PROPERTIES OF SOME CLASSICAL INTEGRAL DOMAINS

THESIS

Presented to the Graduate Council of the North Texas State University in Partial Fulfillment of the Requirements

For the Degree of
MASTER OF SCIENCE

By

Timothy B. Crawford, B. A.
Denton, Texas
May, 1975

OR 20
Crawford, Timothy B., Properties of Some Classical Integral Domains. Master of Science (Mathematics), May, 1975, 35 pp., bibliography, 1 title.

Greatest common divisor domains, Bezout domains, valuation rings, and Prüfer domains are studied. Chapter One gives a brief introduction, statements of definitions, and statements of theorems without proof. In Chapter Two theorems about greatest common divisor domains and characterizations of Bezout domains, valuation rings, and Prüfer domains are proved. Also included are characterizations of a flat overring. Some of the results are that an integral domain is a Prüfer domain if and only if every overring is flat and that every overring of a Prüfer domain is a Prüfer domain.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
II. PROPERTIES OF SOME CLASSICAL INTEGRAL DOMAINS. 5
BIBLIOGRAPHY 35

Introduction

The purpose of this paper is to investigate and characterize several of the classical integral domains. Included are greatest common divisor domains, valuation rings, Bezout domains, and Prüfer domains. A basic knowledge of commutative ring theory is assumed in the paper.

Before stating the definitions and theorems, a remark on notation is in order. D will represent an integral domain with multiplicative identity different from the additive identity and quotient field K.

Several definitions and theorems used in this paper will now be listed. Proofs of the theorems can be found in Zariski and Samue1, Vo1. 1, 1958.

Theorem 1.1: If R is a commutative ring with a unity, and A is an ideal of R such that $A \neq R$, then A is contained in a maximal ideal of R.

Definition 1.1: If $a, b \in D$, then a divides b, denoted by $a \mid b$, if and only if there exists $c \in D$ such that $a \cdot c=b$.

Definition 1.2: If $a, b, d \in D$, then d is a greatest common divisor of a and b, denoted by $(a, b)=d$, if and only if
(i) $d \mid a$ and $d \mid b$, and
(ii) if $d_{1} \in D$ such that $d_{1} \mid a$ and $d_{1} \mid b$, then $d_{1} \mid d$.

Definition 1.3: An integral domain D is a greatest common divisor domain, \&.C.D. domain, if and only if every pair (and hence every finite number) of non-zero elements has a greatest common divisor.

Definition 1.4: If $a, b, m \in D$, then m is a least common multiple of a and b if and only if
(i) $a \mid m$ and $b \mid m$, and
(ii) if $m_{1} \in D$ such that $a \mid m_{1}$ and $b \mid m_{1}$, then $m \mid m_{1}$.

Definition 1.5: An integral domain D is a least common multiple domain if and only if every pair (and hence every finite number) of non-zero elements has a least common multiple.

Theorem 1.2: D is a \&.C.D. domain if and only if D is a least common multiple domain.

Theorem 1.3: Every unique factorization domain is a \&.C.D. domain.

Definition 1.6: If $D \subset J \subset K$ and A is an ideal in D and A^{\prime} is an ideal in J, then $A^{e}=A \cdot J$ and $A^{\prime} C=A^{\prime} \cap D . A^{e}$ is called the extension of A to J and $A^{\prime} C$ is called the contraction of A^{\prime} to D.

Definition 1.7: If P is a proper prime ideal of D, then $D_{P}=\left\{\left.\frac{r}{s} \right\rvert\, r, s \in D, s \notin P\right\}$.

Theorem 1.4: If $D \subset J \subset K$ and A and B are ideals in D and A^{\prime} and B^{\prime} are ideals in J, then the following are true.
(a) (i) If $A \subset B$, then $A^{e} \subset B^{e}$.
(ii) If $A^{\prime} \subset B^{\prime}$, then $A^{\prime} \subset \subset B^{\prime}, C$.
(b) (i) $\left(A^{\prime}\right)^{e} \subset A^{\prime}$,
(ii) $A \subset\left(A^{e}\right)^{C}$.
(c) (i) $\left[\left(A^{\prime}\right)^{e}\right]^{C}=A^{\prime}$,
(ii) $\quad A^{e}=\left[\left(A^{e}\right)^{c}\right]^{e}$
(d) (i) $\quad\left(A^{\prime}+B^{\prime}\right)_{C} \supset A^{\prime} C+B^{\prime} C$
(ii) $\quad(A+B)^{e}=A^{e}+B^{e}$
(e) (i) $\quad\left(A^{\prime} \cap B^{\prime}\right)^{C}=A^{\prime} C \cap B^{\prime} C$
(ii) $\quad(A \cap B)^{e} \subset A^{e} \cap B^{e}$
(iii) if $J=D_{p}$ for some proper prime ideal P of D, then $(A \cap B)^{e}=A^{e} \cap B^{e}$.
(f) (i) $\quad\left(A^{\prime} B^{\prime}\right)^{C} \supset\left(A^{\prime}\right) \cdot\left(B^{\prime}\right)$
(ii) $(A \cdot B)^{e}=A^{e} \cdot B^{e}$
(g) (i) $\quad\left(A^{\prime}: B^{\prime}\right)^{C} \subset\left(A^{\prime}\right):\left(B^{\prime} C\right)$
(ii) $\quad(A: B)^{e} \subset A^{e}: B^{e}$
(h) (i) $\quad\left(\sqrt{\mathrm{A}^{\top}}\right)^{c}=\sqrt{\mathrm{A}^{\mathrm{C}}}$
(ii) $\quad(\sqrt{A})^{e} \subset \sqrt{A^{e}}$.

Definition 1.8: A non-empty subset N of K is a fractional ideal of D if and only if
(i) if $x, y \in N$, then $x-y \in N$,
(ii) if $r \in D$ and $x \in N$, then $r x \in N$, and
(iii) there exists an element $0 \neq d \in D$ such that $N \subset \frac{1}{d} D, i . e ., d N \subset D$.

Theorem 1.5: If N is a fractional ideal of D and $d \in D$ such that $d N \subset D$, then $d N$ is an ideal of D.

Theorem 1.6: If M and N are fractional ideals of D, then $N+M, N \cdot M, N \cap M$, and $N: M$ are fractional ideals of D.

Definition 1.9: D is a valuation ring if and only if for every $x \in K$, either $x \in D$ or $x^{-1} \in D$.

Definition 1.10: D is quasi-local if and only if there exists a unique maximal ideal of D.

Theorem 1.7: If $D \subset D^{\prime} \subset K$, then D^{\prime} is a valuation ring, every non-unit in D^{\prime} is in D, and if M^{\prime} is the maximal ideal of D^{\prime}, then M^{\prime} is a prime ideal of D and $D^{\prime}=D_{M}$.

Theorem 1.8: If P is a proper prime ideal of D, then D_{p} is quasi-local with maximal ideal PD_{P} and $\mathrm{PD}_{\mathrm{P}} \cap \mathrm{D}=\mathrm{P}$.

Theorem 1.9: If A is a proper ideal of D and $\alpha \in K$ such that $\alpha \neq 0$, then $1 \notin A \cdot D[\alpha]$ or $1 \notin A \cdot D\left[\alpha^{-1}\right]$.

CHAPTER II

PROPERTIES OF SOME CLASSICAL

INTEGRAL DOMAINS

Theorem 2.1: Let D be a 8.C.D. domain and let $a, b \in D$ such that $(a, b)=d$ where $a=\alpha d$ and $b=\beta d$, then $(\alpha, \beta)=1$.

Proof: Suppose that $(\alpha, \beta)=h$. We show $h \mid 1$. Now we know that $h \mid \alpha$ and $h \mid \beta$ which implies that $h w_{1}=\alpha$ and $h w_{2}=\beta$ for some $w_{1}, w_{2} \in D$. This implies that $a=\alpha d=h d w_{1}$ and $b=\beta d=h d w_{2}$. Therefore hd|a and hd|b which implies $h d \mid d$ or $h \cdot d \cdot k=d$ for some $k \in D$. This implies that $h \cdot k=1$ or $h \nmid 1$. Hence $(\alpha, \beta)=1$.

Theorem 2.2: Let D be a \&.C.D. domain and let $a, b \in D$ such that $(a, b)=d$, then $(k a, k b)=k d$ for any $k \in D$.

Proof: Since $(a, b)=d$, then $a=\alpha d$ and $b=\beta d$ where $\alpha, \beta \in D$ and $(\alpha, \beta)=1$. This implies that $\mathrm{ka}=\alpha \cdot \mathrm{kd}$ and $k b=\beta \cdot k d$ or $k d \mid k a$ and $k d \mid k b$. Suppose $(k a, k b)=d^{\prime}$, but since $k d \mid k a$ and $k d \mid k b$, then $k d \mid d^{\prime}$ which implies $k d w=d^{\prime}$. This implies $k d w \mid k d \alpha$ and $k d w \mid k d \beta$ which implies $w \mid \alpha$ and $w \mid \beta$. Therefore $w \mid(\alpha, \beta)$ or $w \mid 1$. Hence $w \cdot w_{1}=1$ and since $k d w=d^{\prime}$ then $k d \cdot w \cdot w_{1}=d^{\prime} \cdot w_{1}$ or $k d=d^{\prime} \cdot w_{1}$ which implies $d^{\prime} \mid k d$ and then $(k a, k b)=k d$.

Theorem 2.3: Let D be a \&.C. domain and $a, b \in D$ such that $(a, b)=1$. If $a \mid b c$, then $a \mid c$.

Proof: Since $(a, b)=1$, then from Theorem 2.2, $(a c, b c)=c$. But now $a \mid a c$ and $a \mid b c$ which implies $a \mid c$.

Theorem 2.4: If D is a \&.C.D. domain and $a, b \in D$ such that $(a, b)=1$, then $\left(a, b^{n}\right)=1$ for every $n \in I^{+}$.

Proof: We use induction. The theorem is true clearly for $n=1$. Suppose the theorem true for $n=k$. We show $\left(a, b^{k+1}\right)=1$. Since $\left(a, b^{k}\right)=1$, then $\left(a^{2} b, a b^{k+1}\right)=a b$ from Theorem 2. 2. Suppose $\left(a, b^{k+1}\right)=d$. Then $\left(a^{2}, a b^{k+1}\right)=a d$ and since ad $/ a^{2}$, then $a d \mid a^{2} b$ and $a d \mid a b^{k+1}$ which implies $a d \mid a b$ or $d \mid b$. But now $d \mid a$ and $d \mid b$ which implies $d \mid l$. Hence $\left(a, b^{k+1}\right)=1$ and induction is complete.

Theorem 2.5: If D is an integral domain and $a, b \in D$ such that $b \mid a$, then $b^{n} \mid a^{n}$ for every $n, \in I^{+}$.

Proof: Since $b \mid a$, we know $b \cdot k_{1}=a$ for some $k_{1} \in D$. Let $n \in I^{+}$. Then $\left(b k_{1}\right)^{n}=a^{n}$ which imp1ies $b^{n} \cdot k_{1}^{n}=a^{n}$ or $b^{n} \mid a^{n}$.

Theorem 2.6: Let D be a \&.C.D. domain with quotient field K. If $u \in K$ such that $u^{n}+a_{n-1} u^{n-1}+\ldots+a_{1} u+a_{0}=0$ where $a_{i} \in D$ for every $i \in\{0,1, \ldots, n-I\}$, then $u \in D$.

Proof: Since $u \in K$, then $u=\frac{r}{s}$ where r, s, E and $s \neq 0$. Now D is a \&.C.D. domain so there exists $d \in D$ such that $d=(r, s)$. Now $r=\alpha d$ and $s=\beta d$ where $(\alpha, \beta)=1$. If $r=0$, the theorem is trivial. So suppose $r \neq 0$. Then $u^{n}+a_{n-1} u^{n-1}+\ldots+a_{1} u+a_{0}=0$ implies

$$
\left(\frac{\alpha d}{\beta d}\right)^{n}+a_{n-1}\left(\frac{\alpha d}{\beta d}\right)^{n-1}+\ldots+a_{1} \frac{\alpha d}{\beta d}+a_{0}=0
$$

which implies

$$
\frac{\alpha^{n}}{\beta^{n}}+a_{n-1} \frac{\alpha^{n-1}}{\beta^{n-1}}+\cdots+a_{1} \frac{\alpha}{\beta}+a_{0}=0
$$

This implies

$$
\alpha^{n}+a_{n-1} \alpha^{n-1}+\cdots+a_{1} \alpha \beta^{n-1}+a_{0} \beta^{n}=0
$$

which implies

$$
\alpha^{n}=\beta\left(-a_{n-1} \alpha^{n-1}-\cdots-a_{1} \alpha \beta^{n-z}-a_{0} \beta^{n-1}\right) .
$$

This implies $\beta \alpha^{n}$ but from Theorem 2.4 since $(\beta, \alpha)=1$ then $\left(\beta, \alpha^{n}\right)=1$ for every $n, \in I^{+}$. Now $\beta \mid \beta$ is clear and $\beta \mid \alpha^{\mathrm{n}}$ from the above which implies $\beta \mid I$. Hence β is a unit in D which implies $u=\frac{r}{s}=\frac{\alpha}{\beta}=\alpha \beta^{-1} \in D$.

Theorem 2.7: If D is a \&.C.D. domain and $d \in D$ such that $d \neq 0$, and if $f(x)$ is a primitive polynomial in $D[x]$, then $(f(x), d)$ is 1 in D.

Proof: Suppose that $(f(x), d)=d_{1} \in D$. Then d_{1} divides the coefficients on $f(x)$ and $d_{1} \mid d$ which implies $d_{1} \mid 1$ since $f(x)$ is primitive in $D[x]$, i.e., the greatest common divisor of the coefficients is 1 in D.

Theorem 2.8: Let D be a \&.C. O. domain and let $f(x)$ and $g(x)$ be primitive polynomials in $D[x]$. Then $f(x) \cdot g(x)$ is a primitive polynomial in $D[x]$.

Proof: We use induction on the degrees of $f(x)$ and $g(x)$. First we show that if the degree of $f(x)$ is I and the degree of $g(x)$ is k then $f(x) \cdot g(x)$ is primitive in $D[x]$. Then we suppose the theorem true for any $f(x)$ of degree less than or equal to p, i.e., if we have any two primitive
polynomials in $D[x]$, one of which has degree less than or equal to p, then the product of these two polynomials is primitive in $D[x]$. Then we show the theorem true for $f(x)$ of $\operatorname{degree} p+1$, i.e. if $\operatorname{deg}\{f(x)\}=p+1$ and $\operatorname{deg}\{g(x)\}=m$, then $f(x) \cdot g(x)$ is primitive in $D[x]$. This will complete the induction and the product of primitives in $D[x]$ will once more be primitive.

Suppose $\operatorname{deg}\{f(x)\}=1$ and $\operatorname{deg}\{g(x)\}=m . \quad$ Then $f(x)=a_{0}+a_{1} x$ and $g(x)=b_{0}+b_{1} x+\ldots+b_{m} x^{m}$. This implies

$$
\begin{aligned}
& \quad f(x) \cdot g(x)=a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+ \\
& +\left(a_{0} b_{2}+a_{1} b_{1}\right) x^{2}+\ldots+\left(a_{0} b_{j}+a_{1} b_{j-1}\right) x^{j}+ \\
& +\ldots+\left(a_{0} b_{m}+a_{1} b_{m-1}\right) x^{m}+a_{1} b_{m} x^{m+1} .
\end{aligned}
$$

Suppose d divides each of the coefficients on $f(x) \cdot g(x)$ and let $\left(d, a_{0}\right)=u$. Since $u \mid a_{0}$ then $u \mid a_{0} b_{i}$ for every $i \in\{1, \ldots, m\}$ which implies that $u \mid a_{1} b_{i}$ for every i: $\in\{1, \ldots, m\}$ but this implies that u divides $\left(a_{1} b_{0}, \ldots, a_{1} b_{m}\right)$ which implies $u \mid a_{1}$ but since $u \mid a_{0}$ and $u \mid a_{1}$ then $u \mid 1$ or u is a unit in D. Therefore $\left(a_{0}, d\right)=1$ which implies that $d \mid b_{0}$ which implies that $d \mid a_{0} b_{1}$ since $d \mid a_{1} b_{0}$ and $d \mid a_{0} b_{1}+a_{1} b_{0}$ but this implies $d \mid b_{1}$. This implies that $d \mid b_{2}$ since $d \mid a_{1} b_{1}$ and $d \mid a_{0} b_{2}+a_{1} b_{1}$. By an analogous argument $d \mid b_{i}$ for i, $\in\{1, \ldots, m\}$ which implies $d \mid l$. Hence $f(x) \cdot g(x)$ is a primitive polynomial in $D[x]$.

Now suppose the theorem is true if $\operatorname{deg}\{f(x)\} \leq p$ and any $g(x)$, i.e., if $h(x)$ and $k(x)$ are primitive polynomials
in $D[x]$, one of which has degree less than or equal to p, then $f(x), g(x)$ is primitive in $D[x]$. Now suppose the degree of $f(x)$ is $p+1$ and the degree of $g(x)$ is m. Let us consider $f(x)$ in $K[x]$. Now either $f(x)$ is prime in $K[x]$ or $f(x)$ is not prime in $K[x]$. If $f(x)$ is prime in $K[x]$ then $f(x)$ is clearly prime in $D[x]$. So if $f(x) \cdot g(x)=d \cdot h(x)$ in $D[x]$ then $f(x) \mid h(x)$ which implies $g(x)=d \cdot g_{1}(x)$ where $g_{1}(x) \in D[x]$. This implies that d divides the coefficient of $g(x)$ which implies $d \mid 1$. Hence if $f(x)$ is prime in $K[x]$ then $f(x) \cdot g(x)$ is primitive in $D[x]$. Now suppose $f(x)$ is not prime in $K[x]$, then $f(x)=f_{1}(x) \cdot f_{2}(x)$ where $f_{1}(x)$ and $f_{2}(x)$ are both of positive degree, say s and t respectively, such that $s+t=p+1$. Now

$$
f_{1}(x)=\frac{\alpha}{\beta_{0}}+\ldots+\frac{\alpha}{\beta_{s}} x^{s}
$$

and

$$
f_{2}(x)=\frac{\gamma_{0}}{\delta_{0}}+\ldots+\frac{\gamma_{t}}{\delta_{t}} x^{t}
$$

where $\alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i} \in D$ and $\beta_{i} \neq 0$ and $\delta_{i} \neq 0$ for every i. Now

$$
\left(\prod_{i=1}^{s} \beta_{i}\right) f_{1}(x) \in D[x]
$$

and

$$
\left(\underset{i=1}{S} \delta_{i}\right) f_{2}(x) \in D[x]
$$

which implies that

$$
\left(\prod_{i=1}^{s} \beta_{i}\right) f_{1}(x)=d_{1} \cdot f_{i}^{\prime}(x)
$$

and

$$
\left({\left.\underset{i=1}{s} \delta_{i}\right) f_{2}(x)=d_{2} \cdot f_{2}^{\prime}(x), ~(x)}\right.
$$

where $d_{1}, d_{2} \in D$ and $f_{1}^{\prime}(x)$ and $f_{2}^{\prime}(x)$ are primitive poly nomials in $D[x]$.

Now $f(x) \cdot g(x)=f_{1}(x) \cdot f_{2}(x) \cdot g(x)$ which implies that

$$
\left(\prod_{i=1}^{s} \beta_{i}\right)\left(\prod_{i=1}^{t} \delta_{i}\right) f(x) \cdot g(x)=d_{1} \cdot d_{2} f_{1}^{\prime}(x) \cdot f_{2}^{\prime}(x) \cdot g(x) .
$$

This implies that

$$
\left(\prod_{i=1}^{s} \beta_{i}\right)\left(\prod_{i=1}^{t} \delta_{i}\right) f(x)=d_{1} \cdot d_{2} \cdot f_{i}^{\prime}(x) \cdot f_{2}^{\prime}(x)
$$

Now $f_{1}^{\prime}(x) \cdot f_{2}^{\prime}(x)$ is primitive by the induction hypothesis which implies that $\left(\underset{i=1}{s} \beta_{i}\right)\left(\underset{i=1}{t} \delta_{i}\right)=u \cdot d_{1} \cdot d_{2}$ where u is a unit in D. Hence

$$
f(x) \cdot g(x)=u \cdot f_{1}^{\prime}(x) \cdot f_{2}^{\prime}(x) \cdot g(x)
$$

but now $f_{2}^{1}(x) \cdot g(x)$ is primitive in $D[x]$ since $\operatorname{deg}\left\{f_{2}^{\prime}(x)\right\}<p+1$ and so is $f_{1}^{\prime}(x) \cdot\left(f_{2}^{\prime}(x) g(x)\right)$ since $\operatorname{deg}\left\{f_{1}^{\prime}(x)\right\}<p+1$. Hence $f_{1}^{\prime}(x) \cdot f_{2}^{\prime}(x) \cdot g(x)$ is primitive in $D[x]$ and so is
u. $f_{1}^{\prime}(x) \cdot f_{2}^{\prime}(x) \cdot g(x)$ since u is a unit in D. This implies that $f(x) \cdot g(x)$ is primitive in $D[x]$ and the induction is complete.

Theorem 2.9: If D is a \&.C.D. domain, then $D[x]$ is a B.C.D. domain.

Proof: Let $f(x), g(x)$ be primitive polynomials in $D[x]$. Note that if $D[x]$ is a.C.D. domain with respect to the primitive polynomials in $D[x]$, then any polynomial in $D[x]$ can be written as the greatest common divisor of the coefficients
multiplied by a primitive polynomial, and it will then be clear that $D[x]$ is a \&.C. A. domain. Consider now $f(x), g(x)$ in $K[x] . K[x]$ is a P.I.D. with a unity and therefore $(f(x), g(x))=(d(x))$ in $K[x]$. Now

$$
d(x)=\frac{\alpha_{0}}{\beta_{0}}+\frac{\alpha_{1}}{\beta_{1}} x+\ldots+\frac{\alpha_{n}}{\beta_{n}} x^{n}
$$

where each $\alpha_{i}, \beta_{i} \in D$ and $\beta_{i} \neq 0$. Now $f(x) \in(d(x))$ and $g(x) \in(d(x))$ which implies that $f(x)=d(x) \cdot k_{1}(x)$ and $g(x)=d(x) \cdot k_{2}(x)$, where $k_{1}(x), k_{2}(x) \in K[x]$. This implies that

$$
\begin{aligned}
f(x)= & \left(\frac{\alpha_{0}}{\beta_{0}}+\frac{\alpha_{1}}{\beta_{1}} x+\ldots+\frac{\alpha_{n}}{\beta_{n}} x^{n}\right) \\
& \cdot\left(\frac{\gamma_{0}}{\delta_{0}}+\frac{\gamma_{1}}{\delta_{1}} x+\ldots+\frac{\gamma_{m}}{\delta_{m}} x^{m}\right)
\end{aligned}
$$

and

$$
\begin{array}{r}
g(x)=\left(\frac{\alpha_{0}}{\beta_{0}}+\frac{\alpha_{1}}{\beta_{1}} x+\ldots+\frac{\alpha_{n}}{\beta_{n}} x^{n}\right) \\
\\
\left(\frac{\omega_{0}}{n_{0}}+\frac{\omega_{1}}{n_{1}} x+\ldots+\frac{\omega_{t}}{n_{t}} x^{t}\right)
\end{array}
$$

where $\gamma_{i}, \delta_{i}, \omega_{i}, \eta_{i} \in D$ and $\delta_{i} \cdot \eta_{i} \neq 0$ for any i. We can rationalize the denominator on $d(x), k_{1}(x), k_{2}(x)$ and then

$$
\begin{aligned}
& \prod_{i=0}^{n} \beta_{i} \cdot d(x)=d_{1}(x), \\
& \prod_{i=0}^{m} \delta_{i} \cdot k_{1}(x)=r_{1}(x), \\
& \prod_{i=0}^{t} \eta_{i} \cdot k_{2}(x)=r_{2}(x) .
\end{aligned}
$$

Now $d_{1}(x), r_{1}(x)$, and $r_{2}(x)$ are in $D[x]$ which implies that

$$
\left(\prod_{i=0}^{n} \beta_{i}\right)\left({\underset{i=0}{m}}_{i} \delta_{i}\right) \cdot f(x)=d_{1}(x) \cdot r_{1}(x)
$$

and

$$
\left(\prod_{i=0}^{n} \beta_{i}\right)\left(\prod_{i=1}^{n} \eta_{i}\right) \cdot g(x)=d_{1}(x) \cdot r_{2}(x) .
$$

Let d be the greatest common divisor of the coefficients of $\mathrm{d}_{1}(\mathrm{x})$ so that $\mathrm{d}_{1}(\mathrm{x})=\mathrm{d} \cdot \mathrm{d}_{2}(\mathrm{x})$ where $\mathrm{d}_{2}(\mathrm{x})$ is primitive in $D[x]$. This implies that

$$
\left(\prod_{i=0}^{n} \beta_{i}\right)\left(\prod_{i=0}^{m} \delta_{i}\right) \cdot f(x)=d \cdot d_{2}(x) \cdot r_{1}(x)
$$

and

$$
\left(\prod_{i=0}^{n} \beta_{i}\right)\left(\prod_{i=0}^{t} \eta_{i}\right) \cdot g(x)=d \cdot d_{2}(x) \cdot r_{2}(x)
$$

but now $f(x)$ and $g(x)$ are primitive which implies that the greatest common divisor of the coefficients of $f(x)$ and d is 1 and also the coefficients of $g(x)$ and d is 1 in D. Hence $\mathrm{d} \mid\left(\prod_{i=0}^{n} \beta_{i}\right)\left(\prod_{i=0}^{m} \delta_{i}\right)$ and $d \mid\left(\prod_{i=0}^{n} \beta_{i}\right)\left(\prod_{i=0}^{t} n_{i}\right)$ which implies that $d \cdot w_{1}=\left(\prod_{i=0}^{n} \beta_{i}\right)\left(\prod_{i=0}^{m} \delta_{i}\right)$ and that $d \cdot w_{2}=\left(\prod_{i=0}^{n} \beta_{i}\right)\left(\prod_{i=0}^{t} n_{i}\right)$ for some $w_{1}, w_{2} \in D$. Hence $w_{1} \cdot f(x)=d_{2}(x) \cdot r_{1}(x)$ and $w_{2} \cdot g(x)=d_{2}(x) \cdot r_{2}(x)$. Now let y_{1} and y_{2} be the greatest common divisors of the coefficients of $r_{1}(x)$ and $r_{2}(x)$, respective1y. Then $r_{1}(x)=y_{1} u_{1}(x)$ and $r_{2}(x)=y_{2} u_{2}(x)$ where $u_{1}(x)$ and $u_{2}(x)$ are primitive polynomials in $D[x]$. Therefore $w_{1} \cdot f(x)=d_{2}(x) \cdot y_{1} u_{1}(x)$ and $w_{2} \cdot g(x)=d_{2}(x) \cdot y_{2} u_{2}(x)$
which implies that $y_{1} \mid w_{1}$ and $y_{2} \mid w_{2}$ but now also $d_{2}(x) \cdot u_{1}(x)$ is primitive and $d_{2}(x) \cdot u_{2}(x)$ is primitive which implies that $w_{1} \mid y_{1}$ and $w_{2} \mid y_{2}$. This implies that $w_{1}=u_{1} y_{1}$ and $w_{2}=u_{2} \cdot y_{2}$ where u_{1} and u_{2} are units in D. Hence $u_{1} \cdot\left(f(x)=d_{2}(x) \cdot u_{1}(x)\right.$ and $u_{2} \cdot g(x)=d_{2}(x) \cdot u_{2}(x)$ which implies that

$$
f(x)=u_{1}^{-1} \cdot d(x) \cdot u_{1}(x)
$$

and

$$
g(x)=u_{2}^{-1} \cdot d_{2}(x) \cdot u_{2}(x)
$$

Therefore $d_{2}(x) \mid f(x)$ and $d_{2}(x) \mid g(x)$.
Suppose now that there exists $d_{3}(x) \in D[x]$ such that $d_{3}(x) \mid f(x)$ and $d_{3}(x) \mid g(x)$. This implies that

$$
f(x)=d_{3}(x) \cdot q_{1}(x)
$$

and

$$
g(x)=d_{3}(x) \cdot q_{2}(x)
$$

where $q_{1}(x), q_{2}(x) \in D[x]$. This implies that $\left(f(x) \subset\left(d_{3}(x)\right)\right.$ and $(g(x)) \subset\left(d_{3}(x)\right)$ which implies that $(f(x), g(x)) \subset\left(d_{3}(x)\right)$. Consider once again $(f(x), g(x))$ in $K[x]$. This implies $(f(x), g(x))=(d(x)) \subset\left(d_{3}(x)\right)$ in $K[x]$, which implies that $d(x)=d_{3}(x) \cdot c(x)$ where $c(x) \in K[x]$. This implies that

$$
d_{1}(x)=\left(\prod_{i=0}^{n} \beta_{i}\right) d_{3}(x) \cdot c(x)
$$

which implies that

$$
d \cdot d_{2}(x)=\left(\prod_{i=0}^{n} \beta_{i}\right) \cdot d_{2}(x) \cdot c(x)
$$

Let $c^{\prime}(x)$ be the rationalized polynomial of $c(x)$ in $D[x]$.
i.e., $c^{\prime}(x)=k \cdot c(x)$ where k is the product of the denominators of the coefficients of $c(x)$. Let d^{\prime} be the greatest common divisor of the coefficients on $c^{\prime}(x)$ so that $c(x)=k \cdot d \cdot \cdot c^{\prime \prime}(x)$ where $c^{\prime \prime}(x)$ is a primitive polynomial in $D[x]$. Then

$$
d \cdot d_{2}(x)=\left(\underset{i=0}{n} \beta_{i}\right)\left(k \cdot d^{\prime}\right) \cdot d_{3}(x) \cdot c^{\prime \prime}(x)
$$

But now we claim $\mathrm{d}_{3}(x)$ is primitive in $D[x]$ also. Since $d_{3}(x) \mid f(x)$ in $D[x]$ then $d_{3}(x) \cdot w_{1}(x)=f(x)$ and if $d_{3}(x)$ is not primitive then neither is $f(x)$. So $d_{3}(x)$ is a primitive polynomial in $D[x]$ which implies as before that d and $\left(\prod_{i=0}^{n} \beta_{i}\right)\left(k \cdot d^{\prime}\right)$ are associates. This implies that $v \cdot d=\left(\prod_{i=0}^{n} \beta_{i}\right)\left(k \cdot d^{\prime}\right)$ where v is a unit in D. Hence $d_{2}(x)=v \cdot d_{3}(x) \cdot c^{\prime \prime}(x)$ which implies that $d_{3}(x) \mid d_{2}(x)$, and therefore $D[x]$ is a \&.C. domain.

Theorem 2.10: Let D be a \&.C.D. domain and let P be a prime ideal in $D[x]$ such that $P \cap D=(0)$ in D. Then P is principal.

Proof: Let $f(x) \in P$ such that if $g(x) \in P$ then $\operatorname{deg} f(x) \leq \operatorname{deg} g(x)$. Let $d \in D$ be the greatest common divisor of the coefficients of $f(x)$, then $f(x)=d \cdot f_{1}(x)$ where $f_{1}(x)$ is primitive in $D[x]$. We show $P=\left(f_{1}(x)\right)$. Now $d \cdot f_{1}(x) \in P$ implies that $f_{1}(x) \in P$ since $d \notin P$. Therefore, this implies that $\left(f_{1}(x)\right) \subset P$. Let $g(x) \in P$,
then $\operatorname{deg} g(x) \geq \operatorname{deg} f_{1}(x)$. Suppose $\operatorname{deg} g(x)=\operatorname{deg} f_{1}(x)$, then if

$$
\begin{aligned}
f_{1}(x) & =a_{0}+a_{1} x+\ldots+a_{n} x^{n} \\
g(x) & =b_{0}+b_{1} x+\ldots+b_{n} x^{n} .
\end{aligned}
$$

This implies that $b_{n} f_{1}(x)-a_{n} g(x) \in P$ of degree $n-1$, which implies that $b_{n} f_{1}(x)=a_{n} g(x)=0$ which implies that $b_{n} f_{1}(x)=a_{n} g(x)$ but now $\left(a_{n}, f_{1}(x)\right)=1$ which implies that $a_{n} \mid b_{n}$ or $a_{n} \cdot k=b_{n}$. Hence $k f_{1}(x)=g(x)$ which implies $g(x) \in\left(f_{1}(x)\right)$. Suppose that $\operatorname{deg} g(x)>\operatorname{deg} f_{1}(x)$. Let $d(x)=\left(g(x), f_{1}(x)\right)$, then $d(x) \cdot k_{1}(x)=g(x)$ and $d(x) \cdot k_{2}(x)=f_{1}(x)$, where $k_{1}(x), k_{2}(x) \in D[x]$. Suppose deg $d(x)=0$, then $d(x)=d \in D$ and if $d \mid f_{1}(x)$ then $d \mid 1$ which implies d is a unit in D. This implies that $\left(f_{1}(x), g(x)\right)=1 . \quad$ Consider the ideal $\left(f_{1}(x), g(x)\right)$ in $K[x]$. Since $\left(f_{1}(x), g(x)\right)=1$ in $D[x]$, then $\left(f_{1}(x), g(x)\right)=(1)$ in $K[x]$ since $K[x]$ is a P.I.D. with a unity. Hence there exists $r_{1}(x), r_{2}(x) \in K[x]$ such that $1=r_{1}(x) \cdot f_{1}(x)+r_{2}(x) \cdot g(x)$. By rationalizing the denominators on the coefficients of $r_{1}(x)$ and $r_{2}(x)$, we get

$$
d=r_{1}^{\prime}(x) \cdot f_{1}(x)+r_{2}^{\prime}(x) \cdot g(x)
$$

where $r_{1}^{\prime}(x), r_{2}^{\prime}(x) \in D[x]$. This implies that

$$
d \in\left(f_{1}(x), g(x)\right) \subset P \text { in } D[x]
$$

which is a contradiction since $P \cap D=(0)$ in D. Hence $\operatorname{deg} d(x) \neq 0$. This implies $1 \leq \operatorname{deg} d(x) \leq n$ which implies that $g(x)=d(x) \cdot k_{1}(x)$ and $f_{1}(x)=d(x) \cdot k_{2}(x)$ where the degrees of
$d(x), k_{1}(x), k_{2}(x)$ are all positive. Suppose $\operatorname{deg} d(x) \neq n$. Then deg $d(x)<n$ and $\operatorname{deg} k_{2}(x)<n$ which implies $d(x) \notin$ and $k_{2}(x) \notin P$ but this implies that $f_{1}(x) \notin P$ which is a contradiction since $f_{1}(x), \in P$. Therefore $\operatorname{deg} d(x)=n$ which implies that deg $k_{2}(x)=0$. Therefore $k_{2}(x)=k \in D$ and $f_{1}(x)=d(x) \cdot k$ but now $f_{1}(x)$ is primitive which implies that k is a unit in D. Hence $f_{1}(x) \cdot k^{-1}=d(x)$ and since $g(x)=d(x) \cdot k_{1}(x)$ then $g(x)=f_{1}(x) \cdot k^{-1} \cdot k_{1}(x)$ which implies $g(x) \in\left(f_{1}(x)\right)$. Hence $P \subset\left(f_{1}(x)\right)$ and $P=\left(f_{1}(x)\right)$.

Theorem 2.11: The following are equivalent.
(a.) D is a valuation ring.
(b.) If A and B are ideals in D, then either $A \subset B$ or $B \subset A$.
(c.) If (a) and (b) are principal ideals in D, then either (a) $\subset(b)$ or (b) $\subset(a)$.

Proof: (a.) implies (b.) Let A and B be ideals in D. Suppose, to the contrary, that $A \notin B$ and $B \not \subset A$. This implies that there exists $x \in A$ such that $x \notin B$, and there exists $y \in B$ such that $y \notin A$. Now $\frac{x}{y} \in K$, which implies $\frac{x}{y} \in D$ or $\frac{y}{x} \in D$. Suppose $\frac{x}{y} \in D$, then $\frac{x}{y} \cdot y \in B$ which implies $x \in B$ which is a contradiction to the supposition that $\mathrm{x} \notin \mathrm{B}$. Suppose now that $\frac{y}{x} \in D$. This implies that $\frac{y}{x} \cdot x \in A$ which implies $y \in A$ which is a contradiction to the supposition that $y \notin A$. Hence either $A \subset B$ or $B \subset A$. (b.) implies (c.) Let (a) and (b) be principal idea1s in D. Then (a) and (b)
are ideals in D and from (b.) either (a) $\subset(b)$ or $(b) \subset(a)$. (c.) implies (a.). Let $x \in K$. Then $x=\frac{\alpha}{\beta}$ where $\alpha, \beta \in D$. From (c.) we know that either $(\alpha) \subset(\beta)$ or $(\beta) \subset(\alpha)$. Suppose $(\alpha) \subset(\beta)$. This implies that $\alpha \in(\beta)$ which implies $\alpha=d \cdot \beta$ where $d \in D$. But then $\frac{\alpha}{\beta}=d$ which implies $\frac{\alpha}{\beta} \in D$. Suppose $(\beta) \subset(\alpha)$. This implies $\beta \in(\alpha)$ which implies $\beta=d_{1} \cdot \alpha$ where $d_{1} \in D$. But then $\frac{\beta}{\alpha}=d_{1}$ which implies $\frac{\beta}{\alpha} \in D$. Hence either $x \in D$ or $x^{-1} \in D$, and D is a valuation ring.

Definition 2.1: An integral domain D is a Bezout domain iff every finitely generated ideal of D is principal.

Theorem 2.12: An integral domain D is a Bezout domain iff D is a \&.C.D. domain and D_{p} is a valuation ring for every proper prime ideal P of D.

Proof: Suppose D is a Bezout domain. Let $a, b \in D$, then $(a, b)=(d)$ for some d, D. We show d is the greatest common divisor of a and b. Since $(a, b)=(d)$, then $a \in(d)$ and $b \in(d)$ which implies $a=r_{1} d$ and $b=r_{2} d$ where $r_{1}, r_{2} \in D$. This implies that $d \mid a$ and $d \mid b$. Suppose there exists an element $d_{1} \in D$ such that $d_{1} \mid a$ and $d_{1} \mid b$. This implies that $d_{1} \cdot k_{1}=a$ and $d_{1} \cdot k_{2}=b$ for $k_{1}, k_{2} \in D$ which implies $a \in\left(d_{1}\right)$ and $b \in\left(d_{1}\right)$. This implies (a) $\subset\left(d_{1}\right)$ and $(b) \subset\left(d_{1}\right)$ which imp1ies $(a, b) \subset\left(d_{1}\right)$. Therefore $(d) \subset\left(d_{1}\right)$ which imp1ies $d \in\left(d_{1}\right)$ or $d=k_{3} \cdot d_{1}$ and $d_{1} \mid d$. Hence D is a \&.C. A. domain.

Let P be a proper prime ideal of D and let $x \in K$. Then $x=\frac{\alpha}{\beta}$ where $\alpha, \beta \in D$ and $\beta \neq 0$. Now $(\alpha, \beta)=$ (d) for some
$d \in D$ since D is a Bezout domain. This implies that $\alpha=k_{1} d$ and $\beta=k_{2} \cdot d$ for some $k_{1}, k_{2} \in D$ which imp1ies $\frac{\alpha}{\beta}=\frac{k_{1}}{k_{2}}$ and $\frac{\beta}{\alpha}=\frac{k_{2}}{k_{1}} . \quad$ Suppose $k_{1} \in P$ and $k_{2} \in P$, then $\left(k_{1}\right) \subset P$ and $\left(k_{2}\right) \subset P$ which implies $\left(k_{1}, k_{2}\right) \subset P$. But now the greatest common divisor of k_{1} and k_{2} is 1 from Theorem 2.1 . Hence $\left(k_{1}, k_{2}\right)=(1)$ which implies $(1) \subset P$ and therefore $P=(1)$. This is a contradiction since P is a proper prime ideal of D. Therefore either $k_{1} \notin P$ or $k_{2} \notin P$ which implies $\frac{k_{2}}{k_{1}} \in D_{p}$ or $\frac{k_{1}}{k_{2}} \in D_{p}$. Hence either $\frac{\alpha}{\beta} \in D_{p}$ or $\frac{\beta}{\alpha} \in D_{p}$ which implies $x \in D_{p}$ or $x^{-1} \in D_{p}$ and D_{p} is a valuation ring.

Suppose conversely that D is a C.D. domain and that D_{p} is a valuation ring for every proper prime ideal P of D. Let $a, b \in D$, then the greatest common divisor of a and b is $d \in D$. We show that $(a, b)=(d)$. Since $d \mid a$ and $d \mid b$ then $d \cdot k_{1}=a$ and $d \cdot k_{2}=b$ for some $k_{1}, k_{2} \in D$ which implies that $(a) \subset(d)$ and $(b) \subset(d)$. Therefore $(a, b) \subset(d)$. Consider $[(a, b):(d)]$ as an ideal of D. If $[(a, b):(d)]=D$, then $(d) \subset(a, b)$ and the theorem is proved. Suppose to the contrary that $[(a, b):(d)] \neq D$, then $[(a, b):(d)] \subset M$ where M is a maximal ideal of D. This implies that $[(a, b):(d)] D_{M} \subset M_{M}<D_{M}$ which implies $\left[(a, b) D_{M}\right.$: (d) $\left.D_{m}\right] \subset M D_{M}<D_{M}$. Now $\frac{a}{b}=\frac{k_{1}}{k_{2}}$ and $\frac{b}{a}=\frac{k_{2}}{k_{1}}$ and since D_{M} is a valuation ring then $\frac{k_{1}}{k_{2}} \in D_{M}$ or
$\frac{k_{2}}{k_{1}} \in D_{M}$ which implies that $\frac{k_{1}}{k_{2}}=\frac{r_{1}}{s_{2}}$ where $r_{1}, s_{1} \in D$, $s_{1} \notin M$ or $\frac{k_{2}}{k_{1}}=\frac{r_{1}}{s_{2}}$ where $r_{2}, s_{2} \in, s_{2} \notin M$. This implies that $\mathrm{k}_{1} \cdot \mathrm{~s}_{1}=\mathrm{k}_{2} \cdot \mathrm{r}_{1}$ or $\mathrm{k}_{2} \cdot \mathrm{~s}_{2}=\mathrm{k}_{1} \cdot \mathrm{r}_{2}$ which implies $\mathrm{k}_{2} \mid \mathrm{k}_{1} \cdot \mathrm{~s}_{1}$ or $\mathrm{k}_{1} \mid \mathrm{k}_{2} \cdot \mathrm{~s}_{2}$. But now ($\mathrm{k}_{1}, \mathrm{k}_{2}$) $=1$ from Theorem 2.1, which implies $k_{2} \mid s_{1}$ or $k_{1} \mid s_{2}$ from Theorem 2.3. But if $k_{2} \mid s_{1}$ then $k_{2} \notin M$ and if $k_{1} \mid s_{2}$ then $k_{1} \notin M$, for suppose $k_{2} \mid s_{1}$ and $k_{2} \in M$, then $k_{2} \cdot d_{1}=s_{1}$ for some $d_{1} \in D$ which implies $s_{1} \in M$ which is a contradiction. The same argument holds for k_{1}. Hence if $\frac{a}{b}=\frac{k_{1}}{k_{2}} \in D_{M}$, then $k_{2} \notin M$ and if $\frac{b}{a}=\frac{k_{2}}{k_{1}} \in D_{M}$ then $k_{1} \notin M$. Suppose $\frac{a}{b}=\frac{k_{1}}{k_{2}} \in D_{M}$, then $\frac{1}{k_{2}} \in D_{M}$ since $k_{2} \notin D_{M}$ which implies that $d=a \cdot 0+b \cdot \frac{1}{\mathrm{k}_{2}}$. This implies that $d \in(a, b) D_{M}$ which implies that $(d) D_{M} \subset(a, b) D_{M}$ and therefore $1 \in\left[(a, b) D_{M}:(d) D_{M}\right]$ which is a contradiction since $\left[(a, b) D_{M}:(d) D_{M}\right] \subset M_{M}$. On the other hand suppose $\frac{b}{a}=\frac{k_{2}}{k_{1}} \in D_{M}$, then $\frac{1}{k_{1}} \in D_{M}$ since $k_{1} \notin M$. This implies that $d=a \cdot \frac{1}{k_{1}}+b \cdot 0$ which implies that $d \in(a, b) D_{M}$. Therefore (d) $D_{M} \subset(a, b) D_{M}$ and $1 \in\left[(a, b) D_{M}:(d) D_{M}\right]$ which is a contradiction since $\left[(a, b) D_{M}:(d) D_{M}\right] \subset M D_{M}$. But then $[(a, b):(d)]=D$ and $(d) \subset(a, b)$. Hence $(d)=a, b)$. An obvious induction argument extends to any finitely generated ideal, and therefore D is a Bezout domain.

Definition 2.2: A non-zero element p is prime iff p is not a unit and if $p \mid a b$ then $p \mid a$ or $p \mid b$.

Definition 2.3: A non-zero element q is irreducible iff q is not a unit, and if $q=b c$, then b is a unit or c is a unit.

Theorem 2.13: If D is a.c.D. domain, then $p \in D$ is a prime element iff p is irreducible.

Proof: Suppose p is a prime element of D and that $p=a \cdot b$ where $a, b \in D$. Then since $p=a \cdot b, p \mid a \cdot b$ which implies that $\mathrm{p} \mid \mathrm{a}$ or $\mathrm{p} \mid \mathrm{b}$. But then $\mathrm{p} \cdot \mathrm{k}_{1}=\mathrm{a}$ or $\mathrm{p} \cdot \mathrm{k}_{2}=\mathrm{b}$ for some $k_{1}, k_{2} \in D$. This implies that $p=p \cdot k_{1} \cdot b$ or $\mathrm{p}=\mathrm{p} \cdot \mathrm{k}_{2} \cdot \mathrm{a}$ which implies that $1=\mathrm{k}_{1} \cdot \mathrm{~b}$ or $\mathrm{l}=\mathrm{k}_{2} \cdot \mathrm{a}$. Therefore either a or b is a unit.

Suppose conversely that p is an irreducible element of D and that $p \mid a \cdot b$. Let $(p, a)=d$ where $d \in D$. This implies that $p=k_{1} \cdot d$ and $a=k_{2} \cdot d$ where $k_{1}, k_{2} \in D$. Since p is irreducible, then d is a unit or k_{1} is a unit. If d is a unit, then $d \mid 1$ which implies $(p, a)=1$ and since D is a 8.C.D. domain and $p \mid a \cdot b$ where $(p, a)=1$, then $p \mid b$. If k_{1} is a unit, then there exists $k_{1}^{-1} \in D$. Since $d \cdot k_{1}=p$ then $\mathrm{d} \cdot \mathrm{k}_{1} \cdot \mathrm{k}_{1}^{-1}=\mathrm{p} \cdot \mathrm{k}_{1}^{-1}$ which implies $\mathrm{d}=\mathrm{k}_{1}^{-1} \cdot \mathrm{p} . \quad$ But then $\mathrm{p} \mid \mathrm{d}$ and $\mathrm{d} \mid \mathrm{a}$ which implies $\mathrm{p} \mid \mathrm{a}$. Hence p is a prime element of D.

Theorem 2.14: If D is a \&.C.D. domain and P is a proper prime ideal of D, then D_{p} is a \&.C. A. domain.

Proof: Let D be a proper prime ideal of D. Let $\frac{r_{1}}{s_{1}}$, $\frac{r_{2}}{s_{2}} \in D_{p} . \quad$ If either $r_{1} \notin P$ or $r_{2} \notin P$, then $\left(\frac{r_{1}}{s_{1}}, \frac{r_{2}}{s_{2}}\right)=1$. Since if $r_{1} \notin \mathrm{P}$ or $\mathrm{r}_{2} \notin \mathrm{P}$, then $\frac{\mathrm{s}_{1}}{\mathrm{r}_{1}} \in \mathrm{D}_{\mathrm{p}}$ or $\frac{\mathrm{s}_{2}}{\mathrm{r}_{2}} \in \mathrm{D}_{\mathrm{p}}$ which implies that either $\frac{r_{1}}{s_{1}}$ is a unit or $\frac{r_{2}}{s_{2}}$ is a unit and any divisor of a unit is itself a unit and therefore divides 1 . Suppose now that $\frac{r_{1}}{s_{1}}, \frac{r_{2}}{s_{2}} \in P_{p}$. Then define $\left(\frac{r_{1}}{s_{1}}, \frac{r_{2}}{s_{2}}\right)=d$ where $d=\left(r_{1}, r_{2}\right)$ in D. Since $d=\left(r_{1}, r_{2}\right)$, then $d \cdot k_{1}=r_{1}$ and $d \cdot k_{2}=r_{2}$ where $\left(k_{1}, k_{2}\right)=1$. This implies that $\frac{r_{1}}{s_{1}}=\mathrm{d} \cdot \frac{\mathrm{k}_{1}}{\mathrm{~s}_{1}}$ and $\frac{\mathrm{r}_{2}}{\mathrm{~s}_{2}}=\mathrm{d} \cdot \frac{\mathrm{k}_{2}}{\mathrm{~s}_{2}}$ which implies that $\mathrm{d} \left\lvert\, \frac{\mathrm{r}_{1}}{\mathrm{~s}_{1}}\right.$ and $\mathrm{d} \left\lvert\, \frac{\mathrm{r}_{2}}{\mathrm{~s}_{2}}\right.$. Suppose $\frac{r}{s} \left\lvert\, \frac{r_{1}}{s_{1}}\right.$ and $\frac{r}{s} \left\lvert\, \frac{r_{2}}{s_{2}}\right.$, then $\frac{r_{1}}{s_{1}}=\frac{r}{s} \cdot \frac{l_{1}}{t_{1}}$ and $\frac{r_{2}}{s_{2}}=\frac{r}{s} \cdot \frac{l_{2}}{t_{2}}$. This implies that $r_{1} s t_{1}=\mathrm{rs}_{1} \ell_{1}$ and that $\mathrm{r}_{2} \mathrm{st}_{2}=\mathrm{rs}_{2}{ }_{2}$. Since $s, t_{1}, t_{2} \notin P$ then $s \cdot t_{1} \notin P$ and $s \cdot t_{2} \notin P$ which implies that $s \cdot t_{1} \nsubseteq P D_{p}$ and $s t_{2} \notin P D_{p}$. Therefore the $\left(s \cdot t_{2}, r\right)=1$ and and $\left(s \cdot t_{1}, r\right)=1$ which implies $r \mid r_{1}$ and $r \mid r_{2}$ since $r \mid r_{1}\left(s t_{1}\right)$ and $r \mid r_{2}\left(s t_{2}\right)$. Hence $r \mid d$ which implies $r \cdot k=d$ and therefore $\frac{\mathrm{r}}{\mathrm{s}} \cdot \mathrm{s} \cdot \mathrm{k}=\mathrm{d}$. Then $\mathrm{d}=\left(\frac{\mathrm{r}_{1}}{\mathrm{~s}_{1}}, \frac{\mathrm{r}_{2}}{\mathrm{~s}_{2}}\right)$ and D_{p} is a \&.C.D. domain.

Theorem 2.15: An integral domain D is quasi-local of the set N of all non-units of D form the maximal ideal.

Proof: Suppose D is quasi-local, and let N be the set of all non-units of D. Since D is quasi-local there exists
a unique maximal ideal M of D. We show $M=N . \quad M \subset N$ is clear. Let $x \in N$, then $(x) \neq D$ which implies $(x) \subset M$ since M is the only maximal ideal of D. This implies $x \in M$ and $N=M$.

Suppose conversely that N forms a maximal ideal of D. Suppose also that there exists a maximal ideal M of D . We show $M=N$. Now $M \subset N$ is clear which implies that $N=D$ or $M=N . \quad N \neq D$ since $1 母 N$ which implies $M=N$. Hence D is quasi-1ocal.

Theorem 2.16: An integral domain D is a valuation ring iff D is a Bezout domain and D is quasi-local.

Proof: Suppose D is a valuation ring. Let $A=\left(a_{1}, \ldots, a_{n}\right)$ be a finitely generated ideal of D. We use induction on n. If $\mathrm{n}=1$, then clearly A is principal. Suppose that if A is generated by k generators then A is principal. Suppose $\mathrm{n}=\mathrm{k}+1$, then

$$
A=\left(a_{1}, \ldots, a_{k}, a_{k+1}\right)=\left(a_{1}, \ldots, a_{k}\right)+\left(a_{k+1}\right)
$$

Now $\left(a_{1}, \ldots, a_{k}\right)=$ (d) where $d \in D$ which implies that $A=\left(d, a_{k+1}\right)$ but now since D is a valuation ring either $(d) \subset\left(a_{k+1}\right)$ or $\left(a_{k+1}\right) \subset(d)$. If $(d) \subset\left(a_{k+1}\right)$, then $A=\left(a_{k+1}\right)$. If $\left(a_{k+1}\right) \subset(d)$ then $A=(d)$. In either case A is principal. Therefore the induction is complete and D is a Bezout domain.

Suppose there exists maximal ideals M_{1} and M_{2} of D.
Since D is a valuation ring then either $M_{1} \subset M_{2}$ or $M_{2} \subset M_{1}$. Suppose $M_{1} \subset M_{2}$. Then this implies that either $M_{2}=D$ or
$M_{1}=M_{2}$. Since M_{2} is a maximal ideal of $D, M_{2} \neq D$. Hence $M_{1}=M_{2}$. Suppose that $M_{2} \subset M_{1}$. Then this implies that either $M_{1}=D$ or $M_{1}=M_{2}$. Since M_{1} is a maximal ideal of D, then $M_{1} \neq D$. Hence $M_{1}=M_{2}$. In either case $M_{1}=M_{2}$ and there is a unique maximal ideal of D. Hence D is quasi-local.

Suppose conversely that D is a Bezout domain, and D is quasi-local. From Theorem $2.12 \mathrm{D}_{\mathrm{p}}$ is a valuation ring for every proper prime ideal P of D. From Theorem 2.15 we know that the set of all non-units N of D form the maximal ideal of D. We show $D=D_{N} . \quad D \subset D_{N}$ is clear. Let $w \in D_{N}$, then $w=\frac{r}{s}$, where $r, s \in D, s \notin N$. Since $s \notin N$, then $s^{-1} \in D$ which imp1ies that $w=\frac{r}{s}=r \cdot s^{-1} \in D . \quad$ Hence $D=D_{N}$ and therefore D is a valuation ring.

Definition 2.4: A fractional ideal N of D is invertible iff there exists a fractional ideal M such that $N \cdot M=D$. If N is a fractional ideal then $N^{-1}=\{x \in K \mid x N \subset D\}$. Theorem 2.17: If a fractional ideal N is invertible, then N has a unique inverse M and $M=D: N$.

Proof: Since N is invertible then there exists a fractional ideal M such that $N \cdot M=D$. We show $M=N^{-1}$. Let $x \in M$. Then $x \cdot N \subset M \cdot N \subset D$ which implies $x \cdot N \subset D$ and $x \in N^{-1}$. Let $x \in N^{-1}$. Then $x \in K$ such that $x \cdot N \subset D$ which implies $x \cdot N \subset M \cdot N$. This implies $x \cdot N \cdot N^{-1} \subset M \cdot N \cdot N^{-1}$ which implies $x \in M$. Hence $M=N^{-1}$. It is clearly unique since if $N \cdot M_{1}=D$ then $M_{1}=N^{-1}=M$ which implies $M_{1}=M$. Also $N^{-1}=D: N$ by definition and so $M=D: N$.

Theorem 2.18: Let A and B be ideals of D. Then $A=B$ iff $A D_{p}=B D_{p}$ for every maximal ideal P of D.

Proof: Suppose $A=B$, then $A^{e}=B^{e}$ for any extension of A or B. This implies $A D_{p}=B D_{p}$ for every maximal ideal P of D.

Suppose conversely that $A D_{p}=B D_{p}$ for every maximal ideal P of D. This implies $\cap A D_{p}=\cap B D_{p}$ where the intersection is taken over all maximal ideals P of D. Clearly $A \subset \cap A D_{p}$. Let $x \in \cap A D_{p}$. Let $C=\{r \in D \mid r x \in A\} . C$ is an ideal of D. If $C=D$, then we are through. So suppose $C \neq D$, then $C \subset M$ where M is a maximal ideal of D. But now $x \in A D{ }_{M}$ which implies $x=\frac{a}{s}$ where a, A and $s \in M$. This implies $s x=a$ which implies $s \in C$ which is a contradiction to $C \subset M$. Hence $C=D$ which implies $x \in A$. Therefore $\cap A D_{p}=A$ and by a similar argument $\cap B D_{p}=B$ and hence $A=B$.

Corollary 2.1: If D is an integral domain, then $D=\cap D_{p}$ where the intersection is over all maximal ideals P of D.

Proof: From the proof of Theorem 2.3, given an ideal A of $D, A=\cap A D_{p}$ where the intersection is taken over all maximal ideals P of D. But $D=(1)$ and therefore $D=(1)=\cap(1) \cdot D_{p}=\cap D_{p}$ where the intersection is taken over all maximal ideals P of D.

Theorem 2.19: (a) If a fractional ideal A of D is invertible, then A is finitely generated.
(b) If A and B are fractional idea1s of D such that $A \subset B$ and B is invertible, then there exists a fractional ideal C of D such that $A=B \cdot C$.
(c) A fractional ideal A of D is invertible iff there exists a fractional ideal B of D such that $A \cdot B$ is principal.

Proof: (a) Since A is invertible, then there exists a fractional ideal B of D such that $A \cdot B=D=(1)$. Now this implies that $1=\sum_{i=1}^{n} a_{i} \cdot b_{i}$ where $a_{i} \in A$ and $b_{i} \in B$. We show that $A=\left(a_{1}, \ldots, a_{n}\right)\left(a_{1}, \ldots, a_{n}\right) \subset A$ is clear since each $a_{i} \in A$. Let $x \in A$, then $x b \in D$ for every $b \in B$. Now

$$
x=x \cdot 1=x \sum_{i=1}^{n} a_{i} \cdot b_{i}=\sum_{i=1}^{n} a_{i}\left(x \cdot b_{i}\right)
$$

but $x \cdot b_{i} \in D$ for every $i \in\{1,2, \ldots, n\}$. This implies that $\left(x \cdot b_{i}\right) a_{i} \in\left(a_{i}\right)$ for every $i \in\{1,2, \ldots, n\}$ which implies that $x \in\left(a_{1}, \ldots, a_{n}\right)$ and $A=\left(a_{1}, \ldots, a_{n}\right)$.
(b) Since B is invertible, there exists a fractional ideal N such that $B \cdot N=D$. We show $B \cdot(N \cdot A)=A$. Now

$$
\mathrm{B} \cdot(\mathrm{~N} \cdot \mathrm{~A})=(\mathrm{B} \cdot \mathrm{~N}) \cdot \mathrm{A}=\mathrm{D} \cdot \mathrm{~A} \subset \mathrm{~A} .
$$

Let $x \in A$, then $1 \cdot x \in D \cdot A$ which implies $1 \cdot x \in(B \cdot N) \cdot A$. This implies $x \in B \cdot(N \cdot A)$ which implies $B \cdot(N A) \supset A$ and therefore $A=B(N \cdot A)$.
(c) Suppose A is invertible, then there exists a fractional ideal B such that $A \cdot B=D=(1)$ which implies that $A \cdot B$ is principal.

Suppose conversely that $A \cdot B=(x)$ where $x \in K$. Since $x \in K$, then $x=\frac{\alpha}{\beta}$ where $\alpha, \beta \in D$ and $\beta \neq 0$. Now $\left(\frac{\alpha}{\beta}\right)$ is invertible which implies $A \cdot B\left(\frac{\beta}{\alpha}\right)=\left(\frac{\alpha}{\beta}\right)\left(\frac{\beta}{\alpha}\right)$ and $A \cdot B\left(\frac{\beta}{\alpha}\right)=(1)=D$. Hence A is invertible.

Definition 2.5: D is a Prüfer domain if and only if every non-zero finitely generated ideal is invertible.

Theorem 2.20: The following are equivalent.
(a). D is a Prüfer domain.
(b). Every non-zero ideal of D generated by two elements is invertible.
(c). If $A B=A C$, where A, B, and C are ideals of D, and A is non-zero finitely generated, then $B=C$.
(d). For every proper prime ideal P of D, D_{p} is a valuation ring.
(e). $A(B \cap C)=A B \cap A C$ for all ideals A, B, C of D.
(f). $\quad(A+B)(A \cap B)=A B$ for all ideals A, B of D.

Proof: (a,) implies (b.) is clear. (b.) implies (a.).
Let $C=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ be a non-zero finitely generated ideal of D; we show C is invertible by induction on n. The theorem is true for $n=1$ and $n=2$. Suppose $n>2$ and every non-zero ideal of D generated by $n-1$ elements is invertible. We may assume that $c_{1}, c_{2}, \ldots, c_{n}$ are all nonzero. Let $A=\left(c_{1}, c_{2}, \ldots, c_{n-1}\right), B=\left(c_{2}, c_{3}, \ldots, c_{n}\right)$, $E=\left(c_{1}, c_{n}\right)$, and $F=c_{1} A^{-1} E^{-1}+c_{n} B^{-1} E^{-1}$. Then we see that

$$
\begin{aligned}
C F & =\left[A+\left(c_{n}\right)\right] c_{1} A^{-1} E^{-1}+\left[\left(c_{1}\right)+B\right] c_{n} B^{-1} E^{-1} \\
& =c_{1} E^{-1}+c_{n} c_{1} A^{-1}+c_{1} c_{n} B^{-1} E^{-1}+c_{n} E^{-1} \\
& =c_{1} E^{-1}\left[D+c_{n} B^{-1}\right]+c_{n} E^{-1}\left[D+c_{1} A^{-1}\right]
\end{aligned}
$$

but $c_{n} B^{-1} \subset D$ and $c_{1} A^{-1} \subset D$. This implies

$$
C F=c_{1} E^{-1}+c_{n} E^{-1}=\left(c_{1}, c_{n}\right) E^{-1}=D .
$$

Therefore C is invertible.
(b.) implies (c.).

We know that (b.) implies (a.) from above so we show (a.) implies (c.). Let A, B and C be ideals of D such that $A B=A C$ and A is finitely generated. Then $A^{-1}(A B)=A^{-1}(A C)$ which implies $B=C$. Hence (b.) implies (c.).
(c.) implies (d.).

If A, B and C are ideals of D with $A \neq(0)$ finitely generated and if $A B C A C$ then $B C C$, for we have $A C=A B+A C$ $=A(B+C)$ which implies $C=B+C$ and therefore $B \subset C$.

Let P be a proper prime ideal of D. We must show that if $\frac{a}{s}, \frac{b}{t} \in D_{p}$, then $\left(\frac{a}{s}\right) \subset\left(\frac{b}{t}\right)$ or $\left(\frac{b}{t}\right) \subset\left(\frac{a}{s}\right)$. However, since we may assume $s, t \notin P$, then $\frac{1}{s}$ and $\frac{1}{t}$ are units in D_{P}. Therefore it is sufficient to show that $a D_{p} \subset b D_{p}$ or $b D_{p} \subset a D_{p}$. This is clear if either $a=0$ or $b=0$, so we may assume $a \neq 0$ or $b \neq 0$. It is clear that $(a b)(a, b) \subset\left(a^{2}, b^{2}\right)(a, b)$ which implies that $(a b) \subset\left(a^{2}, b^{2}\right)$. This implies that $a b=x a^{2}+y b^{2}$ for some $x, y \in D$ which implies that $(y b)(a, b) \subset(a)(a, b)$ and so $(y b) \subset(a)$. Let $y b=a u$ for some $u \in D$. Then $a b=x a^{2}+u a b$ which implies $x a^{2}=a b(1-u)$. If $u \notin p$, then $a=b\left(\frac{y}{u}\right) \in b D_{p}$.

If $u \in P$, then $1-u, \notin P$ and $b=a\left(\frac{x}{1-u}\right) \in a D_{p}$. Hence either $a D_{p} \subset b D_{p}$ or $b D_{p} \subset a D_{p}$. Therefore D_{p} is a valuation ring by Theorem 2.11.
(d). implies (e).

Let P be a maximal ideal of D. Then

$$
A(B \cap C) D_{p}=\left(A D_{p}\right)(B \cap C) D_{p}
$$

from Theorem 1.4 , but $\left(A D_{p}\right)(B \cap C) D_{p}=A D_{p}\left(B D_{p} \cap C D_{p}\right)$ from Theorem 1.4. Now

$$
\begin{aligned}
A D_{p}\left(B D_{p} \cap C D_{p}\right) & =\left(A D_{p} B D_{p}\right) \cap\left(A D_{p} C D_{p}\right) \\
& =A B D_{p} \cap A C D_{p}=(A B \cap A C) D_{p}
\end{aligned}
$$

since D_{p} is a valuation ring. Therefore from Theorem 2.18, $A(B \cap C)=A B \cap A C$.
(e.) implies (f.)

Suppose $A(B \cap C)=A B \cap A C$ for all ideals A, B, and C of D. Then

$$
\begin{aligned}
(A+B)(A \cap B) & =[(A+B) A] \cap[(A+B) B] \\
& =\left[A^{2}+A B\right] \cap\left[A B+B^{2}\right] \supset A B
\end{aligned}
$$

which implies that $A B \subset(A+B)(A \cap B)$. Now

$$
(A+B)(A \cap B)=A(A \cap B)+B(A \cap B)
$$

is always true, which implies $(A+B)(A \cap B)=\left(A^{2} \cap A B\right)+\left(B^{2} \cap A B\right)$ but now $A^{2} \cap A B \subset A B$ and $B^{2} \cap A B \subset A B$ which implies that

$$
\left(A^{2} \cap A B\right)+\left(B^{2} \cap A B\right) \subset A B+A B=A B
$$

Hence

$$
(A+B)(A \cap B) \subset A B
$$

and therefore

$$
(A+B)(A \cap B)=A B
$$

(f.) implies (a.)

We show (f.) implies (b.) and then clearly (f.) implies (a,) since (b.) implies (a.) has already been shown.

Let $C=\left(c_{1}, c_{2}\right)$ be a non-zero ideal of D generated by two elements. If $c_{1}=0$ or $c_{2}=0$, then clearly C is invertible. Suppose $c_{1} \neq 0$ and $c_{2} \neq 0$. Then let $A=\left(c_{1}\right)$ and $B=\left(c_{2}\right)$ so that

$$
\begin{aligned}
C(A \cap B) B^{-1} A^{-1} & =(A+B)(A \cap B) B^{-1} A^{-1} \\
& =A B B^{-1} A^{-1}=D
\end{aligned}
$$

Thus C is invertible.
Definition 2.6: An overring T of D is $f 1 a t$ iff for every prime ideal P of D, either $P T=T$ or $T \subset D_{p}$.

Theorem 2.21: An overring T of D is flat iff $[(y):(x)] \cdot T=T$ for every $\frac{x}{y} \in T$.

Proof: Suppose T is a flat overring of D, and let $\frac{x}{y} \in T$. Suppose, to the contrary, that $[(y):(x)] \cdot T \neq T$. Then $[(y):(x)] \cdot T \subset M$ where M is a maximal ideal of T. This implies that $M \cap D$ is a prime ideal of D containing $[(y):(x)]$.

Since T is a flat overring of D, we know that either $(M \cap D) \cdot T=T$ or $T \subset D_{M \cap D} \quad(M \cap D) \cdot T=T$ is untenable since ($M \cap D$) $T \subset M$ from Theorem 1.4. This implies that $T \subset D_{M \cap D}$ but now $\frac{x}{y} \in T$ implies $\frac{x}{y} \in D_{M \cap D}$ which implies $\frac{x}{y}=\frac{r}{s}$ where $r, s \in D$ and $s \notin M \cap D$. This implies that $s x=$ ry which implies $s \in[(y):(x)]$. But $[(y):(x)] \subset M \cap D$ which implies $s \in M \cap D$ which is a contradiction to the fact that T is flat.

Suppose conversely that P is a prime ideal of D and that $P \cdot T \neq T$. We show $T \subset D_{p}$. Let $t \in T$, then $t=\frac{x}{y}$ where $x, y \in D$. Suppose $[(y):(x)] D_{p} \subset P \cdot D_{p}$. This implies $[(y):(x)] \cdot D_{p} \cap D \subset P$ which implies $[(y):(x)] \subset P$. This implies that $[(y):(x)] \cdot T \subset P \cdot T$ which implies that $T \subset P \cdot T$. This implies $T=P \cdot T$ which is a contradiction since $P \cdot T \neq T$. Suppose $[(y):(x)] D_{p} \notin P \cdot D_{p}$. This implies that $[(y):(x)] D_{p}=D_{p}$ which implies that $1 \in[(y):(x)] \cdot D_{p}$. This implies that $1=\sum_{i=1}^{n} d_{i} \cdot \frac{r_{i}}{s_{i}}$ where $d_{i}, r_{i}, s_{i} \in D, s_{i} \& P$ and $d_{i} \in[(y):(x)]$ which implies $d_{i}(x) \subset(y)$. This implies that $\frac{x}{y}=\sum_{i=1}^{n} \frac{d_{i} x}{y} \cdot \frac{r_{i}}{s_{i}}$ but now $d_{i} x \in(y)$ which implies that $d_{i} x=k_{i} y$ for each i and for some $k_{i} \in D$. This implies

$$
\frac{x}{y}=\sum_{i=1}^{n} \frac{k_{i} y}{y} \cdot \frac{r_{i}}{s_{i}}
$$

which implies that

$$
\frac{x}{y}=\sum_{n=1}^{n} k_{i} \cdot \frac{r_{i}}{s_{i}} .
$$

Therefore $\frac{X}{y} \in D_{p}$ and $T \subset D_{p}$. Hence T is a flat overring of D. Theorem 2.22: The following are equivalent.
(a.) T is a flat overring of D.
(b.) $T_{P}=D_{P \cap D}$ for every maximal ideal P of T.
(c.) $T=\cap D_{P \cap D}$, where the intersection is taken over all maximal ideals P of T .

Proof: Suppose T is a flat overring of D and let P be a maximal ideal of T. Let $x \in D_{P \cap D}$, then $x=\frac{r}{s}$, where
$r, s \in D$ and $s \notin P \cap D$. This implies $r, s \in T$ and $s \notin P$ which implies $\frac{r}{S} \in T_{P}$ or $x \in T_{P}$, Therefore $D_{P \cap D} \subset T_{P}$. Let $\frac{r}{s} \in T_{P}$ where $r, s \in T$ and $s \notin P$. This implies $r=\frac{x_{1}}{y_{1}}$ and $s=\frac{x_{2}}{y_{2}}$ where $x_{1}, y_{1}, x_{2}, y_{2} \in D$. Now we can write $r=\frac{x_{1} y_{1}}{y_{1} y_{2}}$ and $s=\frac{x_{2} y_{1}}{y_{1} y_{2}}$. Let $x_{1} y_{2}=\alpha, y_{1} y_{2}=\beta$, and $x_{2} y_{1}=\gamma$. Let

$$
W=[(\beta):(\alpha)] \cap[(\beta):(\gamma)] .
$$

We show $W \cdot T=T$. Suppose $W \cdot T \neq T$, then $W \cdot T \subset M$ where M is a maximal ideal of T. Now $M \cap D$ is a prime ideal of D which imp1ies $(M \cap D) \cdot T=T$ or $T \subset D_{M \cap D} \quad(M \cap D) \cdot T=T$ is untenable since $(M \cap D) \cdot T \subset M$ from Theorem 1.4. Therefore $T \subset D_{M \cap D}$. This implies $\frac{\alpha}{\beta}, \frac{\gamma}{\beta} \in D_{M \cap D}$ which implies that $\frac{\alpha}{\beta}=\frac{r_{1}}{s_{1}}$ and $\frac{\gamma}{\beta}=\frac{r_{2}}{s_{2}}$, where $r_{1}, r_{2}, s_{1}, s_{2} \in D$ and $s_{1}, s_{2} \notin M \cap D$. This imp1ies that $s_{1} \alpha=r_{1} \beta$ and $s_{2} \gamma=r_{2} \beta$ which implies that $s_{1} \cdot s_{2} \alpha=s_{2} r_{1}^{\beta}$ and $s_{1} \cdot s_{2} \gamma=s_{1} r_{2} \beta$. This implies that $s_{1} \cdot s_{2} \in W$ which implies $s_{1} \cdot s_{2} \in M \cap D$ which is a contradiction since $s_{1} \cdot s_{2} \nsubseteq M \cap D$. Hence $T \nsubseteq D_{M \cap D}$ but then T is not flat which is a contradiction since T is flat. Hence $W \cdot T=T$.

Now we show $W \cdot D_{P \cap D}=D_{P \cap D} . \quad$ Suppose $W \cdot D_{P \cap D} \neq D_{P \cap D}$, then $W \cdot D_{P \cap D}$ is contained in $(P \cap D) \cdot D_{P \cap D}$. This implies $W \subset P \cap D$ which implies $W \cdot T \subset(P \cap D) \cdot T \subset P$ which is a contradiction since $W \cdot T=T$. Hence

$$
\mathrm{W} \cdot \mathrm{D}_{\mathrm{P} \cap \mathrm{D}}=\mathrm{D}_{\mathrm{P} \cap \mathrm{D}}
$$

This implies that $1 \in W \cdot D_{P \cap D}$ which implies that

$$
1=\sum_{i=1}^{n} d_{i} \cdot \frac{r_{i}}{s_{i}}
$$

where $d_{i}, r_{i}, s_{i} \in D, s_{i} \notin P$ and $d_{i} \notin W$. This implies that $\frac{\alpha}{\gamma}=\sum_{i=1}^{n} \frac{\left(d_{i} \alpha\right) r_{i}}{\gamma s_{i}}$, Now $s_{i} \notin p$ implies s_{i} is a unit in D_{p}. Now $s_{i} \in D_{P}$ implies $s_{i} \in W \cdot D_{p}$ which implies $s_{i} \in[(\beta):(\gamma)] \cdot D_{P}$.

This implies that $s_{i}=\frac{u_{i}}{s_{i}^{1}}$ where $u_{i} \in[(\beta):(\gamma)]$ and $s_{i}^{\prime} \in D \backslash P$. This implies $s_{i}^{-1}=\frac{s_{i}^{!}}{u_{i}^{!}}$but now $s_{i}^{-1} \in D \backslash P$ also which implies $s_{i}^{-1} \cdot u_{i}=s_{i}^{\prime} \cdot \quad$ This implies $u_{i} \notin P . \quad$ Let $d_{i} \cdot \alpha=k_{i} \cdot \beta$ and $u_{i} \cdot \gamma=b_{i} \cdot \beta$ where $k_{i}, b_{i} \in D$ for each i. Now

$$
\sum_{n=1}^{n} \frac{\left(d_{i} \alpha\right) r_{i}}{\gamma s_{i}}=\sum_{i=1}^{n} \frac{\left(k_{i} \cdot \beta\right) r_{i} s_{i}^{\prime}}{\gamma u_{i}}
$$

but now remember $s=\frac{\gamma}{\beta} \notin \mathrm{P}$ which implies that $u_{i} \cdot \frac{\gamma}{\beta}=b_{i} \notin \mathrm{P}$ for each i. Hence

$$
\begin{aligned}
\sum_{i=1}^{n} \frac{\left(k_{i} \cdot \beta\right) \cdot r_{i} \cdot s_{i}}{\gamma \cdot u_{i}} & =\sum_{n=1}^{n} \frac{\left(k_{i} \cdot \beta\right) \cdot r_{i} \cdot s_{i}^{\prime}}{b_{i} \cdot \beta} \\
& =\sum_{n=1}^{n} \frac{k_{i} \cdot r_{i} s_{i}^{\prime}}{b_{i}}
\end{aligned}
$$

is an element of $D_{P \cap D}$. Therefore $\frac{r}{s}=\frac{\alpha}{\gamma}$ is an element of
$D_{P \cap D}$ and $T_{P} \subset D_{P \cap D}$ which implies $T_{P}=D_{P \cap D}$.
Suppose $T_{P}=D_{P \cap D}$ for every maximal ideal P of T.
Then from Corollary $2.1 \cap T_{P}=T$ where the intersection is
over all maximal ideals P of T. This implies that

$$
\cap D_{P \cap D}=\cap T_{P}=T
$$

where the intersection is taken over all maximal ideals P of T .

Suppose $T=\cap D_{P \cap D}$ where the intersection is over all maximal ideals P of T. Let $\frac{x}{y} \in T$. We show that $[(y):(x)] \cdot T=T . \quad$ Since $\frac{x}{y} \in T$, then $\frac{x}{y} \in \cap D_{P \cap D} \cdot$ Suppose $[(y):(x)] \cdot T \neq T$, then $[(y):(x)] \cdot T \subset M$ where M is a maximal ideal of T. This implies that $\frac{x}{y} \in D_{M \cap D}$ since $\frac{x}{y} \in \cap_{P \cap D}$ where the intersection is over all maximal ideals P of T. Therefore $\frac{x}{y}=\frac{r}{s}$ where $r, s \in D$ and $S \in M$. This implies that $s x=$ ry which implies $s \in[(y):(x)]$ which implies that $s \in M \cap D$ since

$$
[(y):(x)] \subset[(y):(x)] \cdot T \cap D \subset M \cap D
$$

This is a contradiction since $s \notin M$. Therefore there is no such maximal ideal M and $[(y):(x)] \cdot T=T$.

Theorem 2.23: An integral domain D is a Prüfer domain iff every overring of D is flat.

Proof: Suppose D is a Prüfer domain. Let T be an overring of D, and let P be a maximal ideal of T. We show $T_{p}=D_{P \cap D}$. It is clear that $D_{P \cap D} \subset T_{P}$, but since D is a Prufer domain $D_{P \cap D}$ is a valuation ring. Then from Theorem 1.7 we know that T_{P} is a valuation ring and that $T_{P}=\left[D_{p \cap D}\right]_{p}$. Now $(P \cap D) \cdot D_{P \cap D} \subset P$ is clear. But now $P \subset D_{P \cap D}$ from Theorem
1.7 and $1 . \& P$ which implies $P C(P \cap D) D_{P \cap D}$. Therefore $P=(P \cap D) D_{P \cap D}$ which implies that P is the set of all nonunits. Hence

$$
\left[\mathrm{D}_{\mathrm{P} \cap \mathrm{D}}\right]_{\mathrm{P}}=\mathrm{D}_{\mathrm{P} \cap \mathrm{D}}
$$

and therefore

$$
T_{P}=D_{P \cap D} .
$$

From Theorem 2.22, T is flat.
Suppose conversely that every overring of D is flat.
Let P be a prime ideal of D. We show D_{P} is a valuation ring. Let $x \in K$ and suppose that $x, \notin D_{p}$ and $x^{-1} \notin D_{P}$. This implies that $D_{p}<D_{p}[x]$ and $D_{p}<D_{p}\left[x^{-1}\right]$. Now it is obvious that PD_{P} is a proper ideal of D_{P} which implies that $1 \notin \mathrm{PD}_{\mathrm{P}}[\mathrm{x}]$ or $1 \notin \mathrm{PD}_{\mathrm{p}}\left[\mathrm{x}^{-1}\right]$ from Theorem 1.9. This implies that $D_{P}[x] \subset D_{P}$ or $D_{P}\left[x^{-1}\right] \subset D_{P}$ since both are flat overrings of D. Hence $x \in D_{P}$ or $x^{-1} \in D_{P}$ which implies that D_{P} is a valuation ring and D is a Prüfer domain.

Corollary 2.2: Every overring of a Prüfer domain is a Prüfer domain.

Proof: Let T be an overring of D and let J be an overring of T, i.e., $D \subset T \subset J \subset K$. Let P be a prime ideal of T. Then $P \cap D$ is a prime ideal of D which implies ($P \cap D$) $\cdot J \equiv J$ or $J \subset D_{P \cap D}$. This implies that $P \cdot J=J$ since $(P \cap D) \cdot J \subset P \cdot J$ or that $J \subset T_{P}$ since clearly $D_{P \cap D} \subset T_{P}$. Hence J is a flat overring of T and from Theorem 2.23, T is a Prüfer domain.

BIBLIOGRAPHY

Zariski, Oscar and Pierre Samue1, Commutative Algebra, Vol. I, (2 volumes), Princeton, New Jersey: D. Van Nostrand Company, Inc., 1958.

