Evaluation of a bi-directional aluminum honeycomb impact limiter design

PDF Version Also Available for Download.

Description

A 120 Ton shipping cask is being developed for the on-site shipment of dry spent fuel at the Idaho National Engineering Laboratory. Impact limiters were incorporated in the cask design to limit the inertial load of the package and its contents during the hypothetical 9-meter (30-foot) drop accident required by 10CFR71. The design process included: (1) a series of static and dynamic tests to determine the crush characteristics of the bi-directional aluminum honeycomb impact limiter material, (2) the development of an analytical model to predict the cask deceleration force as a function of impact limiter crush, and (3) a series ... continued below

Physical Description

4 p.

Creation Information

Doman, M.J. December 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 19 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A 120 Ton shipping cask is being developed for the on-site shipment of dry spent fuel at the Idaho National Engineering Laboratory. Impact limiters were incorporated in the cask design to limit the inertial load of the package and its contents during the hypothetical 9-meter (30-foot) drop accident required by 10CFR71. The design process included: (1) a series of static and dynamic tests to determine the crush characteristics of the bi-directional aluminum honeycomb impact limiter material, (2) the development of an analytical model to predict the cask deceleration force as a function of impact limiter crush, and (3) a series of quarter scale model drop tests to qualify the analytical model. The scale model testing, performed at Sandia National Laboratory in Albuquerque, New Mexico, revealed several design aspects which should be considered in developing bi-directional aluminum honeycomb impact limiters and several other design aspects which should be considered for impact limiter designs in general.

Physical Description

4 p.

Notes

INIS; OSTI as DE96004053

Source

  • 7. annual international high-level radioactive waste management conference, Las Vegas, NV (United States), 29 Apr - 3 May 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96004053
  • Report No.: WAPD-T--3093
  • Report No.: CONF-960421--1
  • Grant Number: AC11-93PN38195
  • Office of Scientific & Technical Information Report Number: 202427
  • Archival Resource Key: ark:/67531/metadc663859

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 1, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Nov. 30, 2015, 8:22 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 19

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Doman, M.J. Evaluation of a bi-directional aluminum honeycomb impact limiter design, article, December 1, 1995; United States. (digital.library.unt.edu/ark:/67531/metadc663859/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.