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GYPSY FIELD PROJECT 
IN RESERVOIR CHARACTERIZATION 

Objectives 
The overall objective of this project is to use +e extensive Gypsy Field laboratory and data set as a 
focus for developing and testing reservoir characterization methods that are targeted at improved 
recovery of conventional oil. 

The Gypsy Field laboratory, as described by Doyle, O’Meara, and Witterholt (1992), consists of 
coupled outcrop and subsurface sites which have been characterized to a degree of detail not possible 
in a production operation. Data from these sites entail geological descriptions, core measurements, 
well logs, vertical seismic surveys, a 3D seismic survey, crosswell seismic surveys, and pressure 
transient well tests. 

The overall project consists of four interdisciplinary subprojects which are closely interlinked: 

1. Modeling depositional environments. 

2. Upscaling. 

3. Sweep efficiency. 

4. Tracer testing. 

The first of these aims at improving our ability to model complex depositional environments which 
trap movable oil. The second entails testing the usefulness of current methods for upscaling from 
complex geological models to models which are more tractable for standard reservoir simulators. 
The third investigates the usefulness of numerical techniques for identifying unswept oil through 
rapid calculation of sweep efficiency in large reservoir models. The fourth explores what can be 
learned from tracer tests in complex depositional environments, particularly those which are fluvial 
dominated. 

Summary of Technical Progress 
During this quarter, the main activities involved the “Modeling depositional environments” 
Project”, for which the progress is reported below: 



, 

1. Introduction. We study the determination of possibly discontinuous reservoir param- 
eter functions from sparse pointwise measurements supplemented with measurements of a 
nonlinear function of the parameter. The specific application we have in mind is that of 
determining a permeability function or tensor from core measurements and pressure data, 
cf [3]. In a previous report we describe our efforts for models with two spatial dimensions, 

Our approach which is described in [7] involves two steps. The first is to detect the 
discontinuous behavior, and the second is to isolate and refine the region containing it. For 
the first step we use a regularized output least squares procedure in which the reservoir 
mapping is approximated by linear combinations of bicubic B-splines. The regularization 
used is the H' seminorm that is related to the potential energy functional of an elas- 
tic membrane. This regularization gives sufficient compactness to obtain the existence 
of a solution to the associated minimization problem while implying minimal additional 
smoothing. Moreover, it seems to be well suited for the detection of the discontinuities 
and sudden changes so often exhibited by geological mappings [2,5]. Having as least de- 
tected an anomaly, we next attempt to isolate it by estimating its magnitude &d a region 
containing it. The result of the procedure is to obtain a discontinuous function. We then 
essentially subtract this function from the model coefficient thereby, at least intuitively, 
reducing the discontinuous behavior. Again we consider the detection step to test for 
further discontinuous behavior. The procedure is repeated for further refinements. 

see also [7]. However, here the focus is on models with three spatial dimensions. . \  

The regularized output least squares estimation procedure along with its differen- 
tiablility and resolution properties have been described in previous reports and papers 
[6,7]. we present the results of numerical experiments for the three dimensional case. . , 

To formulate the problem suppose that R is a domain in R3 that is a unit cube for the 
purposes of our discussion. We also assume that there ase data available that we indicate 
along segments (wells) 1-5 

see Figure 1. Consider the equation in Ct 
{ ( z i , y i , z )  : 0 < < I}, 

and ki = ki(z,y,z). We assume that the boundary condition 

-KVp.n = 0. 

The function f models injection injection along 1 

(1.2) f ( w , z )  = 3 6  
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where 6 represents a Dirac-delta function with mass distributed along the well 1. Note it is 
not necessary to for the injection well to run the full depth of the cube or for that matter 
to be a straight line segment. We also assume that the pressure at well 3 is given by 

Under suitable conditions, it is well-known that (1.1)-(1.3) possesses a unique solution, [l]. 

To specify the estimation problem, we wish to determine the coefficients kl, kz, and k.3 

j = 1,2,3 and 0 < < 1. In addition we also assume that measurements of p are available 
at these locations as well. Although dependence of the data has been represented asl 
continuous, in fact the use of data at the more realistic case of discrete z-points makes 
no difference in the formulation and solution of the problem. The general technique by 
which we formulate the estimation problem in terms of the minimization of a fit-to-data 
functional that includes the squared difference between model values and data d u e s  along 
with a regularization term is referred to as a regularized output least squares technique. 
This procedure we use to detect a discontinuity. 

from measurements k j  ( 0 )  (zi, y i ,  Z )  of E j  at the x-y locations ( z i ,  y i )  for i = 1, ..., 5 with 

2. Estimation of the Discontinuity. Having detected a discontinuity by means of 
the regularized output least squares method (actually by any procedure), our next step is 
to isolate and obtain some estimate of it. We proceed by considering an example in which 
the admissible permeability functions k i ,  i = 1,2,3 have a discontinuity determined by two 
regions within $2 parameterized by 2 real numbers a and b. We denote these two regions 
by Q(a, 6 )  and $2 \ Q(a, b). An admissible permeability function for i = 1,2,3 Ici is also 
parameterized constants kil and kjz modelling the magnitude of the discontinuity between 
the regions. Hence, bi takes the form 

k i e ( 2 ,  y) = kil if (3, y) E Q(u, b) ,  and Ici2 otherwise. 

It is assumed that the function k io  is known. Introducing the characteristic function Z of 
the set n(a, b) ,  we may write 

(2.2). 

To fix ideas let us suppose that Q(a, b)  is a rectangular solid of the form ($0 - a,zo + 
a)x(yo - b, yo + b)x(zo - c, zo + c). However, we assume that in fact c is known from core 
data. The stiffness matrices are now given as 
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for 1 = 
mation 

and 

(2.3) 

we have 

(2 .4)  

.I 

1 ,2 ,3  where {aj}y!1 form a set of basis functions for the finite element approxi- 
of (1.1)-(1.3). Setting 

Thus, we obtain an equation analogous to (2.16) given by 

(2 .5)  Gc = p. 

with the approximating solution u expressed as u = ELl ciai .  

and the functional 
NK 

j=1 
N(a, b, 1 ~ 1 , 1 c z )  = x ( ( $ j , K )  - K j l 2 .  

Under discretization, the functional J takes the form 

Note that N(a, b, Kl,  Kz) is a discontinuous function and is, in fact, a piecewise constant4, 
function of a and b. Hence, we look for a, b, ICl, and IC2 that minimizes J while keeping 
n/(a, b, K 1 ,  1Cz) at its minimum value, call it NO. That is, we seek 

a, b, ICI, and IC2 mininiizing J ( a ,  b, ICI ,KZ)  subject to N = NO. 

3. A iiumerical example. We consider a problem in which we specify a coeffi- 
cient I<(x,y) and generate pressure data based on that function by solving the problem 
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(1.1)-(1.3)for p with a specific forcing function f by h i t e  elements. Using this data we 
then attempt to recover K. Let Q = (O,l)x(O, 1) and suppose that measurements of pres- 
sure and permeability can be made at locations (0.175,0.175,~), (0.835,0.175,~), (0.5,0.5,2), 
(0.175,0.835,2), and (0.835,0.835,~). For a test permeability function we use the following 

5 + sinn(z + y + z )  for (5, y, z )  E Q/Ro, 
10 + 2si7-4~ + y + z), for(z, y, z )  E Qo, 

6 + cosn(s + y + z )  for (z, y, z )  f R/Ro, 
11 + 2cos7r(a: + y + z), for(s, y, x )  E Qo, 

7 + sinn(2 + y + 2 )  for (z, y, z )  E 52/00, 
12 + 2sii2n(a: + y + z), for(z, y, z )  E Ro, 

k2 tes t (X ,  Y, 2) = { 
k t t e s t b ,  Y, 2) = { 

shown in Figures 2-4. In the plots we have graphed all functions as functions of x and y on 
(O,l)x(O,l) with z = 1/2. Further, we suppose that p = 0 at the point (0.835,0.835) and that 
fluid is injected at the point (0.175,0.175). For the approximations to the pressure, we use 
tensor products of cubic B-splines [5] defined on a uniform mesh determined by subdividing 
(0,l) into 5 subintervals. Since imposing Neumam boundary conditions improves accuracy, 
we use 125 basis functions for approximatingpressure adjusted to incorporate the Neumann 
boundary condition. For approximating the parameter, we again use tensor products 
of cubic B-splines but defined on a mesh determined by subdividing (0,l) into 3 equal 
subintervals. We use 64 basis functions to approximate the parameter. Using data at the 
observation points, we apply the regularized output least squares method as a detection 
procedure resulting in Figures 5-7. Based on this result, we search for a coefficient of the 
form .. 

using the technique discussed in [7]. We then apply further detection by again using the 
regularized output least squares method to estimate the coefficient /ti where the perme- 
ability has the form 

k ( z ,  Y) = k i l ( z ,  Y) + ki2(z, y)- 

The results are portrayed in Figures 8-10. Based on these computations, we again can use 
the procedure for detecting further discontinuities coefficients using a regularized output 
least squares procedure followed by a discontinuous searching procedure. These techniques 
may be alternated until it is determined that only background is being estimated. 

4. Conclusions. We have applied the output least square estimation technique as a 
detection tool for the estimation of a discontinuous permeability tensor using core data 
and pressure data In addition we introduced a method to estimate the location and mag- 
nitude of a jump discontinuity. We also presented a numerical example for the location of 
discontinuities in a permeability function in the presence of a background. By alternating 
detection and discontinuity estimation procedures, it seems to be possible to construct 
coefficients with discontinuities in the presence of a background function. . B  
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