Title: DYNAMICAL HIERARCHIES - A SUMMARY

Author(s): S. Rasmussen, N. A. Baas, C. L. Barrett, M. W. Olesen

Submitted to: Artificial Life & Robotics (AROB), Oita, Japan, February, 1996
Dynamical Hierarchies – A Summary

Steen Rasmussena,b Nils A. Baasc Christopher L. Barretta,b Michael W. Olesena

aTSA-DO/SA MS-M997 and CNLS MS-B258
Los Alamos National Laboratory
Los Alamos, New Mexico, 87545
USA

bSanta Fe Institute
1399 Hyde Park Road
Santa Fe, New Mexico, 87501
USA

cDepartment of Mathematical Sciences
University of Trondheim, NTH
N-7034 Trondheim
Norway

Keywords

Higher Order Emergence, Constructive Dynamical Systems, Molecular Self-Assembly, Self-Organization, Cellular Automata, Lattice Gases, Theory of Simulation

Summary

This paper summarizes some of the problems associated with the generation of higher order emergent structures in formal dynamical systems.

In biological systems, higher order hyperstructures occur both in an intuitive and a formal sense: monomers, polymers, membranes, organelles, cells, tissues, organs, etc. constitute an observable hierarchy, apparently generated by the underlying biomolecular process. However, in models and simulations of these systems, it has turned out to be quite difficult to produce higher order emergent structures from first principles.

The first problem is to agree on what a higher order structure is. An emergent structure can be defined through an introduction of an observational function \cite{1}. If a property can be observed in the dynamics, but not at the level of the fundamental first order interacting structures, we define it to be emergent. It is well known that second order structures occur relatively easy in simulation, so the problem is how to proceed to third and higher order without external interference \cite{2}. A third order structure is defined through the interaction of second order structures forming a new observable not found at the lower levels.

We can discuss these problems in the light of a Lattice Gas Automata \cite{4} style discrete field automata, a Lattice Polymer - or Molecular - Automata (LPM, LMA) \cite{8, 5} for molecular self-assembly where we can demonstrate the generation of higher order structures from first principles \cite{2}. These formal systems are interesting in their own right, since this level of description allows the generation of entropic and enthalpic flows in a microcanonical, molecular ensemble bringing insight to entropy-driven processes in molecular many-particle systems. Structural features of a polar solvent can be generated together with cluster-formation of hydrophobic monomers and polymers in a polar environment. Polymerization processes, and the self-assembly of micelle-like structures of lipid polymers can also be followed. Membrane stability, microtubule assembly/disassembly and cytoskeletal reorganization can also be generated. However, the central issue here is dynamics and not molecular self-assembly. For a detailed discussion of the physico-chemical properties of these self-organizing processes we refer to \cite{5}. For an alternative approach to the dynamics of self-organization we refer to \cite{3, 7}.

The cellular automata we use to describe the dynamics of these simple molecular self-assembly systems can be formulated as interacting objects of the form

\[S_i(x_i, y_i, z_i, f_{ij}, t) \]

where \(S_i \) is the \(i \)th molecule, \(x_i \) its position on a 2-D lattice, \(y_i \) its current state: velocity, kind of molecule, and bond directions; \(z_i \) its neighborhood, incoming force particles from neighboring molecules \(j \) and \(f_{ij} \), the object-object interaction rules

\[f_{ij}(x_i(t), y_i(t), z_i(t)) \rightarrow (x_i(t+1), y_i(t+1)) \]

which change the location and the internal state of current object depending on the way the object updates are scheduled (which e.g. can be random or parallel). For a detailed description of the rules in (1) and (2), their assumptions, and the LMA dynamics, we refer to \cite{8, 5, 2}. For an alternative cellular automata approach we refer to \cite{6}.

If we define monomers to be first order structures, then polymers will constitute second order structures. Third order structures will then be given by micelles. Polymers carry second order emergent properties such as...
as elasticity; micelles and membranes carry third order emergent properties such as permeability - and an inside and an outside. Defining a dynamical system as an LMA, it becomes possible to generate higher order emergent structures from first principles as can be seen in figure 1. It should be noted that this particular process is chosen, because of its conceptual clarity and not because it models any particular biomolecular process.

It is clear from the observations we have made of the dynamics of the discrete field automata systems, that their ability to produce emergent structures is highly dependent on the degree of detail - or fidelity - of the objects in (1). As more and more interactions (f_{ij}) - and more and more different molecules and molecular states (y_i) - are taken into account, the more complex emergent structures the lattice automata systems are able to produce.

For example allowing only a simple molecule-molecule interaction without any excluded volume, enables us to define Lattice Gases [4] which can generate a variety of macroscopic fluid dynamics phenomena. By defining an excluded volume for the monomers together with binding and scheduling information to each of the molecules, it becomes possible to generate polymer dynamics. These are examples of second order emergent phenomena, as we have mentioned earlier. If binding information is present and the initial configuration is a random configuration of polymers with hydrophilic heads and hydrophobic tails the formation of micelle-like aggregates becomes possible. However, in a direct way the polymers can be generated by the dynamics if we allow an interaction which is specific for a polymerization process. If bond information together with polymerization interactions as well as hydrophobic/hydrophilic molecules all are defined, it becomes possible to generate micelle-like polymer aggregates from an initial condition of random monomers as seen in figure 1. Intermediate configurations of the dynamics will then be dominated by the newly polymerized hydrophobic/hydrophilic polymers. Thus, it is possible to produce third order structures from first order structures.

Another way of saying this, is that a more detailed description of the Physics is necessary to allow the formal system to produce higher order structures ¹. Weaker effects also have to be taken into consideration if more complex structures have to be explained.

¹We use Physics to denote principles of Nature independent of our description or knowledge of it. We use physics to denote our formal understanding and models of these principles.

Figure 1: Generation of third level structures in the lattice automata system. (monomers at time $t = 0$) → (polymers at time $t = 30$) → (micelle-like aggregates at time $t = 500000$). Initially there are approximately the same number of hydrophobic (black) and hydrophilic (white) monomers. The polymerization occurs such that a hydrophobic monomer (which is the nucleation center) can form a bond to a hydrophilic monomer which in turn can polymerize another hydrophobic monomer etc. At time $t = 30$ there are still a few free hydrophilic monomers not yet polymerized. Note the small hydrophobic cluster in the lower right corner of the lattice. The formed micelle-like clusters are stable for these initial conditions and parameters.
Since the very beginning of the study of Artificial Life the following dogma has been dominating:

COMPLEX, DYNAMICAL STRUCTURES

↑

SIMPLE RULES AND STATES

Is this really true? Could our "complex" hyperstructures have been created only starting with very simple object states and interaction rules without any external interaction with the system? We doubt it. ² The notion of a critical object complexity is presumably important for the generation of dynamical hierarchies up to a given level. Whether more explicit internal object complexity always will be necessary to obtain yet higher order emergent structures - or whether there is an object complexity limit above which any emergent level can be produced, we do not know. We would like to believe that the latter is true. See also [2].

By extracting some of the formal principles involved in the formation of a system capable of generating higher order (hyper-) structures in molecular self-assembly systems and relating them to dynamical systems, one of the central issues becomes the notion of a simulation as a synthetic mathematical method. We may define a simulation as a dynamical system that formally is constituted by an ensemble of objects

\[
S_i = s_i(f_{ij}, x_i, \tau_i),
\]

\(i = 1, \ldots, n\), where \(S_i\) is an object with internal state \(x_i\), object-object interaction function \(f_{ij}\) (which typically will have its own state \(x_j\) as an argument together with the state(s) of the object(s) that it is interacting with \(x_j, j = i, 1, 2, \ldots\)), and local time \(\tau_i\). To generate dynamics these object-object interactions have to be scheduled by an update functional \(U\) (e.g. parallel, random, discrete event, etc). If we for simplicity assume that the update is time stepped (as in the above LMA systems), which means that all objects always have the same local (= global) time \(t\), the dynamics of the interacting objects in (3) is given by

\[
\{S_i(t + 1)\} = U\{S_i(t)\},
\]

\(i = 1, \ldots, n\). Note that in general no explicit, closed form function \(F: X \rightarrow X\) exists that takes the current global state

\[
X(t) = (x_1(t), \ldots, x_n(t)) \in X
\]

²Note that we are considering fixed objects with no self-programming or "mutations" in the explicit rules and variables.

and maps it into some other state in the state space \(\mathbb{X}\)

\[
F(X(t)) = X(t + 1).
\]

Such a function is only implicitly given through (4). Systems which can be expressed explicitly in the closed form (6) we call models. Obviously, the classical dynamical systems which can be explicitly written in the form (6) are special cases of the form given in (3) and (4). This is true, because a system that explicitly can be written in the form (6) can be viewed as a single object \(S_1\) from (3) which is iterated by \(f_{11}\). Since there is no scheduling with only a single object, the update functional \(U\), becomes the identity.

One of the mathematical consequences of having the dynamics of the form (3) and (4), is that (4) may not be updatable due to conflicts between the \(f_{ij}\)'s and \(U\). Thus, a notion of simulatability can be defined [9]. The connection between the notion of simulatability and the notion of computability can now be studied, and indeed the concepts are different, since computability is defined through

\[
\{S_i(t + T)\} = U\{S_i(t)\}, \quad T \rightarrow \infty
\]

and simulatability is defined through

\[
\{S_i(t + T)\} = U\{S_i(t)\}, \quad T = 1.
\]

Thus, we can have simulatable systems with non-computable properties generated by the dynamics. In addition a mathematical machine, a universal simulator (US), can be defined, which in a finite number of steps determines whether a system is simulatable or not by describing the conditions under which a system of the form (3) and (4) can distribute update functions over system objects [9]. Further, it can give an appropriate order of updating for the objects, if it is simulatable, and detect where the problems are if the system is non-simulatable. Thus, the scheduling problem naturally lives in the US. Because each operation done by the US can be interpreted as having a computational cost, the load balancing problem also naturally lives in this mathematical machine. For a more detailed discussion of some of the mathematical consequences of the above we refer to [9].

Thus, by defining dynamical systems of the form (3) and (4) an alternative and more general avenue is open. We are not limited to closed form models which only keep track of the number, or concentration, of particular objects and where novel relations and objects cannot in a natural way be generated as a function of the dynamics (as e.g. in differential equations). Since the objects in (3) and (4) are
explicitly represented, so are their functional properties, thus the molecular aggregates and their formation rates discussed above all come out as observable, emergent properties generated by the dynamical system. Therefore with this approach there is no need for explicitly taking all conceivable interactions and new possible products into account together with postulates about their formation rates. By defining the objects, the update functional, and the observational functions appropriately, everything of interest will be generated by the dynamics. Thus, we may view a simulation as an emergence engine.

Acknowledgements

We would like to thank Kai Nagel for critical discussions during the work that led to some of the results presented here.

References

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.