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Abstract 

A resolution study, employing a 3D nonlinear optimization technique, has been 
undertaken to study the viability of magnetotelluric (MT) measurements to detect and 
characterize buried facilities that make weapons of mass destruction. A significant 
advantage of the MT method is that no active source is required because the method 
employs passive field emissions. Thus measurements can be carried out covertly. 
Findings indicate it is possible to image WMD facilities, including depth of burial and 
lateral extent if a suEcient number of measurements are taken on the perimeter of the 
facility. Moreover if a station measurement can be made directly over the facility then the 
resolution is improved accordingly. In all cases it was not possible to image the base of 
the facility with any confidence as well as provide any precise inferences on the facility 
electrical conductivity. This later finding, however, is really not that critical since 
knowledge of facility geometry is far more important than knowledge of its conductivity. 
For the WMD problem it is recommended that MT measurements be made solely with 
the magnetic field ratios. In this context it would then be possible to deploy with far 
greater ease small coils about a suspected facility and would allow for the measurements 
to be conducted in a more covert manner. Before testing such a measurement system in 
the field, however, it would be necessary to carry out a similar resolution analysis as was 
done with MT measurements based on electric and magnetic fields. This is necessary to 
determine sensitivity of the proposed measurement to underground facilities along with 
needed data coverage and quality. Such a study is indispensable in producing useful 
reconstructions of underground facilities. 



INTRODUCTION 

Weapons of mass destmction (WMD) pose grave threats to the security of the 
United States and the rest of the fiee world. Identifjling and locating these facilities are 
therefore of great importance. Because many facilities are buried at depths greater than 
several 10's of meters, remote sensing methods may be necessary for their detection. 
Here we focus on very low fiequency (VLF) electromagnetic fields (<lorn) to detect, 
locate and characterize WMD facilities. The use of VLF fields is required since the earth 
is a high loss medium, and higher fiequency fields such as synthetic aperture radar cannot 
effectively penetrate to the required depths. While passive seismic monitoring methods 
are currently under investigation for the WMD problem, the use of VLF fields are also 
now receiving attention, as evidenced by this report. 

Two types of VLF passive measurements are most promising for detecting WMD 
facilities. The first, which this report address, uses natural VLF emissions or 
magnetotelluric (MT) fields that arise from interaction of the solar wind with the earth's 
ionosphere. The second employs emissions fiom powerlines directly feeding the facility. 

A major obstacle in employing passive VLF fields to image WMD facilities has 
been the inability to interpret data. The observed VLF field depends on both the facility 
and local geology. To accurately locate and characterize the facility we must also 
characterize the geology. Unfortunately, the facility response is coupled to the geology in 
a nonlinear fashion and the geology and topography, of WMD sites is often complex and 
rugged. The minimal amount of data sufficient to reliably characterize and locate WMD 
facilities is also unknown. Data sets with high spatial sampling are desirable, but not 
practical to collect. 

To resolve these questions we have carried out a resolution study, employing a 
nonlinear inversion technique designed for MT fields. We define -inversion as a 
mathematical process to find the electrical conductivity model of the earth that fits the 
measurements to within observational errors. The model yields estimates on facility 
location and geometry as well as site geology. More importantly, the inversion process, 
quantifies the uncertainties of these estimates in terms of the observational error levels 
and data coverage at the site. While the inversion methodology is designed to analyze 
field data, it is better first to determine the method's potential through a resolution study, 
before proceeding with the analysis of actual field measurements arising fiom suspected 
WMD facilities. 

A significant advantage of using MT data to characterize WMD facilities is that 
no active source is required to generate the fields. Since the method employs passive field 
emissions, measurements can be carried out covertly. An important obstacle that has 
limited the applicability of the method to the WMD problem, however, has been the lack 
of 3D inversion schemes capable of simultaneously resolving both the facility and 
complex geology. Only in the last few years have fbll solutions to the 3D MT' inverse 
problem have started to emerge (cf Newman and Alumbaugh, 1998; Madden and 
Mackie, 1993). In this report we will use the Newman and Alumbaugh (1998) scheme to 
provide some critical experiment design information that would be needed to detect, 
locate and characterize WMD facilities. Since the details of this scheme are not yet 
available in the published literature (the work is currently submitted for publication) we 
will first present its theoretical basis before proceeding with the resolution analysis of the 
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WMD problem. Also included in this report (Appendices C and D) is a new 
preconditioning technique that we have developed to reduce computation time needed in 
the 3D MT forward problem. The forward problem is needed to compute predicted 
responses and finctional gradients for the inverse problem. Because of time constraints 
we could not full implement these procedures in this report. 

OVERVIEW OFTEE MTMETHOD 

To help ease the reader into the more difficult technical aspects of the report we 
shall first give a brief review of the MT method. In the magnetotelluric method, the 
quantities that are measured are horizontal electric and magnetic fields and sometimes the 
vertical magnetic field, (Figure. 1). Because these fields are time series resulting fiom 
pulsation of the earth's magnetosphere, several pre-processing steps are necessary before 
inferences can be made about the subsurface conductivity. The first is to Fourier 
transform the time series into the frequency domain and form field ratios to eliminate the 
unknown source characteristics. These ratios are often referred to impedances and are the 
data type used in the analysis of MT fields. A good overview of the MT method can be 
found in the monograph of Vozoff (1986) which contains numerous papers on different 
aspects of method. More recent developments in the method can be found in the current 
geophysical literature. 

THE 3D MAGNETOTEZLURIC FORWARD PROBIZM 

An important consideration in solving the 3D MT inverse problem is that the 
forward-modeling solution simulate responses arising fiom realistic 3D geology. 
Hundreds of thousands of cells are required for these types of numerical simulations and 
finite difference modeling techniques are very efficient for the task and will be employed 
here. 

Assuming a time harmonic dependence of e'"". where id-1, a vector equation for 
the electric field is written as 

V x pJp V x E + iobo E= S. 

In this expression the electrical conductivity and magnetic permeability are denoted by ts 
and p respectively, where j~, is the magnetic permeability of fiee space. Specification of 
the source vector S, which includes the appropriate Dirichlet boundary conditions, 
defines the source field polarization. To simulate natural fields, S is set to zero 
everywhere, except at points where tangential electric-field boundary values are 
specified. These boundary values arise from plane waves propagating in layered or 2D 
geologic media assigned at the boundaries of the 3D problem. 

When equation (1) is approximated with finite differences using a Yee (1966) 
staggered grid (Figure 2) and symmetrically scaled (cf., Newman & Alumbaugh, 1995; 
Alumbaugh et al., 1996), a linear system results where, 

KE = s'. 
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The mat& K is complex-symmetric and sparse with 13 non-zero enties per row and S’ is a 
scaled representation of S. This system can be efficiently solved using the quasi minimum 
residual (qmr) method, which belongs to the class of Krylov sub-space techniques that 
are highly efficient in iteratively solving sparse linear systems. The reader is referred to 
Newman & Alumbaugh (1995) and Alumbaugh et al. (1996) for. the details on how the 
solver is implemented. Once the electric fields are determined, the magnetic fields can be 
determined from Faraday’s law by numerically approximating the curl of the electric 
field at various nodal points and interpolating either the electric or magnetic field nodal 
values to the point of interest. 

Even with the benefits of a staggered grid, which implicitly enforces the auxiliary 
divergence condition on the on the fields, it is often necessary to explicitly enforce these 
conditions, where 1 

V . o E = O  (3) 

and 

V . E = O  ’ (4) 

in the earth and air respectively. This is accomplished in the numerical solution through a 
statiodivergence correction as fiequencies approach the static limit. This correction, 
developed by Smith (1996), can drastically reduce the time needed to solve equation (2). 
It is implemented by adding a term to the electric field such that equations (3) and (4) are 
identically satisfied, and is alternated with a series of qmr iterations in equation (2). 

THE 3D MAGNETOTELLURIC INVERSE PROBLEM 

Regularized least squares 
All least squares solutions begin by minimizing the difference between observed 

and predicted data, often subject to a constraint, which is employed to stabilize the 
inversion process. In the problem considered here, the inverse solution is constrained by 
Tikhonov regularization to remove its ill posed nature (Tkhonov & Arsenin, 1977). 
Regularization imposes an additional constraint on the data fit: reconstructions are 
required to be smoothed versions of the earth’s electrical conductivity, at the expense of 
an increase in the error (the difference between the measured and predicted data). Let’s 
divide the earth into M cells and assign to each cell an unknown conductivity value; the 
magnetic permeability is assumed to be constant and set to its free space value from here 
on. Further let m be a vector of length M that describes these values. We now form a cost 
finctional which combines the data error and model smoothness constraint in the 
following fashion: 
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where T denotes the transpose operator. In equation (9, the terms that describe'the 
observed and predicted data (magnetotelluric impedances), Gobs and G, are split into 
their real and imaginary parts. The summation is over the first N data points are for the 
real parts of the impedance and the summation over the last N data points are for the 
imaginary parts. The impedance can be any particular component of the impedance 
tensor at any given measurement location, where the tensor is given by 

Components of the tensor, which depend on the subsurface conductivity, relate the 
measured electric and magnetic fields with each other. For example, Ey = Zyx Hx + Z, Hy, 
gives the contribution to the y-component of electric field arising from the x and y 
components of magnetic field. We also weight the data misfit in equation (5) by ~n so that 
noisier data are given smaller weight when forming 9. 

The parameters that dictate model smoothness are the regularization matrix W, 
which consists of a finite difference approximation to the Laplacian (V2) operator, and 
the regularization parameter A, which is used to control the amount of smoothness to be 
incorporated into the reconstruction. Care needs to be taken in selecting this parameter. 
Large parameters will produce highly smooth models, however these models show poor 
dependence on the data Small parameters give superior data fits but the resulting models 
can be too rough and non-physical. Our strategy is to run the inversion using several 
fixed values of h and select the model that provides an acceptable match to the data 
within observational errors and yet yields the smoothest reconstruction. Because we plan 
to employ a nonlinear method to minimize the cost fbnctional, h should not be varied 
during the iteration procedure. To do so could result in a less efficient algorithm as the 
minimum of the cost functional is approached since desirable convergence properties of 
the method can no longer be assured. Note that this restriction on h is not necessary when 
linearized update methods are applied to the problem, where h can be varied between 
updates. 

In small scale inverse problems it may be feasible to determine the minimum of 
equation (5) with a brute force search in parameter space. For large scale problems, as 
considered here, this is not an option. Instead, what is typically done is to set the gradient 
of the cost functional, Vq, with respect to the model parameters to zero and find by some 
economical means those model parameters that satis@ the critical point. To insure that 
Vq=O actually defines a minimum instead of a saddle point, second derivative tests are 
also necessary to verify that the Hessian of the cost fbnctional is symmetric positive 
definite. Because the predicted impedances depend on the model, my in a nonlinear 
fashion, we are required to solve Vq=O using an iterative method. From our prior 
discussions, the nonlinear conjugate gradient method is ideal for this task. 

Nonlinear conjugate gradients 
The method of steepest descent is the easiest understood and simplest to 

implement of the gradient methods. Unfortunately it usually converges very slowly in 
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practice. A better approach is the method of nonlinear conjugate gradients, first proposed 
by Fletcher & Reeves (1964) for nonlinear optimization, and later improved by Polyak & 
Ribiere (1969). The method is closely related to the linear CG method of Hestenes & 
Stiefel(l952) and is in fact identical if the objective finctional is quadratic and exactl line 
searches are made with the NLCG algorithm. Listed below is an outline of the Polyak & 
Ribi6re algorithm that will be used in the analysis: 

(1) choose m(1) and select r(1) = - Vq( m(1)) 

(8) Go to step (3) 

-1 
For now we define M(i j1 and M(i+1) as identity matrices for all i, with units of (S/m)2 
given that the cost finctional in equation (5) is dimensionless. We will redefine these 
matrices later when preconditioning is discussed. To use the NLCG method sensibly 
requires that we carefilly implement two calculations of the procedure efficiently. These 
are (1) calculate the gradient of the cost finctional and (2) minimize (p along a specified 
ray economically, that is, find the value of a that minimizes the expression q(m + au) for 
specified model parameters m and a given conjugate search direction u. 

Computation of the gradients 
The gradient of the cost finctional in equation (5) is formally written as 

where (pd , (pm are finctionals that relate to the data misfit and the model smoothness 
constraint, respectively. Evaluation of V<pm leads immediately to 

where T denotes the transpose operator. 

equation (5) to be a complex quantity, where 
To compute a specific element of Vqd, we redefine the weighted impedance in 
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A&, = cmplx{Re(GobS - Z n)/Re(E ,,), h(&+~'~'- Z n+N)/Im(& n + ~ ) ) ,  

and for the kth model parameter we have 

where * stands for complex conjugation. 
In Appendix A, model sensitivity elements of the impedance are shown to be 

(9) 

These sensitivities quantify small changes in the tensor elements at location j due to small 
changes in the kth model parameter. denotes the inverse of the finite difference 
stiffness matrix employed in the solution of the forward problem in equation (2) and 
depends implicitly on fiequency. The electric fields, El and %, in equation (ll), are also 
determined from the forward problem; they provide the two source polarizations 
necessary to define the impedance tensor at each fiequency. The eight vectors ( g j , 

combinations of vectors that interpolate electric and magnetic fields for the two source 
polarizations fiom the forward-modeling finite-difference grid to the receiver site at 
location j. 

1 

I T  
2 T  I T 2 T  I T  2 T  I T  2 T  
gj xx , gj x y ,  gj xy , gj yx , g j yx , g j yy , g j yy ), specified in Appendix A, are linear 

Combining equations (10) and (1 1) we have 
N N 

I T  where the vectors, g and "g are determined by selecting fiom equation (1 1) the 
component of the impedance that is being treated according to the summation index. For 
example, if we are treating Z q j B  the nul data point, then gn 

It is now possible to show that the number of forward solves needed to evaluate 
the gradient in equation (12) is only four per ii-equency. Two solves are required to obtain 
the electric fields E1 and & and two additional solves are needed to compute the fields 
arising fiom the following source distributions 

I T = I  T 2 T = 2  T g, and gn gj xy. 

J 

3 
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N 

IF1 
'gT =-2 E(&)' 'gn' 

and 

'$ =-2 c(lA2J N 'gn'. 

n=l 

Thus if we set 

lvT, lgT K1 

and 
2 T-2 T v - g K1, 

we then are required to solve the following two forward problems 

K'v='g (17) 

and 

Here we utilized the fact that KT = K In solving these forward problems we also employ 
the static divergence correction to accelerate their solutions at the lower frequencies. Here 
equation (3) is modified to read V . cr E + V . J = 0, where J is the source current density 
and is given by either 'g or 'g. Additional details on the modified static divergence 
procedure can be found in Newman & Alumbaugh (1996) and Alumbaugh & Newman 
(1996). 

The line search 
Because a line search is needed to minimize cp(m + au), this will require additional 

forward solutions. There are number of strategies to carry out the line search, where the 
number of forward modeling applications varies. An economical approach, employed 
here and presented in detail in Appendix B, is to find a such that cp(m + au) is 
sufficiently decreased along the search direction u. Quadratic curve fitting is also 
employed in an attempt to refine a so that an even greater reduction in <p is possible. 
Here, we use finctional and derivative information at one point and knctional 
information at another, and then fit a quadratic through these points to estimate the step to 
the minimum, Since cost finctional and gradient information is already available at the 
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descent point, my fiom the prior NLCG iteration, we only need to evaluate cp at the 
second point along the direction of descent. Thus the cost of the quadratic line search is 
two additional forward modeling applications per iiequency. Ifthe fbctional increases at 
the estimated minimum point, a backtracking strategy is invoked fiom this point until a 
sufficient decrease in the fbnctional is observed. Backtracking can be done because u is a 
descent direction, since u V<p < 0 at <p(m). We have found in practice that backtracking 
is typically not required in our scheme. While it may seem preferable to use higher order 
polynomial interpolation such as a cubic to refine the line search, this can be expensive 
since it incurs additional finctional and possible gradient evaluations (cf, Acton, 1990). 
In fact a good preconditioner, without recourse to additional forward modeling, can help 
compensate for the approximate line search procedure employed here and is discussed 
below. 

Preconditioning 
The findings of Rodi & Mackie (1998) show that convergence rates for the 2D 

MT inverse problem using nonlinear conjugate gradients can be significantly improved 
with preconditioning. Nevertheless as Nocedal (1996) points out, the use of a 
preconditioner with a NLCG scheme can result in conjugate search direction no longer 
being a descent direction and requires reinitializing using the steepest .descent direction, 
which severely impairs the algorithm’s efficiency. In spite of these dangers, an effective 
and robust preconditioner is well worth pursuing, since it would have a tremendous 
impact in reducing solution run times for the 3D problem. 

The convergence of the NLCG method can be accelerated by choosing a 
-1 preconditioner M(i) that approximates the Hessian of the cost functionai, where M(i1 

requires minimal storage and M(i) r is easy to compute. M(i) can be fixed or updated 
at each iteration of the procedure. We prefer to update since the Hessian is not 
constant, except for points near the minimum of the cost functional. When the Hessian is 
constant the cost functional can be represented by a quadratic functional in the model 
parameters. 

While it is too expensive to compute or approximate the full Hessian, it is 
possible to compute its diagonal for use as a preconditioner. This information is 
accessible iiom computations involved in the NLCG iteration. Using a Quasi-Newton 
formula, known as the Broyclen-Fletcher-GoIdfarb-Shanno (BFGS) update (cf., Dennis & 
Schnabel, 1996) we can recur the diagonal of the Hessian even if its off-diagonal 
components are unknown, where 

-1 

with y = Vq (m ) - V ~ I  (m ). The use of this update as a diagonal preconditioner in 
the NLCG inversion scheme is justified because in the quadratic case with exact line 
searches, identical search directions are generated by the BFGS and NLCG algorithms 

0 (i+U 0 
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(Gill et al., 1981). Additional justification that equation (19) should be an effective 
preconditioner comes from the optimization literature, where the Newton search 
direction, s = M(ijl r if practical to compute, is the optimum choice for finctional 
minimization. Since fill evaluation ofM(i1 is not realistic, its evaluation using l o ~ y  
diagonal entries is an obvious choice. Thus the effect of the precunditioner on the NLCG 
scheme is to attempt to make it behave more like Newton’s method. 

-1 

Logarithmic parameters 
Inverting for log parameters is very desirable since it restricts the parameters to be 
positive quantities, which is a physical requirement for the electrical conductivity. 
Reformulation of the inverse problem for log parameters with lower bounds requires that 
elements of m be redefined as m’k = ln{(m- I&)/% }in equations (5) and (8), where mk 
> lbk, with lh > 0 (Newman & Alumbaugh, 1997) and m, equals 1 S/m. The gradient in 
equation (10) is also modified to read I 

A corresponding modification applies as well to equation (12). Once m7k is updated in the 
NLCG iteration, the parameter components that are of interest follow fiom the expression 

PARALUL IMPLEMENTATION 

In spite of the aforementioned efficiencies of the NLCG method in limiting the 
number of forward modeling applications at each iteration of the procedure, 3D forward 
modeling continues to be a bottleneck in achieving acceptable run times. The expensive 
components in the procedure, functional gradients and cost finctional evaluations, are 
traced to the time required to solve the 3D forward problem. This is also compounded 
because multiple inversion runs are needed to determine the optimal tradeoff parameter 
and sometimes the correct data weighting. Therefore, any reduction in forward modeling 
run times would have a corresponding impact in reducing solution times for the 
inversion. Another difficulty with forward modeling is that to realistically model ki full 
3D MT survey over all frequencies and spatial locations may in some instances require a 
forward model parameterization of over a million cells, which is impractical on serial 
workstations. 

To alleviate these difficulties we have implemented the inversion scheme to run 
on parallel computing platforms. These platforms allow for tens to thousands of 
processors to operate on the problem simultaneously and significantly reduce solution run 
times and greatly increase the complexity and realism of the geological models. Such 
platforms allow for an entire 3D MT #data set to be analyzed concurrently, instead of 
partially. In using these machines the idea is to assign a given number of processors in 
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each coordinate direction (nx in x, ny in y and nz in z) of the model, where the total 
number of processors employed is equal to m X ny X nz. Because each processor needs 
only to make calculations for a subset of the forward and inverse problems, and because 
the processors are making their calculations in parallel, the solution time is reduced by a 
factor approximately equal to the number of processors employed. 

The papers of Newman & Alumbaugh (1997) and Alumbaugh et al. (1996) show 
how to implement inverse and forward problems on parallel platforms for controlled 
source applications. Generalization to the MT problem is a straightforward extension and 
the interested reader is referred to these papers for the additional details. Curently the MT 
inversion scheme has been implemented on the 9000-processor Tera-flop machine 
available at Sandia National Laboratories. Preliminary analysis of a large field data set 
shows the advantages of a parallel version of the scheme, where 28,224 model 
parameters were estimated using approximately 13,000 data points. A speed up of a 
factor of 42 was observed when 512 Pentium II processors were applied to the problem 
compared to a single processor JBM RS-6000 590 workstation (one inversion iteration 
required nearly 16 hours on the IBM). If 1,000 processors are employed the speed up 
approaches two orders of magnitude. Note that the processor speed on the IBM 
workstation is roughly comparable to eight Pentium II processors. 

SYNTHETIC EXAMPLES 

Two synthetic tests will be presented to demonstrate the benefits of 
preconditioning and to examine the solution by inverting a data set produced by the 
integral equation modeling code of Xiong (1992). This latter test is very important 
because it provides an independent check on the solution. Data simulated with an integral 
equation code are susceptible to different types of numerical errors compared to the finite 
difference technique, which is employed within the inverse solution. 

Consider the 3D model in Figure 3, which represents a 0.1 S/m block embedded 
in a 0.01 S/m half-space. The horizontal and vertical dimensions of the body are 200 m 
on a side. Its depth of burial is 100 m. The mesh used in both the forward and inverse 
computations has been designed to increase with depth, approximately on a log scale, 
reflecting the loss of resolution with depth, which is an inherent limitation of the MT 
method. One hundred and twenty one MT soundings were simulated using the finite 
difference technique at 16 fiequencies, fiom 4,000 Hz to 4 Hz, giving the total number of 
data points (real and imaginary) to be 15,488. Each sounding provides all four elements 
of the impedance tensor. For the data weights, we simply used one percent of the 
impedanc.e of a 0.01 S/m half-space. To more clearly show the benefits of 
preconditioning at the later iterations, we did not to add random noise to the data in this 
particular example. While preconditioning is also effective when random noise is present, 
its benefits can be more dramatically demonstrated without it. Random noise will be 
considered in the second test example. 

The inversion domain is a rectangular block, 600 m in the horizontal directions 
and 500 m in the vertical direction. It is a subset of the forward modeling domain used to 
compute knctional gradients and predicted data, which is 1,000 m on a side. In this 
example 1,764 and 21,952 cells were used to represent the inversion and forward 
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domains. Approximately 1 hour per inversion iteration was required on an IBM RS6000 
590 workstation and compares with eight minutes when 125 processors of the teraflop 
machine are dedicated to the problem. 

The reconstruction shown in Figure 4 yields a smooth model, which compares 
favorably with the test model shown in Figure 3. The cross sections centered on x and y 
coordinate axis and the conductivity map, between 150 and 200 m depth demonstrate that 
the lateral geometry of the target is well resolved. In Figure 5 we show plots of the 
squared error against iteration count. A target misfit of one assumes a noise model based 
on one percent of the impedance of a 0.01 S/m half-space. It indicates that the solution 
matches the data to within observational errors if Gaussian noise was assumed. In this 
example we plot the results using a semi-log scale and ran the preconditioned solution 
below the hypothetical noise level to more clearly demonstrate the improvement in 
solution convergence obtained through preconditioning. From these results, it is clear that 
equation (19) is an effective preconditioner, where at the first iteration M is set to the 
identity matrix. Curvature information built up by equation (19) scales and steers the 
conjugate search direction to be a better prediction of the minimum. It is in the later 
stages of the inversion procedure that the benefits of preconditioning become obvious. 
This comes as no surprise, since equation (19) will converge to the Hessian of the cost 
knctional in the neighborhood about the minimum. Nevertheless, our findings on 
effective preconditioners for the 3D inverse problem are preliminary. Rodi & Mackie 
(1998) have shown that for the 2D problem, a fixed preconditioner is very effective; we 
found this type of preconditioner ineffective for the 3D scheme presented here. Thus we 
believe additional research is needed on effective preconditioners for the 3D problem. 

The second test model is shown in Figure 6, where two near surface bodies 
(conductive and resistive) have been added to demonstrate the inversion code’s capability 
to invert data that are affected by static shifts. Here the depth of burial and extent for the 
near surface conductor are 10 m. For the resistor they are 15 and 35 m, respectively. 
Data for this model were simulated using the integral equation solution of Xiong (1992), 
where 1 percent Gaussian random noise was added to the data. The data weights we 
assumed in the inversion are the same as before: one percent of the impedance of a 
0.01 S/m half-space. Because of the near surface bodies, a fine mesh was employed in the 
near surface, where 2,548 and 28,224 cells were used to represent the respective 
inversion and forward modeling domains. Three separate inversion runs with 
preconditioning were carried out for three different tradeoff parameters of 30, 3 and 0.3 
and the corresponding images are shown in Figures 7, 8 and 9. The inversion runs 
producing these images were also terminated at different iterations in Figure 10 to study 
how small error reductions at the later iterations affect the final image. 

For the three different regularization parameters (30, 3 and 0.3) we were not able 
to drive the squared error to the assumed noise level in Figure IO. Nevertheless all final 
error levels are quite close to one and given that there is a component of numerical noise 
in the simulation of the data that is clearly non random and non Gaussian, we are not 
surprised that we could not achieve the expected fit. It was also found that the tradeoff 
parameter of 3 produced the model which that yielded the closest matched to the assumed 
noise level. It would be a mistake, however, to say that this image is optimal, given the 
non Gaussian nature of the noise. Finally, to successfidly invert the data set required 6 
hours of CPU time per inversion iteration on the IBM workstation. This compared wiJh 30 

(1) 
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minutes for 125 nodes on the Teraflop machine, which is more than an order of magnitude 
faster. 

The reconstruction in Figure 7 (h=30) shows &at we have clearly recovered 
information on both near surface bodies. Not shown, however, is the image illustrating that 
the near surface bodies have been projected onto the earth‘s surface. Because the highest 
fkequency component in the data set is only 4 kHz, this fkequency is insufficient to resolve 
the true depths of the near sucface bodies, since the skin depth is 79 m in 0.01 S/m material. 
We have also recovered information on the deeper conductor’s geometry (depth of burial 
and depth and lateral extents). The maximum conductivity estimates are, however, about a 
factor of two too small. 

The images employing the smaller tradeoff parameters (Figures 8 and 9) are not 
nearly as smooth and show more variability in the conductivity structure, as expected. 
Nevertheless, the images also show evidence of the near surface structures. The presence 
of the deeper conductor is also clearly indicated, but the maximum conductivity estimates 
are a factor two too large. An interesting difference between these two images is the 
estimated depth to the base of the deeper conductor. The image along the Y-2 cross 
section, based on h = 3, shows the conductor to extend to 500 m depth compared to 400 
m depth when h = 0.3. This difference can be explained with the number of NLCG 
iterations employed to construct the respective images. Fifty iterations were used to 
construct the image in Figure 8, whereas 27 iterations were used in Figure 9. When 20 
iterations are used to reconstruct the image for h = 3, the base of the deeper conductor is 
better resolved as well as its conductivity (Figure 11). This indicates that the benefit of a 
small reduction in the error level at the later iterations can be offset by extraneous 
structure in the final image. 

In Figure 12, we compare the convergence rate for the case h = 3, with and without 
preconditioning. Preconditioning is found to be beneficial, as far fewer iterations are 
necessary to drive the squared error to a given level at the later iterations, compared with a 
solution that does not use it. The final error level for the solution without preconditioning 
required 33 iterations This same error level was achieved in only 20 iterations when the 
preconditioned form of the solution was employed. The image produced without 
preconditioning is shown in Figure 13 and should be compared directly with Figure 11. In 
this example, the image in Figure 11 resolves the deeper conductor somewhat better. 

RESOLUTION ANALYSIS OF WMD FACILITIES 

The resolution analysis for characterizing WMD facilities will be based on the 
model shown in Figure 6. The deeper conductor in that figure can be considered to be a 
hypothetical facility, which we desire to image in the presence of near surface geological 
variations. The previous results indicate that it is possible to image the facility with 
extensive data coverage. The question we pose here in this analysis is the number of 
sounding locations and spatial coverage necessary to characterize WMD facilities. 

We now consider ten data sets where the spatial coverage varies and the number 
of sounding locations range fiom thirty six to one in Figures 14 through 23. The noise 
model we will employ in this analysis is again 1 percent Gaussian random noise with the 
data sets once more produced by the integral equation code of Xiong (1992). Finally a 
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tradeoff parameter of thirty will be used to invert the data; we selected a larger tradeoff 
parameter to help avoid over fitting the data sets and producing reconstructions that are 
non-physical. Plots of the squared error against iteration count for the different data sets 
are illustrated in Figures 24 to 33. 

The reconstruction in Figure 14 shows that with thirty six soundings over the 
facility one can characterize the depth to the top of the facility and its lateral geometry. 
On the other hand, the conductivity of the facility is underestimated and its base depth is 
overestimated, as expected fiom previous results. In addition to the facility, the Inear 
surface conductivity structures have been imaged. The results are quite similar to the 
image in Figure 7, where the station density is more than three times greater. The plot of 
the squared error (Figure 23) shows that the predicted data match closely with the 
observations to within the assumed noise level. In Figure 15 the number of sounding 
locations has been reduced to twenty five, where spatial coverage is similar to that in 
Figure 14. Once again the facility has been imaged, including its depth of burial and 
lateral extent. Estimates of its base depth are not so good, however. It appears that the 
base facility extends to 500 m depth. The data fit for this example is also quite good 
(Figure 25). 

In the next example (Figure 16) we consider nine sounding locations, with eight 
on the perimeter of the facility and one directly over it. In this instance it is still possible 
to infer information on the buried facility including its depth of burial and lateral extent. 
The plot of the squared error against iteration count indicated that at thirty iterations that 
the initial squared error has been reduced by more than a factor ten, but the final error 
level is still about fifty percent larger than the assumed noise level (Figure I 26). 
Nevertheless the image in Figure 16 indicates that we can make clear inferences on the 
facility location. In actual practice it may not be possible to make a sounding directly 
over the facility. The next the next example, (Figure 17) we explore the resolving power 
of the method when soundings are taken only around the perimeter of the facility. In this 
situation it is still possible to infer the presence of the facility, including once more its 
depth of burial and lateral extent, even though we still cannot fit the data to within the 
assumed noise level (Figure 27). However, when fewer soundings are made on the 
facility perimeter (Figures 18, 19, 20 and 21) it is not possible to make any clear 
inferences about the facility. Plots of the squared error against iteration count for these 
examples are illustrated in Figures 28,29,30 and 3 1. 

Though it may not be practical, it is worthwhile to investigate the resolving power 
of the MT method when a single MT sounding can be taken directly over the facility 
(Figure 22). If such a measurement can be made it appears that it is possible to infer the 
depth of burial of the facility as well as get a rough idea about the its lateral geometry. 
Making inferences about the base depth of the facility is not possible, however. The plot 
of the squared error in Figure 32 shows a significant reduction with iteration count 
compared with the examples in Figures 28, 29, 30 and 31. This is expected since the 
sounding location directly over the facility is greatly influenced by it, where as the 
sounding locations on the perimeter are to a much lesser degree. This indicates that when 
making these types of measurements it is critical, as well as obvious, to select sites where 
the measurements will show the greatest sensitivity to the facility, but yet can be made in 
a covert manner. To conclude this section, we consider the case where the single 
sounding site is slightly offset &om the position directly over the facility (Figure 23). In 

13 



this event, the reconstruction of the facility is considerably degraded. One reason for the 
degradation is that the measurement site was selected directly over the near surface 
conductor and the image shows that while it is possible to infer the near-surface structure, 
its presence may have contributed to the difficulties in imaging the facility. A plot of the 
squared error against iteration count in Figure 33 also shows a steep decrease in the 
squared error as in Figure 32, but it appears here that the large initial error is caused more 
by the near-surface feature than the facility itself 

' 

CONCLUSIONS AND RECOMMENDATIONS 

The results of this analysis indicate the following: It is definitely possible to 
image WMD facilities, including depth of burial and lateral extent if a sufficient number 
of measurements are taken on the perimeter of the facility. Moreover if a station 
measurement can be made directly over the facility then the resolution is improved 
accordingly. In all cases it was not possible to image the base of the facility with any 
confidence as well as provide any precise inferences on the facility electrical 
conductivity. This later finding, however, is really not that critical since facility geometry 
is far more important quantity to have precise knowledge of than its conductivity. The 
results of the resolution analysis indicate that the MT method is capable of providing 
geometrical information. 

A key concern that should be address if the MT method is ever to be used in 
characterizing WMD facilities is the logistics of field deployment. The field set up is  
quite cumbersome and involves measurements of horizontal electric and magnetic field. 
While the magnetic field measurements can be easily made with small induction coils, 
the electric field measurements are far more problematic. Extensive electrical wiring, tens 
of meters in length, is needed and this could make covert measurements next to 
impossible. For the WMD problem it is recommended that MT measurements be made 
solely with the magnetic field ratios. In this context it would then be possible to deploy 
with far greater ease small coils about a suspected facility and would allow for the 
measurements to be conducted in a more covert manner. Before testing such a 
measurement system in the field, however, it would be necessary to carry out a similar 
resolution analysis as was done with MT measurements based on electric and magnetic 
fields. It is necessary to determine sensitivity of the proposed measurement to 
underground facilities along with needed data coverage and quality. Such a study is 
indispensable in producing useful reconstructions of underground facilities. Another issue 
that needs to be addressed if MT measurements are to be used to characterize WMD 
facilities is the electromagnetic response generated by the facility. Since the MT method 
uses natural field emissions, the fields generated by the facility can be considered as a 
source of noise for the MT measurement. Fortunately the spectral nature of this noise will 
most likely be confined to the 50 Hz fiequency band and signal processing steps could be 
used for its removal before processing and converting the MT measurements into 
impedances. On the other hand, direct measurement of this noise could be the basis of a 
new approach to characterize WMD facilities. 

' 
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FIGURE CAPTIONS 

Fig. 1 Typical layout of the MT measurement configuration. Time series of the 
horizontal electric (Ex and q) and magnetic (Hx and Hy) fields are measured at the 
earth's surface. Sometimes the vertical magnetic field @Iz) is measured. After Fourier 
transformation to the fi-equency domain, the field quantities are used to f?om ratios, called 
impedances, which are then used to interpret the subsurface conductivity. Figure taken 
f?om Vozoe (1 972). 

Fig. 2 Mesh and staggered grid imposed upon the earth model to simulate 3D MT fields. 
In the finite difference solution, the electric fields are sampled along cell edges and 
magnetic fields, implicitly along the cell faces, while conductivity and permeability 
values are assigned to each cell. 

Fig. 3 Three-dimensional test model used in the first synthetic example. The top two 
panels show depth cross sections over the body, centered on x and y coordinate axis. In 
the lower panels, a map view of the model is illustrated between 150 and 200 m depth 
along with the station location map. In these panels, the red color indicates the 0.1 S/m 
block, 200 m on a side with a depth of burial of 100 m. The blue color represents the 0.01 
Slm host. 

Fig. 4 Three-dimensional reconstruction of test model in Figure 2, obtained with 
preconditioning. The color bar provides the range of the parameter estimates in the 
reconstruction, where conductivity estimates between 150 and 200 m depth approach that 
of the test body at its center. 

Fig. 5 Plot of solution convergence for inversion runs with and without preconditioning 
(solid and dashed curves). The squared error is determined by equation (9, where the 
regularization term is not included in the calculation. A tradeoff parameter of twenty was 
used in the inversion tests. 

Fig. 6 Three-dimensional test model used in the second synthetic example. The two top 
panels are X-2 and Y-2 cross sections centered between -75 and -50 m in the y 
coordinate and 25 and 50 m in the x coordinate. They show cuts through the near surface 
resistive body (violet) and conductive body (green), respectively as well as the deeper 
conductor (red) at depth. The lower panel, to the left, shows the lateral positions of the 
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near surface bodies between 12.5 and 18.75 m depth. The conductivity color bar scale is 
located to the right. 

Fig. 7 The 3D reconstruction of test model in Figure 6 based on a tradeoff parameter of 
30. The top two panels are images along the X-Z and Y-Z cross sections illustrated in 
Figure 6. The lower right-hand panel is a map view of the reconstructed conductivity 
between 150 and 200m depth and should be compared with the depth section in the lower 
right hand panel of Figure 3. The conductivity color bar scale for the reconstruction is 
shown in Figure 5. 

Fig. 8 The 3D reconstruction of test model in Figure 6 based on a tradeoff parameter of 3. 
Conductivity estimates, indicated by the red color cells, range between 0.2 and 0.08 S/m. 

Fig. 9 The 3D reconstruction of test model in Figure 6 based on a tradeoff parameter of 
0.3. Once again, conductivity estimates indicated by the red color cells, range between 
0.2 and 0.08 S/m. 

Fig. 10 A plot of solution convergence for three different tradeoff parameters of 30,3 and . 
0.3. 

Fig. 11 The 3D reconstruction of test model in Figure 6 based on a tradeoff parameter of 
3 at 20 iterations. Red color cells indicate that the conductivity ranges between 0.13 and 
0.08 S/m. 

Fig. 12 A plot of solution convergence with .and without preconditioning for the test 
model in Figure 6, where the tradeoff parameter is set to 3. 

Fig. 13 The 3D reconstruction of test model in Figure 6 based on a tradeoff parameter of 
3 at 33 iterations without preconditioning. Red color cells indicate that the conductivity 
ranges between 0.13 and 0.08 S/m. This image should be compared with that in Figure 11 
to show differences in the respective images at approximately the same data misfit. 

Fig. 14 3D reconstruction of a hypothetical facility based on thirty six soundings. The 
image in the upper left-hand comer indicates near surface variability of the conductivity 
as well as the survey layout. The image in the right hand comer is the reconstruction 
between 150 and 200 m depth. The lower two images are cross-sectional images taken 
between -75 and -50 in the y coordinate direction and 25 and 50 m in the x coordinate. 
The conductivity color bar scale is located to the right. 

Fig. 15 3D reconstruction of the facility based on twenty five soundings. 

Fig. 16 3D reconstruction of the facility based on nine soundings 

Fig. 17 3D reconstruction of the facility based on eight soundings located on the facility 
perimeter. 
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Fig. 18 3D reconstruction of the facility based on four soundings located on the facility 
perimeter. 

Fig. 19 3D reconstruction of the facility based on &IO soundings located on the facility 
perimeter. 

Fig. 20 3D reconstruction of the facility based on a single sounding located on the facility 
perimeter. 

Fig. 21 3D reconstruction of the facility based on a single sounding located on the facility 
perimeter. 

Fig. 22 3D reconstruction of the facility based on a single sounding located directly over 
the facility. 

Fig. 23 3D reconstruction of the facility based on a single sounding offset 71 m fiom the 
site located directly over the facility. 

Fig. 24 Plot of squared error against iteration count for the reconstruction in Figure 14. 
The assumed noise level is indicated by the dotted line. 

Fig. 25 Plot of squared error against iteration count for the reconstruction in Figure 15. 

Fig. 26 Plot of squared error against iteration count for the reconstruction in Figure 16. 

Fig. 27 Plot of squared error against iteration count for the reconstruction in  Figure 17. 

Fig. 28 Plot of squared error against iteration count for the reconstruction in Figure 18. 

Fig. 29 Plot of squared error against iteration count for the reconstruction in Figure 19. 

Fig. 30 Plot of squared error against iteration count for the reconstruction in Figure 20. 

Fig. 3 1 Plot of squared error against iteration count for the reconstruction in Figure 21. 

Fig. 32 Plot of squared error against iteration count for the reconstruction in Figure 22. 

Fig. 33 Plot of squared error against iteration count for the reconstruction in Figure 23 

Fig. 34 Demonstration of the preconditioner effectiveness at 4 Hz. The test model is that 
of Figure 3. The plot shows the number of iterations and computation time needed to 
solve equation (C2) for a single source polarization using the qmr method for different 
types of preconditioning. Preconditioning based on the approximate solution technique at 
low induction numbers is far superior to Jacobi preconditioning. All times are for ad IBM 
RS-6000 590 workstation. 

Fig. 35 Demonstration of the preconditioner effectiveness at 400 Hz. 
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Appendix A 

Model sensitivity elements for the MT impedance tensor 
In order to derive the model sensitivities, we need the predicted impedance tensor, 

where two orthogonal source polarizations are required. Following Mackie & Madden 
(1993), let the electric and magnetic fields for the two polarizations be denoted by &I, 

Eyl, Hxl , Hyl and Ed, Ey2, Hx2, Hy2. Thus 

Differentiating each tensor element in equation (Al) with respect to the kth model 
parameter, IQ , yields 

An easy check is available on these expressions for a 2D earth model. For both field 
polarizations we would have 

(Ex], Hyl)  f 0 
(41, HA) = 0 

and (W 
(Ey2, Hxz) f 0 
(&, Hy2) = 0. 

e 

Thus equations (A2) reduce to 
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which are identical to expressions derived directly for the 2D MT problem. 
The model sensitivities in equation (A2) involve partial derivatives of the electric 

and magnetic fields. Following the derivation of Newman & Alumbaugh (1997) we can 
relate these derivatives to the forward problem. Consider as an example the x-component 
of the magnetic field at location j for a given source polarization, which can be 
represented as 

In this expression E is an electricfield vector arising from a 3D earth model for a specific 
source polarization and has dimension of NTxl, where NT represents the number of electric 
field unknowns that are determined fiom the finite difference forward solution. The vector 
'gTj0 is an interpolator vector for the x-component of the magnetic field at the jth 
measurement point and is of dimension 1W ('I' here denotes the transpose operator). This 
vector will interpolate the sampled fields on the forward modeling grid to the measurement 
point and numerically includes a curl operator that is applied to the electric field. With this 
definition an element of the Jacobian matrix is written for x-component of magnetic field as 

From the forward problem, the electric fields are determined fiom the linear system given 
by equation (2). Thus differentiating equation (2) with respect to mk yields, 

and an element of the Jacobian matrix for the x-component of magnetic field is written1 as 

Similar expressions can be derived for the other electric and magnetic field components. 
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Using the above results, terms involving the electric and magnetic field partial 
derivatives can be substituted for in equation (A2) to yield 

where E1 and 
tensor and 

are the two electric field polarizations needed to define the impedance 

The eight vectors in equation (A10) can be interpreted as generalized interpolator vectors, 
which involve linear combinations of vectors which interpolate the electric and magnetic 
fields fiom the forward modeling grid to the receiver at location j. These latter vectors 
are weighted by the combinations of electric and magnetic fields produced by the 
different source polarizations. 
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APPENDMB I 

The line search algorithm 
The line search procedure ‘is to find a such that cp(m + au) is sufficiently 

decreased along the search direction, u. Quadratic curve fitting is also employed in an 
attempt to refine a so that an even greater reduction in cp is possible. To determine a let 
us fist normalize u, so that 

where 11 u 11 is the Euclidean length and define ay=llu 1101- The parameter 01’ has the 
dimension of S/m, whereas 01 is dimensionless. We are now required to find a’ such that 
cp(m + a%) is sufficiently decreased along the search direction, v. Thus, the critical 
condition that a’ must satisfl is 

<p(m + a’v) < q(m) + 6 a’ Vq (m) *v, 032) 

where 6 is a small positive constant that insures a sufficient decrease in <p(m + a’v). The 
test in equation (B2) is necessary since the simpler test, 

can lead to the possibility of oscillation about the solution without convergence (Den& 
& Schnabel, 1996). In choosing 6 we follow recent optimization literature and set 
S=104/a7. To launch the procedure we need to select a trial value for a’ and carry out the 
test required by equation (B2). 

Unlike Newton and quasi Newton methods, which accept a unit step (a’=l) most 
of the time, it is common to see step lengths that vary by one to two orders of magnitude 
with NLCG methods (Nocedal, 1996). Therefore, we resort to a heuristic approach, 
which works well in practice for our problem. For the the kth model parameter, m, and its 
perturbed value, m+ Am, for some point along the descent direction, v, we have &om 
equation (21) that 

m = em” lbk 034) 

Subtracting equation (35) fiom (€34) produces 

and solving for Mkyields 
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where “in” denotes the natural logarithm. By selecting the model parameter, m-, that 
corresponds to the largest component in v that satisfies the infinity norm, 

we define the trial step based on equation (B7) to be 

where, nhuur changes by a factor of 1.6 . The factor 1.6 is empirical and is based upon the 
numerical experiments, which always demonstrated a sufficient decrease in the cost 
fbnctional (equation (32)). 

If equation (B2) is satisfied with a ’ ~ ,  let &= q (m) and fi = <p(m + a’+,,ial v) and 
employ a quadratic model to find an a’ that leads to an even greater reduction in f Four 
pieces of information are required to define the quadratic: the two fbnctional values <p(m) 
and <p(m+a’+,,i&, a’tr;~, and the directional derivative g,,=V<p(m).v. Note that the 
directional derivative and fbnctional at the point m are available ftom the prior NLCG 
iteration at no additional cost. Thus, i f f  min defines the hnctional minimum we are seeking, 
then 

f (x) = f - + b (X - a’) 2/ct’trid2 

where, 

then the candidate step is given by 

Here a’ max sets an upper bound on the step, such that m + a’v leads to a realizable model 
and does not leave the domain of interest. For the step in equation (312) to be acceptable 
two conditions must be meet. The first is b>O, which insures that the quadratic model has 
positive curvature and a’ defines its minimum and not its maximum and the second that 
flay) is in actually less than fi by explicitly computing cp(m + a’v). If b < 0 or if fi c 
qa’)’ we set a’ = a’trial and exit the line search algorithm since we have already 
determined that aYa leads to a sufficient decrease in q(m + a’ v). 

If at the trial step, fi, fails to satisfy equation @2), a quadratic backtracking 
strategy is invoked ftom a’m until a sufficient decrease in f is observed. Backtracking is 
effective because v is a descent direction since go = v .V<p < 0 at q(m). The quadratic 
formula used to backtrack is given by 

f(x) = fb+ g, x + cx’, 

i 
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T 

where 

c = (fi - fo - g, a’m)/a’m2 
and the candidate step is determined to be 

Note that the curvature, c, in equation (E316) is always positive, hence the quadratic 
model will always interpolate to a minimum. For a’ to be acceptable, we must veri& that 
equation (€32) is satisfied. If not, we set aYM =.a’ and continue backtracking until an 
acceptable step is found. 

A danger of estimating a’ using any type of polynomial approximation is that a’ 
may be too near zero to be of much use in reducing cp and the inverse solution can 
stagnate as a result. Polynomial ssfegumding prevents against this (cf, Dennis & 
SchnabeI, 1996). When a’<O.la’- in any of the quadratic modeling procedures 
discussed above, we always set a’=0.1 a’ trial. I 

APPENDIX C 

Preconditioning for 3D EM scattering problems 
A fast preconditioner has been developed at low induction numbers to accelerate 

the convergence rate for solving the electromagnetic (Em scattering problems with finite 
difference methods using iterative Krylov methods. We demonstrate a reduction of up too 
two orders of magnitude in the number of iterations and an order of magnitude speed up 
in time needed to solve a series of test problems. The preconditioner is very effective 
over a wide class of EM measurement configurations ranging from magnetotellur$s to 
induction logging. Simple relations have also been developed to show when the 
preconditioner will be effective. 

Over the last ten years finite difference methods using iterative Kyrlov methods 
have become a popular method for solving large scale 3D electromagnetic induction 
problems @ruskin et. al., 1998; Druskin and Knizhnerman, 1988 and 1994; Newman and 
Alumbaugh, 1995; Smith 1996; Alumbaugh et al; 1996). From these works, it has been 
established that iterative solution becomes more computer intensive as frequency falls 
due to ill conditioning of the underlying linear system used to approximate the 3D 
electromagnetic (EM) wave equation. For magnetotelluric applications, Smith 1996, 
demonstrated that the ill conditioning could be overcome using a static divergence 
correction that periodically reinforces the conservation of current during the solution 
process. Recently Druskin et al. 1998, developed a new spectral Lanczos decomposion 
method with Krylov subspaces generated from the inverse powers of the Maxwell 
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operator to overcome the problem for well logging applications. Here we consider the 
problem fiom a preconditiogng point of view to provide an alternative solution, which 
we believe is easier to understand @an the previous approaches and leads to a deeper 
understanding of the problem. Our solution is also applicable to a wider class of 
induction modeling problems and we provide some simple measures when it will be 
effective. 

The three dimensional electromagnetic wave equation 

where 
Our development begins with the 3D EM wave equation for the electric field, 

note that this equation will reduce to the standard Helmholtz equation when the electric 
field is divergence fiee. In equation (Cl), the electrical conductivity, a, is a three- 
dimensional function of the spatial coordinates, is the magnetic permeability of fiee 
space, o is the angular fiequency and i = 4-1. For controlled source applications, J is the 
impressed source used to excite the fields, where Dirichlet boundary conditions are used 
to set the tangential component of the electric field, E, to zero on the boundaries of the 
modeling domain. For magnetotelluric applications, J is set to zero, and appropriate 
Dirichlet boundary conditions are the tangential electric-field boundary values defined by 
the source field polarization. These boundary values arise fiom plane waves propagating 
in layered or 2D geologic media assigned at the boundaries of the 3D problem. The 

Figure 2, given appropriate boundary conditions and source field excitation J. 

Yee (1966) staggered grid a linear system results where, 

modeling problem can be summarized as solving for the electric fields within prism in 
When equation (Cl) is approximated with (non-uniform) finite differences using a 

KE=s.  

The matrix K is complex-symmetric and sparse with 13 non-zero entries per row and S 
comprises the right hand side in equation (Cl) and also includes the appropriate boundary 
conditions on the discrete electric field. It has been determined that at the higher 
fiequencies, this system can be efficiently solved using the quasi-minimum residual 
(qmr) method, which belongs to the class of Krylov sub-space techniques that are highly 
efficient in iteratively solving sparse linear systems. It is well known, however, (d: 
Alumbaugh et al., 1996; Smith, 1996) that difficulties will be encountered when attempts 
are made to solve equation (C2) as fiequencies approach the static limit. Similar 
difficulties have been reported by Druskin et al. (1998) when finite difference 
approximations and the spectral Lanczos methods are applied directly to equation (1) for 
multiple frequency responses. 

P 
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Divergence and curl free projections of the electric field 
Following, LaBrecque, (1995) and Druskin et. al. (1998), we assume that the 

electric field can be decomposed into curl free and divergence free projections using the 
Helmholtz theorem, where 

E=C+Vq, 

and 
v-<=o. 

Upon substitution into equation (Cl) we find that I 

where we used the vector identity 

since V < = 0 and V x V x Vcp = 0. The key idea behind the splitting of the electric field 
into curl fiee and divergence fiee projections is to deflate the null space of the curl-curl 
operator. When Krylov methods are applied directly to equation (CZ), this null space is 
responsible for the poor convergence properties as frequency approaches the static limit. 
It is also responsible for the spurious mode problem, where the gradient of a scalar 
potential can be added to the electric field and still satisfjr equation (Cl), when the 
frequency is sufficiently small. 

Approximate solutions at low frequencies 

C2) at low frequencies we take the Euclidean norm of equation (Cl) where 
To develop an approximate finite difference solutions to equations (C1 and thus 

( 1 1 ~ ~  + co pool l l ~ 1 f  2 11 v x v x E +io E 112. (C7) 

Here A is the characteristic grid size employed in the finite difference mesh. Thus the 
following inequality is deduced from the first factor in equation (C7) as fiequency falls 
and the grid size is reduced, 

where o,, is the maximum conductivity in the mesh. When the finite difference grid is 
non-uniform, A should be replaced by A,,, the maximum grid size used to approrfimate 
equation (1). Note that the right hand side of equation (C8) is dimensionless number and 
its square root is an induction number, which is an invariant parameter for dihsive 
electromagnetic fields; when frequency falls we increase the scale length andor 
conductivity accordingly to have the fields remain invariant. Thus it appears that the 
induction number is more important in determining when equation (C8) holds more so 
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than fiequency alone. It is important to note that even at moderate fiequencies equation 
(CS) may still hold if the grid size needed for the problem is sufficiently small. Now 
when equation (C8) is satisfied we can decouple equation ((29, such that 

-V2 C, = -io J. 

Druskin et al., (1998), shows that the boundary conditions required to solve equation (C9) 
are a mixture of Dirichlet and Neumann types. Dirichlet conditions are applied to the 
tangential components of [ on the mesh boundaries and Neumann conditions on the 
normal components. < is not a complete solution to Maxwell's equations since it does not satis@ the 
auxiliary divergence conditions on the current density with in the earth and the 
divergence fiee conditions of the electric field in the air. To derive these conditions we 
take the divergence of equation (Cl) and substitute in equation (C3) to arrive at 

for the current density in the earth. In the air, assuming V E = 0, the corresponding 
divergence condition becomes in the limit as CY -+ 0, 

v 'Vq = - v - c . 
In equation (C4) we have assumed that V - = 0. However in the numerical realization of 
C, it is in general not divergence free due to numerical round off errors. While this error is 
not critical in the earth it can be in the air. We therefore consider the right hand side in 
equation (Cll) to be a correction term which is necessary to enforce the electric field to 
be divergence fiee in the air; namely V - E = 0. Two types of boundary conditions apply 
to equation (C10) depending whether air is present. When it is not, we have the Dirichlet 
conditions, where <p=O on the mesh boundaries. When the air-earth intefice is present, 
however, we employ the Neumann condition, = 0, where n specifies the direction 
normal at the intefiace. Finally, the boundary conditions on equation (C11) are of the 
Dirichlet type, where cp'o on the mesh boundaries and cp = cpinterface at the air-earth 
interface. Note that q h a  is provided by the solution of equation (C10). It is noteworthy 
that when J = 0 and < = E as given in equation (Cl), equations (C10) and (C11) replicate 
the static divergence correction of Smith (1996) that was applied to accelerate the 
convergence rate of equation (Cl) for magnetotelluric applications at low fiequencies. 

Given equation (CS), approximate solutions of the full 3D EM wave equation 
(equation (C2)) can be obtained by first solving equation (C9) followed by equation 
(C10). Depending if air-earth interface is present, we would also solve equation (C11). 
Solution to these equations can be eficiently obtained using finite difference methods 
with conjugate gradient methods to iteratively solve the systems to predetermined errors. 

Preconditioning 
If it turns out that we cannot obtain a good approximate solution to equation (C2) 

with a reasonable number of Krylov subspace iterations, or if such an approximate 
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solution cannot be easily computed, we consider modifling the original problem to 
obtain a faster solution. This is the idea behind preconditioning, where we specirjr a 
preconditioning matrix, M ,and effectively solve the modified problem 

At each step of the preconditioned algorithm, it is necessary to compute the product of 
M1 with a vector, or, equivalently, to solve a linear system with the coefficient matrix 
My so M should be chosen so that such linear systems are much easier to solve thy the 
original problem. Moreover, the properties we desire in a preconditioner for non- 
Hermitian matrix iterations, including qmr and other related methods, are that the 
preconditioned matrix should somehow approximate the identity (Greenbaum, 1997). It is 
therefore obvious that the approximate scheme discussed above could be very effective in 
preconditioning equation (C2) at moderate to low induction numbers. Ifthis idea is to be 
practical, however, it will be necessary to find fast methods to solve the approximate 
equations. A good preconditioner is not simply based on a relatively low dimensional 
Krylov subspace, but on the time required to construct it. 

Implementation of the low induction number &IN) preconditioner is straight 
forward. We first convert equations (C9), (C10) and (C1 1) into discrete matrix equations 
via staggered finite differences. In the preconditioned qmr algorithm, at each iteration, we 
then substitute the source vector used to solve the linear system involving the coeflicient 
matrix M, into the right hand side of the discrete version of equation (C9). Equation (C9) 
is then solved followed by equations (C10) and (C11). Fast preconditioned conjugate 
gradient techniques employing incomplete Cholesky factorization have proven quite 
effective in solving these equations. Furthermore we have determined that it is not 
necessary to precisely solve these equations. It is only necessary to solve these equations 
approximately. 

Measuring the effectiveness of the preconditioner 
Equation (CS) provides only a rough measure on the effectiveness of the 

preconditioner. We need to estimate the largest and smallest non-zero eigenvalue of the 
discrete curl-curl operator to determine when the preconditioner will be the most and 
least effective. Consider the equation (C2), when G 4. We estimate the maximum row 
sum as 

where A- is the minimum grid size used in the mesh. The corresponding minimum 
eigenvalue is estimated in Appendix D, where 

with & as the largest dimension of the prismatic modeling domain. 
Given the largest eigenvalue, the inequality in equation (C8) becomes 
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which provides the optimistic case when the preconditioner will be most effective. In the 
worst case, which corresponds to the smallest non-zero eigenvalue, we have, however, 

Unfortunately, equation (C16) shows that reducing the grid size (A) does not provide any 
additional benefit in accelerating the solution of equation (C12). 

It is well known that Krylov methods tend to first resolve solution components 
related to eigenvectors with the largest eigenvalues of the finite-difference stiffness 
matrix K. As fiequency falls these eigenvalues will correspond closely to those of the 
curl-curl operator. If only the large eigenvalues are needed to produce an accurate 
solution to the problem, then the inequality in equation (C15) will provide a good 
measure on the effectiveness of the preconditioner. On the other hand, if eigenvectors 
corresponding to the smallest non-zero eigenvalues are necessary to capture the solution, 
then equation (C16) would provide a better measure. 

Demonstration of the preconditioner 
In Figure. 34 we demonstrate the preconditioner effectiveness at 4 Hi for the test 

model shown in Figure 3. A speed up of more than a factor of ten is demonstrated 
compared to preconditioning employing simple Jacobi preconditioning. When the new 
preconditioning method is compared with the static-divergence correction procedure of 
Smith (1996), the solution time is still a factor of three faster. When the fiequency is 
increased to 400 Hz., Figure 35 shows that the preconditioner is still effective, but its 
benefits are not nearly as great, as expected fiom our prior analysis. 

APPENDIX D 

Estimate of the smallest non-zero eigenvalue of the discrete curl-curl operator 
First, consider the curl-cur1 operator in the continuous case, 

V x V x v = h v ,  

where v and h are the corresponding eigenvector and eignevlaue pairs. If we apply the 
divergence operator to equation @1) we immediately see that 

o= h v-v. 

Since we are interested in the case where h f 0, we conclude that 

4 

f 

v*v = 0. @3) 
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Thus the eigenvalue problem can be simplified to 

-v2 v = h v @4) 

where we seek solutions to this problem where the eigenvector v is divergence fkee. 
When we consider the discrete case, we need to impose boundary conditions on v, where 
its tangential components vanish on boundaries of the modeling grid. Specifically 

nxv=O, 

where n is the unit outward normal. Candidate eigenknctions that satis@ the boundary 
conditions requirements are 

and 

vx = Acos(ax)sin( p y) sin(6z), 
vy = Bsin(ax)cos(py)sin(6z) 

v, = Csin(ax)sin(py)cos(6z), 

where a= n f l ,  p= nlL, and 6= n& where Lx, Ly and LZ are the dimensions of the 
modeling domain in the x, y and z directions indicated in Figure 1. 4 B and C are not 
arbitrary coefficients in equation @6) because V*v = 0. Thus, once two components of v 
are specified, the final component must be selected such that v is divergence free. For 
example, if A=p6 and B d  then C=-2ap. 

If we consider the discrete version of equation @4) on a mesh with uniform grid 
size A, one can show that with discrete version of equation 0 6 )  that , 

h = 4/A2(sin2(lnAl2LJ + sin2(mnA/2L,,) + sin2(nzA/2T& 

The range of the indices 1, m and n are 

1=0,1,. . . ..,Nx 
m=O, 1,. . . ..& 

and 
n=O,l,.....,N,, 

where L, = As Nx, Ly = As Ny and LZ = As N, . To estimate the smallest non-zero value A, 
we set L , Ly and L to the largest dimension of the prism in Figure 1; Lax. Now if we 
select one of the indices, 1, m or n to be zero and the others to be one (here we arbitrarily 
set 14, and m=l and n=1) and employ a small argument expression for the sin function 
(sin(x)-- when x+O), we find an estimate of the smallest non-zero eigenvalue to be 

Note that we can not set two of the indices to be zero in equation @7) as this would 
result in a zero eigenvector, which is a trivial solution to the eigenvalue problem. 
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