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CHAPTER 1
Introduction

The purpose of this paper is to investigate and char-
acterize several of the classical integral domains., Inclu-
ded are greatest common divisor domains, valuation rings,
Bezout domains, and Prufer domains. A basic knowledge of
commutative ring theory is assumed in the paper.

Before stating the definitions and theorems, a remark
on notation is in order. D will represent an integral
domain with multiplicative identity different from the
additive identity and quotient field K.

Several definitions and theorems used in this paper
will now be listed. Proofs of the theorems can be found

in Zariski and Samuel, Vol. 1, 1958.

Theorem 1.1: If R is a commutative ring with a unity,
and A is an ideal of R such that A # R,then A is contained

in a maximal ideal of R.

Definition 1.1: If a, b €D, then a divides b, denoted

by a|b, if and only if there exists ¢ € D such that a+c = b.

Definition 1.2: If a, b, d €D, then d is a greatest

common divisor of a and b, denoted by (a,b) = d, if and only

if
(i) d|a and d|b, and

(ii) if d; €D such that dlla and dllb, then dlld.



Definition 1.3: An integral domain D is a greatest

common divisor domain, 4.C.5. domain, if and only if every

pair (and hence every finite number) of non-zero elements
has a greatest common divisor.

Definition 1.4: 1If a, b, m €D, then m is a least

common multiple of a and b if and only if

(i) a|m and b|m, and
(ii) if m; €D such that a[ml and b]ml, then m|m1;

Definition 1.5: An integral domain D is a least common

multiple domain if and only if every pair (and hence every
finite number) of non-zero elements has a least common
multiple.

Theorem 1.2: D is a £.C.H. domain if and only if D is

a least common multiple domain.

Theorem 1.3: Every unique factorization domain is a

&. 2.5, domain.

Definition 1.6: If DcJ<K and A is an ideal in D and

A' is an ideal in J, then A® = A-J and A'C = A'(D.  A® is
called the extension of A to J and A'® is called the con-
traction of A' to D.

Definition 1.7: If P is a proper prime ideal of D,

then Dp = {§|r, s €D, s ¢p}.

Theorem 1.4: If DcJcK and A and B are ideals in D

and A' and B' are ideals in J, then the following are true.
(a) (i) If AcB, then A°cB®,

(ii) If A'<SB', then A'CcB*C,



(b) (1)  (A*9)Ccar,
(ii)  Ac@a®©.

() (1) L[S = arc,
(i)  A® = [@a®H°°

(d) (1) (A’
(i1) (A + B)® = A® + B€

(e) (i)  (A'NBM® = A*npe©
(ii)  (ANB)®ca®MB®

+

B') 2A'C + B'C

(iii) if J = Dp for some proper prime ideal P of
D, then (ANB) = A®(BC,
(£) (1) A BOSSA ). (319
(ii)  (A-B)® = A®.B®
(g) (1)  (A":B)c@a'©): (3%
(ii)  (A:B)°cA®:B°
(h) (1)  (/AN©S = arC
(i1) (/K ®c yA®.

Definition 1.8: A non-empty subset N of K is a frac-

tional idedl of D if and only if

(1) if x, y €N, then x - y €N,

(ii) if r . €D and x €N, then rx €N, and

(iii} there exists an element 0 # d € D such. that
Nc:%D, i.e., dNcD,

Theorem 1,.5: If N is a fractional ideal of D and

d € D such that dNcD, then dN is an ideal of D.

Theorem 1.6: If M and N are fractional ideals of D,

then N + M, N.M, N{IM, and N:M are fractional ideals of D.



Definition 1.9: D is a valuation ring if and only if

for every x € K, either x €D or x 1 € D.

Definition 1.10: D is quasi-local if and only if there

exists a unique maximal ideal of D.

Theorem 1.7: If D<D'cK, then D' is a valuation ring,
every non-unit in D' is in D, and if M' is the maximal ideal
of D', then M' is a prime ideal of D and D' = DM"

- Theorem 1.8: If P isa proper prime ideal of D, then

Dy is quasi-local with maximal ideal PD, and PDP(HJ: P.

Theorem 1.9: If A is a proper ideal of D and & € K

-1
such that a # 0, then 1 ¢ A*D[a] or 1 § A-D[a ~].




CHAPTER TII

PROPERTIES OF SOME CLASSICAL
INTEGRAL DOMAINS

" Theorem 2.1: Let D be a &u@.ﬁ; domain and let a, b €D

such that (a,b) = d where a = od and b = gd, then (d,B) = 1.
~Proof: Suppose that (a,B) = h. We show h|l. Now we

know that h|a and h|p which implies that hwl = g and

hw2 = 8 for some Wy wZ_G D. This implies that a = gd = hdwl

and b = gd = hdw,. Therefore hd|a and hd|b which implies

hd|d or hed«k = d for some k ,.€ D. This implies.that hek =1

or h{l. Hence (g,8) = 1.

Theorem 2.2: Let D be a £.C.5. domain and let a, b €D

such that (a,b) = d, then (ka, kb) = kd for any k € D.

' Egggg: Since (a,b) = d, then a = gd and b = gd where
o, 8€D and (a,B) = 1. This implies that ka = g-kd and
kb = g-kd or kd|ka and kd|kb. Suppose (ka, kb) = d', but
since kd|ka and kd}kb, then kd|d' which implies kd w = d'.
This implies kdw|kdo and kdw|kdg which implies w|o and wjg .
Therefore w| (a,R) or w|l. Hence wew; = 1 and since kdw = d'
then kd-w-w1 = d‘-wl or kd = d'-w1 which implies d'|[kd and
then (ka, kb) = kd.

Theorem 2.3: Let D be a 4.C.#. domain and a, b €D

such that (a,b} = 1. If a|bc, then ajc.



Proof: &ince (a,b) = 1, then from Theorem 2.2,
(ac,bc) = ¢. But now a|ac and a|bc which implies alc.

“ Theorem 2.4: If D is a £C..5, domain and a, b €D

such that (a,b) = 1, then (a, bn) = 1 for every n € .
Proof: We use induction. The theorem is true clearly

for n = 1. Suppose the theorem true for n = k. We show

] = 1. Since (a,bk) = 1, then Cazb,abk+l) = ab from

K*1y 2 4. Then (a?,ab¥*!

k+1

Theorem 2. 2. Suppose (a,b ) = ad

and since adfaz, then ad|a2b and ad|ab which implies

ad[ab or dib. But now d|a and d|b which implies dj1.

k+1

Hence (a,b ) = 1 and induction is complete.

Theorem 2.5: If D is an integral domain and a, b.€ D

such that b|a, then b"|a” for every n € I".

Proof: Since bja, we know bk, = a for some k, € D.
Let n € I'. Then (bkl]n = a" which implies bn-kln = a' or
b%a™,

Theorem 2.6: Let D be a £.C.;2, domain with quotient

. n n-1 _
field K. If u . €KX su;h that v + a,.1u t ..o taqutag=0

where ai‘e D for every i E‘{O,l,...,n—l}, then u € D.
Proof: Since u € K, then u = % where r, s € D and

s # 0. Now D is a &.C.2. domain so there exists d € D such

that d = (r,s). Now r = qd and s = gd where (a,B) = 1.

If r = 0, the theorem is trivial. So suppose r # 0. Then

n an—lun—l t ... +aju+oa, = 0 implies
ad\n-1 ad -
(33) + an-l(ﬁa) + L., * alEE + ag = 0



which implies

n .. n~1

0 o _ a -
'B—ﬁ-'l' an_lgm+.....+alg+ao—0.
This implies |
n n-1 n-1 n _
o ta, 4o 8 + . alaB + aOB = 0
which implies
a =‘B(~an_lun*l - el - alaBn_Z - aOBnul).

This implies ﬂqn but from Theorem 2.4 since (B,a) = 1

then (B,a™) = 1 for every n € 7. Now BlB8 is clear and

B{an from the above which implies 8|1. Hence 8 is a unit
in D which implies u = % = % = ag™1 €D,

Theorem 2.7: If D is a £.C.J5. domain and d € D such

that d # 0, and if £(x) is a primitive polynomial in D[x]

»

then (f(x),d) is 1 in D.

Proof: Suppose that (f(x),d) = d, €D. Then dl

1
divides the coefficients on f(x) and dlld which implies
dlll since f(x) is primitive in D[x], i.e., the greatest

common divisor of the coefficients is 1 in D.

Theorem 2.8: Let D be a £.C.5 domain and let f(x)
and g(x) be primitive polynomials in D[x]. Then f(x).g(x)
is a primitive polynomial in D{x].

Proof: We use induction on the degrees of f(x) and
g(x). First we show that if the degree of f(x) is 1 and
the degree of g(x) is k then f(x)-g(x) is primitive in D[x].
Then we suppose the theorem true for any f(x) of degree

less than or equal to p, i.e., if we have any two primitive



polynomials in D[x], one of which has degree less than or
equal to p, then the product of these two polynomials is
primitive in D[x]. Then we show the theorem true for f(x)
of degree p + 1, i.e. if deg{f(x)} = p + 1 and deg{g(x)} = m,
then £(x)-g(x) is primitive in D[x]. This will complete
the induction and the product of primitives in D[x] will
once more be primitive.

Suppose deg{f(x)} = 1 and deg{g(x)} = m. Then
£(x) = ag + a;x and g(x) = b+ byx + ... + b x". This
implies

f(x).g(x) = aObO + (aob1 + albojx +

¢ (agh, + albl)xz ot (aghy +

m+1

j
bj_l)x +
m

+ ... * (aobm + albm_l)x + albmx
Suppose d divides each of the coefficients on f(x).g(x) and
let (d,ao) = u. Since u|aO then ulaobi for every
1 €{1,...,m} which implies that ulalbi for every
i.€{1,...,m} but this implies that u divides (albo,...,%}ﬁ)
which implies ufa; but since uja, and ufa; then u}l or u
is a unit in D. Therefore (ayd) = 1 which implies that
d{b0 which implies that d[aob1 since d]alb0 and d|aob1-va b

170
but this implies dib;. This implies that d|b, since d]albl
and d[aob2 + albl. By an analogous argument d]bi for
i.€{1l,...,m} which implies d|1. Hence f(x)-g(x) is
a primitive polynomial in D[x].

Now suppose the theorem is true if deg{ f(x)} = p and

any g(x), i.e., if h(x) and k(x) are primitive polynomials



in D[x], one of which has degree less than or equal to P,
then f(x) g(x) is primitive in D{x]. Now suppose the degree
of £(x) is p + 1 and the degree of g(x) is m; Let us consi-
der £(x) in K[x]. Now either f(x) is prime in K[x] or

f(x) is not prime in K[x]. If £(x) is prime in K[x] then
f(x) is clearly prime in D[x]. So if f(x)gx) = d*h{x)

in D{x] then,f(x)]h(x)'which'implies‘g(x) = dfglfx) where
‘glﬁx) € D{x}. This implies that d divides the coefficient of
~g{x) which implies d|1. Hence if £(x) is prime in K[x] then
f(x)-g(x) is primitive in Dix]. Now suppose f(x) is not
prime in K{xJ, then f(x) =_fl(x)*f2(x) where £, (x) and
fz(x)'are both of positive degree, say s and t respectively,

such that s + t = p + 1. Now

1=1

.‘ao SO
f.(x) = ==+ ... + == %
1 BO BS
and
. Y
t €
o s e,
0 t
where ai,ﬁi,Yi,ﬁi €D and Bi # 0 and Gi # 0 for every i.
Now
S
(mrs.) fl(x) € Dlx]
i=1 1
and
S
(I ﬁi] fz(gc) € DIx]
i=1
which implies that
S
(iglﬁiJ fICxJ “,dl°fiﬂxl
and '
s
(E 6,0 1,(x) = dy+ £ (x)
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where dl’dZ:E D and fi[x)'and fé(x) are primitive poly-
nomials in D[x].
Now f£{x).g(x) =‘fIEXl~£2(x)ngx) which implies that
s t
(.Hlﬁi)cuﬂlﬁil £Ex).g(x) = dydy £1(x)F5(x)-g(x).
This implies that
S t
Cmgy)Co
i=1 1 is

1§

. _dlwdz.fi(x),fé(x).

§;) £(x)
Now fi(x).fé(x] is primitive by the induction hypothesis

S t
which implies that (.n 51)(3H 51) = u.d-l.d2 where u is a

i=1 i=1
unit in D. Hence

£(x).g(x) = uefy(x}.£5(x).g(x)

but now f1{(x).g(x) is primitive in D[x] since deg{fé(xh<]3+ 1
and so is fi(x)-(fé(x) g(x)) since deg{fi(x)}<:p + 1. Hence
fi(x).fé(x),g(x) is primitive in D{x7] and so is
u.fi(x).fé(x).g(x) since u is a unit in D. This implies
that f(x).g(x) is primitive in D[xJand the induction is

complete.

Theorem 2.9: If D is a £.C.#&. domain, then D[x] is a

£.C .5, domain.

Proof: Let f(x),g(x) be primitive polynomials in D{x].
Note that if D[x] is a.&.a.ﬁ. domain with respect to the
primitive polynomials in D[x], then any polynomial in D{xJcan

be written as the greatest common divisor of the coefficients
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multiplied by a primitive polynomial, and it will then be

clear that D[{x7 is a £ C. b5 domain, Consider now f(x), gx)

in K[rx7,
(Fx),gx)) = (d(x))

d(x) =

where each “1*51-6 D

K{x] is a P.I.D. with a unity and therefore

in K[x7], Now

Oy, Oy S0
_..Q. + -.h]lx + .., T __.I_];.Xn
By B .sn

and B %QO, Now £(x} € (d(x)) and

g(x) € (d(x)) which implies that fx) =‘dCx)-lex] and

g(x) = d(x)-k,(x), where ky(x),k,(x) € K[xI. This implies

that _ _
o a o
£(x) = (-2 + Lx + + 2 x™)
B0 .Bl 8n
Yo Y Yy
. Eg + glx: o +~§Exm)
] 1 m
and _
o - o0
. 0 1 n_n
g(x) = (= + z=x + X))
BQ Bl Bn
W w W
(.....9. -+ ......]:,.x + + ...;t..xt)
o Mg Mg

where Yi,ﬁi,wi,ni-e D and

tionalize the denominator

I

i Bi-d(x) = d;(x),
i=0 *

m

I &k, (x) = r,(x),
i=0 171 1

t -

I niky(x) = ry(x).

i=Q

8, *ny # 0 for any i.

on d{x), kl(x), kz(x) and then

We can ra-
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Now dl(x), rl(x), and rz(x) are in D{x] which implies that

1l m
(o 8 65 ) +f(x)
i=0 1 i=o *

i

dl(x)-rl(x)

and

n n
(I Bl)(n]_ n:L) °g[X) dl(X) 'I'Z(X).
= i=

i=0
Let d be the greatest common divisor of the coefficients of
dl(x) so that dl(x) = d-dz(x) where dz(x) is primitive in

D[{x]. This implies that

n
(1__{[0 B 1) (150 8 l] «£(x) d'dz (x) 'rl (x)

and

1

;0 C d-dz(x)-rz[x)

n
(Im B
= i=0

DT ny)gx)
i=0 =
but now f(x) and g(x) are primitive which implies that the
greatest common divisor of the coefficients of f(x) and d is

1 and also the coefficients of g(x) and d is 1 in D. Hence

n m n t
di( @ B;)( I &8.) and d|( T B;)( I n;) which implies
i=0 i=0 i=0 i=0 .
n m n t
that dew, = (I B.)( 6.) and that dew, = (1 g.)( T s )
Lo Yep 17 yep d 2 Nyag 1Thyoe M

for some WysW, € D. Hence wlof(x) = dz(x)orl(x) and
Worg(x) = dz(x)-rz(x). Now let y; and Y, be the greatest
common divisors of the coefficients of rl(x) and rz(x),
respectively. Then_rl(x) = ylul(x) and rz(x) = yzuz(x)
where ul(x) and uz(x) are primitive polynomials in D[x].

Therefore wl-f(x] = dz(x)-ylul(x) and wzog(x) = dz(x)-yzuz(x)
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which implies that yllwl and Y2|W2 but now also dz(x)-ul(x)
is primitive and dz(x)-uz(x) is primitive which implies
that wllyl and wzlyz. This implies that w, = u;y, and

Wy = Uy'y, where uq and u, are units in D. Hence

uli(f(x) = dz(x)-ul(x) and uyg(x) = dz(x)-uz(x) which

implies that

f(x) ulml-d(x)-ul(x)

and
g(x) = uz_l-dz(x)-uz(x).
Therefore dz(x)[f(x) and d,(x)|g(x).
Suppose now that there exists ds(x) € D[x] such that
d3(x)]f(x) and ds(x)lg(x). This implies that
f(x)

d(x) +qq (x)
and
g(x) = dy(x)+q,(x)
where ql(x),qz(x) € D[x]. This implies that (f(x)c(dz(x))
and (g(x))c(ds(x)) which implies that (f(x),g[x))C(dB(x)).
Consider once again (f(x),g(x)) in X[x]. This implies
(f(x},g(x)) = (d(x))c(ds(x)) in K[x], which implies that
d{x) = ds(x]-c(x) where c(x) € K[x]. This implies that
n
400 = (18 3)d50 ()

which implies that

n
41y = (183004, (0 c(x).

Let ¢'(x) be the rationalized polynomial of c(x) in D[x].
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i.e., ¢'(x) = kec(x) where k is the product of the denomi-

nators of the coefficients of c(x). Let d' be the greatest
common divisor of the coefficients on c!'(x) so that

c(x) = ked'+c"(x) where c"(x) is a primitive polynomial in

D[x]. Then

n
drdy(x) = (T 65) (ked') a5 () e (x).

0
But now we claim dsfx) is primitive in D{x7] also. Since

d; (x)[£(x) in D{x] then dg(x)+wy (x) = £(x) and if d (x)

1s not primitive then neither is f(x). So dg(x) is a prim-

itive polynomial in D[x] which implies as before that d

n
and ( I Bi)(k-d') are associates. This implies that
i=0
n
ved = (I Bi)(k-d') where v is a unit in D. Hence
i=0

d,(x) = v-ds(x)-c”(x) which implies that dg(x)[d,(x), and
therefore D[x] is a &.C.5. domain.

Theorem 2.10: Let D be a £.2.5. dpmain and let P be

a prime ideal in D[x] such that P(ID = (0) in D. Then P is
principal.

Proof: Let f(x) € P such that if g{(x) € P then
deg f(x)=degg(x)}. Let d €D be the greatest common
divisor of the coefficients‘of f(x), then f(x) = d-fl(x)
where fl(x) is primitive in D[x]. We show P = (fl(x)).
Now d-fl(x) € P implies that fl(x) € P since d ¢ P.

Therefore, this implies that (fl(x))CP. Let g(x) €P,
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then deg g(x)=>deg fl(x). Suppose deg g(x) = deg fl(x),

then if

n
fl(x) = a8p *ayx + ... +ax,

- n
glx) = b0 + blx LI bnx .

This implies that bnfl(x) = a g(x) ¢ P of degree n-1, which
implies that bnfl(x) = ang(x) = 0 which implies that
bnfl(x) = ang(x) but now (an,fl(x)) = 1 which implies that

anlbn oT an-k = b Hence k fl(x] = g{x) which implies

0
g(x) ¢ (fl(x)). Suppose that deg g(x) >deg fl[x). Let
d(x) = (g(x),fl(x)), then d(x]-kl(x) = g(x) and
d(x)-kz(x) = fl(x), where kl(x),k (x) € D[x]. Suppose
deg d(x) = 0, then d(x) = d €D and if dlfl(x) then d|1
which implies d is a unit in D. This implies that
(f;(x),g(x)) = 1. Consider the ideal (f;(x),g(x)) in KlxI].
Since (fl(x),g(x)) = 1 in D{x], then (fl(x),g(x)) = (1)
in K[x] since K[x] is a P.I.D. with a unity. Hence there
exists rl(x),rz(x).GiK[x] such that 1 = rl(x]-fl(x)-hrzﬁg-gtﬂ.
By rationalizing the denominators on the coefficients of
rl(x) and r,(x), we get

d =10 £, () + ry(x)eg(x)
where ri(x),ré(x) € D[x]. This implies that

d ¢ (£,(x),g(x))cPin D[x]
which is a contradiction since PN\D= (0) in D. Hence
deg d(x) # 0. This implies lsdegd(x)sn which implies that
g{x) = d(x)-kl(x) and fl(x) = d(x)-kz(x) where the degrees of
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d{x),k (X),kz(X] are all positive. Suppose deg d(x) # n.
Then deg d(x) <n and deg k,(x) <n which implies d(x) ¢ P
and k, (x) d P but this implies that fl(x] ¢ P which is a
contradiction since fl(x).€ P. Therefore deg d(x) = n
which implies that deg kz(x) = 0. Therefore kz(x) =k €D
and fl(x) = d{x)+k but now fl(x) is primitive which implies

that k is a unit in D. Hence fl(x)'k_1 = d(x) and since

il

g (x)
g(x) € (fI(x)ji. Hence PC(fl(x)) and P = (fl(x)).

d(x)+k; (x) then g(x) = £1(x)+k "k (x) which implies

Theorem 2.11: The following are equivalent.

(a.) D is a valuation ring.

(b.) If A and B are ideals in D, then either ACBR
or BCA,

(c.) If (a) and (b) are principal ideals in D, then
either (a)<(b) or (b)c(a).

Proof: (a.) implies (b.) Let A and B be ideals in D.

Suppose, to the contrary, that A4B and B4A. This implies
that there exists x € A such that x ¢ B, and there exists

y € B such that y § A. Now % € K, which implies % €D or
§ € D. Suppose 3;— €D, then %-y € B which implies x € B
which is a contradiction to the supposition that x ¢ B.
Suppose now that % € D. This implies that %-x € A which
implies y € A which is a contradiction to the supposition
that y § A. Hence either ACB or B<A. (b.) implies (c.)

Let (a) and (b) be principal ideals in D. Then {a) and (b)
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are ideals in D and from (b.) either (a)<(b) or (byc(a).
(c.) implies (a.). Let x € K. Then x =4% where a,f € D,
From (¢.) we know that either (a)c(8) or (B)=(a). Suppose
(e)<(B). This implies that o € (B) which implies o = d+8

where d € D. But then % = d which implies & €D, Suppose

B
(B)<(a). This implies B € (a) which implies B = dl-a
where d1 € D. But then §-= dl which implies é € D. Hence

1

either x € D or x ~ €D, and D is a valuation ring.

Definition 2.1: An integral domain D is a Bezout domain

iff every finitely generated ideal of D is principal.

Theorem 2.12: An integral domain D is a Bezout domain

iff D is a &.C.5. domain and Dp is a valuation ring for every
proper prime ideal P of D,
Proof: Suppose D is a Bezout domain. Let a,b € D,

then (a,b) = (d) for some d . € D. We show d is the greatest

3

common divisor of a and b. Since (a,b) (d), then a € (d)

1]

and b € (d) which implies a r,d and b = rzd where TysT €D,
This implies that d|a and d|b. Suppose there exists an
element d, €D such that dlja and d;|b.  This implies that
dy+ky = a and dy-k, = b for k;,k, €D which implies a € (d;)
and b € (dl)' This implies [a)C(dl) and (b)C(dI) which
implies [a,b)C(dl). Therefore (d)C(dl) which implies
d € (dy) or d = ky+d; and d;}d. Hence D is a 4.C.%. domain.
Let P be a proper prime ideal of D and let x € K. Then

X = % where a, B €D and 8 # 0. Now (a,B) = (d) for some
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d €D since D is a Bezout domain. This implies that o« = k.d

1
. . . o kl
and B = k,+d for some kl,kz‘e D which implies 7 = EE and
8.2 g, k, € d k, €P, then (k,)<P and k)P
5 EI . ppose k, P an 9 .£ P, then ( 1) an &éﬁ
which implies (kl,kz)CP. But now the greatest common

divisor of k1 and k2 is 1 from Theorem 2.1. Hence [kl’kﬁ = (D
which implies (1)<P and therefore P = (1). This is a con-

tradiction since P is a proper prime ideal of D. Therefore
k k

] . . . 2 1
either k; § P or k, ¢ P which implies K, € Dp or X, € Dp'
Hence either % € Dp or g € Dp which implies x € Dp or
xt €D and D_ is a valuation ring.

P p
Suppose conversely that D is a &C.J5. domain and that

Dp is a valuation ring for every proper prime ideal P of D.
Let a,b €D, then the greatest common divisor of a and

b is d € D. We show that (a,b) = (d). Since dla and d|b
then d-kl = a and d-k2 = b for some kl’kZ € D which implies
that (a)<(d) and (b)c(d). Therefore (a,b)c(d). Consider
[(a,b):(d)} as an ideal of D. 1If [(a,b):(d)] = D, then
(d)<{(a,b) and the theorem is proved. Suppose to the con-
trary that [(a,b):(d)] # D, then [(a,b):(d)] <M where M is
a maximal ideal of D. This implies that [@,b): (d)] D&MDy <D

M
k
which implies [(a,b)DM:(d)Dﬁh:MDM<DM. Now % = Ei and
2
b Eﬁ and since D,, is a valuation ring then kl €D, or
a kl M & EE M



19

kz - _ . kl T
EI € DM which implies that EE.Z gg- where T158 €D,
.n o
51 dM or §I = 5, where r,,s, € s, §M. This implies that

ky*s; = kyer; or ky+s, = k1, which implies kzlkl-s1 or
kl[kz-sz. But now (kl,kzj = 1 from Theorem 2.1, which
implies kzlsl or kl!s2 from Theorem 2.3. But if k,|s; then
k, §M and if klls2 then k; 4 M, for suppose k,|s; and
k, €M, then kyed; = s; for some d1.€ D which implies s; €M
which is a contradiction. The same argument holds for kl.

kl k

P .o b _ T2 ‘
Hence if ¢ £ € Dy, then X, ¢ M and if 3 K € Dy then
a _ 5 1 |
kg ¢ M. Suppose B X, €Dy, then EE € Dy, since k, 4 Dy

which implies that d = a+0 + b-ﬁ‘.
2

This implies that

d € (a,b)DM which implies that (d)DMC(a,b)DM and therefore

1€ [(a,b)DM:(d)DM] which is a contradiction since
k

b
E(a,b)DM:(d)DM]CMDM. On the other hand suppose o K% € DM’
then g; € Dy since kl:q'M. This implies that d = a-ﬁ' + beD
1 1

which implies that d € (a,b)DM. Therefore (d)DMC(a,b)DM and
1 € [(a,b)DM:(d)DM] which is a contradiction since
[(a,b)DM:(d)DM}CMDM. But then .[(a,b):(d)] = D and (d)<(a,b).
Hence (d) = a,b). An obvious induction argument extends tb
any finitely generated ideal, and therefore D is a Bezout

domain.
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Definition2.2: A non-zero element p is prime iff p

is not a unit and if plab then pla or p|b.

Definition 2.3: A non-zero element q is irreducible iff

q is not a unit, and if q = bc, then b is a unit or ¢ is a
unit.

Theorem 2.13: If D is a.&.C.5. domain, then p €D is a

prime element iff p is irreducible.

Proof: Suppose p is a prime element of D and that
p = a*b where a,b € D. Then since p = a+b, pla+b which
implies that pla or p|b. But then p+k; = aor p-k, =b
for some kl’kZ € D. This implies that p = p-kl-b or
p = p-kz-a which implies that 1 = kl-b or 1 = kz-a. There-
fore either a or b is a unit.

Suppose conversely that p is an irreducible element of
D and that pfa-b. Let (p,a) = d where d € D. This implies
that p = kl-d and a = kjed where kl,kz.é D. Since p is’
irreducible, then d is a unit or kl is a unit. If d is a
unit, then d|1 which implies (p,a) = 1 and since D is a
£.C.L. domain and p|a-b where (p,a) = 1, then plb. If

k, is a unit, then there exists klﬁl

€ D. Since d-k1 = p
then d-k;+k;* = pok, "' which implies d = k, '-p. But then
pld and d|a which implies p|a. Hence p is a prime element
of D.

Theorem 2.14: If D is a £.C.5. domain and P is a proper

prime ideal of D, then Dp is a &.C.05. domain.
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T
Proof: Let D be a proper prime ideal of D. Let gi,
1

"2 ¢p . If either r 4¢P or r, P, then (El 33) =1
S; P 1 2.t 5178, '
1 52 :
Since if 1y P orr, P, then > €D, or ¥;¢€ Dp which
. . 1, . Ty . .
implies that either EI is a unit or gg is a unit and any

divisor of a unit is itself a unit and therefore divides 1.

ry T, | ry T,
Suppose now that —,—= € PD_. Then define (~~,-=) = d
51 %2 P 51 %2

where d = (rl,rz)'in D. Since d = (rl,rz), then d-kl =1y

and d-k2 =T, where (kl,kz) = 1. This implies that

T k- T k ‘ T T
gl-= d--L and gﬂ = d-s2 which implies that d gi and d gé_
1 °1 2 2 1 2
T T T % T %
1 r{ 2 1 r "1 2 T 72 -
Suppose Ll—m and —{-m then —= = =+~ and == = =« 2, This
s'sy S 2’ S S tl P s t,

implies that rysty; = Tslﬂl and that TySt, = IS,l,. Since

s,t;,t, § P then s-t; §P and s-t, §P which implies that

s+t q PDp and s tth PDp. Therefore the (s-tz,r) = 1 and
and (s-tl,r) = 1 which implies r|r1 and r[rz since r[ri(stlj
and r[rz(stz). Hence r|d which implies r+k = d and there-

T

Iz}

e
]

|
!

b

fore g-s-k = d. Then d = (
1

) and Dp is a 4.C.p5. domain.
2

tn
V1]

Theorem 2.15: An integral domain D is quasi-local iff

the set N of all non-units of D form the maximal ideal.
Proof: Suppose D is quasi-local, and let N be the set

of all non-units of D. Since D is quasi-local there exists
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a unique maximal ideal M of D. We show M = N. McN is
.clear. Let x € N, then (x) # D which implies (x)cM since
M is the only maximal ideal of D. This implies x € M and
N = M;

Suppose conversely that N forms a maximal ideal of D.
Suppose also that there exists a maximal ideal M of D. We
show M = N. Now McN is clear which implies that N = D or
M=N. N#Dsince 1l §N which implies M = N. Hence D
is quasi-local.

Theorem 2.16: An integral domain D is a valuation ring

iff D is a Bezout domain and D is quasi-local.

Proof: Suppose D is a valuation ring. LetA-= @l,...,a

)
be a finitely generated ideal of D. We use induction on n.
If n = 1, then clearly A is principal. Suppose that if A is
generated by k generators then A is principal. Suppose
n =%+ 1, then

A= (al,...,ak,ak+1) = (al,.;.,ak) + (ak+1);
Now (al,...,ak) = (d) where d €D which implies that
A= (d,ak+1) but now since D is a valuation ring either
(d)C(ak+1) or (ak+l)C(d). if (d)C(ak+l), then A = (ak+1l
If (ak+1)C(d) then A = (d). 1In either case A is principal.
Therefore the induction is complete and D is a Bezout domain.

Suppose there exists maximal ideals M, and My of D.

1

Since D is a valuation ring then either M1CM2 or MZCMl.

Suppose MICMZ' Then this implies that either M, = D or
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M

[}

1 = M,. Since M, is a maximal ideal of D, M, # D. Hence

]

M M,. Suppose that MZCMl‘ Then this implies that

1
either M1 =D or M1 = Mz. Since Ml is a maximal ideal of D,
then Ml # D. Hence Ml = MZ' In either case M1 = M2 and
there is a unique maximal ideal of D. Hence D is quasi-local.
Suppose conversely that D is a Bezout domain, and D is
quasi-local. From Theorem 2.12 Dp is a valuation ring for
every proper prime ideal P of D. From Theorem 2.15 we know

that the set of all non-units N of D form the maximal ideal

of D. We show D = Dy - DCDN is clear. Let w € DN’ then
W = E, where 1,5 €D, s §N. Since s § N, then s_l.EHQ
which implies that w = % = res™’ €D. Hence D = Dy and

therefore D is a valuation ring.

Definition 2.4: A fractional ideal N of D is inver-

tible iff there exists a fractional ideal M such that
N'M =D. If N is a fractional ideal then N_1=={x €K|x NcD},

Theorem 2.17: If a fractional ideal N is invertible,

then N has a unique inverse M and M = D:N.

Proof: Since N is invertible then there exists a

fractional ideal M such that N*M = D. We show M = N-l. Let

X €M. Then x-NcM:NcD which implies x-NcD and x € N™1

Let x € N—l. Then x € K such that x+NcSD which implies

x+*NCM+N . This implies x-N-N“%:M-N-N-l which implies x € M.
Hence M = Nbl. It is clearly unique since if N-M1 = D then
M, = N = M which implies M; = M. Also N1 = opiN by def-

inition and so M = D:N.
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Theorem 2.18: Let A and B be ideals of D. Then A = B

iff ADp = BDp for every maximal ideal P of D.

Proof: Suppose A = B, then A® = B® for any extension

1

of A or B. This implies ADp BDp for every maximal ideal

P of D.

I

Suppose conversely that ADp BDp for every maximal

i

ideal P of D. This implies IWADp

section is taken over all maximal ideals P of D. Clearly

ﬁBDp where the inter-

ACFWADP. Let x .€ ﬂADp. Let ¢ = {r €D|rx €A}. C is an
ideal of D. If C = D, then we are through. So suppose

C # D, then C&M where M is a maximal ideal of D. But now
x € AD,, which implies x = % where a € A and s ¢ M. This
implies sx = a which implies s € C which is a contradiction
to CcM. Hence C = D which implies x € A, Therefore

f?ADp = A and by a similar argument fWBDp = B and hence

A = B.

Corollary 2.1: If D is an integral domain, then

D = fH%) where the intersection is over all maximal ideals

P of D.

Proof: From the proof of Theorem 2.3, given an ideal

Aof D, A= fWADp where the intersection is taken over all
maximal ideals P of D.: But D = (1) and therefore

D= (1) = rK1)~Dp = I?Dp where the intersection is taken
over all maximal ideals P of D.

Theorem 2.19: (a) If a fractional ideal A of D is

invertible, then A is finitely generated.
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(b If A and B are fractional ideals of D such that
ACB and B is invertible, then there exists a fractional
ideal C of D such that A = B.C,
(c) A fractional ideal A of D is invertible iff there
exists a fractional ideal B of D such that A.B is principal.
Proof: (a) Since A is invertible, then there exists
a fractional ideal B of D such that A«B = D = (1). Now
_ n
this implies that 1 = fgl ai'bi where a; €A and b, € B.
We show that A = (al,...,an) (al,...,an)C#\ is clear since

each a; €CA. Let x €A, then x b €D for every b € B. Now
n n
x = x*1 =x2 a.,+b, = 2 a.(x+b.),
i=1 1t 1

but x-bi €D for every i € {1,2,...,n}. This implies that
(x-bi) ay € (ai) for every 1 € {1,2,...,n} which implies
that x € (al,..‘,an) and A = (al,...,an).

(b} Since B is invertible, there exists a fractional

ideal N such that BeN

il

D. We show B:(N<A) = A. Now
Bs (N*A} = (B-N)«A = D.ACA.
Let x € A, then 1.x € D+A which implies 1l.x € (B.N)-.A.
This implies x .€ B+ {(N+A) which implies B.(NA)DA and there-
fore A = B(N-A).
(c) Suppose A is invertible, then there exists a
fractional ideal B such that A+B = D = (1) which implies

that A-B is principal.
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Suppose conversely that A*B = (x) where x € K. Since
x € K, then x = % where o,8 €D and 8 # 0. Now (%) is
invertible which implies A-B(5) = (D ana A3 - (1) - .
Hence A is invertible.

Definition 2.5: D is a Prifer domain if and only if

every non-zero finitely generated ideal is invertible.

Theorem 2.20: The following are eqﬁivalent.

(a). D is a Priifer domain.

(b). Every non-zero ideal of D generated by two elements
is invertible.

(c). If AB = AC, where A,B, and C are'ideals of D,
and A is non-zero finitely generated, then B = C.

(d). For every proper prime ideal P of D, Dp is a
valuation ring.

(e). A(BMiC) = ABNAC for all ideals A, B, C of D.

(£). (A+B) (AfB) = AB for all ideals A, B of D.

Proof: (a,) implies (b.) is clear. (b,) implies (a.).

Let C = (cl,cz,...,cn) be a non-zero finitely generated
ideal of D; we show C is invertible by induction on n. The
theorem is true for n = 1 and n = 2. Suppose n >2 and
every non-zero ideal of D generated by n - 1 elements is
invertible. We may assume that Cy5Cys.0.,C are all non-
zero., Let A = (CI’CZ""’Cn—l)’ B = (CZ,CS,...,CH),
1p-1 1p-1

E = (c,c ), and F = ¢ A~ Then we see

1 + an

that
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- ~1.-1 -1.-1
CF = [A+(c )Jc A "E " + [(cq)+BJc B E
_ -1 -1 -1_-1 -1
_‘ClE + CnCIA + clan E ™ + an
_ -1 -1 -1 -1
= ClE [D+an 1+ an [chlA ]
1

but ¢ B"'cD and c;A"TcD. This implies

CF =_clE“1 -1

+cE o= [cl,cn)ﬁnl = D.
Therefore C is invertible.

(b.) implies (c.).

We know that (b.) implies (a.) from above so we show
(a.) implies (c.). Let A, B and C be ideals of D such that

AB = AC and A is finitely generated. Then A 1(AB) = A T(AC)

which implies B = C. Hence (b.) implies (c.).

(c.) implies (d.).

If A, B and C are ideals of D with A # (0) finitely
generated and if ABCAC then BSC, for we have AC=AB + AC
= A(B+C) which implies C = B + C and therefore BcC.

Let P be a proper prime ideal of D. We must show that

. b a b b :
if %, €,E DP, then (E)C(fJ or (E]C(gﬂ. However, since we
may assume s,t § P, then é and % are units in DP. Therefore

it is sufficient to show that aDPCbDP or bDPCaDP. This 1is

clear if either a = 0 or b = 0, so we may assume a # 0 or

b # 0. It is clear that (ab)(a,b)<(a®,b’)(a,b) which
implies that (ab)C(az,bz). This implies that ab=¢xa2 + yb2
for some x,y € D which implies that (yb)(a,b)<(a)(a,b) and
so (yb)<(a). Let yb = au for some u € D, Then ab = xa2-+uab

which implies xa? = ab(l-u). If u § P, then a=‘b(§) € bDP'
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If u €P, then1 - u.qP and b = a(T%U) € aDp. Hence either

aDpCpr or prCaDp. Therefore Dp is a valuation ring by
Theorem 2.11.
(d). implies (e).
Let P be a maximal ideal of D. Then
A(BﬂC)Dp= (ADP)(BﬂC)Dp
from Theorem 1.4, but (ADp)(BﬂC)Dp =ADp(BDpFMDp) from

Theorem 1.4. Now

ADp (BDpﬂCDP) (ADPBDP) {1(AD pcnp)

U

ABD_(IACD_ = (AB(IAC)D
P % ( ) p

since Dp is a valuation ring. Therefore from Theorem 2.18,
A(BlIC) = ABNAC.

(e.) implies (£f.)

Suppose A(B(IC) = ABMAC for all ideals A, B, and C of D.
Then

(A+B} (AB) [ (A+B)A]([(A+B)B]

[AZ+AB]N [AB+B% ]S AB
which implies that ABC (A+B)(AB). Now

(A+B) (ANB) = A(ANB) + B(A(B)
is always true, which implies (A+B)(A[iB) = (AzfﬁAB) + (BzflAB]
but now AZMABCAB and BzﬁABCAB which implies that

(A2MAB) + (B®MAB)CAB + AB = AB.
Hence

(A+B) (AB) < AB

and therefore

(A+B) (ANB) = AB.
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(f.) implies (a.)

We show (f.) implies (b.) and then clearly (f.) implies
(a,) since (b,) implies (a.) has already been shown.

Let C =-(cl,cz) be a non-zero ideal of D generated by
two elements. If ¢y = 0 or ¢, = 0, then clearly C is inver-
tible. Suppose c; # 0 and ¢, £ 0. Then let A = (cq) and

B = (czj so that

1 _ 1

(A+B) (AMB)B 1A~

1y-1 _ p,

C(ANB)B A"

AB B

Thus C is invertible.

Definition 2.6: An overring T of D is flat iff for

every prime ideal P of D, either PT = T or TCDp.

Theorem 2.21: An overring T of D is flat iff

Ly):(x)J+T = T for every % €T.
Proof: Suppose T is a flat overring of D, and let

% € T. Suppose, to the contrary, that [(y):(x)]-T # T.

Then [(y):(x)]*T<M where M is a maximal ideal of T. This
implies that M(ID is a prime ideal of D containing [(y):{x)].
Since T is a flat overring of D, we know that either

(M{(ID): T =T or T<Dyrip (MD)» T = T is untenable since

(M(ID)TcM from Theorem 1.4. This implies that TCDMFH)bUt

X . . X . . s X 3
now 7 €T implies ” € PvinD which implies v <5 where

r,s €D and s ¢ M(\D. This implies that sx

ry which
implies s € [(y):(x)]. But [(y):(x)I<M(D which implies

s € M(ID which is a contradiction to the fact that T is flat.
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Suppose conversely that P is a prime ideal of D and
that P+T # T. Weshow TCD . Let t €T, then t =,§ where
X,y €D. Suppose [(y):(x)] DpCPer. This implies
[(y): (x)1+D,(IDCP which implies [(y):(x)]CP. This implies
that [(y):(x)}*T<P-T which implies that TCP.T. This
implies T = P«T which is a contradiction since P-T # T.
Suppose [(y):(x)]Dp@P-Dp. This implies that [(y):(x}]Dp==Dp

which implies that 1 € [(y):(x)]-Dp. This implies that

I A
- 1 : .
1= 1§id1'si where d;,r,,s; €D, s, ¢P and d; €[(y):(x)]
< n dix T,
which implies d.(x)=(y). This implies that = = § . %
a Yooi=1 Y 3

but now dix‘é {(v) which implies that dix = kiy for each i and

for some ki‘E D. This implies

x o By T

Yo=Y 5y
which implies that

b Z%k,.ri

Y on=1 1 5§

Therefore % € Dp and'TCDp. Hence T is a flat overring of D.

Theorem_2.22: The following are equivalent.

(a.) T is a flat overring of D.

(b.) TP = DPFH) for every maximal ideal P of T.

{(c.) T = ﬂDPrm, where the intersection is taken over
all maximal ideals P of T.

Proof: Suppose T is a flat overring of D and let P

be a maximal ideal of T. Let x € DPfHV then x = §3 where
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r,s €D and s . § P(ID. This implies r,s €T and s.§¢ P which

: — T
pe Therefore DPfo:TP‘ Let g,E.T
xq X
where r,s €T and s § P. This implies r = —~ and s
71 Y2
: th!
where X15Y1:X55¥ € D. Now we can write 1 =

implies L |
implies S,E TP or x €T P

|

d
ylyz an
~ X

= . Let x.
V1Y

s Iyz =0, Y1¥p T B, and X,¥1 = v- Let

W= [(B):(e)INNL(B):(¥)].
We showW+T = T. Suppose W.T # T, then W.T<M where M is
a maximal ideal of T. Now M(ID is a prime ideal of D which

- implies (M{ID) +T = T eor TCD (M(iD)»T = T is untenable

MD*

since (M(ID)-TcM from Theorem 1.4. Therefore T<Dyrp-

T
. . . o _ 1
€ Dy which implies that 5" 5 and

This implies &,YX
B 1

"B
vy _ 12
) where T43T53871,5, €D and s
2
that sqa = rIB and S,Y = rZB which implies that 51°52a:=52rﬁ

1752 d MD. This implies

and $1°S,Y = s;T B. This implies that s € W which im-

152 1752

plies s;*s, €M(D which is a contradiction since s 'S, ¢ M(D,

1 1
Hence TdDMrH}but then T is not flat which is a contradiction

since T is flat. Hence W*T = T.

Now we show W.DPﬂD = Dprip- Suppose.W-DPrH)# DP(HP

then WDy~ 1is contained in (PrqD).DPfWDf This implies
WcP{D which implies W+T< (P(ID)*TcP which is a contra-
diction since W*T = T. Hence

WD = D

P{iD P(D"
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This implies that 1 € W DPI which implies that

n : I‘i
1 = ) E d- 'm';',
i=1 * %i

where d.,T;,s; €D, s, ¢ P and d; §W. This implies that

(dja)ry

n
= 2

Z ve, . Now siE¢ P implies s. 1s a unit in Dp.

< |

Now s, €D, implies s, € W'D, which implies s, E€L(8):(v) ] Dp.

W

This implies that s, = —& where ui.E[(B):CY)] and siﬁéD\P.

i

n -
fds e
LT

11

This implies sil but now sil.e D\P also which implies

o

?
i
. » = ] "5 1 3 . — .

$; tuy = si. This implies s d P. Let di o ki B and

u.*y = b.*B where k.,b. €D for each i. Now
i i i’7i

n (diu)ri ;i(ki°8)risi

Z_....m_.__.. =
n=1 "%i i=1 Y4
but now remember s = % ¢ P which implies that ui'% = bi § P
for each i. Hence
n (k *B)- r.*s; n (k '8) r.*s!
N = E i7i
2 Yeu - “B
i=1 i n=1 1
n ki'risi
B e
n=1 i

is an element of DPFH) Thereforé % = % is an element of

Dprp and TPCDPfH)WhiCh implies T = Dprip
Suppose TP = DPFH) for every maximal ideal P of T.

Then from Corollary 21 (WTP = T where the intersection is
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over all maximal ideals P of T. This implies that
mDPﬂD ="ﬂTPﬂ‘T

where the intersection is taken over all maximal ideals

P of T,

Suppose T = mDPFm where the intersection is over all
maximal ideals P of T. Let %,E T. We show that _
[(y):(x) 7T = T. Since‘é»ﬁ T, then %.E ﬂDPfHY Suppose
[(y):(x)3T # T, then [(y):(x)]-TSM where M is a maximal
ideal of T. This implies that % € Dy D since % € nDPfﬂD
where the intersection is over all maximal ideals P of T.
Therefore % « % whefe r, s €D and S ¢M. This implies
that sx = ry which implies s € [(y):(x)] which implies that
s €MD since

[(y):(x)I<[(y): (x) 1-TDEMID.
This is a contradiction since s § M. Therefore there is no

such maximal ideal M and [(y):(x)}7].T = T.

Theorem 2.23: An integral domain D is a Prifer domain

1ff every overring of D is flat,

Proof: Suppose D is a Priifer domain. Let T be an
overring of D, and let P be a maximal ideal of T. We show
Tp = Dpnip P’
Priifer domain Dpyp 1s a valuation ring. Then from Theorem

It is clear that DPer:T but since D is a

1.7 we kgow that T, is a valuation ring and that TPzz[DPrHﬂP'

Now (Prm)'DPer:P is clear. But now PCDPFH)frOm Theorem
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1.7 and 1 4§ P which implies PC(PQD)DPOD' Therefore
P = (PmD)DPﬂD which implies that P is the set of all non-
units. Hence

(D = D

PIDP PD

and therefore

Tp = Dprp-

From Theorem 2.22, T is flat,

Suppose conversely that every overring of D is flat.
Let P be a prime ideal of D. We show DP is a valuation ring.
Let x € K and suppose that x .§ DP and x“1 q Dp. This implies
that D, <Dp{x} and DP'<DP[X“1]. Now it is obvious that
PD, is a proper ideal of D, which implies that 1 § PDL[X]
or 1 § PDP[xnlj from Theorem 1.9. This implies that
Dplx]eD, or DP[X-1]C:DP since both are flat overrings of D.

which implies that D, is a valuation

_ -1
Hence x € Dp.or X €D P

P
ring and D is a Pr{ifer domain.

Corollary 2.2: Every overring of a Prifer domain is

a Prifer domain.

Proof: Let T be an overring of D and let J be an
overring of T, i.e., DcTcJcK. Let P be a prime ideal of T.
Then P{D is a prime ideal of D which implies (P(iD).J = J

or J&D This implies that P.J = J since (P{iD)-JcP«J

P(ID*
or thatJC‘iTP since clearly DPer:TP' Hence J is a flat

overring of T and from Theorem 2.23, T is a Prufer domain.
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