Reaction mechanisms in aromatic hydrocarbon formation involving the C{sub 5}H{sub 5} cyclopentadienyl moiety

PDF Version Also Available for Download.

Description

The quantum chemical BAC-MP4 and BAC-MP2 methods have been used to investigate the reaction mechanisms leading to polycyclic aromatic hydrocarbon (PAH) ring formation. In particular the authors have determined the elementary reaction steps in the conversion of two cyclopentadienyl radicals to naphthalene. This reaction mechanism is shown to be an extension of the mechanism occurring in the H atom-assisted conversion of fulvene to benzene. The net reaction involves the formation of dihydrofulvalene, which eliminates a hydrogen atom and then rearranges to form naphthalene through a series of ring closures and openings. The importance of forming the {single_bond}CR({center_dot}){single_bond}CHR{single_bond}CR{prime}{double_bond}CR{double_prime}-moiety, which can undergo ... continued below

Physical Description

25 p.

Creation Information

Melius, C.F.; Colvin, M.E.; Marinov, N.M.; Pitz, W.J. & Senkan, S.M. February 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 40 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The quantum chemical BAC-MP4 and BAC-MP2 methods have been used to investigate the reaction mechanisms leading to polycyclic aromatic hydrocarbon (PAH) ring formation. In particular the authors have determined the elementary reaction steps in the conversion of two cyclopentadienyl radicals to naphthalene. This reaction mechanism is shown to be an extension of the mechanism occurring in the H atom-assisted conversion of fulvene to benzene. The net reaction involves the formation of dihydrofulvalene, which eliminates a hydrogen atom and then rearranges to form naphthalene through a series of ring closures and openings. The importance of forming the {single_bond}CR({center_dot}){single_bond}CHR{single_bond}CR{prime}{double_bond}CR{double_prime}-moiety, which can undergo rearrangement to form three-carbon-atom ring structures, is illustrated with the C{sub 4}H{sub 7} system. The ability of hydrogen atoms to migrate around the cyclopentadienyl moiety is illustrated both for methyl-cyclopentadiene, C{sub 5}H{sub 5}CH{sub 3}, and dihydrofulvalene, C{sub 5}H{sub 5}C{sub 5}H{sub 5}, as well as for their radical species, C{sub 6}H{sub 7} and C{sub 5}H{sub 5}C{sub 5}H{sub 4}. The mobility of hydrogen in the cyclopentadienyl moiety plays an important role both in providing resonance-stabilized radical products and in creating the {single_bond}CR({center_dot}){single_bond}CHR{single_bond}CR{prime}{double_bond}CR{double_prime}-moiety for ring formation. The results illustrate the radical pathway for converting five-membered rings to aromatic six-membered rings. Furthermore, the results indicate the important catalytic role of H atoms in the aromatic ring formation process.

Physical Description

25 p.

Notes

OSTI as DE96008486

Source

  • 26. international symposium on combustion, Naples (Italy), 28 Jul - 2 Aug 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96008486
  • Report No.: UCRL-JC--123379
  • Report No.: CONF-960772--9
  • Grant Number: W-7405-ENG-48;AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 244531
  • Archival Resource Key: ark:/67531/metadc664127

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • April 12, 2016, 2:47 p.m.

Usage Statistics

When was this article last used?

Yesterday: 1
Past 30 days: 2
Total Uses: 40

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Melius, C.F.; Colvin, M.E.; Marinov, N.M.; Pitz, W.J. & Senkan, S.M. Reaction mechanisms in aromatic hydrocarbon formation involving the C{sub 5}H{sub 5} cyclopentadienyl moiety, article, February 1, 1996; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc664127/: accessed September 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.