure of workers and the public to the radiation hazard presented by the residues.

- To provide a broader range of possibilities for the future use of the Site than would be possible if the residues were permanently stored or disposed of at the Site.

- To facilitate the timely decontamination and decommissioning of plutonium buildings.

Nearly all of the residues are in a condition or container that does not meet the Site's interim safe storage criteria which were developed in response to the Defense Nuclear Facility Safety Board's Recommendation 94-1. The variances include relatively large quantities (over 200 grams) of plutonium in many of the drums, levels of radiation at drum surfaces and temperatures generated by radioactive decay that exceed interim safe storage criteria, the presence of liquids, respirable fines (small particles that can be inhaled), and possibly-corrosive and pyrophoric materials in the drums. In addition, most residues do not meet DOE's or the U. S. Department of Transportation's requirements for offsite shipment. Consequently, the residues need to be put in a condition and in containers in which they can be safely stored and, once their final disposition has been determined, safely transported.

The subject of this document is how best to make residues safe for storage until their final disposition can be decided and implemented. How and where that final disposition is to be made will be decided through such analyses as the Waste Isolation Pilot Project Supplemental Environmental Impact Statement, a draft of which is to be released later this year.
1.2 Purpose and Need for Action

The need for DOE to take action regarding stored residues at the Site is based on:

- The requirements of the Site's current mission to clean up the Site and convert it to other beneficial uses;

- Recommendation 94-1 of the Defense Nuclear Facilities Safety Board and the requirements of best management practices to process the residues and convert their constituent plutonium into a form suitable for safe interim storage;

- The requirements of the Settlement Agreement and Compliance Order on Consent No. 93-04-23-01 issued by the Colorado Department of Public Health and Environment to process mixed residues into a form suitable for shipment and/or disposal, and to remove from the Site all mixed residues as soon as possible;

- The requirements of best management practices that the residues be in a condition and in containers that 1) are safe for interim storage, and 2) permit shipment offsite once disposition of the residues is determined.
2. DESCRIPTION OF THE PROPOSED ACTION AND ALTERNATIVES

2.1 General

Approximately 106,600 kilograms (kg) of residues, averaging almost 3% plutonium (for a total of approximately 3,100 kg of plutonium), are at the Site. Of this total, approximately 39,200 kg can be directly repackaged without any required treatment to meet the Site's interim safe storage criteria. This would leave a maximum of approximately 67,400 kg that could require treatment. It may not be necessary to treat this total quantity.

For the purposes of this document, treatment is considered to be any method or process designed to change the physical, chemical, or biological character or composition of the residue material to render the material safer to store, transport, or dispose. Residues have been categorized into 99 different types by “item description code,” a descriptive method for grouping and tracking wastes. Because of the chemical similarity of certain groups of residues or the similarity of the manner in which they must be treated and/or repackaged to ensure safe interim storage, the entire inventory of residue types has been divided by item description code into treatment categories. These categories, and the approximate quantity of residues in each, are: (1) ash (27,900 kg, including incinerator ash, sands, slags, and certain crucible material, graphite, firebrick, soot, and other particulates); (2) salts (16,000 kg, pyrochemical salts); (3) direct-repackage residues (39,200 kg, including dry combustibles such as paper, rags, cloth, plastics, and inorganics such as glass, insulation, certain crucible material, and metals); (4) classified shapes (6,700 kg, including classified parts, graphite shapes, tooling, and metal shapes); and (5) wet residues (16,800 kg, including sludges, grease oxides, grease fluorides, and wet combustibles containing discernable quantities of liquids such as water, acids, bases, or organic solvents) for a total of approximately 106,600 kg of residues.

The 106,600 kg of residues are stored in 55-gallon drums, 10-gallon drums, 1- and 2-liter stainless steel cans, 1- to 4-liter plastic bottles, 1- to 2-liter tin-coated steel cans in glove box lines, plastic bags and miscellaneous configurations. Residue storage locations include six of the former plutonium production buildings at the Site (Buildings 371, 707, 771, 776, 777, and 779) (see Figure 2.1), all of which are located within the Protected (security) Area. Approximately 50% by volume of the residues are categorized as “mixed” residues because they contain hazardous constituents or exhibit hazardous characteristics regulated under the Resource Conservation and Recovery Act (RCRA), as well as radioactive contaminants.
Figure 2.1 Industrial Area of the Rocky Flats Environmental Technology Site Showing the Location of Buildings That are Part of the Proposed Action
The residues exist in a variety of chemical and physical forms and packaging configurations. Some combinations of residue type and packaging could result in conditions that may compromise container integrity and worker safety. These possible conditions include combustion of drum contents as a result of low-ignition-temperature constituents, detonation of shock-sensitive compounds, radiolytic degradation of packaging materials (the interaction of radioactive materials and plastic which can produce hydrogen gas), chemical corrosion of drums or cans, and release of toxic chemicals.

2.2 Proposed Action

The proposed action is to stabilize, if necessary, and/or repackage the residues for safe interim storage at the Site while awaiting the completion and opening of a suitable repository to which they would be shipped for disposal. “Interim” storage would be in containers and under conditions appropriate for a period of approximately 20 years, but actual length of storage would be until an appropriate offsite disposal location became available.

Approximately 26,200 kg of the residues require treatment by the end of 1998 pursuant to Recommendation 94-1 of the Defense Nuclear Facilities Safety Board because they may be unstable. (Residues are unstable if they are in a condition that could result in ignition, detonation, hydrogen gas generation, container degradation or other unsafe situations.) Those materials include Ful-Flo filters (a brand of filters used to filter liquids), wet combustibles, leaded gloves, acid contaminated glovebox filters, salts, graphite fines and sand, slag and crucibles. Knowledge of the history of some residues and characterization results also indicate that, at a minimum, 39,200 kg of residue materials can be directly repackaged to meet interim safe storage criteria. The remaining residues, approximately 41,200 kg, would require further treatment and repackaging by 2002 to meet interim safe storage requirements and the terms of Recommendation 94-1 of the Defense Nuclear Facilities Safety Board.

Depending on the residue type, treatment can include: oxidation, washing, cementation, calcination, thermal desorption, drying to eliminate liquids, and chemical treatment. Treatment would convert plutonium and other unoxidized metals to oxides or other less reactive forms, immobilize respirable fines (very small radioactive particles which could be inhaled), and/or remove plutonium surface contaminants and liquids. Materials which are expected to meet the interim safe storage criteria in their current physical form or chemical composition would be directly repackaged, without treatment, into metal containers to meet interim safe storage criteria.
2.2.1 Construction

All construction activities associated with the proposed action would occur within existing buildings at the Site and would not require additions to Site buildings or utilities. Construction materials would be staged in existing warehouses at the Site. Construction would consist of necessary modifications to the interiors of certain buildings and equipment as well as installation of some new equipment. Activities would include partial dismantling and removal of utility (electrical, water, laboratory gases, alarm) systems; dismantling and removal of equipment; construction and installation of new gloveboxes, utility systems, and processing equipment; and removal of non-structural walls. DOE expects construction activity for all but treatment of classified shape residues to start between May and August 1996 and be completed by July 1997. Construction activities for treatment of classified shapes is expected to start in June 1997 and be completed by the following October. Construction of treatment facilities would take place in Building 707 for all but wet residues, which would be treated in Building 371. Construction for ash and dry combustibles is expected to cost approximately $29 million, while similar activities for salt residues are planned to cost approximately $38 million. Construction activities for wet residues are expected to total approximately $12.5 million, while those for classified shapes are estimated at $8 million.

DOE estimates that construction activities related to solid residues treatment would generate the equivalent of approximately 1,020 drums of secondary waste. The waste would consist of retired gloveboxes and other equipment as well as construction debris. The majority of this waste is expected to be classified as low level waste (radioactive with 100 nanoCuries or less of radioactivity per gram of waste) with the remainder being transuranic waste (radioactive with more than 100 nanoCuries of radioactivity per gram of waste). A small portion, consisting chiefly of lead from gloveboxes, would be mixed waste (radioactive and hazardous, since lead is classified as a hazardous waste). DOE plans to decontaminate and possibly recycle of the lead. The low level and transuranic waste would be placed in containers (drums and crates) and stored in approved locations pending offsite disposal.

2.2.2 Operations

2.2.2.1 Ash Residues

The 27,900 kg of ash residues are stored in Buildings 371, 707, 771, 777, and 779. The ash category consists of three groups. The first group totals 23,600 kg and consists primarily of: (1) pulverized and unpulverized incinerator ash, (2) ash heels, (3) firebrick heels and fines, (4) magnesium oxide crucible materials, (5) grit, (6) soot
and soot heels, (7) aluminum and magnesium oxide, and (8) plutonium fines removed from building exhaust ducts. (Ash, firebrick, or soot "heels" are undissolved waste material left over from previous processing to recover plutonium.) The second group includes primarily pulverized sands, slags, and crucible material totalling 3,350 kg. The third group consists of approximately 950 kg of graphite fines.

Full-scale treatment of ash residues would be preceded by a pilot study to determine the physical and chemical changes that occur to the ash residues as they are heated (calcined) to various temperatures. The results of the study would be used to develop the full scale treatment technology and operating parameters. The pilot study is planned to take place in Module J of Building 707. The ash residues would be moved to Building 707 from Buildings 371, 771, and 776/777. Ash would be removed from the containers inside the drums. The ash would be transferred to a pan inside a glovebox in Module J, and the pan placed in furnace J-25 or J-60. Inside the furnace, the ash would be heated in an oxidizing environment to 500°C, allowed to cool, have samples removed, reheated to 1000°C, allowed to cool, have additional sample taken, and replaced in the drum from which it had been removed. The samples would be analyzed in Building 559 to determine the success of the process. These steps would be repeated with modifications to operating parameters until satisfactory results were obtained.

Full scale treatment and preparation of ash residues for interim storage would occur in Module E or Module J of Building 707. Treatment of ash residues would result in removal of moisture and organics, conversion of plutonium and other metals that may be present to an oxide form, and immobilization of respirable fines.

Respirable ash fines would be immobilized by either cementation (mixing with cement to solidify the residue) or repackaging. Some ash residues would require calcination (a thermal treatment which drives off or destroys organic contaminants and oxidizes metals) before immobilization. Effluent gases from calcining would be treated as necessary to reduce process emissions. A process flow diagram is shown in Figure 2.2.

The process would involve the following steps:

- The ash residues would be moved from their current locations to an appropriately-permitted input staging area in Building 707. The residues typically would be in 55-gallon drums during transport.

- Drums would be inspected, as necessary, using real time radiography (a means of examining the contents of a container using an X-ray system).
• If required for safeguard purposes, the quantity of plutonium/americium in each drum would be determined.

• The drums would be opened and unpacked within contamination control rooms in Building 707. The residues would be transferred to the glovebox line.

• Materials would be sorted and staged for further work in an existing glovebox.

• The ash residue would be size-reduced as necessary and packaged.

• Following size reduction, the residues requiring calcination would be heated to up to 1000° C.

• Exhaust gases from the calcination furnace would pass through a scrubber system and a granular activated carbon canister to neutralize and remove corrosive or organic constituents prior to release through the building’s HEPA (high efficiency particulate air)-filtered exhaust system.

• Calcined material would be collected in containers and then non-destructively assayed (measuring the quantity of radioactive material in a container without affecting the physical or chemical properties of the material). This step would account for the plutonium inventory and assign an inventory value to each package removed from the glovebox line.

• Calcined and non-calcined ash residues would be cemented or repackaged to immobilize respirable fines.

• After the cement had cured, the residue would be staged for final packaging.

• The containers of cemented and/or repackaged residue would be removed from the glovebox line and placed inside 55-gallon drums in containers which meet interim safe storage criteria.

• The drums would be placed in a storage area.

DOE estimates that treatment and repackaging of ash residues would generate approximately 960 drums of secondary low level waste and approximately 540 drums of secondary TRU waste. This waste would be moved to an approved radioactive waste storage location on the Site for interim storage.
2.2.2.2 Salt Residue

The salt category of residues is composed of five sub-categories: (1) electro-refining salts, (2) molten salt extraction salts, (3) direct oxide reduction salts, (4) scrubbed molten salt extraction salts, and (5) cell clean-out salts. The salt matrix of electro-refining, molten salt extraction, and scrubbed molten salt extraction salts consists primarily of sodium chloride, potassium chloride, and magnesium chloride. The differences between these salts are based on their actinide and magnesium chloride concentrations. Most of the actinides (radioactive elements) have been removed from the scrubbed molten salt extraction salts. Direct oxide reduction salts have a calcium chloride and calcium oxide salt matrix which may contain elemental calcium dissolved and entrained in the matrix. It is possible that calcium metal buttons may be packaged with the direct oxide reduction salts. The cell scrapings are primarily sodium chloride, potassium chloride, and magnesium chloride salts. Reactive species (e.g., elemental metals) may be present in any of these salt categories. The salt residues are stored in Buildings 371, 707, 771, 777, and 779.

Treatment of up to approximately 16,000 kg of the salt residues would be conducted in Module A of Building 707 and would result in the removal of any water and the conversion to an oxide form of any reactive species (e.g., elemental metals) that may be present. A process flow diagram is presented in Figure 2.3.

Salts would be treated by a pyrochemical oxidation process (a high temperature [800º-1000º C] oxidation process that takes place in a molten salt medium; used to ensure conversion of reactive metals to non-reactive oxides)(oxidation is the process of combining a metal with oxygen in a heated environment in order to speed up its natural decay process and put it in a more stable form). The pyrochemical-oxidation process is similar to other pyrochemical processes done previously at the Site, specifically the molten salt extraction process. Both processes, for example, are oxidation processes, and use the same type of furnace, similar crucibles, and similar operating parameters. The pyrochemical oxidation process would involve the following steps.

- Drums containing the salts would be moved to a staging area prior to non-destructive assay.
- The drums would be opened and items removed in a contamination control cell to minimize radiological contamination risk.
- Any necessary non-destructive assay of salt residue would be conducted in the building.
Figure 2.3 Flow Diagram for Treatment of Salt Residues
The items would be moved into the glovebox line for treatment.

During treatment, the salt and an oxidant (a chemical added to facilitate oxidation) would be placed in a crucible (a container, usually ceramic but sometimes metal, used to hold materials being heated to high temperatures).

The amount of plutonium in each batch would be established based on criticality safety limits and storage and disposal criteria. If the package requires subdivision, an in-line non-destructive assay system will be used to verify that the subdivided residue would not exceed the limit.

The loaded crucible would be placed in a furnace, heated to 800° to 1000° C, and stirred for about 2 hours. The furnace would then be allowed to cool.

During the heating, stirring, and cooling phases, argon would flow through the furnace. During the last part of the stirring phase, the argon would be replaced by a mixture of air and argon.

The crucible and salt ensemble would be removed from the furnace, allowed to cool, and transferred to packaging.

Each batch of stabilized salt would be packaged and removed from the glovebox.

The packaged, stabilized salt would be analyzed to determine its plutonium content, placed in secondary packaging, and shipped to the designated Site interim storage facility.

Alternative Technology Evaluated

Open hearth oxidation was tested as an alternative to the pyrochemical-oxidation processing method. The technique involves heating residue salts in air to a temperature below the melting point of the salt residue for a time to stabilize reactive metals. Test results showed that the reactive constituents of concern were not completely stabilized. Since the technology did not achieve the desired results, it was eliminated from further consideration.

DOE estimates that treatment and repackaging of salt residues would generate approximately 920 drums of secondary low level waste and approximately 500 drums of secondary TRU waste. This waste would be moved to an approved radioactive waste storage location on the Site for interim storage.
2.2.2.3 Wet Residues

The 16,800 kg of wet residues are composed primarily of: (1) wet combustibles which are similar to dry combustibles but contain or have been exposed to discernable quantities of liquids (water, acids, bases, or organic solvents); (2) Ful-Flo filters (polypropylene material containing particulates from process liquid streams and trapped water, acids, bases, or organic solvents); (3) fluorides (plutonium fluorides, sodium fluoride pellets); (4) grease oxide (plutonium oxide mixed with lubricants); (5) grease fluoride (a mixture of plutonium fluoride and lubricants); (6) sludges; (7) HEPA filter media; and (8) unleached Raschig rings (borosilicate glass rings used to maintain subcritical conditions [conditions short of a criticality] in actinide solution storage tanks that, because of their shape and size, are not necessarily proof against a criticality).

Since this category of residues consists of a disparate assembly of materials, no single treatment technology would be suitable for all of the residues in the category. Treatment operations for wet residues would be conducted within glovebox lines in Room 3701 in Building 371. The following five sections describe the processes which would be utilized to stabilize the various groups of wet residues. The operations described below, however, would be common to all wet residues.

- The residues would be moved from their current locations to Building 371.
- As necessary, the drum contents would be examined using real time radiography.
- If required for safeguard purposes, the plutonium/amerium content of each drum would be determined.
- Drums containing residues would be opened and unpacked in contamination control rooms in Building 371. The residues would be transferred to the glovebox line.
- Residues would be sorted and staged for further work in an existing glovebox, as described in the following subsections.
- Following any required processing, the containers would be removed from the glovebox line and placed inside 55-gallon drums in containers which meet interim safe storage criteria.
- The drums would stored in an appropriate location.
DOE estimates that treatment and repackaging of wet residues would generate approximately 2,750 drums of secondary low level waste and approximately 910 drums of secondary TRU waste. This waste would be moved to an approved radioactive waste storage location on the Site for interim storage.

Aqueous-Contaminated Combustibles, Some Ful-Flo Filters, HEPA Filter Media, Unleached Raschig Rings

Approximately 12,700 kg of aqueous-contaminated residues (residue materials that include aqueous [water-based] liquids. Such liquids are typically acidic or basic) would be treated by processing to remove free liquids, repackaged to meet interim safe storage criteria, and stored. Free liquids would be collected in the glovebox, placed in process waste lines, and transferred to Building 374 or 774 for treatment. Caustic waste treatment in Building 371 may be undertaken prior to transfer of the liquids to Building 374 or 774. Larger items would be size-reduced to facilitate washing. Washing would be done with a neutralizing solution. The pH (degree of acidity) of the wash solution would be maintained in the 10-12 range. At intervals to be determined by experience, the recycled solution would be withdrawn, assayed for plutonium content, measured for pH value, and sent to the liquid waste treatment facility in Building 374. Excess liquid would be filtered off and the remaining residues would be dried either by mixing with an absorbent material or drying at low temperatures (approximately 50°C). The resulting dried residues would be analyzed to determine if immobilization of respirable fines were necessary. If necessary, the fines would be immobilized by cementation or packaging. The final step would be to repack the waste for interim storage and/or shipment off the Site. A process flow diagram is given in Figure 2.4.

Organic-Contaminated Combustibles and Some Ful-Flo Filters

Organic-contaminated combustibles and Ful-Flo filter residues would be processed to remove free liquids, stabilize plutonium fines, and remove oil as required, then packaged to meet interim safe storage criteria and stored. Processing to remove free liquids from approximately 2,100 kg of material would be accomplished by washing, low temperature (approximately 80°C) thermal desorption to remove volatile organic materials, stabilization of plutonium fines, and mixing with an absorbent material. Steam would be added to the low temperature thermal desorption unit to stabilize plutonium fines. Figure 2.5 is a process flow diagram for organic-contaminated combustibles.
Figure 2.4 Flow Diagram for Treatment of Wet Aqueous Residues
Figure 2.5 Flow Diagram for Treatment of Wet Organic Residues
Fluorides

Approximately 306 kg of plutonium fluoride residues require special processing to reduce worker radiation exposures which are caused by alpha-neutron interactions with the fluorine in the residue matrix. This processing would involve separation of the fluorine from the plutonium via dissolution in nitric acid followed by precipitation of the plutonium with oxalic acid. The resulting solid would be calcined, packaged to interim safe storage criteria, and stored. If the resulting solid contains more than 50 percent plutonium, it would be transferred to the Special Nuclear Material Consolidation Program for additional treatment (thermal stabilization in Building 707) and interim storage per DOE Standard 3013-94. Liquid wastes generated by this process would be transferred to Building 374 or 774 for treatment.

Grease Oxides and Grease Fluorides

Approximately 4 kg of grease or lubricants contaminated with small amounts of plutonium oxide and/or fluorides may require drying prior to repackaging. The proposed method of drying would be the addition of an absorbent. Results may indicate that direct repackaging of material would be sufficient to meet interim safe storage criteria.

Sludges

Approximately 650 kg of miscellaneous sludges would be processed by filtering off any excess liquid and drying the remaining material by mixing with an absorbent. The resulting dried material would be analyzed to determine if respirable fines are present and if immobilization of the fines would be necessary. The final step would be to repackage the residue for interim storage.

Wet Residue Alternative Technologies Evaluated

Potential alternative treatments for combustible residues are incineration in the fluidized bed incinerator at the Site (an incinerator which uses a solid heating medium to evaporate and burn off liquids) and pyrolysis (a form of thermal treatment in which the material to be treated is subjected to incomplete combustion with the consequent need to treat off-gases). However, DOE anticipates that resolution of safety concerns and questions associated with incineration or similar thermal treatment at the Site would make it highly unlikely that the necessary permitting process could be completed within a reasonable time. Also, destruction of the waste matrix (the host material of the contamination), one of the important characteristics produced by incineration and pyrolysis, is no longer required by the applicable Site
storage criteria. In addition, aqueous chemical oxidation was considered. However, like incineration and pyrolysis, the matrix destruction it would have achieved is not required by the storage, shipping or disposal requirements which must be met. Therefore, these treatment options were eliminated from further consideration.

2.2.2.4 Direct Repackage Residues

Process knowledge (knowledge of the history of the waste) and characterization efforts have identified certain residues which are presently in a physical or chemical form that does not require treatment to meet interim safe storage criteria. However, while the residues themselves are in an acceptable form, their present packaging configuration does not meet the criteria. These residues would be directly repackaged, without treatment, into metal containers meeting interim safe storage criteria. After repackaging, the residue containers would be sent to an appropriate storage area pending shipment offsite.

These residues are composed primarily of two groups: dry combustibles and inorganics, which are stored in Buildings 371, 707, 771, 777, and 779. The approximately 6,600 kg of dry combustible residues consist of materials such as paper, rags, cloth, plastic, wood, surgical gloves, tape, paper coveralls, booties, personal protective equipment waste, full-face masks, v-belts, polyvinylchloride, polyethylene, polypropylene, pipes, valves, supplied-air suits, and gaskets. Inorganic residues, which total approximately 32,600 kg, consist of glass, graphite chunks or molds, coarse firebrick, insulation, crucibles, leached Raschig rings, declassified shapes (see following section) and heavy metals.

Preparation of direct repackage residues for interim storage would be conducted within glovebox lines in Module D of Building 707. The material may require size reduction and compaction to minimize the volume of the packaged residue. It is anticipated that the initial unpacking, assaying, repacking, and final packaging would be similar to that described in Section 2.2.2.1 for ash residues. Figure 2.6 provides a process flow diagram.

DOE estimates that treatment and repackaging of direct repackage residues would generate approximately 1,220 drums of secondary low level waste and approximately 3,640 drums of secondary TRU waste. This waste would be moved to an approved radioactive waste storage location on the Site for interim storage.
Figure 2.6 Flow Diagram for Direct Repackaging
2.2.2.5 Classified Shape Residues

Classified shape residues include materials that are classified because of their shape or configuration. They consist chiefly of pieces of graphite and metals including aluminum, beryllium, depleted uranium, stainless steel, and steel. The 6,700 kg of classified shape residues are stored in Buildings 371, 707, 771, 776, 777, and 779.

Shape alteration (including such processes as crushing, grinding, machining, and melting) to eliminate safeguards concerns would be the only treatment required for these residues and would take place in Module D of Building 707. After being unpacked and sorted, the classified shapes would be moved to a portion of the glovebox for processing. Equipment capable of reducing materials to appropriate sizes and unclassified shapes would be used for this task. Immobilization of fines may be required. After the appropriate sizes and shapes have been achieved, the residues would be repackaged for storage and/or off-site shipment. A process flow diagram for classified shape residues is given in Figure 2.7.

DOE estimates that treatment and repackaging of classified shape residues would generate approximately 180 drums of secondary low level waste and approximately 760 drums of secondary TRU waste. This waste would be moved to an approved radioactive waste storage location on the Site for interim storage.

2.3 No Action Alternative

The No Action alternative would involve long-term or permanent storage of the residues at the Site. Certain activities that are part of ongoing programs at the Site would continue under either the proposed action or the no action alternative. The Site would continue the present practice of storing residues in their current containers in Buildings 371, 707, 771, 776, 777, and 779. To assure the integrity of the drums and safe storage of the residues, the current operating and management practices for residues, such as surveillance, inspections, and maintenance would continue. Any drums that show signs of severe rusting, apparent structural defects, external corrosion, or leakage would be replaced by a container that is in good condition. If contamination were released by a drum failure, it would be cleaned up and the secondary waste (additional material contaminated by the spill) would be stored. All drums would be verified as having had HEPA-filtered drum lid vents installed. Activities associated with characterization, sampling, and gas generation testing of representative drums from each item description code would continue. Activities associated with the immediate remediation of residues with potential safety concerns would be completed.
The No Action alternative would be a safety concern to the Site and would place the Site in non-conformance with Settlement Agreement and Compliance Order on Consent No. 93-04-23-01 issued by the Colorado Department of Public Health and Environment and with the Defense Nuclear Facility Safety Board's Recommendation 94-1. In addition, it would limit future uses of portions of the Site, and substantially impede progress toward achieving the Site's mission of cleanup.

2.4 Shipment Offsite For Treatment

An alternative to treating all residues at the Site is shipping some to another location for treatment. This alternative would provide partial support to the Site's mission of cleaning up or removing contaminated materials from the Site so that the Site can be converted to other constructive uses. DOE is, in fact, reviewing the possibility of treating certain Site residues (approximately 12,500 kg of salts, 7,800 kg of sands, slags, and crucibles, and 18,000 kg of ash) at other DOE sites, such as Los Alamos, Lawrence Livermore, and Savannah River. However, several issues must be resolved before this alternative could be implemented. They including determining if offsite treatment can be accomplished at a reasonable cost and within the schedule required by the Defense Nuclear Facilities Safety Board's Recommendation 94-1, identifying adequate storage space at offsite facilities for the residues that could be treated there, certifying shipping containers, and repackaging residues for shipment. If these issues can be satisfactorily resolved, DOE may later propose to treat some Site residues at other locations. If such a proposal is made, separate National Environmental Policy Act documentation would be prepared to analyze the effects of that Proposed Action.

2.5 Shipment Offsite For Storage

Another alternative is to ship the residues to an offsite location for storage pending later decisions about treatment and disposal. As with the offsite treatment alternative, this alternative could provide support to the Site's mission of cleaning up or removing contaminated materials from the Site so that it can be converted to other constructive uses. However, this alternative also has issues that must be satisfactorily resolved before it could be implemented. As with the Shipment Offsite for Treatment alternative, the unresolved issues include identifying adequate storage space at offsite facilities for the residues, certifying shipping containers, and repackaging residues for shipment. Other issues include the fact that costs and risks would be incurred without moving toward ultimate disposal of the residues, since the residues would still have to be stored, treated, and repackaged after shipment. Consequently, DOE considers this alternative infeasible at this time, and unreasonable and has not considered it further.
3. AFFECTED ENVIRONMENT

The affected environment at the Site has two components, the natural environment and the built environment. Section 3.1 describes the Site's location and its natural environmental resources. The proposed action and alternatives would take place within buildings at the Site. Those buildings comprise the built environment for this EA and are described in Section 3.2. Because safety of the workers and the public is a paramount concern, Section 3.2.8 discusses the safety features provided to mitigate the potential for accidents.

3.1 Natural Environment

The Site is located on 6,266 acres in rural northern Jefferson County, Colorado, 16 miles northwest of downtown Denver (see Figure 3.1). The Industrial Area occupies approximately 395 acres in the middle of the Site. The remaining 5,871 acres form a buffer zone around the active part of the Site. The buffer zone provides a distance of more than 1 mile between the developed portion of the Site and any public road or private property.

The climate at the Site is mild, sunny, and semi-arid with an average of 15 inches of precipitation annually. Winds are generally out of the west and northwest with an average velocity of 8-9 miles per hour [m/h]. Wind gusts exceeding 60 m/h occur frequently throughout the year, and gusts exceeding 100 m/h occur occasionally. Peak gusts are associated with the winter months.

The air quality is generally better at the Site than in the urbanized portion of the Denver metropolitan area. However, the greater Denver area, including the Site, is a non-attainment area for carbon monoxide and PM-10 (particulate material less than 10 micrometers in diameter), and is in interim compliance for ozone. Air emissions from the Site are within permitted limits for all pollutants for which there are standards. Radionuclide emissions from the Site are limited by Clean Air Act regulations (40 CFR Part 61, Subpart H) to those amounts that would result in no member of the public receiving a dose of more than 0.1 milliSievert (10 millirem [mrem]) per year. The actual dose from radionuclide emissions (point-specific and diffuse sources) to the public from the Site in 1993 was 1.6 x 10^{-3} (0.0016) mrem (EG&G 1994a). In comparison, the average annual natural background radiation received by individuals in the U.S. is 350 mrem (NCRP 1987).

The Site is located on a broad alluvial terrace at the base of the Rocky Mountains at an elevation of about 6000 ft. Underlying the Site is the Rocky Flats Alluvium, a soil composed of cobbles, coarse gravel, and sand over a largely claystone bedrock.
Figure 3.1 Location of the Rocky Flats Environmental Technology Site
Seismic activity in the area is low and the potential for landslides and subsidence is minimal. Adjacent land uses are agricultural to the west, agricultural with some industrial to the south, agricultural and very-low-density residential to the east, and agricultural/open space to the north.

Surface water drainage from the Site flows to the east. The developed area of the Site is drained by Woman and Walnut Creeks, while three other streams drain portions of the Buffer Zone. Ponds on Woman and Walnut Creeks store storm water runoff from the Site and effluent from the Site's sewage treatment plant. The contents of the ponds are analyzed to ensure they meet the standards of the Colorado Water Quality Control Commission prior to release downstream. The Site is not located within a 100-year floodplain as classified by the U.S. Army Corps of Engineers (USACOE 1992).

Scattered wetlands exist throughout the Site, including three small wetlands (combined area less than one acre) between Buildings 371 and 776/777 (ASI 1990). None of these wetlands is located in the immediate area of the proposed action (Krause 1994).

The Buffer Zone provides habitat potentially suitable for the Ute Ladies'-tresses, an orchid listed by the U.S. Fish and Wildlife Service as "threatened." However, individuals of the species were not found in any of the three consecutive annual Site-wide surveys (ESCO 1993). A small community of a Colorado plant "species of concern," the forktip threeawn, has been identified along the railroad tracks that enter the Site from the west along the west access road. This area is over a mile from the location of the proposed activities. No habitat suitable for either of these species has been documented within the area of the proposed action.

Habitat suitable for a federal Category 2 plant species (a species whose listing as "threatened" or "endangered" may be appropriate, but for which adequate data are not available), the Colorado Butterfly Weed, exists in the Buffer Zone, but no individual of the species has been found in recent surveys (ESCO 1993). The Preble's meadow jumping mouse is a Colorado "species of concern" and a federal Category 2 species which DOE treats as an endangered species. It is a resident of many of the riparian areas at the Site, including those along Woman Creek. No threatened or endangered species, other species of concern, or migratory birds were found in a survey conducted in September 1994, in the undeveloped area east and north of Building 371 (Ryon 1994). Since then, however, an active nest of a federally-designated threatened species, the bald eagle, has been found at Standley Lake east of the Site boundary. This nest is more than 2 miles from the buildings that would be involved in the project.
The Site is 6 miles from the nearest school and 10 miles from the nearest hospital. Approximately 291,000 people live within 10 miles of the Site and over 1,100,000 within 20 miles. The entire metropolitan Denver area, with a population of over 2.2 million, is within 50 miles of the Site (EG&G 1994b). Population centers are generally to the northeast and southeast of the Site. The Boulder metropolitan area is within 10 miles north of the Site.

3.2 Built Environment

The Site's built environment is in the Industrial Area where the majority of work activities occur and where most of the Site's workers are located. The locations of buildings at the Site are shown in Figure 2.1 with the buildings that play a role in the proposed action highlighted. Solid residue processing would occur in Buildings 371 and 707. Low-level liquid waste treatment operations would be conducted in Building 374. Buildings 371, 707, 771, 776/777 and 779 are currently being used to store residues. The remainder of this section provides a description of these buildings.

3.2.1 Building 371

Building 371 is a four-level facility with approximately 186,000 ft² of floor space. Building 371 was originally constructed to: (1) recover plutonium from residues generated by plutonium-related fabrication, assembly, and research activities throughout the Site; (2) convert the recovered plutonium into high-purity buttons; and (3) recover associated americium and convert it into americium dioxide. The building, placed in operation in 1981, is the proposed site for processing the wet combustible and other wet residues. Presently over 35,000 kg (38 tons) of residues are stored in Building 371.

In addition to being a proposed location for treating, repackaging and storing solid residues, Building 371 is currently the focal point for consolidation of special nuclear material from around the Site, and plays an important role in the program to drain and process liquid residues.

3.2.2 Building 374

Building 374 is an aqueous waste treatment facility located on the east side of Building 371. Operations began in Building 374 in 1980. Liquid wastes that meet waste transfer shipping limits are received from other Site buildings including Buildings 371, 707, 774, 776/777, and 779 primarily through a network of underground piping which has secondary containment. The waste treatment process includes carrier precipitation, evaporation of liquids, and sludge solidification. Solid wastes generated
by operations in Building 374 are packaged and stored in an approved onsite storage location pending offsite disposal.

3.2.3 Building 707

Building 707 is a two-story facility with 148,480 ft² of floor space. In addition, there is a single-story portion with 18,560 ft² of floor space on the east side of the building. Building 707 was built in 1970, as a manufacturing facility for casting, fabricating, assembling, and testing finished plutonium parts. Former operations in the building include metallurgy, fabrication (machining), assembly, inspection, nondestructive testing, and support. The building was completed in 1969, and is the proposed site for treatment and repackaging the ash, salt, dry combustible, and inorganic residues. Presently less than 1000 kg (1 ton) of residues are stored in Building 707.

In addition to being proposed for a primary role in the program to treat, repackage, and store solid residues, Building 707 is the key building for thermal stabilization of plutonium fines.

3.2.4 Building 771

Building 771, built in 1951, is a two-level facility with approximately 151,000 ft² of floor space. The building is connected by a tunnel to Building 776/777 which is directly connected to Buildings 779 and 707. The tunnel between Buildings 771 and 776 is concrete-lined and has a ventilation system equipped with HEPA filters.

Building 771 housed plutonium fabrication activities initially, but was used primarily for plutonium recovery. The building also has capabilities for chemical research, plutonium metallurgy, and analytical laboratory activities. The building once housed maintenance shops and a waste packaging facility. Operations conducted in the building included chemical and physical processes for recovering and refining plutonium metal and americium oxide, plutonium chemistry research and radiological analyses of samples for isotopic content, impurities, and trace elements. Currently, less than 7000 kg (8 tons) of residues that require treatment are stored in Building 771. There are no plans to conduct solid residue processing operations in Building 771.

3.2.5 Building 774

Building 774, built in 1952, is a four-story liquid waste treatment facility with approximately 25,000 ft² of floor space, and is located directly east of Building 771. A network of process waste pipelines connects Building 774 to many other onsite buildings, including Buildings 374, 707, 771, 777, and 779. In Building 774, liquid
process wastes are chemically treated by acid neutralization and precipitation.

3.2.6 Building 776/777

Building 776/777 is made up of two adjoining buildings and is considered to be a single structure. It is a two-story facility with approximately 156,200 ft² of floor space. The building is connected to Building 779 by an enclosed hallway, to Building 771 by a tunnel, and to Building 707 through Building 778. Building 776/777 was built in 1956, for six major categories of operations: weapons production support, site-return processing, waste operations, research and development, special projects, and support activities such as radiation monitoring, maintenance, and process materials support. Operations in Building 776 began in 1957. Currently, Building 776/777 is used for waste operations such as drum storage and residue drum venting.

The facility presently houses less than 34,000 kg (37 tons) of plutonium residues that require treatment. There are no plans to conduct residue treatment operations in this building.

3.2.7 Building 779

Building 779 was completed in 1965, and currently houses research and development equipment. The building consists of approximately 68,000 ft² of floor space on two floors and a small basement. It is connected by tunnels, either directly or through other buildings, to Buildings 777, 707, and 771. Building 779 currently houses less than 1000 kg (1 ton) of plutonium residues that require treatment. There are no plans to conduct residue processing operations in this building.

3.2.8 Safety Systems

Throughout all buildings that would be part of the Proposed Action, safety systems are or would be in place to protect workers, the public, and the environment. The safety systems include vital safety systems and glovebox design features. Worker safety is further assured by using personal protective equipment and meeting other applicable requirements of the Occupational Safety and Health Act as well as DOE and State of Colorado regulations. Implementation of administrative safety procedures also enhances the safe conduct of operations.

Vital safety systems reduce the potential for occurrence of, and mitigate the effects of, accidents. These systems have surveillance testing requirements and limits for operations which are specified in the Operational Safety Requirements of the building-specific Final Safety Analysis Reports. Brief descriptions of each of the systems are
Early spill control and response would be achieved by spill containment measures such as secondary containment, employee recognition of spill events and initiation of response procedures, a structured emergency response plan, and a highly trained and fully equipped Hazardous Material Team.

Residue processing activities would be performed in gloveboxes. Gloveboxes are enclosed structures made of steel and leaded glass and are accessible through gloveports. Workers would handle residues through the gloveports so that there is no direct physical contact with the residues. Gloveboxes that would be used in association with residue treatment are equipped with an exhaust HEPA filter to minimize accumulation of residues in the exhaust ductwork and release of particulates to the atmosphere. The final stages of exhaust HEPA filters are tested regularly. The vital safety systems have surveillance testing requirements and limits for operations that are documented in the Operational Safety Requirements chapter of the building-specific Final Safety Analysis Report.

Personal protective equipment is provided to enhance worker safety. Throughout the proposed residue treatment processes, operators would be equipped with appropriate protective clothing as determined by job reviews and documented on radiation work permits. Each operator would be trained on the safety equipment required for each activity. Each person involved in activities involving residues would read and follow the requirements of the radiation work permit. The normal equipment required for operations involving residues is coveralls, external radiation dosimeters, safety glasses, and safety shoes. Many of the operations also require using two pairs of surgical gloves. Workers use alpha monitors to check for plutonium contamination as they exit glovebox gloves. If contamination is found, appropriate work restrictions are established until the cause is identified and corrected.

3.2.8.1 Ventilation

Many of the processing activities described in Section 2, Description of the Proposed Action and Alternatives, would be conducted within the confines of gloveboxes. Ventilation systems maintain the gloveboxes at a negative pressure with respect to the surrounding room. If any breach were to develop (e.g., a glove develops a hole), the flow of air would be from the room to the gloveboxes, thus preventing the spread of contamination.

Air from the gloveboxes passes through multiple stages of HEPA filters prior to being exhausted to the atmosphere. Each HEPA filter stage is tested at the time of...
installation to provide a particulate removal efficiency of at least 99.97 percent and a
minimum of one stage in each HEPA filter bank is tested regularly. Use of HEPA filters
minimizes the amount of airborne radioactive particles that reach the atmosphere.

3.2.8.2 Selective Alpha Air Monitors

Selective alpha air monitors monitor and detect the presence of airborne
contamination in rooms and plenums. The system provides both audio and visual
alarms. The detectors are subjected to frequent operational checks, monthly
performance testing and calibration for airflow, and an annual radioactive source
calibration to maintain sensitivity and reliability. Monitors alarm automatically if any
out-of-tolerance conditions are detected. Upon the alarm of a selective alpha air
monitor, remedial actions are taken to prevent worker exposure and release of
contamination to the environment.

3.2.8.3 Fire Protection

Fire protection systems provide fire detection and fire suppression in all buildings
containing radioactive material. Gloveboxes and exhaust plenums are equipped with
glovebox overheat detectors which sound an alarm should the temperature in the
system rise above a predetermined level. Alarm indication is provided both locally and
to the Rocky Flats Fire Department. Fire detection systems would sound an alarm if a
fault occurred within the system. Exhaust plenums are protected by a water deluge
system that sprays water before the first stage of HEPA filters in the event of an
overheated plenum. The water deluge system protects the integrity of the HEPA
filters. Further fire suppression capability is provided by fire hoses and fire
extinguishers.

3.2.8.4 Life Safety/Disaster Warning

The life safety/disaster warning vital safety system is a public address system that
provides a means for audio transmission of alarms and safety announcements over
numerous speakers located in all buildings. Site workers can take appropriate
responses to alarms and announcements.

3.2.8.5 Criticality Alarm

The criticality alarm vital safety system detects any criticality event through the use
of numerous detectors. The system provides audio and visual alarms.
3.2.8.6 Emergency Power

Vital safety systems are powered by a normal and alternate power supply from the Public Service Company of Colorado. Emergency diesel generators provide backup power capabilities should both normal and alternate power be lost. An uninterruptable power supply system provides continuous power for more sensitive vital safety system electrical loads upon the loss of power. The fire detection panels, the life safety/disaster warning system, and the criticality alarm system each have a dedicated backup battery or uninterruptable power supply system.
4. ENVIRONMENTAL EFFECTS OF THE PROPOSED ACTION AND ALTERNATIVES

4.1 Natural Environment

Activities planned for the Proposed Action and those that would take place under the No Action Alternative would occur entirely within the Industrial Area of the Site. All of the activities, except transportation of residues between buildings, would take place inside existing buildings. Therefore, neither alternative is expected to affect water quality, flora, fauna or environmentally-sensitive resources such as wetlands or floodplains. Air quality effects are discussed under Human Health, below.

All Proposed Action buildings have been determined to be eligible for listing on the National Register of Historic Places. The Proposed Action has the potential to adversely affect the historic characteristics of the interior of the buildings through the changes planned to equipment. Consequently, prior to any alterations to the interior or exterior of any building, possible adverse impacts would be avoided through negotiations with the State Historic Preservation Officer.

None of the alternatives is expected to cause any adverse effects to the natural or built environment; therefore, the remainder of this section focuses on potential effects to human health. Such effects stem from both routine operations and accidents.

4.2 Human Health

Treating and repackaging residues would expose workers to both radiological and chemical hazards under routine operating conditions, and could expose workers and the public to the same hazards in the case of a major accident.

4.2.1 Routine Operations

Routine operation of the Solid Residue Treatment, Repackaging and Storage program could result in the potential for adverse human health impacts in two ways: direct radiation exposure of workers and airborne dispersal of radioactive and chemical contamination with the potential to affect workers and the public.

4.2.1.1 Direct Worker Exposure

During normal operations, radiation workers at the Site are routinely exposed to ionizing radiations at levels that are maintained As Low As Reasonably Achievable (ALARA). ALARA is the concept of ensuring that worker radiation exposures are
justified by the benefits gained from performing the activity during which the exposure is received. Worker doses are maintained below the regulatory and contractual limits. The regulatory limits are risk based and apply to individual workers. The contractual limits for individual workers are administrative limits set significantly lower than the regulatory limits.

DOE's current regulatory limit for annual effective dose equivalent is 5.0 rem from 10 CFR 835, Occupational Radiation Protection. The current national contractual limit with DOE is 2.0 rem per year. This is DOE's Administrative Control Level (ACL) established in the Radiological Control Manual. The Site currently has a site ACL of 0.75 rem per year. Individual worker doses are maintained below this ACL. Based on the radiogenic cancer assumptions of the 1987 National Council on Radiation Protection recommendations, this ACL results in an annual probability of about 75 chances in 1,000,000 of succumbing to a work-related cancer. When combined with the annual non-radiation fatal accident rate for radiation workers of about 25 chances in 1,000,000, radiation workers receiving the site ACL, as a population, have an annual probability of one chance in 10,000 of dying from a work-related cause, which is the all-industry average.

Proposed Action

Under the Proposed Action, individual worker doses would not exceed the applicable limits and would be maintained below the ACL approved for the project. Increased work activity levels in the presence of radioactive materials would be expected to cause the total dose received by the involved workers, as well as the associated risk, to be temporarily elevated from the current level during the performance of treatment and repacking activities. This concept is illustrated in Figure 4.1. Likewise, during interim storage activities after treatment is completed, dose and risk to the workers would be expected to be less than the current level since less worker interaction would be required than is currently required to maintain the existing storage configuration.

No Action Alternative

Due to ongoing degradation of residue containers, some of which were intended only for temporary storage, the amount of surveillance and maintenance to support safe storage of residues would increase with time, resulting in greater worker exposures to radiation. This would cause an increase in the total dose received by the involved workers with respect to the doses currently being received (see Figure 4.1). Exposure pathways would be similar to those under the Proposed Action. However, individual
Figure 4.1 Comparison of Risk for Proposed and No Action Alternatives
worker doses would not exceed the applicable limits, and would be maintained both below an approved ACL, and at ALARA levels.

4.2.1.2 Air Emissions

Proposed Action

Routine operations would also result in radioactive and chemical air emissions that could have the potential to affect both workers and the public. An analysis of expected air emissions (see Appendix A) shows that, while the various residue treatment and repackaging processes would produce certain hazardous, particulate and/or radioactive air emissions, all controlled air emissions would be expected to be well below not only health-based limits, but also below the much lower threshold levels for reporting or permitting. Those thresholds are annual emissions of 250 pounds (114 kg) of any single hazardous air pollutant from any single process, 2000 pounds (909 kg) of any single non-hazardous air pollutant from a single process, and radioactive air emissions of 0.1 mrem effective dose equivalent from any single point source. As shown in Appendix A, most emissions of hazardous (chemical) air pollutants would be only fractions of a kilogram (though an estimated 107 kg of carbon tetrachloride and 42 kg of nitric acid would be released with a 114 kg reporting and permitting threshold), while the non-hazardous air pollutant that would be emitted in greatest quantity (carbon monoxide) would produce emissions of 639 kg (with a 909 kg reporting and permitting threshold). Because they would be below health-based thresholds, emissions of air pollutants associated with the Proposed Action under routine operating conditions would not be expected to result in any adverse health effects.

Radioactive air emissions are expected to be within reporting and permitting thresholds, thereby resulting in no adverse effects to health. Environmental Protection Agency reporting requirements call for annual radioactive air emissions from a single point source greater than 0.1 mrem to be reported and permitted. Appendix A shows that all single-point, project-related radioactive air emissions would be below that level. In addition, emissions of chemical air pollutants would be expected to be less than applicable health-based standards. Consequently, the Proposed Action is not expected to have any adverse effects as a result of routine chemical or radioactive air emissions.

No Action Alternative

The No Action alternative would not be expected to result in any adverse effects from routine air emissions since all drums containing residues have HEPA-filtered vents.
Chemical air emissions under the No Action alternative would also be expected to be under reporting and permitting thresholds, based on an analysis of headspace samples (Ramsey, 1995). Overall, the No Action alternative, like the Proposed Action, would not be expected to result in adverse health impacts from routine operations.

4.2.2 Accidents

An analysis of postulated accidents from treating or repackaging solid residues has been performed. A complete report of the analysis is presented in Appendix B, with the results summarized here. The accident that would produce the greatest release and dispersion of plutonium is an earthquake that causes the residue processing buildings to collapse. The size of earthquake needed to collapse the building has a very infrequent occurrence. For Building 707, it is predicted to occur only every 550 years, and for Building 371, every 13,000 years. The difference in frequency is due to the fact that Building 371 is seismically stronger than Building 707 and would take a stronger, more infrequent earthquake to cause it to fail.

Discussions of effects to collocated workers (workers outside the building affected by the accident but on the Site), the maximally-exposed individual, and the area population are quantified. The discussion presents the consequences of the predicated earthquakes in terms of the radiation dose that would be expected. Also presented is the risk of each case. Risk is the consequence of an event multiplied by its frequency of occurrence, and is stated in mrem per year for individuals and latent cancer fatalities per year for a population. It is used to compare events that occur with different frequencies and consequences, such as the earthquake that would collapse Building 707 (once in 550 years) and the earthquake that would collapse Building 371 (once in 13,000 years).

Because of their levels in the residues, radionuclides (i.e., plutonium), rather than hazardous chemicals, are the contaminants of greatest concern. The analysis determines the potential radiological dose that would be received by collocated workers and the maximally-exposed offsite individual, and estimates the number of additional latent cancer fatalities that would be expected in the population within 50 miles of the Site. The maximally-exposed offsite individual is an individual approximately 1 mile from the plutonium processing buildings, the distance to the nearest Site boundry. The dose would be predominantly from inhaled plutonium and americium.

Development of the accident scenarios uses conservative assumptions. For instance, some salt residues contain much higher concentrations of americium than is typical of residues. Americium 241 produces a much greater contribution to radiation dose
than plutonium isotopes. The analysis conservatively assumes that salt residues high in americium were being processed at the time of the postulated accidents. Similarly, the highest concentration of plutonium in the other streams has been chosen for the occurrence of the postulated accidents.

Health effects were evaluated based on radiation from a contaminated plume created by collapse of the buildings and from inhalation and internal exposure. The inhalation pathway includes both inhalation during the time that the plume passes over and inhalation of particles that were deposited and later resuspended.

4.2.2.1 Workers

Proposed Action

For the seismic collapse of any of the buildings, the source of greatest danger to the worker population would be from the building collapse, not releases of radiation or chemicals. The radiological health effects to the workers at the facilities where the bounding accidents are postulated to occur, though not quantified, may be severe. Some workers who survived the building collapse would receive doses of radiation that could be fatal or would result in cancer that could be fatal or cause genetic damage.

No Action Alternative

Health effects to workers from an earthquake-generated building collapse under the No Action Alternative would be expected to be similar to those described for the Proposed Action.

4.2.2.2 Collocated Workers

Proposed Action

An earthquake of sufficient size to collapse Building 707 would not collapse the seismically-stronger Building 371. As a result, adverse health effects would be less. The incremental dose from the Proposed Action (the additional dose over that which would be received from the same accident under the No Action alternative) to a collocated worker from a collapse of Building 707 is estimated at 240 rem. This is a small (about 4%) increase over the 6,800 rem dose that would be received by the collocated worker in the same accident under the No Action alternative (see below). The incremental risk of this event to a collocated worker is 0.43 rem per year (rem/y).
An earthquake that caused the collapse of Building 371 would also cause the collapse of Building 707. The collocated worker incremental dose from the collapse of both buildings is estimated at 290 rem. The incremental risk of both buildings collapsing is 0.022 rem/yr. The incremental risk of this event is lower than that for collapse of Building 707 because, though the consequence is slightly greater, the frequency of occurrence is much lower.

Release of chemicals, in the form of hazardous air pollutants, by an earthquake collapsing Building 371 could have adverse health effects to collocated workers, but those effects would be attributable to chemicals that would be in the building under the No Action alternative as well; they would not be attributable to chemicals associated with the Proposed Action. The Proposed Action would not contribute materially to adverse health effects from air emissions from the bounding accident.

No Action Alternative

Under the No Action alternative, collapse of Building 707 would be expected to result in a dose to a collocated worker of 6,800 rem. Such a dose would be fatal. The risk for collocated workers of Building 707 collapsing under the No Action alternative is 12 rem/yr.

Collapse of Buildings 371 and 707 under the No Action alternative is estimated to produce a combined dose to a collocated worker of 20,000 rem. Such a dose would be fatal. The incremental risk of both buildings collapsing is 1.5 rem/yr.

Collapse of Building 371 would release chemical pollutants sufficient to result in adverse health impacts to collocated workers.

4.2.2.3 Maximally-Exposed Offsite Individual

Proposed Action

Collapse of Building 707 is estimated to result in an incremental dose of 2.1 rem to the maximally-exposed offsite individual. The incremental risk of this single collapse is 0.0038 rem/yr. Collapse of both Building 707 and Building 371 would produce a dose of 2.6 rem to the maximally-exposed offsite individual. The incremental risk to the maximally-exposed offsite individual of both buildings collapsing is 0.0002 rem/yr. Both doses are below the standards set to protect against adverse health effects.

Collapse of Buildings 371 and 707 under the Proposed Action would not be expected to result in release of sufficient chemical pollutants to cause adverse health effects.
No Action Alternative

The maximally-exposed individual would be expected to receive an incremental dose of 6.7 rem from collapse of Building 707 under the No Action alternative. The incremental risk of this event is 0.012 rem/y. Collapse of both buildings would result in an incremental dose of 20 rem and an incremental risk of 0.0015 rem/y. Neither of the doses exceed the standards set to protect against adverse health effects.

The No Action alternative would not be expected to result in a chemical release sufficient to result in adverse health effects from the hypothesized earthquake.

4.2.2.4 Area Population

Proposed Action

Under the Proposed Action, it is expected that there would be an additional 2.3 latent cancer fatalities among the 2.2 million people in the greater Denver metropolitan area from the collapse of either one or both residue processing buildings compared to the No Action alternative. The respective risks would be 0.0036 and 0.00018 additional latent cancer fatalities per year.

No Action

Under the No Action alternative, the area population would be expected to have 0.78 additional latent cancer fatalities per year as a result of the collapse of Building 707, and 2.3 additional latent cancer fatalities per year as a result of the collapse of both Building 371 and Building 707. The risks from these events would be 0.0014 and 0.00017 additional latent cancer fatalities per year, respectively.

4.3 Summary of Effects

No effects would be expected to the natural environment from the Proposed Action or the No Action Alternative. The potential for unacceptable adverse impacts to potentially-historic structures would be avoided through consultation with the State Historic Preservation Officer.

Worker exposures and the probability of accidents are initially somewhat greater under the Proposed Action than under the No Action Alternative because workers are working with the residues, increasing both worker exposures and the probability of accidents. However, as residue processing is completed, risks associated with the Proposed Action would drop substantially below both what they were at the beginning.
of processing as well as those of the No Action alternative. All worker radiation exposures would be kept within the applicable administrative control limit.

The hypothesized bounding accidents, with frequencies of occurrence of 550 and 13,000 years respectively, would be expected to result in worker and collocated worker fatalities under both the Proposed Action and the No Action alternative. Deaths would be caused by both physical effects (e.g., falling buildings) and radiologic effects. No adverse health effects would be expected from the bounding accidents to the maximally-exposed offsite individual. The bounding accident would be expected to result in a small number (approximately 2) of latent cancer fatalities among the 2.2 million people in the greater Denver metropolitan area over those which result from the same accident under the No Action alternative.
5. AGENCIES AND PERSONS CONSULTED
6. REFERENCES

APPENDIX A - AIR EMISSIONS ANALYSIS
DATE: February 15, 1996

TO: W. A. Moore, RMRS NEPA, T130C, X8132

FROM: Carol Patnoe, K-H Air Quality Management, T130C, X2440

SUBJECT: RESIDUE STABILIZATION PROGRAM ENVIRONMENTAL ASSESSMENT AIR ANALYSIS - CAP-024-96

Attached, is a copy of an analysis of the estimated controlled regulated air pollutant emissions from the technologies associated with the Residue Stabilization Environmental Assessment. This analysis was based on conservative assumptions, estimates, and best engineering judgement of knowledgeable residue stabilization project personnel. A detailed permitting analysis on both radionuclide and nonradionuclide emissions based on potential to emit and on uncontrolled emission rates will be required for each of these technologies.

If there are any questions regarding this analysis, or if you require any assistance in reviewing this document, please contact Mike Putney of Radian International/Air Quality Management at extension 2692.

MTP

cc: Mike Putney
1.0 NONRADIONUCLIDE AIR QUALITY ANALYSIS

The following air quality analysis was performed based on conservative assumptions, estimates, and best engineering judgement of knowledgeable residue stabilization project personnel. The technologies proposed for the residues are a combination of stabilization technologies, and where necessary, immobilization and/or repackaging. Due to relatively high concentrations of plutonium in the residues, the radiological emissions are expected to be of more concern than the nonradiological air emissions. The radiological emissions are summarized in Part 2.0 of this analysis.

1.1 Ash Residues

Ash residues will be stabilized in the Building 707, Module E glovebox line. Since characterization of the residues is not complete, much of the information received from Residue Stabilization personnel is based on assumptions, estimates and best engineering judgement.

Assumptions Based On Information Received From Residue Stabilization Personnel

1. There are 27,900 kilograms (kg) of ash residue to be stabilized. Process rate is 7,000 kg/year. Approximately 6,220 kg of the ash residue will go through size reduction.

2. Worst case acid and organics content is 3.3% by weight. Worst case assumption is all acid is nitric acid and all organics are carbon tetrachloride. Worst case assumption is that 100% will be emitted.

3. Worst case assumption is that all of the ash residue will be calcined and then will be immobilized by cementation at a mixture of 1 part waste, 2 parts cement, and 1 part water. Particulate emissions from the cementation will be calculated using AP-42 emission factors for concrete batching operations (0.29 kg/megagram).

4. Off-gas scrubber is 95% efficient for acids. Off-gas granular activated carbon system is 95% efficient for organics. All emissions will go through at least two sets of HEPA filters. HEPA filters that the effluents flow through prior to release into the atmosphere are assumed to have the following removal efficiency:

<table>
<thead>
<tr>
<th>Removal Efficiency</th>
<th>Pass Through</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1 99.9%</td>
<td>.001</td>
</tr>
<tr>
<td>Stage 2 99.8%</td>
<td>.002</td>
</tr>
<tr>
<td>Stage 3 99.8%</td>
<td>.002</td>
</tr>
<tr>
<td>Stage 4 99.8%</td>
<td>.002</td>
</tr>
</tbody>
</table>

5. 5% of size reduced ash residue will become airborne. All particulate emissions are assumed to be particulate matter that is less than 10 microns in diameter (PM-10).
Nonradionuclide Air Emissions Analysis:

27,900 kg ash residue X 3.3% acid = 921 kg acids total uncontrolled emissions
27,900 kg ash residue X 3.3% organics = 921 kg organics total uncontrolled emissions

921 kg acids X .05 Scrubber efficiency = 46 kg of total controlled acid emissions
921 kg organics X .05 GAC efficiency = 46 kg of total controlled organics emissions.

7,000 kg ash residue/year X 3.3% acid = 231 kg acids/yr uncontrolled
7,000 kg ash residue/year X 3.3% organics = 231 kg organics/yr uncontrolled

231 kg acids/yr X .05 Scrubber efficiency = 11.5 kg/yr of controlled acid emissions
231 kg organics/yr X .05 GAC efficiency = 11.5 kg/yr of controlled organics emissions.

6,220 kg of ash residue will be size reduced. 5% will become airborne.
0.05 X 6, 220 = 311 kg total uncontrolled particulates
4 banks of HEPA filters have a control efficiency of 8.0E-12.
311 kg total uncontrolled particulate X 8.0E-12 HEPA efficiency =
2.5 E-09 kg total controlled particulate emissions.

Any individual metals will be fractions of the 2.5E-09 kg total controlled particulates.

7,000 kg/yr of ash residue will be immobilized by cementation. Uncontrolled particulate emissions from the cementation process are .29 kg/Mg of cement mixed (2 parts cement/1 part waste)

.29kg emissions X 14Mg cement = 4.1 kg uncontrolled cement particulate emissions per year

There could be hydrogenated halogens in the ash from the past incinerator process which could produce trace quantities of HCl and HFI emissions.

There may be trace quantities of NOx generated from the process. Emission factors for processes that are run at similar temperatures were evaluated and the highest factor was .2 lb/ton for electric arc melting in a steel foundry.

1.2 Wet Residues

Wet Residues will be stabilized in Building 371, Room 3701. This category of residues consists of acid contaminated combustibles and Ful-Flo filters; organics contaminated combustibles and Ful- Flo filters; fluorides; grease oxides and grease fluorides; sludges; and HEPA filter media. Wet residues will require several treatment technologies. Since characterization of the residues is not complete, much of the information received from the Residue Stabilization personnel is based on assumptions, estimates and best engineering judgement.

Assumptions Based On Information Received From Residue Stabilization Personnel

1. Wet residues will all be stabilized in Building 371, Room 3701.

2. There are 119 kg of unleached raschig rings, 8,508 kg of nitric acid contaminated combustibles and Ful-Flo filters, and 2,138 kg of carbon tetrachloride contaminated combustibles and Ful-Flo filters that will be stabilized in the first year. The nitric acid contaminated combustibles and Ful-Flo filters have a worst case contamination of 10% by
weight nitric acid. This material will be washed with potassium hydroxide at room temperature, so the vapor pressure will be almost zero. Assume worst case 5% of acids will be emitted. The carbon tetrachloride (CCL₄) contaminated combustibles and Ful-Flo filters have a worst case contamination of 10% by weight, half of which is free liquid. The free liquids will be removed and the remaining combustibles and filters will be shredded. The remaining CCL₄ (5%) will be lost during the shredding process.

3. The 320 kg of fluorides and grease oxides will be processed in a one year time frame. Based on Colorado Department of Public Health and Environment guidance from March, 1991, the percent of total acid emissions resulting from heat generated in the neutralization reaction is 15% by weight. The 15% emissions rate will be used for the fluorides nitric acid digestion step and subsequent neutralization.

5. The 661 kg of sludges contain no organics or acids. All sludges will be processed in a one year time frame. All 661 kg will be size-reduced before being processed in a sludge dryer. All sludges will be immobilized by cementation. Particulate emissions from the cementation will be calculated using AP-42 emission factors for concrete batching operations (0.29 kg/Mg). All particulate emissions are assumed to be particulate matter that is less than 10 microns in diameter (PM-10).

6. The 4,123 kg of HEPA filters will be processed over a three year period. Assume 10% by weight nitric acid contamination. This material will be washed with potassium hydroxide at room temperature, so the vapor pressure will be almost zero. Assume worst case 5% of acids will be emitted. All 4,123 kg will be shredded.

7. All emissions will go through at least two sets of HEPA filters. HEPA filters that the effluents flow through prior to release into the atmosphere are assumed to have the following removal efficiency:

<table>
<thead>
<tr>
<th>Removal Efficiency</th>
<th>Pass Through</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1 99.9%</td>
<td>.001</td>
</tr>
<tr>
<td>Stage 2 99.8%</td>
<td>.002</td>
</tr>
<tr>
<td>Stage 3 99.8%</td>
<td>.002</td>
</tr>
<tr>
<td>Stage 4 99.8%</td>
<td>.002</td>
</tr>
</tbody>
</table>

Nonradionuclide Air Emissions Analysis

Aqueous Contaminated Combustibles and Ful-Flo Filters

8,508 kg X 10% nitric acid X 5% loss = 42.5 kg nitric acid emissions

8,508 kg of the waste will be shredded. Conservative assumption is that 5% will become airborne. That equals 8,508 X .05 = 425 kg total uncontrolled particulates. Assume at least two banks of HEPA filters with control efficiency of 2E-06 X 425 kg = 8.5E-04 kg controlled particulate emissions.

Any individual metals will be fractions of the 8.5E-04 kg total controlled particulates.

Organic Contaminated Combustibles and Ful-Flo Filters

2,138 kg X 10% CCL₄ X 50% CCL₄ remaining after removal of free liquids = 107 kg CCL₄ emissions
2,138 kg of the waste will be shredded. Conservative assumption is that 5% will become airborne. that equals 2,138 X 0.05 = 107 kg total uncontrolled particulate emissions. Assume at least two banks of HEPA filters with control efficiency of 2E-06 X 107 kg = 2.14 E-04 kg controlled particulate emissions.

Any individual metals will be fractions of the 2.14E-04 kg total controlled particulates.

Fluorides/Grease Fluorides/Grease Oxides

320 kg to be processed at 1.5 kg/day. Each 1.5 kg requires 1800 ml of 7M HNO₃ for the dissolution step. 213 days and 383.4 liters of 7M HNO₃ will be required for the dissolution step.

7M/liter HNO₃ at 63.01 grams/mole = 441 grams/liter

441 grams/liter X 383.4 liters = 169.1 kg of HNO₃

The HNO₃ is not heated in the dissolution process, so assume worst case 15% HNO₃ emissions = 25.4 kg/yr uncontrolled HNO₃ emissions

Scrubber efficiency = 95% so .05 X 25.4 Kg/yr = 1.27 kg/yr controlled HNO₃ emissions

Sludges

661 kg will be size reduced. Assume a one year time frame.

Ball mill size reduction assume 5% will be emitted: .05 X 661 kg = 33 kg uncontrolled particulates

Assume two banks of HEPA filters: 33 kg X 2E-06 = 6.6E-05 kg controlled particulate emissions

Any individual metals will be fractions of the 6.6E-05 kg total controlled particulates.

661 kg will be immobilized by cementation, .661 Mg X .29 kg/Mg particulates = .19 kg uncontrolled particulate emissions from cementation

1.3 Salt Residues

The Salt Residue Stabilization and Repack operation will occur in Building 707. The oxidation process will occur in Module A. The operation will occur over a two year period. The 10,000 kg of high-risk molten salt extraction residues will be processed in the first year, and the remaining 6,000 kg of lower risk salts will be processed the following year.

The oxidation process is based on the carbonate oxidation of reactive metals, including calcium. The carbonate oxidation process can yield three potential carbon species: carbon monoxide (CO), carbon dioxide, and graphite. No experimental data is available that quantifies the CO emissions, thus, it is assumed that all the carbonate is converted to CO during the oxidation process.

Emissions Estimates Based on Process Rate

- Three runs per furnace per day
- Ten furnaces; 30 runs per day
- Process operates 5 days per week; 150 runs per week
• 7,350 runs per year
• 2.2 grams of carbonate per gram of plutonium = 330 grams carbonate per run
• 330 grams carbonate equates to 3.11 moles carbonate per run
• 3.11 moles carbonate equates to 3.11 moles of CO per run
• 3.11 moles CO equates 87 grams CO per run
• Total 639 kg CO per year.

1.4 Classified Shapes

6,673 kg of classified shapes will shredded and repacked in Building 707, Module D. Assume a one year time frame. The method being considered is an industrial grade shredder.

Assume worst-case 5% particulate emissions from the shredder will become airborne.

\[0.05 \times 6,673 \text{ kg} = 334 \text{ kg uncontrolled particulate emissions}\]

Assume two banks of HEPA filters: 334 kg \(\times 2 \times 10^{-6} = 6.7 \times 10^{-4} \text{ kg total controlled particulates}\).

Any individual metals will be fractions of the 6.7E-04 kg/yr total controlled particulates.

1.5 Direct Repackage Residues

There is a total of 39,200 kg of direct repackage residues consisting of 6,600 kg of dry combustible residues and 32,600 kg of inorganic residues. Preparation of direct repackage residues will consist of shredding, compaction, and repackaging in Building 707, Module D, over a four year period.

39,200 kg of direct repackage residues will be shredded. Assume worst-case 5% particulate emissions. 39,200 \(\times 0.05 = 1,960 \text{ kg total uncontrolled particulate emissions over 4 years}\)

Assume two banks of HEPA filters: 1,960 kg \(\times 2 \times 10^{-6} = 3.92 \times 10^{-3} \text{ kg total controlled particulate emissions over 4 years}\).

Any individual metals will be fractions of the 3.92E-03 kg total controlled particulates emissions.

2.0 RESIDUE STABILIZATION RADIONUCLIDE ASSESSMENTS

It is possible that radioactive emissions will occur from the residue stabilization technologies. Average plutonium concentrations for each residue category were provided to Radian International for this analysis. Based on the annual process rates, contamination based on total weight of plutonium provided for each category, appropriate emission factors from 40 CFR 61, Appendix D, and dose calculations from the EPA computer dispersion model CAP88PC, the controlled effective dose equivalent to the nearest public in millirem/year (mrem/yr) for each of the residue stabilization technologies is as follows:

Salt Stabilization (2 year process) 9.44 E-02 mrem/yr
Ash Residue Stabilization (4 year process) 5.65 E-02 mrem/yr
Wet Residues
(1) Wet Combustibles & Ful-Flo Filters (1 year process) 9.8 E-03 mrem
<table>
<thead>
<tr>
<th>Description</th>
<th>Activity Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) HEPA Filters (3 year process)</td>
<td>5.02 E-03 mrem/yr</td>
</tr>
<tr>
<td>(3) Sludges (1 year process)</td>
<td>3.96 E-03 mrem/yr</td>
</tr>
<tr>
<td>(4) Fluorides/Grease Fluorides/Grease Oxides</td>
<td>2.18 E-02 mrem</td>
</tr>
<tr>
<td>Direct Repackage Residues (4 year process)</td>
<td>1.52 E-02 mrem/yr</td>
</tr>
<tr>
<td>Classified Shapes (one year process)</td>
<td>1.67 E-03 mrem</td>
</tr>
</tbody>
</table>
APPENDIX B - ACCIDENT ANALYSIS
APPENDIX B

ACCIDENT AND RISK ANALYSIS FOR RESIDUE TREATMENT, REPACKAGING, AND STORAGE ENVIRONMENTAL ASSESSMENT

OBJECTIVE OF ANALYSIS

The objective of this analysis is to develop the information to be used to compare the consequences and health risks of the proposed actions to the "no action" alternative. The residue treatment, packaging, and storage project is proposed to address safety issues related to the deterioration of the residue storage containers and their contents which, over a long term, lead to container failures, possible plutonium release with local contamination and increased worker exposure with the possibility of off site release. These residues were not originally intended to endure long term storage as they were rich enough in plutonium to undergo plutonium recovery and re-use during the times when plutonium production operations were underway.

The environmental assessment of the proposed actions evaluates the handling and processing of the residues during the project in order to achieve a stabilized and safe long term solution to the hazard. The analysis approach of this assessment identifies the existing risk to the public from the residues in their current condition, and location and evaluates the incremental risk to the public from the operations associated with the residue processing. During the period of the processing operation, the risk of the residue is higher than the "no action" case of leaving the residue in the drums, but in the long term the risk is less by placing the residue in a more stable form.

The incremental risks are associated with operations that reduce the protection offered by the packaging system and placing the residue in the process stream. The processes also may temporarily put the plutonium residues into a physical or chemical form that is more dispersible than the stored residue (ignoring the residue’s potential drum failure scenarios). The handling associated with the drums during the processing also increases the probability of an accident.

The information on the impact to the collocated worker and the public is used to determine whether the impact is significant compared to the no action alternative. The comparison should consider the absolute and relative magnitude of the impact in the event of an accident, the nature and amount of risk over the spectrum of risk from high frequency, low consequence occurrences to low frequency and high consequence accidents. These results should be considered in terms of their change over time.

TREATMENT PROCESS

The proposed treatment process is discussed below for the five categories of residues: salts, ash, wet combustibles, dry combustibles, and classified shapes.

Salts

The salt residues have accumulated at Rocky Flats as a result of various chemical processes associated with purification and recovery of plutonium. The salts are generally in a solid powder...
state. The plutonium chemical form may be a lower valence state plutonium that would react with air or moisture over time to reach a higher valence state. Elemental chemical species contained in the residues such as calcium and plutonium metal and their hydrides are chemically reactive. Hazards are related to potential sparking and initiating a fire in a drum to gas generation and pressurizing a drum.

The process proposed to eliminate these hazards for the salt residues is to heat the residues in a furnace in the presence of an oxidant in order to dry the salt and fully oxidize the plutonium and other reactive metal species. This is proposed to be performed in Building 707. The steps to the process are:

- placing the contents into a stainless steel crucible after dividing the contents of the present residue container into smaller batches to meet the fissile material equivalent limit of 200 fissile gram equivalent
- heating in a furnace with an oxidant such as sodium carbonate at up to 1000 °C to completely oxidize the plutonium
- repackaging the stabilized residue

Ash
The ash residues are from various plutonium refining and disposal processes including ash and soot from past operation of the waste incinerator. These residues include such items as graphite crucibles, sand, grit, aluminum and magnesium oxides, HVAC duct cleanout residues, and firebrick heels and fines.

The process for the ash are similar to the salts in that they are further oxidized using a heating operation. In addition to the furnace process, the ash residues may also undergo the following additional steps:

- sizing by use of vibrating screens
- size reduction using a jaw crusher for further size reduction
- cementation to fix the solid powder

Wet Combustibles
The residues called wet combustibles include wet salt precipitates from fluoride chemistry processes, resins, filters, and related greases and sludge. These residues have up to 100 percent plutonium but only average 1.8%. The predominant residue form is the combustible paper contaminated with 0.5% plutonium on average, and filter media with 4% plutonium on average.

The process steps for the wet combustible residues are as follows:

- size reduction
- disassembling
- solvent washing
- drying
- dissolution
- precipitation
- cementing
- vacuum distillation
- filtration
- liquid mixing and sampling

Dry Combustibles

The dry combustible residues include items such as graphite molds, paper, plastic, glass and LECO crucibles. The plutonium contamination is 0.66% on average. Duct holdup material, while a small part of the residue category, has the highest concentration of plutonium at 12.5%.

The process steps for the dry combustible residues are as follows:
- disassembling of filter components etc.
- size reduction
- sorting
- packaging into material containers

Classified Shapes

These materials are parts and pieces of graphite and metals, including aluminum, beryllium, depleted uranium, stainless steel and carbon steel. They may be contaminated with up to 0.13% plutonium. The following steps represent the basic process steps that introduce an incremental level of risk.
- size reduction using ball mills
- cementation of fines
- repacking

ACCIDENT IDENTIFICATION

The accident identification process consisted of identifying the postulated accidents in previous safety analysis, risk assessment and environmental assessment documents. (References 1-6). A spectrum of accidents that included operational, natural phenomena, external events and beyond design basis accidents were all considered and are reported in this appendix.

The accidents that were bounding with respect to consequences in these references were the earthquake and the fire accidents. These accidents have sufficient potential for offsite release and are not mitigated by building high efficiency particulate air (HEPA) filters.

This evaluation addresses the spectrum of accidents provided in the table below. The operational accidents generally involve human error rather than equipment failure and occur inside buildings. The operations where the plutonium contaminated materials are most subjected to accidental dispersion take place inside glovebox lines. These gloveboxes typically have safety significant features such as inerting, pressure control and heat detection. These features are not taken into account except as they have been credited for in the event sequences in the reference reports (references 3 and 6).

Spills are studied since they are the most common operational accident. Fires represent the bounding operational risk due to the greater energy for dispersal and greater area impacted.
Fires, however, have preventive and mitigative features in the buildings so are much less likely to become large enough to result in releases that go beyond the building.

The analysis performed for the environmental assessment of impacts on the public focused on the accidents with sufficient energy to result in offsite dispersal. Earthquake events bound other high energy accidents such as the aircraft crash because of its greater total energy and wider impact.

ACCIDENT FREQUENCY

Accident frequencies were taken from reference 3. The frequencies involving operational parameters were adjusted for the rates of processing and the total throughput of processing. For example, the accidents that are initiated by human error such as spills, were based on the number of times containers were opened times the human error rate of $1E^{-3}$ failures per opportunity.

The accident frequencies are used in the determination of the risk by multiplying the accident consequences by the frequency, in years, resulting in the consequences per year. For proposed actions that do not take place over the year, the appropriate adjustment has been made by multiplying the frequency by the proportion of the year during which the process activity takes place. At completion of the process for the entire category of residues, the accident frequency would be zero although the initiator frequency may still be valid for the no action case.

The bounding accident is a seismic event that results in the collapse of the structure. Seismic accident frequencies were taken from reference 1. The releases are assumed to be unmitigated by HEPA filters. The different buildings have different seismic resistance (seismic fragility). The different size earthquakes have different frequencies, with smaller earthquakes being more frequent. Building 707 therefore has a higher potential for collapse than building 371. The other older buildings at Rocky Flats have been found to have similar seismic resistance as building 707. The annex to building 707 (707A) has had structural modifications to make it less subject to seismic failure. However, all the proposed actions except the wet combustibles are planned to be located in Building 707. The wet combustibles will be processed in building 371.

The seismic frequencies are currently being re-evaluated as part of an on-going seismic characterization study of Rocky Flats. The preliminary findings are that the return period for structural failure of building 707 will be reduced.

Transportation external and internal to the buildings are generally part of the operational spectrum of accidents. This risk assessment used transportation as a designator for an area or activity where the different categories of accidents could occur, and not as a unique accident type.
Accident Spectrum

<table>
<thead>
<tr>
<th>Accident Type</th>
<th>Scenario</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire</td>
<td>1. Room</td>
<td>1. 5E-4/yr</td>
</tr>
<tr>
<td></td>
<td>2. Dock</td>
<td>2. 2E-6/yr</td>
</tr>
<tr>
<td>Spills</td>
<td>3. Outside GB</td>
<td>3. 3.6E-4/yr</td>
</tr>
<tr>
<td></td>
<td>4. Inside GB</td>
<td>4. 3E-1/yr</td>
</tr>
<tr>
<td></td>
<td>5. Loading dock</td>
<td>5. 1E-3/yr</td>
</tr>
<tr>
<td>Aircraft crash</td>
<td>6. Into process</td>
<td>6. 1.5E-6/yr</td>
</tr>
<tr>
<td></td>
<td>line</td>
<td></td>
</tr>
<tr>
<td>Natural phenomena</td>
<td>7. 0.21 g seismic</td>
<td>7. 1.8E-3/yr</td>
</tr>
<tr>
<td>Severe Accidents</td>
<td>8. 0.31g EQ</td>
<td>8. 7.7E-5/yr</td>
</tr>
<tr>
<td></td>
<td>9. EQ with fire</td>
<td>9. 2.4E-5/yr</td>
</tr>
</tbody>
</table>

ACCIDENT CONSEQUENCE METHODOLOGY

Process Flows and Material at Risk Determination Methodology

The Mixed and Nonmixed Residue Database (reference 9) is the source document for the amounts and the processing requirements of the various residue stabilization streams. This database is summarized in the table below.

<table>
<thead>
<tr>
<th></th>
<th>Salts</th>
<th>Classified Shapes</th>
<th>Inorganics/Dry Combustibles</th>
<th>Ash</th>
<th>Wet Combustibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk Weight</td>
<td>15,973</td>
<td>6,673</td>
<td>39,245</td>
<td>27,908</td>
<td>16,138</td>
</tr>
<tr>
<td>Repack Only</td>
<td>0</td>
<td>0</td>
<td>39,245</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Process/Repack</td>
<td>15,973</td>
<td>6,673</td>
<td>0</td>
<td>27,908</td>
<td>16,138</td>
</tr>
<tr>
<td>Repack Rate</td>
<td>0</td>
<td>0</td>
<td>96.9 kgs/day</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Process Rate</td>
<td>75.0 kgs/day</td>
<td>33.4 kgs/day</td>
<td>0</td>
<td>48.0 kgs/day</td>
<td>128.2 kgs/day</td>
</tr>
<tr>
<td>Staged Material (5 day supply)</td>
<td>375.0</td>
<td>156.5</td>
<td>484.5</td>
<td>240.0</td>
<td>641.0</td>
</tr>
<tr>
<td>Material in Line (1 day supply)</td>
<td>75.0</td>
<td>62.6 (2 day supply)</td>
<td>96.9 (2 day supply)</td>
<td>96.0</td>
<td>128.2</td>
</tr>
<tr>
<td>Post Process Staging (2 day supply)</td>
<td>150.0</td>
<td>62.6</td>
<td>193.8</td>
<td>96.0</td>
<td>128.2</td>
</tr>
<tr>
<td>Material in NDA (1 day supply)</td>
<td>75.0</td>
<td>31.3</td>
<td>96.9</td>
<td>48.0</td>
<td>128.2</td>
</tr>
<tr>
<td>Material in Packing (2 day supply)</td>
<td>150.0</td>
<td>62.6</td>
<td>193.8</td>
<td>96.0</td>
<td>128.2</td>
</tr>
<tr>
<td>Material in Output Staging (5 day supply)</td>
<td>375.0</td>
<td>156.5</td>
<td>484.5</td>
<td>240.0</td>
<td>641.0</td>
</tr>
</tbody>
</table>
Process diagrams of the primary process operations were utilized to identify material at a higher level of risk than the no action case and to identify the realistic quantities of the materials at the individual steps in the processes.

For each individual step in the process the material form and the material at risk quantity was determined. The material release and dispersability were also evaluated in order to provide input to the consequence calculations.

In order to have a conservative yet representative incremental risk evaluation, the database (reference 9) was reviewed for amounts of plutonium. The item description codes (IDCs) with the highest plutonium or plutonium and americium were used as the representative material in the process stream. This introduces conservatism into the analysis.

MOI and Population Consequences Analysis Methodology

Consequences were calculated by the Rocky Flats Plant spreadsheet BIODOSEF.XLS (reference 7). This spreadsheet is based on MACCS analysis of the release of weapons grade plutonium oxides, uranium oxides, and plutonium and americium powder residues in various accident scenarios for median and 95 percentile weather conditions.

The analysis used the following input parameters:

- accident scenario (fire (with or without buoyancy), external explosion, internal explosion, overpressurization, spill, and loss of power) This is specific to the accident being analyzed.
- material (WG plutonium, aged WG plutonium, enriched uranium, 4.5% enriched uranium, depleted uranium, and high americium residue) The analysis used WG plutonium and adjusted for the specific residue’s isotopic mixture by applying an appropriate dose conversion factor. For high americium residues this could reach as high as 10 times the WG plutonium consequences.
- form of material (confined materials, unconfined noncombustible materials, unconfined combustible materials, HEPA filters, radioactive metal, powder, chips, dry resin material, wet resin material, volatile liquid, and nonvolatile liquid) This is specific to the nature of the residue and the process step being analyzed. It could vary from a confined material in a sealed container or drum, a powder, a liquid in a furnace etc.
- solubility class (for behavior when ingested) The analysis used class Y for plutonium oxides and class W for other plutonium compounds such as fluorides.
- meteorology (median, 95th percentile) The analysis used median weather.
- breathing rate (chronic, light and heavy) The analysis used light breathing representative of walking.
- MAR (grams of material of interest) This is a function of the process rates.
- ambient leakpath factor not HEPA) The analysis used the default value of 1.
- TNT explosion equivalent (g) The analysis used zero.
- plume release duration (minutes) The analysis used 10 minutes duration of release.
- Additional input parameters are needed to run criticality consequences. These were not used.
The spreadsheet recalculates a building source term in grams of plutonium, a collocated worker exposure and a maximum offsite individual exposure in REM. The exposures are used directly in the tables below for the consequence. The incremental risk at these locations are determined by multiplying the dose by the frequency per year of the accident.

The population incremental consequences have been determined by multiplying the building source term by the normalized consequences of the release of 1 gram of plutonium under 1992 weather statistics. The consequences for the release of the 1 gram are 7.29E-3 latent cancer fatalities from a 50 year commitment for the population within 50 miles of the Rocky Flats Plant (reference 8).

RESULTS

Baseline Consequences and Risk for “No Action” Case

The No Action alternative considers the case of the solid residues being stored in their current locations in Buildings 371, 707, 771, 776, 777, and 779. The residues are contained in various types of packages such as stainless steel cans, plastic bottles, and are usually placed in plastic bags prior to loading in specially prepared 55 gallon drums. Each drum is provided with a carbon filter in order to limit the build up of potentially explosive gasses such as hydrogen and methane due to radiation of organic materials such as plastic bags and other combustible materials. The No-Action alternative includes monitoring the condition of the drums and their surroundings for contamination as well as the venting of each drum that contains combustible residues in order to reduce the potential for an explosion. During the venting of drums activity it was observed that the presence of hydrogen was well below predicted levels, therefor minimizing this particular hazard, albeit not to the point of elimination.

The dominant risk for the No Action alternative is the collapse of buildings due to a seismic event. Two such events were considered in the risk analysis, derived from Reference 1 with the use of References 2 and 3:

1. A 0.48g (surface) earthquake with a probability of occurrence of 7.7x10^-5 per year. The result of this earthquake is the total collapse of all buildings that contain the stored residues, causing the failure of all residue drums and containers.

2. A 0.26g (surface) earthquake with a probability of occurrence of 1.8x10^-3 per year. The result of this earthquake is the total collapse of all buildings with the exception of Building 371 results in the failure of all residue drums and containers stored in Buildings 707, 771, 776, 777, and 779.

The associated risk factors to the public (made up of approximately 2.2 million people residing within 50 miles of the site boundary), the Maximum Off Site Individual (MOI) positioned at the site boundary, and the collocated worker are calculated using the data in Appendix C of Reference 2. Conversion factors are used in the analysis to adjust the risk from the 95% meteorological condition to the median (50%) condition, and also to adjust the breathing rate from 3.6x10^-4 m^3/sec. to 3.3x10^-5 m^3/sec. in the case of the collated worker and MOI receptors.
The resulting dose rates to the Collocated Worker and the Maximum Off Site Individual (MOI) are shown in Section 4, Tables 4-1 and 4-2 which also shows the increase in Latent Cancer Fatalities (LCF) for the population residing within 50 miles of the site boundary (approximately 2 million individuals).

In order to calculate the relative risk factors, the dose or increase in Latent Cancer Fatalities (LCF) is multiplied by the Probability of a Seismic Occurrence. The risks associated with the higher frequency earthquake are noted to be at least an order of magnitude greater than those for the lower frequency earthquake as shown in Tables 4-3 and 4-4.

Summary of Risk to MOI and Population within 50 miles of the Site

<table>
<thead>
<tr>
<th>Probability of Occurrence</th>
<th>Buildings that Collapse due to Earthquake</th>
<th>MOI Dose (rem CEDE)</th>
<th>Population (50 miles) (LCF)</th>
<th>Collocated Worker (rem CEDE)</th>
<th>Risk (Probability x Dose or LCF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.70E-05</td>
<td>371, 707, 771, 776, 779</td>
<td>1.98E+01</td>
<td>2.26E+00</td>
<td>2.04E+04</td>
<td>1.52E-03 1.74E-04 1.57E+00</td>
</tr>
<tr>
<td>1.80E-03</td>
<td>707, 771, 776, 779</td>
<td>6.68E+00</td>
<td>7.76E-01</td>
<td>6.75E+03</td>
<td>1.20E-02 1.40E-03 1.22E+01</td>
</tr>
</tbody>
</table>

These values of Dose, LCF, and Risk will increase with time for the no action case due to the potential evolution of explosive gasses, the increase of pyrophoric material due to degradation of the stored residues, and the degradation of the 55 gallon drum due to corrosion and/or damage.

Salt Residue Incremental Results

The results discussed below provide a conservative insight into the temporary increase in consequences and risk to the maximum (exposed) off-site individual (MOI), the collocated worker and the public located within 50 miles of Rocky Flats. The analysis results for the residues should be added to the consequences and risk associated with the “no action” scenario where the material is continued to be stored in its existing condition and only essential safety maintenance activities performed on it.

The increase in consequences and risk is analyzed by modeling the stabilization process and identifying steps along the process where the processing activities render the residue either more susceptible to an accidental release such as a spill, or render them more dispersible in event of an external or natural phenomena accident. For the salt residue analysis, the increased risk is associated with open containers of residue going through the pyrochemical oxidation process in the furnaces. In general, removal of residue containers from drum storage and placing them into glovebox lines does not increase the risk, but opening the containers does.

The salt residue results have been determined from the analysis of the Item Description Categories (IDC’s) # 409/410. These residues are from the molten salt extraction process which have solidified and are 30% magnesium chloride. IDC 409 is the majority of the residue and is in the
unpulverized state. IDC 410 is in the pulverized state. The reason for selection of these IDC’s as a representative case is that they contain the greatest amount of americium (16%), and is a significant portion of the entire salt residue category. Although IDC’s 409/410 represent only 10% of the residue in this category, they represent 23% of the plutonium. The americium content has been assumed to be plutonium as far as the weight of material at risk quantity, and is incorporated into the dose conversion numbers for the MOI and the collocated worker by the BIO spreadsheet. It has been calculated in the conversion of building source term to LCFs using the dose from the reference 8. The analysis conservatively assumes all the IDC’s 409/410 to be powder.

The Process description and the plutonium content was analyzed and it was determined that certain drums of residue would exceed the maximum fissile content of 167 grams equivalent fissile content. The process would require the contents on one drum to be split into up to 5 batches. This step results in the residue being in the state with the greatest possibility of release in the extremely unlikely event of total building collapse due to severe earthquake. The analysis assumed that the entire process line was at the step of dividing up the drum of residue into individual batches. Since there are ten furnaces and ten parallel paths in the salt processing line, the assumption of 10 batches all being exposed to an earthquake simultaneously was made.

The damage that is assumed by the earthquake includes the total collapse of the structure causing the gloveboxes to collapse under the weight of the debris or to overturn. The operational accident which is bounding is the fire on the loading dock. The fire on the loading dock results in an unfiltered release. All other operational accidents are mitigated by two or more HEPA filter trains in series. The risk evaluations were run using “Material” #6 (IDC’s 409/410 americium salts) and the parameters listed in the following table.

<table>
<thead>
<tr>
<th>Accident Scenario</th>
<th>BFO DOSE TEMPLATE Parameters</th>
<th>“Scenario”</th>
<th>“Number of HEPA Stages”</th>
<th>“Airborne Release Fraction”</th>
<th>“Respirable Fraction”</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Loading dock fire</td>
<td>#1 - Fire (lofted plume)</td>
<td>“Zero”</td>
<td>Default</td>
<td>Default</td>
<td>Default</td>
</tr>
<tr>
<td>2. Room fire</td>
<td>#2 - Fire (unlofted plume)</td>
<td>“Two”</td>
<td>Default</td>
<td>Default</td>
<td>Default</td>
</tr>
<tr>
<td>3. Spill on loading dock</td>
<td>#6 - Spill</td>
<td>“Zero”</td>
<td>Default</td>
<td>Default</td>
<td>Default</td>
</tr>
<tr>
<td>4. Earthquake</td>
<td>#6 - Spill</td>
<td>“Zero”</td>
<td>2.7E-2</td>
<td>1.0E-1</td>
<td></td>
</tr>
<tr>
<td>5. Severe Accident</td>
<td>#6 - Spill and fire with lofted plume</td>
<td>“Zero”</td>
<td>2.7E-2</td>
<td>1.0E-1</td>
<td></td>
</tr>
</tbody>
</table>

The following parameters were used specifically used for all salt residue accident scenarios:

1. Form of Material: #6, “powder”
2. Solubility Class: #3, “Y” (Runs with solubility class “W” were also made for sensitivity and were found to have a 10% increase over the “Y” class.

The Material At Risk (MAR) of the residue was chosen as follows:
Salt Residue MAR

<table>
<thead>
<tr>
<th>Accident Scenario</th>
<th>MAR IDC 409/410 Salt Residue</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Loading dock spill</td>
<td>1. One shift’s truck delivery of 5 drums (4.0 Kgs Pu)</td>
</tr>
<tr>
<td>2. Room fire</td>
<td>2. Feed for 10 furnaces plus output of 1 furnace (1.8 Kgs Pu)</td>
</tr>
<tr>
<td>3. Spill</td>
<td>3. One drum (.87 Kgs Pu)</td>
</tr>
<tr>
<td>4. Earthquake</td>
<td>4. One drum of feed for 1 furnace (.87 Kgs Pu) times 10 furnaces times a damaged ratio of 10%</td>
</tr>
<tr>
<td>5. Severe accident (Seismic plus fire)</td>
<td>5. Same as earthquake</td>
</tr>
</tbody>
</table>

The selection of the MAR for the salt residue assumed the worst risk to be associated with the process step where the containers of residue are opened and the contents poured into crucibles for the furnace, or with process step where the stabilized salt residue is removed from the furnace and set to cool.

The calculations for the MAR for the seismic case was based on a single furnace being fed from a drum of residue. The MAR for the single furnace was then multiplied by 10 for the ten furnaces. This MAR was then multiplied by a damage ratio of 10% to model the extent that falling building debris would actually impact the MAR and that the glovebox would be rendered ineffective in its confinement function.

For the fire analysis, the approach was to use 10 times the maximum Pu that could be in the final package for WIPP disposal with a damage ratio of 1 to account for the effect of the fire thermal energy driving the residue airborne. The WIPP Pt limit for a container was assumed to be used for the furnace feed.

The analysis of the salt residue indicates that the earthquake that would fail building 707 would result in the maximum dose at the site fence of 1.7 rem. These doses are in addition to the doses that would occur from the operations and materials in the “no action” case. For the seismic event of the magnitude that collapses building 707, the baseline MOI is 6.7 rem. The processing activities for the salt residue add about 25% to the MOI dose.

Operational accident doses to the MOI is increased by a fire on the loading dock by 0.3 rem, and immeasurably by a fire inside the building 707 if two of the 4 HEPA filter trains function. Note that the fire on the loading dock is not really an incremental dose since the “no action” case has no parallel dose or risk.
Salt Residue Incremental Results (Building 707)

<table>
<thead>
<tr>
<th>Accident Category</th>
<th>Probability of Occurrence</th>
<th>Collocated Worker (rem CEDE)</th>
<th>Maximum Off-site Individual (rem CEDE)</th>
<th>Latent Cancer Fatalities Population to 50 Miles</th>
<th>Accident Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire</td>
<td>5E-4/Yr</td>
<td>1.9E-4</td>
<td>1.6E-6</td>
<td>4.0E-6</td>
<td>Room fire (engulfing two gloveboxes)</td>
</tr>
<tr>
<td></td>
<td>2E-6/yr</td>
<td>1.1E-1</td>
<td>3.1E-1</td>
<td>3.5E-1</td>
<td>Loading dock fire</td>
</tr>
<tr>
<td>Explosion</td>
<td>5E-5/yr</td>
<td>similar to room fire</td>
<td></td>
<td></td>
<td>Acetylene welding</td>
</tr>
<tr>
<td>Spill</td>
<td>1E-3/yr</td>
<td>7.1E+0</td>
<td>6.2E-2</td>
<td>6.3E-2</td>
<td>Loading dock spill</td>
</tr>
</tbody>
</table>

| Criticality | N/A | N/A | N/A | N/A |

<table>
<thead>
<tr>
<th>Intra-building Movements</th>
<th>1E-3/drum handling</th>
<th>Negligible</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-site Truck Movements</td>
<td>1E-4/trip</td>
<td>Similar to fire on loading dock</td>
</tr>
<tr>
<td>Aircraft Crash</td>
<td>1.5E-6/yr</td>
<td>Similar to earthquake w/fire</td>
</tr>
<tr>
<td>Earthquake</td>
<td>1.8E-3/yr</td>
<td>1.9E+2</td>
</tr>
<tr>
<td>Severe Accident Beyond Design Basis</td>
<td>2.4 E-5/yr</td>
<td>1.9E+2</td>
</tr>
</tbody>
</table>

Ash Residue Incremental Results

The analysis of the ash residue assumed the material to spread equally among the different alternative unit operations. There is no fixed process sequence for the ash since the nature of the contents of any individual container could necessitate calcining, size reduction, or just sorting and repacking.

The ash IDC selected to represent the risk was the pulverized incinerator ash. This batch represented 33% of the total ash by weight and 50% by plutonium content.

The critical process steps resulting in the exposure of the material to dispersal from seismic events are the sizing (separating by size) and size reduction operations as well as the cementation operation prior to becoming solid. The ash contains free powder that can be dispersed by the earthquake and the falling debris.
For the analysis of the fire, the room fire was assumed to engulf the ash residue being unpacked for NDA and bag-in operations as well as the ash that is exposed to the fire in the gloveboxes if the gloves burn and the fire propagates to combustibles in the gloveboxes.

The evaluations were run using “Material” #2 (aged WG Pu) and the parameters listed in the following table.

<table>
<thead>
<tr>
<th>Ash Residue Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accident Scenario</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1. Loading dock fire</td>
</tr>
<tr>
<td>2. Room fire</td>
</tr>
<tr>
<td>3. Spill on loading dock</td>
</tr>
<tr>
<td>4. Earthquake</td>
</tr>
<tr>
<td>5. Severe Accident</td>
</tr>
</tbody>
</table>

The following parameters were specifically used for all ash residue accident scenarios:

1. Form of Material: #6, “Powder”
2. Solubility Class: #3, “Y”

The Material At Risk (MAR) of the residue was chosen as follows:

<table>
<thead>
<tr>
<th>Ash Residue MAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accident Scenario</td>
</tr>
<tr>
<td>1. Loading dock fire</td>
</tr>
<tr>
<td>2. Room fire</td>
</tr>
<tr>
<td>3. Spill</td>
</tr>
<tr>
<td>4. Earthquake</td>
</tr>
<tr>
<td>5. Severe Accident</td>
</tr>
</tbody>
</table>

The analysis of the ash residue results in a projected MOI dose increment of 0.3 rem resulting from the seismic initiated accident. This would not change the consequences from the baseline measurably since it is only 5% of the baseline.

Operational accidents would have an insignificant effect offsite. For a fire on the loading dock, the dose for the residue being handled represents the total risk.
Ash Residue Incremental Results (Building 707)

<table>
<thead>
<tr>
<th>Accident Category</th>
<th>Probability of Occurrence</th>
<th>Collocated Worker (rem CEDE)</th>
<th>Maximum Off-site Individual (rem CEDE)</th>
<th>Latent Cancer Fatalities Population to 50 Miles</th>
<th>Accident Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire</td>
<td>2E-6/yr</td>
<td>1.4E-2</td>
<td>4.1E-2</td>
<td>1.2E-2</td>
<td>Loading dock fire</td>
</tr>
<tr>
<td>Explosion</td>
<td>5.0E-4/yr</td>
<td>1.5E-5</td>
<td>1.3E-7</td>
<td>3.2E-8</td>
<td>Room fire engulfing GB line</td>
</tr>
<tr>
<td>Spill</td>
<td>5E-5/yr</td>
<td>Similar to room fire</td>
<td></td>
<td>Acetylene welding</td>
<td></td>
</tr>
<tr>
<td>Criticality</td>
<td>Not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intra-building Movements
- 1E-3/drum handled: Negligible
- 1E-3/trip: Similar to fire on loading dock

On-site Truck Movements
- 1E-3/trip: Similar to fire on loading dock

Aircraft Crash
- 1.5E-6/yr: Similar to earthquake w/fire
- Large plane crash from JEFCO Airport

Earthquake
- 1.8E-3/yr: 3.5E+1, 3.1E-1, 2.0E-1
- Collapse Bldg 707 but not 707A

Severe Accident Beyond Design Basis
- 2.4E-5/yr: 4.3E+1, 3.8E-1, 2.2E-1
- Earthquake w/fire

Wet Combustible Residue Incremental Results (Building 371)

All risk evaluations were run using “Material” #2 (aged WG Pu) and the parameters listed in the following table.

Wet Combustible Assumptions

<table>
<thead>
<tr>
<th>Accident Scenario</th>
<th>BFO DOSE TEMPLATE Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>“Scenario”</td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>1. Loading dock fire</td>
<td>#1 - Fire (lofted plume)</td>
</tr>
<tr>
<td>2. Room fire</td>
<td>#2 - Fire (unlofted plume)</td>
</tr>
<tr>
<td>3. Spill</td>
<td>#6 - Spill</td>
</tr>
<tr>
<td>4. Earthquake</td>
<td>#6 - Spill</td>
</tr>
<tr>
<td>5. Severe Accident Beyond Design Basis</td>
<td>#6 - Spill plus #1 fire</td>
</tr>
</tbody>
</table>

The following parameters were used specifically used for all Wet Combustible accident scenarios:

1. Form of Material: #10, “Volatile Liquid”
2. Solubility Class: #3, “Y”

The Material At Risk (MAR) of the residue was chosen as follows:

<table>
<thead>
<tr>
<th>Accident Scenario</th>
<th>Wet Combustibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Loading dock fire</td>
<td>One day’s inventory (2.3 Kgs Pu)</td>
</tr>
<tr>
<td>2. Room fire</td>
<td>One day’s inventory</td>
</tr>
<tr>
<td>3. Spill</td>
<td>One drum (0.37 Kg Pu)</td>
</tr>
<tr>
<td>4. Earthquake</td>
<td>One day’s inventory</td>
</tr>
<tr>
<td>5. Severe Accident</td>
<td>One day’s inventory</td>
</tr>
</tbody>
</table>

It was assumed the loading dock fire and the spill accident occur while a full day’s inventory is being transported for processing. The room fire, the earthquake, and the severe accident were assumed to occur while the lines are in full production (one day’s inventory).

The results from the wet combustibles risk analysis indicate that the dose to the MOI resulting from the seismic event to be insignificant of an increase over the baseline seismic dose of 0.42 rem for the .48g surface earthquake. Other consequence receptors also would experience an insignificant increase as a result of the proposed actions for the wet combustible residues.

Wet Combustible Residues Incremental Results (Building 371)

<table>
<thead>
<tr>
<th>Accident Category</th>
<th>Probability of Occurrence</th>
<th>Collocated Worker (rem CEDE)</th>
<th>Maximum Off-site Individual (rem CEDE)</th>
<th>Latent Cancer Fatalities Population to 50 Miles</th>
<th>Accident Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire</td>
<td>2E-6/yr</td>
<td>2.2E-1</td>
<td>6.4E-1</td>
<td>1.9E-1</td>
<td>Loading Dock Fire</td>
</tr>
<tr>
<td>Room Fire</td>
<td>5.0E-4/yr</td>
<td>4.2E-3</td>
<td>3.7E-5</td>
<td>2.4E-6</td>
<td>Room fire engulfing GB line</td>
</tr>
<tr>
<td>Explosion</td>
<td>5E-5/yr</td>
<td>Similar to room fire</td>
<td></td>
<td></td>
<td>Acetylene welding</td>
</tr>
<tr>
<td>Spill</td>
<td>1E-3/yr</td>
<td>1.9E-1</td>
<td>1.7E-3</td>
<td>1.1E-4</td>
<td>Loading dock spill</td>
</tr>
<tr>
<td>Criticality Intra-building Movements</td>
<td>Not applicable</td>
<td>Negligible</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-site Truck Movements</td>
<td>1E-4/trip</td>
<td>Similar to fire on loading dock</td>
<td></td>
<td></td>
<td>Diesel truck catches fire</td>
</tr>
<tr>
<td>Aircraft Crash</td>
<td>1.5E-6/yr</td>
<td>Similar to earthquake w/fire</td>
<td></td>
<td></td>
<td>Large plane crash from JEFCO Airport</td>
</tr>
<tr>
<td>Earthquake</td>
<td>7.7E-5/yr</td>
<td>4.9E+0</td>
<td>4.2E-1</td>
<td>2.8E-1</td>
<td>Collapse Bldg 371</td>
</tr>
<tr>
<td>Severe Accident Beyond Design Basis</td>
<td>2.4E-5/yr</td>
<td>5.0E+1</td>
<td>2.8E+0</td>
<td>9.9E-1</td>
<td>Earthquake w/fire</td>
</tr>
</tbody>
</table>
Dry Combustibles/Inorganics Residue Incremental Results (Building 707)

All risk evaluations were run using “Material” #2 (aged WG Pu) and the parameters listed in the following table.

<table>
<thead>
<tr>
<th>Accident Scenario</th>
<th>BFO DOSE TEMPLATE Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>“Scenario”</td>
</tr>
<tr>
<td>1. Loading dock fire</td>
<td>#1 - Fire (lofted plume)</td>
</tr>
<tr>
<td>2. Room fire</td>
<td>#2 - Fire (unlofted plume)</td>
</tr>
<tr>
<td>3. Spill</td>
<td>#6 - Spill</td>
</tr>
<tr>
<td>4. Earthquake</td>
<td>#6 - Spill</td>
</tr>
<tr>
<td>5. Severe Accident</td>
<td>#6 - Spill and #1 fire</td>
</tr>
</tbody>
</table>

The following parameters were used specifically for all Dry Combustible accident scenarios:

1. Form of Material: #3, “Unconfined combustible wastes”
2. Solubility Class: #3, “Y”

The Material At Risk (MAR) for the residue was chosen as follows:

<table>
<thead>
<tr>
<th>Accident Scenario</th>
<th>Dry Combustibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Loading dock fire</td>
<td>One day’s inventory (0.64 Kg Pu)</td>
</tr>
<tr>
<td>2. Room fire</td>
<td>One day’s inventory</td>
</tr>
<tr>
<td>3. Spill</td>
<td>One drum (0.32 Kg Pu)</td>
</tr>
<tr>
<td>4. Earthquake</td>
<td>One day’s inventory</td>
</tr>
<tr>
<td>5. Severe Accident</td>
<td>One day’s inventory</td>
</tr>
</tbody>
</table>

It was assumed the loading dock fire and the spill accident occur while a full day’s inventory is being transported for processing. The room fire, the earthquake, and the severe accident were assumed to occur while the lines are in full production (one day’s inventory).

The results for the dry combustible residue risk analysis indicates a small increase in the MOI dose (0.12 rem) compared to 6.7 rem for the baseline dose resulting from the .26g surface earthquake.
Dry Combustible Residues Incremental Results (Building 707)

<table>
<thead>
<tr>
<th>Accident Category</th>
<th>Probability of Occurrence</th>
<th>Collocated Worker (rem CEDE)</th>
<th>Maximum Off-site Individual (rem CEDE)</th>
<th>Latent Cancer Fatalities Population to 50 Miles</th>
<th>Accident Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire</td>
<td>2E-6/yr</td>
<td>1.4E-1</td>
<td>3.9E-1</td>
<td>1.2E-1</td>
<td>Loading Dock Fire</td>
</tr>
<tr>
<td>Room Fire</td>
<td>5.0E-4/yr</td>
<td>8.2E-4</td>
<td>7.2E-6</td>
<td>4.7E-7</td>
<td>Room fire engulfing GB line</td>
</tr>
<tr>
<td>Explosion</td>
<td>5E-5/yr</td>
<td>Similar to room fire</td>
<td></td>
<td></td>
<td>Acetylene welding</td>
</tr>
<tr>
<td>Spill</td>
<td>1E-3/yr</td>
<td>4.1E+0</td>
<td>3.6E-2</td>
<td>2.3E-3</td>
<td>Loading Dock Spill</td>
</tr>
</tbody>
</table>

Criticality

- **Intra-building Movements**: Not applicable
- **On-site Truck Movements**: Negligible
- **Aircraft Crash**: Similar to fire on loading dock
- **Large plane crash from JEFCO Airport**
- **Earthquake**: Similar to earthquake w/fire
- **Collapse Bldg 707 but not 707A**
- **Severe Accident Beyond Design Basis**: Earthquake w/fire

Classified Shapes Incremental Results

The processing steps for the classified shapes that represent an increased level of risk is similar to the dry combustible processes where size reduction takes place in order to place the materials into the WIPP WAC containers. The amount of plutonium contamination is also low (being an average of .13% compared to .6% for the dry combustibles and 6% for the salts). The analysis performed for the dry combustibles is therefore bounding for the special shapes with respect to the radiological hazards. Furthermore, the quantities of residue in this category is much less than the dry combustibles.

No analysis were performed for the classified shapes. Their plutonium content and residue quantity are small so the incremental risk would be a small fraction of the salt risk.
Classified Shapes Incremental Results (Building 707)

<table>
<thead>
<tr>
<th>Accident Category</th>
<th>Probability of Occurrence</th>
<th>Collocated Worker (rem CEDE)</th>
<th>Maximum Off-site Individual (rem CEDE)</th>
<th>Latent Cancer Fatalities Population to 50 Miles</th>
<th>Accident Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire</td>
<td>2E-6/yr</td>
<td>Similar to dry combustibles</td>
<td></td>
<td></td>
<td>Loading Dock Fire</td>
</tr>
<tr>
<td>Explosion</td>
<td>5E-5/yr</td>
<td>Similar to dry combustibles</td>
<td></td>
<td></td>
<td>Acetylene welding</td>
</tr>
<tr>
<td>Spill</td>
<td>1E-3/yr</td>
<td>Negligible</td>
<td></td>
<td></td>
<td>Loading Dock Spill</td>
</tr>
<tr>
<td>Criticality</td>
<td>N/A</td>
<td>Negligible</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intra-building Movements</td>
<td></td>
<td>Negligible</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-site Truck Movements</td>
<td>1E-4/trip</td>
<td>Negligible</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft Crash</td>
<td>1.5E-6/yr</td>
<td>Negligible</td>
<td></td>
<td></td>
<td>Large plane crash from JEFCO Airport</td>
</tr>
<tr>
<td>Earthquake</td>
<td>1.8E-3/yr</td>
<td>Negligible</td>
<td></td>
<td></td>
<td>Collapse Bldg 707 but not 707A</td>
</tr>
<tr>
<td>Severe Accident Beyond Design Basis</td>
<td>2.4E-5/yr</td>
<td>Negligible</td>
<td></td>
<td></td>
<td>Earthquake w / fire</td>
</tr>
</tbody>
</table>

Transportation

The Proposed Action Alternative for the treatment / stabilization of Rocky Flats Plant solid residues requires the transportation of the residues from their current storage locations to their designated treatment locations in Building 371 and / or Building 707. Consideration of a transportation accident for it to have any significant impact to the MOI and / or the Population receptor within a 50 mile distance of the Rocky Flats Plant boundary requires that the residue packages are in transit between buildings or in the process of unloading at the loading dock when the accident occurs.

The bounding accident for transportation of residues between buildings is the case for a loading dock spill during the unloading of salt residues. This accident results in the following effects to the Collocated Worker, the Maximum Offsite Individual (MOI), and the Population residing within 50 miles of the site boundary:

<table>
<thead>
<tr>
<th>Accident Category</th>
<th>Probability of Occurrence</th>
<th>Collocated Worker (rem CEDE)</th>
<th>Maximum Off-site Individual (rem CEDE)</th>
<th>Latent Cancer Fatalities Population to 50 Miles</th>
<th>Accident Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drum spill</td>
<td>2E-6/yr</td>
<td>6.8E+0</td>
<td>2.6E-2</td>
<td>6.0E-2</td>
<td>Loading Dock Fire</td>
</tr>
</tbody>
</table>
Consolidated Incremental Results for Proposed Action

The results for the assessment are a snap shot in time. The worst case consequences and risk only exist during the campaigns for the IDCs analyzed. None of the campaigns is expected to last over a year. Once the campaign is finished the consequences and risk will drop substantially. The concentration in the salts selected for the evaluation are nearly three times as concentrated with plutonium as the rest of the residue. The risk will thus drop by the same proportion. The baseline risk is available only for the seismic event. For the “no action” alternative, there should be no risk to the public from the operational events assuming there are no outside movements of drums and the building HEPAs are kept operational.

The 0.26g earthquake causes doses of 6.7 rem MOI, 6.8E+3 rem to the collocated worker population, and 0.78 latent cancer fatalities in the “no action” case. The consequences are increased to 7 rem to MOI, 8.8E+3 rem to the collocated workers and 2.8 latent cancer fatalities to the public in the 50 miles surrounding Rocky Flats.

<table>
<thead>
<tr>
<th>Accident Category</th>
<th>Probability of Occurrence</th>
<th>Collocated Worker (rem CEDE)</th>
<th>Maximum Off-site Individual (rem CEDE)</th>
<th>Latent Cancer Fatalities Population to 50 Miles</th>
<th>Accident Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire</td>
<td>2E-6/yr</td>
<td>6.2E-1</td>
<td>1.8E+0</td>
<td>7.9E-1</td>
<td>Loading Dock Fire</td>
</tr>
<tr>
<td></td>
<td>5.0E-4/yr</td>
<td>6.0E-3</td>
<td>5.3E-5</td>
<td>7.4E-6</td>
<td>Room Fire engulfing Glovebox Line</td>
</tr>
<tr>
<td>Explosion</td>
<td>5E-5/yr</td>
<td>Similar to room fire</td>
<td></td>
<td></td>
<td>Acetylene welding</td>
</tr>
<tr>
<td>Spill</td>
<td>1E-3/yr</td>
<td>1.2E+1</td>
<td>1.1E-1</td>
<td>7.2E-2</td>
<td>Loading Dock Spill</td>
</tr>
<tr>
<td>Criticality</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intra-building Movements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Negligible</td>
</tr>
<tr>
<td>On-site Truck Movements</td>
<td>1E-4/trip</td>
<td></td>
<td>Similar to fire on loading dock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft Crash</td>
<td>1.5E-6/yr</td>
<td></td>
<td>Similar to earthquake with fire</td>
<td></td>
<td>Large plane crash from JEFCO Airport</td>
</tr>
<tr>
<td>Earthquake .26g @ surface</td>
<td>1.8E-3/yr</td>
<td>2.4E+2</td>
<td>2.1E+0</td>
<td>2.0E+0</td>
<td>Collapse Bldg 707 but not 371A</td>
</tr>
<tr>
<td>Earthquake .48 @ surface</td>
<td>7.7E-5/yr</td>
<td>2.9E+2</td>
<td>2.6E+0</td>
<td>2.3E+0</td>
<td>Collapse Bldg 707 and 371A</td>
</tr>
<tr>
<td>Severe Accident Beyond Design Basis</td>
<td>2.4 E-5/yr</td>
<td>3.0E+2</td>
<td>6.0E+0</td>
<td>5.5E+0</td>
<td>Earthquake w/fire</td>
</tr>
</tbody>
</table>
SUMMARY

The accident analysis results are provided for two earthquake situations. A smaller earthquake (0.26 g) is postulated to collapse building 707, but does not fail building 371, and a larger earthquake (0.48 g) is postulated to collapse both buildings. These are the seismic values at the buildings, not at bedrock. The results of the analysis of the consequences to the different populations are summarized in the tables below (A - D). The results are provided in terms of radiological dose health effects (Tables A and B) and of the risk (Tables C and D). The health effects are given in cumulative effective dose equivalent (rem) and in latent cancer fatalities. Risk considers both the frequency (probability) and the potential consequences of the accident, and is expressed as the product of these two.

The introduction of the risk is important because it evaluates the significance of the consequences for different events. The 0.48 g earthquake (Table A) causes greater health effects than that for the 0.26 g earthquake (Table B), but the 0.26 g earthquake has the higher level of risk due to its higher probability of occurrence. Similarly, there will be a greater likelihood of much lower doses and health effects. The near term impact on the population will more likely be the effects that have a high frequency. These higher frequency lower severity consequences are considered with respect to a threshold of health effects. For example, the dose of 25 rem, used by the DOE as a siting acceptance criterion, is below any discernible health effects.

Table A

<table>
<thead>
<tr>
<th>HEALTH EFFECTS</th>
<th>MOI</th>
<th>Collocated Worker</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.48 g EARTHQUAKE</td>
<td>(rem)</td>
<td>(rem)</td>
<td>(LCF)</td>
</tr>
<tr>
<td>NO ACTION</td>
<td>2.0E+1</td>
<td>2.0E+4</td>
<td>2.3E+0</td>
</tr>
<tr>
<td>PROPOSED ACTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salt</td>
<td>1.7E+0</td>
<td>1.9E+2</td>
<td>1.7E+0</td>
</tr>
<tr>
<td>Ash</td>
<td>3.1E-1</td>
<td>3.5E+1</td>
<td>2E-1</td>
</tr>
<tr>
<td>Wet Combustibles</td>
<td>4.2E-1</td>
<td>4.9E+1</td>
<td>2.8E-1</td>
</tr>
<tr>
<td>Dry Combustibles</td>
<td>1.2E-1</td>
<td>1.3E+1</td>
<td>7.6E-2</td>
</tr>
<tr>
<td>Classified Shapes</td>
<td>Negligible</td>
<td>Negligible</td>
<td>Negligible</td>
</tr>
<tr>
<td>Total Increment</td>
<td>2.6E+0</td>
<td>2.9E+2</td>
<td>2.3E+0</td>
</tr>
<tr>
<td>Total</td>
<td>2.3E+1</td>
<td>2.0E+4</td>
<td>4.6E+0</td>
</tr>
</tbody>
</table>
Table B

HEALTH EFFECTS
0.26 g EARTHQUAKE (at surface)

<table>
<thead>
<tr>
<th></th>
<th>MOI (rem)</th>
<th>Collocated Worker (rem)</th>
<th>Population (LCF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO ACTION</td>
<td>6.7E+0</td>
<td>6.8E+3</td>
<td>7.8E-1</td>
</tr>
<tr>
<td>PROPOSED ACTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salt</td>
<td>1.7E+0</td>
<td>1.9E+2</td>
<td>1.7E+0</td>
</tr>
<tr>
<td>Ash</td>
<td>3.1E-1</td>
<td>3.5E+1</td>
<td>2.0E-1</td>
</tr>
<tr>
<td>Wet Combustibles</td>
<td>N/A (bldg 371 does not fail)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Dry Combustibles</td>
<td>4.2E-1</td>
<td>1.3E+1</td>
<td>7.6E-2</td>
</tr>
<tr>
<td>Classified Shapes</td>
<td>Negligible</td>
<td>Negligible</td>
<td>Negligible</td>
</tr>
<tr>
<td>Total Increment</td>
<td>2.1E+0</td>
<td>2.4E+2</td>
<td>2.0E+0</td>
</tr>
<tr>
<td>Total</td>
<td>8.8E+0</td>
<td>7.0E+3</td>
<td>2.8E+0</td>
</tr>
</tbody>
</table>

Table C

RISK
0.48 g EARTHQUAKE (at surface)

<table>
<thead>
<tr>
<th></th>
<th>MOI (rem/yr)</th>
<th>Collocated Worker (rem/yr)</th>
<th>Population (LCF/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO ACTION</td>
<td>1.5E-3</td>
<td>1.5E+0</td>
<td>1.7E-4</td>
</tr>
<tr>
<td>PROPOSED ACTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salt</td>
<td>1.3E-4</td>
<td>1.5E-2</td>
<td>1.3E-4</td>
</tr>
<tr>
<td>Ash</td>
<td>2.4E-5</td>
<td>2.7E-3</td>
<td>1.5E-5</td>
</tr>
<tr>
<td>Wet Combustibles</td>
<td>3.2E-5</td>
<td>3.8E-3</td>
<td>2.2E-5</td>
</tr>
<tr>
<td>Dry Combustibles</td>
<td>9.2E-6</td>
<td>1.0E-3</td>
<td>5.9E-6</td>
</tr>
<tr>
<td>Classified Shapes</td>
<td>Negligible</td>
<td>Negligible</td>
<td>Negligible</td>
</tr>
<tr>
<td>Total Increment</td>
<td>2.0E-4</td>
<td>2.2E-2</td>
<td>1.8E-4</td>
</tr>
<tr>
<td>Total</td>
<td>1.8E-3</td>
<td>1.5E+0</td>
<td>3.5E-4</td>
</tr>
</tbody>
</table>
Table D

<table>
<thead>
<tr>
<th>RISK</th>
<th>MOI (rem/yr)</th>
<th>Collocated Worker (rem/yr)</th>
<th>Population (LCF/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.26 g EARTHQUAKE (at surface)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO ACTION</td>
<td>1.2E-2</td>
<td>1.2E+1</td>
<td>1.4E-3</td>
</tr>
<tr>
<td>PROPOSED ACTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salt</td>
<td>3.1E-3</td>
<td>3.4E-1</td>
<td>3.1E-3</td>
</tr>
<tr>
<td>Ash</td>
<td>5.6E-4</td>
<td>6.3E-2</td>
<td>3.6E-4</td>
</tr>
<tr>
<td>Wet Combustibles</td>
<td>N/A (bldg 371 does not fail)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Dry Combustibles</td>
<td>7.6E-4</td>
<td>2.3E-2</td>
<td>1.4E-4</td>
</tr>
<tr>
<td>Classified Shapes</td>
<td>Negligible</td>
<td>Negligible</td>
<td>Negligible</td>
</tr>
<tr>
<td>Total Increment</td>
<td>3.8E-3</td>
<td>4.3E-1</td>
<td>3.6E-3</td>
</tr>
<tr>
<td>Total</td>
<td>1.6E-2</td>
<td>1.3E+1</td>
<td>5.0E-3</td>
</tr>
</tbody>
</table>

CONCLUSION: IMPACT OF PROPOSED ACTION VS. NO ACTION

The residue treatment, packaging, and storage project has the potential of increasing the risk to the public by only a small amount. This has been illustrated in the tables above and in Section 4. The analysis indicates that the dose to the maximum offsite individual, the collocated worker, and the public is bounded by the 0.48 g seismic initiated accidents. For these, the dose increases by 3 rem, 290 rem, and 2 LCFs, respectively, for the proposed action. The increase over the current residue risk is minimal considering that the risk is 1) a near term risk only, 2) an insignificant impact compared to the impact of the earthquake on the structures on site and off site, and 3) represents negligible radiological health impacts beyond the site for the general public. The probability of the seismic initiated event is related to an expected occurrence every 13,000 years. Lower seismic events such as may be expected in the near term would not fail the plutonium structures.

The consequences and the risk are below the DOE’s siting evaluation guide of 25 REM at the site boundary. This siting guide is not set because of health effects but rather as a measure of importance of preventive and mitigative features. The need for preventive and mitigative features however would primarily lead to the building structural capabilities and the glovebox and their support system capabilities with respect to surviving a seismic event. For the short time of the residue stabilization campaign, there would be little benefit of expending a large cost to upgrade the facility.

The risk benefit of the proposed action with respect to the public over a period of time is illustrated in Figure 4-1. There is an initial increase in the potential accident consequences and risk during the relatively short time period that the residue treatment process is in operation, after
which a dramatic reduction in risk occurs due to the much more stable form of the residue after treatment. The "no action" situation represents an ever increasing risk to the worker and possibly the public due to the hazards existing within the current packaging becoming more precarious over time and resulting in more frequent container failures.

In summary, the increase in the risk for the solid residue treatment, repacking and storage project compared to the "no action" risk is small and exists for a short period. The no action alternative risk is a steadily increasing risk that would have to be addressed by more costly alternatives such as constructing new facilities or upgrading existing facilities. Based on these considerations, the proposed action alternative offers a favorable long term risk benefit with minimal near term increase in risk.
REFERENCES
FINDING OF NO SIGNIFICANT IMPACT
U. S. DEPARTMENT OF ENERGY

FINDING OF NO SIGNIFICANT IMPACT

SOLID RESIDUES TREATMENT, REPACKAGING AND STORAGE AT THE ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE

SUMMARY: The Department of Energy (DOE) has prepared an environmental assessment (EA)(DOE/EA-1120) for treatment, repackaging and interim storage of solid residues at the Rocky Flats Environmental Technology Site (the Site) north of Golden, Colorado. The EA describes and analyzes the environmental effects of the proposed action, and considers the alternatives of taking no action, shipping the residues offsite for treatment, and shipping the residues offsite for storage. The EA was the subject of a public comment period from March 6 to April 5, 1996.

PROPOSED ACTION: The Proposed Action consists of treating and/or repackaging possibly unstable residues, and storing them at the Site until their disposition is decided. Until that time, residues need to be placed in a condition, and in containers, that are safe for interim storage.

Residues are wastes contaminated with radioactive materials, chiefly plutonium and americium, in sufficient quantity that they were held pending processing to recover the plutonium. Approximately 106,600 kilograms (kg) of residues are at the Site. Of those, approximately 39,200 kg require only repackaging, leaving up to 67,400 kg that could require treatment as well as repackaging. Residues have been classified according to common characteristics and treatment requirements. The classifications requiring treatment are ash, salt, wet, and classified shape residues. All but wet residues would be treated in Building 707; wet residues would be treated in Building 371. Residues not requiring treatment would only be repackaged.

Ash residues needing treatment would be calcined, cemented if necessary, and repackaged. Salt residues needing treatment would be subject to a pyrochemical oxidation process to convert reactive metals to non-reactive oxides that are safer to store. Wet residues needing treatment would be put through one of five processes, depending on their nature. Those residues containing water-based liquids would be treated to remove free liquids and repackaged. Organic-contaminated combustibles and certain filter residues would be processed to remove free liquids, stabilize plutonium fines if necessary, remove oil if needed, and repackaged. Fluorides would be chemically converted to oxides and repackaged. Grease oxides and fluorides would be dried as necessary and repackaged. Sludges would be treated to remove free liquids, dried and repackaged. Classified shape residues would have their shape and size altered by crushing, machining or grinding, and then be repackaged.
ALTERNATIVES CONSIDERED: DOE considered the No Action alternative which would have continued the present practice of storing residues in their current containers in the buildings where they are now stored. Surveillance, inspection and maintenance activities would continue and all immediate safety concerns would be addressed. The No Action alternative was rejected by DOE because it would place the Site in non-conformance with Settlement Agreement and Compliance Order on Consent No. 93-04-23-01 issued by the Colorado Department of Public Health and Environment and with the Defense Nuclear Facility Safety Board's Recommendation 94-1. In addition, it would limit future uses of portions of the Site, and substantially impede progress toward achieving the Site's mission of cleanup.

DOE also considered shipping some residues offsite for treatment and continues to review this possibility. However, several issues must be resolved before this alternative could be implemented. They include determining if offsite treatment can be accomplished at a reasonable cost and within the schedule required by the Defense Nuclear Facilities Safety Board's Recommendation 94-1, identifying adequate storage space at offsite facilities for the residues that could be treated there, certifying shipping containers, and repackaging residues for shipment. If these issues can be satisfactorily resolved, DOE may later proposed to treat some Site residues at other locations. If such a proposal is made, separate National Environmental Policy Act analyses would be performed on that Proposed Action.

A third alternative considered by DOE was shipment of residues to an offsite location for storage pending later decisions about treatment and disposal. This alternative also has issues that must be satisfactorily resolved before it could be implemented. As with the Shipment Offsite for Treatment alternative, the unresolved issues include identifying adequate storage space at offsite facilities for the residues, certifying shipping containers, and repackaging residues for shipment. Other issues include the fact that costs and risks would be incurred without moving toward ultimate disposal of the residues, since the residues would still have to be stored, treated, and repackaged after treatment. DOE rejected this alternative for these reasons.

ENVIRONMENTAL EFFECTS: All of the activities associated with the proposed action, except some of the transfer of residues between buildings, would take place inside existing buildings. As a result, no effects would be expected to flora, fauna, air or water quality. All buildings associated with the Proposed Action have been determined to be eligible for listing on the National Register of Historic Places. The Proposed Action has the potential to adversely affect the historic characteristics of the interior of the buildings through changes planned to equipment. Consequently, prior to any alterations to the buildings, possible adverse impacts would be avoided through negotiations with the State Historic Preservation Officer. The program would be expected to generate approximately 13,400 drums of low level or transuranic waste which would be stored on the Site pending disposal.
Under routine operating conditions, exposures of workers and the public to radiological and chemical hazards from both direct exposure and air emissions would be kept within applicable standards of regulatory agencies, DOE, and the Site. The Proposed Action would increase worker exposures in the short term but reduce them in the long term compared to both current exposure levels and the No Action alternative.

The bounding accident (earthquakes of sufficient magnitude to collapse Building 707 [expected once in 550 years] and Building 371 [expected once in 13,000 years, since Building 371 is stronger]) have equal probability of occurrence under the Proposed Action and the No Action alternative. Such an accident would be expected to result in worker fatalities (from falling debris as much as release of contamination) but no adverse health effects to the maximally-exposed offsite individual. Additional annual latent cancer fatalities among the Denver metropolitan area population of 2.2 million from collapse of both buildings are estimated at 2.3 under the No Action alternative and an additional 1.9 (for a total of 4.2) under the Proposed Action.

FOR FURTHER INFORMATION ABOUT THIS ACTION, CONTACT:

Carl R. Sykes
Mission Advocacy Division
U. S. Department of Energy
Rocky Flats Field Office
P. O. Box 928 - Bldg. 460
Golden, CO 80402-0928
Telephone: (303) 966-3684

FOR COPIES OF THE EA, CONTACT:

Reginald W. Tyler
NEPA Compliance Officer
U. S. Department of Energy
Rocky Flats Field Office
P. O. Box 928 - Bldg. 460
Golden, CO 80402-0928
Telephone: (303) 966-5927

DETERMINATION: Based on the information and analyses in the EA, DOE has determined that the proposed treatment, repackaging and storage of solid residues at the Rocky Flats Environmental Technology Site does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969, as amended. Therefore, an environmental impact statement is not required and DOE is issuing this Finding Of No Significant Impact for the Proposed Action.

Signed at Golden Colorado, this 15th day of April, 1996.

Mark N. Silverman, Manager
Rocky Flats Field Office
U. S. Department of Energy
COMMENTS ON DRAFT ENVIRONMENTAL ASSESSMENT AND RESPONSES TO COMMENTS
RESPONSE TO COMMENTS ON DRAFT SOLID RESIDUES TREATMENT, REPACKAGING, AND STORAGE ENVIRONMENTAL ASSESSMENT

Rocky Mountain Peace Center

1. Comment: Poor public notice was provided that an EA was being performed.

Response: DOE acknowledges poor communication with Rocky Flats stakeholders regarding the fact that the Solid Residues Environmental Assessment (EA) was in preparation. In response to this situation, DOE will provide the Citizen's Advisory Board (CAB) with a list of upcoming EAs, and will notify CAB periodically of scheduled EAs in the future.

2. Comment: The EA document nowhere explains how to make public comments - to whom, where, etc.

Response: Copies of the EA were preceded by a Community Advisory or notice of availability which described how, when, and where to make comments. Future Rocky Flats Field Office (RFFO) draft EAs will include a page with information about making comments.

3. Comment: No public meeting or even information session is scheduled to hear from interested parties.

Response: DOE has had numerous meetings with the CAB regarding its plans for processing residues and will continue to do so. DOE believes that the combination of these earlier information sessions, together with the public comment period and the information provided in the EA, is sufficient to fully inform stakeholders and the public of its treatment and storage plans for residues. Opportunities for public involvement will be provided in the future as DOE develops plans for residue disposition alternatives. See responses to comments 8 and 9.

4. Comment: Though a request was made that the comment period be extended for at least 42 additional days it was extended for only 12.

Response: The original 18-day public comment period was extended to 30 days. DOE is attempting to provide adequate opportunity for public comment while meeting the commitments made in response to the Defense Nuclear Facilities Safety Board Recommendation 94-1 and the Settlement Agreement and Compliance Order on Consent No. 93-04-23-01 of the Colorado Department of
Public Health and Environment. RFFO has typically allowed 30-day comment periods; what was initially a shorter comment period for this EA was an exception. The exception was made because DOE was concerned that schedule requirements associated with safety would be negatively affected by having the usual 30-day comment period.

5. **Comment:** This comment period falls in the middle of two other major comment situations, namely for the Rocky Flats Cleanup Agreement and the PEIS [Programmatic Environmental Impact Statement] on Storage and Disposition of Weapons-Usable Fissile Materials. Timing for this one could not be worse.

Response: DOE is working on numerous fronts to accomplish work at the Site and throughout the Nuclear Weapons Complex with the result that several documents may be out for review at any one time. While DOE attempts to sequence release of EAs and other public documents for review to avoid overburdening stakeholders, issuance of this EA at the same time as the EISs that are out for public review was unavoidable.

6. **Comment:** One person told me that when he requested a copy of the EA document from [DOE's Rocky Flats Field Office manager] Mark Silverman's office, he was told it was not available, that he should go to a reading room. We may be forgiven if we get the impression DOE isn't interested in getting public comment on this EA.

Response: DOE has published the EA for the expressed purpose of obtaining public comment on the proposed action and the alternatives. A Community Advisory was sent out to a list of over 50 elected officials and stakeholders, the EA was sent to reading rooms, and a notice of availability was sent to over 60 other local stakeholders known to be interested. In addition, the EA has been made available to all others who requested it with a total of over 60 copies sent out. DOE has made, and will continue to make, copies of public documents easily and readily available to all interested persons in as timely a manner as feasible.

7. **Comment:** Earlier I requested that a coordinated calendar of NEPA [National Environmental Policy Act]-process and other public comment activities for Rocky Flats be created and that the information be made available to interested parties well in advance. Such a calendar should make a point of avoiding the kinds of overlaps and conflicts created on this EA.

Response: See responses to comments 1 and 5.
8. **Comment:** NEPA requires an EIS for a major federal action likely to have a significant impact on the environment. A project involving 3 metric tons of plutonium and costing $87.5 million for initial construction independent of operating costs certainly fits this definition. DOE should proceed with actions required to stabilize unstable residues, but conduct an EIS for the residue project in the larger sense alluded to in the EA document.

Response: NEPA provides that one way of determining whether an EIS is necessary is to prepare an EA. DOE believes that the result of the analyses in the EA is that the environmental effects of the proposed action would not be significant and that, therefore, an EIS on the proposed action (treatment, repackaging and storage of solid residues) is not necessary. In addition, while a project's cost may indicate that it is a "major federal action", it is not necessarily an indication of having a "significant impact on the environment".

If, by "the residue project in the larger sense alluded to in the EA document" the commentator means disposition of the residues after the proposed action, the Waste Isolation Pilot Project Plant (WIPP) Supplemental EIS, a draft of which is due in late summer of this year, will provide the seminal opportunity for public comment on disposition of residues. Disposition of residues is outside the scope of this EA.

9. **Comment:** Safeguards and security concerns are not dealt with in this document, nor are they covered in the Stabilization and Disposition PEIS, nor are they covered in the WIPP EIS. Given that 3 MT [metric tons] of Pu [plutonium] is involved, this is a significant oversight. Things said at the April 2 meeting [between RFFO and the Rocky Mountain Peace Center] gave me the impression Rocky Flats folks are playing a waiting game regarding this issue, not a very happy way of dealing with the proliferation-related risks involved. If these concerns are not dealt with in any of the above analyses, where will they be dealt with? Should there be a PEIS on residues? Would this be the best way to guarantee that safeguard and security concerns for residues complex-wide get dealt with?

Response: This Environmental Assessment has been revised to better clarify the proposed action is to place residues in compliance with the Department's Criteria for Interim Storage of Plutonium Bearing Materials. Essentially, these Criteria would ensure that residues are in a condition that allows for safe storage for at least 20 years. A copy of the Criteria is available in the DOE reading rooms, or can be obtained by calling Dennis Connors of Kaiser-Hill Community Relations at 966-8164.
The draft EA contained numerous references to making the materials compliant with the WIPP Waste Acceptance Criteria (WAC). The final EA has deleted all references to WIPP as an ultimate disposal site for wastes and residues from the proposed action. Although it is quite possible that WIPP will ultimately serve as the disposal site for Rocky Flats residues, this EA now leaves the door open for other disposition alternatives. The final EA states clearly that the intent is to place residues in a condition allowing for safe interim (up to 20 years) storage irrespective of the disposition method selected in the future.

Attached (following page) is a letter from Leanne Smith, RFFO Assistant Manager for Mission Advocacy, to Hank Dalton, EM-66 Nuclear Materials Stabilization Group at DOE Headquarters, urging Mr. Dalton to create a residue disposition decision program which allows for public input. RFFO will keep the CAB and the Rocky Mountain Peace Center apprised of Mr. Dalton’s response to the letter and DOE’s future plans for complex-wide residue disposition decision process. As mentioned in the comment, a programmatic environmental impact statement is one way in which a complex-wide disposition strategy for residues could be developed.

The proposed action of this EA will not preclude any disposition alternatives that would be considered under a complex-wide disposition strategy. As the strategy is developed, activities covered in this EA would be evaluated to ensure they support and are consistent with the long term disposition. The EA would be revised as needed to conform to the disposition strategy.

The proposed action would place ash residues in a cemented waste form which could complicate, although not preclude, certain disposition alternatives. Cementation would eliminate the possibility of dispersion of ash particles in an accident, protecting workers and the public from exposure as a result of inhalation of airborne ash. While cementation may complicate some disposition alternatives, it is justified by the risk reduction gained from eliminating the possibility of dispersion.

Safeguard and security (i.e., non-proliferation) considerations would be important in development of a complex-wide disposition strategy. However, placing residues in a non-proliferable form is not an underlying factor for the proposed action of this EA. Safety concerns identified by the Plutonium Vulnerability Assessment, the Defense Nuclear Facilities Safety Board Recommendation 94-1, and the 1993 Residue Consent Order drive proposal for treatment and/or repackaging of residues. During treatment, repackaging, and storage at the Site, residues would be subject to all DOE safeguard and security orders and rules.
The purpose of this memorandum is to document discussions we have had about your efforts to push forward Departmental plutonium residue technical option studies to determine the best complex-wide disposition for plutonium residues. Stakeholder participation is a key input for ultimate disposition.

In a meeting with local stakeholders regarding the Rocky Flats Environmental Technology Site (Site) draft Environmental Assessment (EA) for residues, several individuals expressed their concern with the ultimate disposal of the Site’s residues at the Waste Isolation Pilot Project (WIPP) (the draft EA described steps to treat and package wastes to meet WIPP waste acceptance criteria). They did not see that disposing of the Site’s residues at WIPP was considered in the context of other disposal alternatives, such as disposition of plutonium residues at other locations, or that consideration was given to integrating disposition of plutonium residues from other DOE sites.

It is important to complete the NEPA process for residues so that necessary steps can be taken to treat and reduce the imminent risk and put the materials in forms or conditions that will ensure safe interim storage. These steps are also needed to allow the Site to meet residue commitments made in the Defense Nuclear Facilities Safety Board Recommendation 94-1 Implementation Plan. Because of this, we revised the EA to state the proposed action is to treat and repackage residues to meet the Interim Safe Storage Criteria, which will allow for either disposal of treated residues at WIPP, further treatment at the Site or other DOE site, or any other ultimate disposition. The EA was completed and a Finding of No Significant Impact was signed on April 15, 1996.

The revisions in the final EA do not change the residue activities planned at the Site, but instead allow for programmatic guidance other than simply disposing of the residues at WIPP. Our stakeholders have brought up the well founded point that DOE should develop a complex-wide residues strategy, and that stakeholders should have input to the development of this strategy.

For residues at the Site, the current disposition policy is described in the EM/DP memorandum of understanding (January 1993), which states that residues will be managed with the sole intent of meeting waste disposal criteria with no regard for material recovery. In addition, the State Consent Order 93-06 requires that the Site repackage residues and repackage them as soon as a disposal site becomes available. The Supplemental WIPP Environmental Impact Statement, currently under development, will analyze for the transportation and disposal of waste generated from the treatment of the Site’s plutonium residues.
I urge you to continue to pursue the plutonium residue technical studies and involve the public so that they can make informed input to disposition decisions. You will have the support of the RFFO and our stakeholders in making this process succeed. Please keep me informed on your decisions for these studies.

Leanne Smith,
Assistant Manager, Mission Advocacy

cc:
J. Lytle, EM-60
B. Smith, EM-64
M. Crosland, EM-75
K. Klein, OOM, RFFO
J. Karpatkin, OCD, RFFO
D. Lindsay, OCC, RFFO
P. Golan, MA, RFFO
D. Brockman, SIG, RFFO
J. Roberson, ESHPA, RFFO
B. Card, K-H
10. **Comment:** Ambiguity reins (sic) regarding residues. The EA nowhere tracks what has happened on the definition of residues at Rocky Flats (where they are now called TRU [transuranic] waste), to say nothing of elsewhere in the DOE complex (where other definitions prevail). This confusion of terms in more than semantic, since it may one day effect decisions on which material can or cannot go to a DOE disposal facility such as WIPP.

Response: The changes in definition referred to are explained in the third paragraph of section 1.1, page 1, of the EA.

11. **Comment:** The EA assumes WIPP will open and will have the capacity to take all the Rocky Flats residues. The essence of bad planning is exclusion of alternatives because of assumptions that themselves can only be speculative. What happens if WIPP doesn't open? Does anyone at DOE ever ask this question? What is the answer to it in terms of alternatives?

Response: The EA has been modified in section 1 to refocus on the central question of the document: how best to make solid residues safe for interim storage until their disposition is determined. Disposition of Rocky Flats's solid residues after they are made safe for storage at the Site is beyond the scope of the EA, but will be dealt with in the WIPP Supplemental EIS, and possibly other disposition decision processes, as mentioned above.

12. **Comment:** What variances are required from DOT [Department of Transportation] for transport of residues to WIPP? What is the status of this? What effects does it have on actions with residues at Rocky Flats or at WIPP?

Response: See response to comment 11. Interim safe storage criteria have been designed both to ensure safe storage for at least 20 years and to minimize the amount of additional treatment or repackaging that would have to be done later. If WIPP waste acceptance criteria change significantly or if certain expected variances to DOT shipping regulations are not granted, subsequent treatment or repackaging may be required.

13. **Comment:** Ditto for the WIPP WAC [waste acceptance criteria]. What are the existing criteria? The proposed changes? What is the status of this and its effect on operations at Rocky Flats.

Response: See responses to Comments 11 and 12. Residues are proposed for treatment to meet interim safe storage criteria, not DOT requirements or WIPP WAC per se, though the criteria have much in common with the requirements and
the WIPP WAC. Changes to the latter two sets or requirements would have little if any effect on residue operations at the Site because such operations are guided by the interim safe storage criteria, not WIPP waste acceptance criteria.

14. Comment: From an earlier version of a quite incomplete residue section of SISMP [Site Integrated Stabilization Management Plan] I learned that minimal processing will occur to prepare residues for 20-year storage. Why isn't this processing described in detail in the EA? I assume the processing will have to meet DOT and WIPP standards, but wonder if affected people in New Mexico have had the opportunity to be fully appraised and to comment on what is considered for their state.

Response: The processing described in the EA is the same as that described in the SISMP for placing residues in a condition for safe storage. The narrative and flow charts in the EA provide the necessary details for understanding the proposed action and its environmental effects. The processing will not be "minimal" but will be to that level necessary for safe storage until final disposition of the residues is decided and implemented, a period estimated not to exceed approximately 20 years. If interim storage turns out to exceed 20 years, additional processing or repackaging of some of the residues may be necessary at that time.

The people of New Mexico will have a chance to comment on the WIPP Supplemental EIS, a draft of which is projected to be ready for public review by September 1996. The analysis in the Supplemental EIS will include a site-by-site description of the waste destined for disposal at WIPP. This includes identification of residue-generated waste from Rocky Flats, with analyses of the transportation risk from moving wastes (including residues) to WIPP and the cumulative environmental effects of burying waste at WIPP (including an analysis of the maximum expected quantity of radioactive materials).

15. Comment: Related to the immediately foregoing item, doesn't this minimal processing plan ensure the necessity of further Pu [plutonium] processing if WIPP doesn't open within 20 years? Again is the EA really looking at alternatives?

Response: With regard to the possibility of additional residues processing in the future, see responses to comments 12 and 13. With regard to the EA looking at alternatives, section 1 of the EA has been rewritten to emphasize that the scope of the EA is limited to how to best stabilize solid residues and prepare them for safe storage until their disposition is determined. Section 2 of the EA looked at four alternatives (including the proposed action): processing, repackaging and
storing the residues at the Site until disposition, taking no action, shipping the residues offsite for treatment, and shipping the residues offsite for storage. In addition, in describing the proposed action, certain alternative stabilization technologies were described and analyzed. Alternatives related to disposition of the residues after they have been made safe for storage are beyond the scope of the EA.

16. **Comment:** The EA document doesn't show that [vitrification] was ever considered, much less that it was rejected for some good reason.

Response: Vitrification was not considered in the EA because DOE considers vitrification of materials such as those containing residues to be a technology that is not sufficiently developed to assist in the residue processing program within the required schedule. The primary need driving the solid residue stabilization program is to make the residues safe for interim storage in a manner that meets the schedule commitments made in response to the Defense Nuclear Facilities Safety Board Recommendation 94-1 and the Settlement Agreement and Compliance Order on Consent No. 93-04-23-01 of the Colorado Department of Public Health and Environment. These commitments do not permit development or modification of new technologies; existing technologies must be used wherever possible.

17. **Comment:** On page 2-15 the document states that some Pu now in residues will be transferred to the SNM [special nuclear material] Consolidation Program. How much material is this? What effect will the transfer have on the inventories for various categories of Pu?

Response: One class of residues, 316 kg plutonium content of fluoride-contaminated oxides, will be transferred to the consolidation program after treatment. This is because the stabilization process for fluorides will eliminate the fluoride contamination and turn the material into greater than 50% plutonium oxide. Material with greater than 50% plutonium is considered to be surplus plutonium, subject to the guidance of the Storage & Disposition of Weapons Usable Fissile Material PES and to the Site's SNM Consolidation program.

18. **Comment:** A major concern with this project is the proliferation aspect of disposing of 3 MT [metric tons] of not-completely-stable Pu at WIPP.

Response: See responses to comments 9 and 11.
19. **Comment:** We feel that the assessment provided by the EA is insufficient in light of the importance of the decision and the quantity of material to be processed, the possible near and long term impacts of the proposed action on the health of workers, the public and the surrounding environment, as well as potential impacts on other programs within the Department of Energy (DOE). Therefore, we request that DOE perform an Environmental Impact Statement on the treatment, packing and storage of all residues, except any high risk residues that present an immediate danger.

Response: See response to comment 8. The DOE considers all residues to be in urgent need of treatment and/or repackaging to meet the interim safe storage criteria. Several other groups have voiced a similar concern. The Defense Nuclear Facilities Safety Board, for example, noted in its Recommendation 94-1 on residues:

- "Imminent hazards could arise in two to three years unless certain problems are corrected."
- "What is clear is that the materials require treatment on an accelerated basis to convert them to forms more suitable for safe interim storage."
- "The Board is especially concerned about thousands of containers at the Rocky Flats Plant holding miscellaneous plutonium-bearing materials classed as "residues", some of which are chemically unstable."
- "The Board recommends that a program be formulated to convert within two to three years the materials to forms or conditions suitable for safe interim storage."
- "The Board recommends that preparations be expedited to process the containers of possible unstable residues at the Rocky Flats Plant and to convert constituent plutonium to a form suitable for safe interim storage."

The Plutonium Working Group, which wrote assessments for DOE’s Plutonium Vulnerability Assessment, addressed the dangers posed by the residues, noting in pages 26 through 29 of their Plutonium Working Group Report, that:

- "Building 771 has 55 gallons drums of unleached ion exchange resin containing nitric acid and plutonium, an explosion hazard."
- "Buildings 371 and 771 have a total of 774 packages of wet combustibles that are a fire hazard, including Ful-Flo filters with organics and rags and paper soaked with plutonium solutions."
- "Building 771 has 13 packages of grease contaminated with plutonium oxide and fluoride that pose fire and radiation hazards."
• "Buildings 776 and 371 have 5942 pyrochemical salt packages that are corrosive and chemically reactive."
• "Over 8000 drums containing waste and plutonium scraps are stored throughout all buildings. These materials increase the general radiation levels and the amount of radioactive material for release in the event of a fire or explosion."
• "There are 2.9 metric tons of plutonium in 20,532 packages of scrap/residues distributed throughout all of the buildings. Being corrosive, residues can cause container failures. Over 5000 fifty-five gallon drums at Rocky Flats contain plutonium residues mixed with over 100 metric tons of other materials. The absence of standard DOE packaging criteria has resulted in 47 different packaging configurations for residues. Scrap residues include pyrochemical salts, wet combustibles including rags, filters and paper soaked with solutions containing plutonium. The likelihood and consequences of failures involving such large amounts and varieties of materials are unpredictable."

Thus, other groups have agreed with DOE’s assessment that prompt action should be taken to stabilize and/or repackage residues to meet interim safe storage criteria. All residues at the Site should be considered in need of such treatment and repackaging. While some residues are in configurations more dangerous than others, it would not be prudent to ignore any residue category and assume the materials meet interim safe storage criteria without either stabilization or repackaging.

20. Comment: It is regrettable that the Department of Energy issued the Residue EA with very little public notice, no public process (information sessions or comment sessions), and only an eighteen-day comment period. While the process followed by the Department may have been legally adequate, it does not meet the spirit of meaningful public involvement to which the Department is committed.

Response: see response to comments 1, 3, and 4.

21. Comment: A forty-five day extension [in the public comment period] as requested by the Rocky Mountain Peace Center would have allowed for some public process and would have allowed time for development of meaningful comment from a larger group of stakeholders.

Response: See response to comment 4.
22. **Comment:** WIPP is almost ten years behind schedule and may never open. Reliance on WIPP is not a wise idea. DOE RFFO has been told this many times before.

Response: See response to comment 11.

23. **Comment:** As described in the EA approximately 5,580 drums of additional low-level waste and 5,590 drums of TRU waste will be generated. In addition at least 14,000 to 16,000 (perhaps as much as 20,000-30,000 - conversation with Paul Golan 4/1/96) drums of residues will be created as a result of processing and repackaging. These residues will be classified as TRU waste, and in addition to 5,590 drums of secondary TRU waste generated through the proposed actions, are earmarked for disposal at WIPP. The EA does not adequately describe how and where this additional waste will be stored.

Response: Wastes generated by processing of residues will be stored on the Site until their final disposition is determined. The exact location(s) for such storage have not been identified, but the Radioactive Waste Storage Environmental Assessment (DOE/EA-1146) of April 1996, analyzes nine buildings at the Site that could be converted to radioactive waste storage. Waste from residue treatment would be stored primarily in the buildings of origin.

Interim storage of residues at the Site will be integrated with interim storage of SNM (plutonium pits, metal and oxide, and highly enriched uranium). One of the alternatives in the Site's Site Wide Environmental Impact Statement, a draft of which is scheduled to be released for public comment later this year, is to build an interim storage vault for plutonium. Moving plutonium to a new vault may open substantial storage capacity for residues in Building 371. Building 371 is currently the most robust and seismically safe of all buildings at the Site for storage of radioactive wastes.

24. **Comment:** If WIPP does not open as planned, the EA does not describe the impact on the site. What is the impact on combustible residues if WIPP does not open? If WIPP does open there is no guarantee when, or if all of the waste at Rocky Flats will go there. The proposed actions assume a variance in DOT [Department of Transportation] regulations that would allow 1400 grams of plutonium to be shipped in each TRU-PACT II container. This has not yet been granted. If it is not granted, reliance on WIPP will result in a much larger number of drums of residue/TRU waste.

Response: See responses to comments 11,12 and 13.
25. Comment: Alternatives to the proposed actions are not analyzed in the EA. Wet chemical oxidation and vitrification are both possible technologies that could be utilized in treating residues. Neither technology is analyzed in this EA. It is likely that there are other technologies that escaped analysis.

Response: See response to comment 15.

26. Comment: Hazards to workers are not adequately analyzed in the EA. What would be the hazard to workers under normal operating scenarios? The Administrative Control Level [ACL] for the site is .75 rem per year. Reference is made to a project ACL. Is this expected to be higher than the site ACL?

Response: It is anticipated that worker exposures would not exceed the ACL of 0.75 rem annually for residue stabilization activities. Residue stabilization activities do involve the potential for significant cumulative radiation exposure. Depending upon how quickly the stabilization activities are carried out and how many workers carry out the activities, the potential exists for workers to be exposed to radiation in excess of the ACL. However, if establishing a higher ACL appears appropriate, it would be done by balancing the risk reduction benefit with the radiation exposure cost.

27. Comment: What type of container will be used to store residues? Will drums be new or used? No description or analysis exists in the EA. Used drums may be problematic as they may have an operational life shorter than 20 years.

Response: Basically, two types of containers will be used to store residues: pipe component and/or 55-gallon drums. The pipe components would all be new containers and most of the 55-gallon drums would be new drums. Recycling of used drums will be considered if the condition of the drums is satisfactory. The interim safe storage criteria have two basic standards - one for the material, ensuring the material is stabilized, and one for the container, ensuring the container is in good shape. All containers used for the interim safe storage of treated residues would meet the interim safe storage criteria.

28. Comment: Unfortunately residues escape consideration under both the WMPEIS [Waste Management PEIS] and the S&D [Storage and Disposition] PEIS for Surplus Fissile Material. As noted above the residues could have a significant impact on WIPP. There should be an analysis of residue plans at Rocky Flats as they relate to other TRU waste plans throughout the complex and the cumulative impact on WIPP. Residues at Rocky Flats contain 3.1 metric tons of plutonium. Currently they do not meet the spent fuel standard that is being employed in the
S&D PEIS. Residues are a potential proliferation threat. It would be wise to consider residues in the context of the S&D PEIS, and to consider immobilization of residues at Rocky Flats, either through vitrification or ceramification.

Response: Regarding relationship between residues and other EISs, see response to comment 11. Regarding alternative treatment technologies, see response to comment 15.

29. Comment: The scope of this project is large. It encompasses the processing of 106,600 kg of residues containing 3.1 metric tons of plutonium. Construction costs for the project (not including operational costs) are projected to be $87.5 million. A variety of processes will be employed to treat the residues. It is not clear in this EA that these processes are inherently safe, or that they are the best to employ.

Response: No alternative, including the no action alternative, is "inherently safe". DOE believes that the analyses in section 4 of the EA, as described more fully in Appendix B, show that the processes to stabilize residues are reasonably safe as measured by common industrial and nuclear industry practices and experience.

30. Comment: How 3.1 metric tons of plutonium, the debris, and hazardous constituents with which it is commingled are treated, packaged and stored is an extremely important decision. As shown above, many important questions remain unanswered in the EA. The magnitude of these decisions dictates the wisdom of performing an Environmental Impact Statement on the treatment, packaging and storage of residues. Therefore, we request that DOE immediately outline which "high risk" residues require immediate treatment. It would make sense to treat these residues on the basis of the EA. In a meeting with site officials on 4/2/96 it was indicated that this would be a small portion of the residues. How to treat, package, and store the rest of the solid residues needs to be the subject of an Environmental Impact Statement.

Response: See responses to comments 8 and 20. During the April 2 meeting, DOE described those residues which should be treated before 1998 and those which could wait until 1998-2002. DOE believes that all residues must be treated and or repackaged to meet interim safe storage criteria and maximize safety. The SISMP (Site Integrated Stabilization Management Plan) describes the schedule for stabilizing each type of residue.