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CHAPTER I

Introduction

The purpose of this paper is to investigate and char-

acterize several of the classical integral domains. Inclu-

ded are greatest common divisor domains, valuation rings,

Bezout domains, and Priifer domains. A basic knowledge of

commutative ring theory is assumed in the paper.

Before stating the definitions and theorems, a remark

on notation is in order. D will represent an integral

domain with multiplicative identity different from the

additive identity and quotient field K.

Several definitions and theorems used in this paper

will now be listed. Proofs of the theorems can be found

in Zariski and Samuel, Vol. 1, 1958.

Theorem 1.1: If R is a commutative ring with a unity,

and A is an ideal of R such that A R,then A is contained

in a maximal ideal of R.

Definition 1.1: If a, b E D, then a divides b, denoted

by alb, if and only if there exists c E D such that a-c = b.

Definition 1.2: If a, b, d E D, then d is a greatest

common divisor of a and b, denoted' by (a,b) = d, if and only

if

(i) dja and djb, and

(ii) if d1 ED such that d1 fa and d1 |b, then d1 |d.
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Definition 1.3: An integral domain D is a greatest

common divisor domain, .&.. domain, if and only if every

pair (and hence every finite number) of non-zero elements

has a greatest common divisor.

Definition 1.4: If a, b, m E D, then m is a least

common multiple of a and b if and only if

(i) aim and bfm, and

(ii) if m C D such that aim1 and b 1m 1, then mim1i

Definition 1.5: An integral domain D is a least common

multiple domain if and only if every pair (and hence every

finite number) of non-zero elements has a least common

multiple.

Theorem 1.2: D is a ... domain if and only if D is

a least common multiple domain.

Theorem 1.3: Every unique factorization domain is a

.... domain.

Definition 1.6: If DcJcK and A is an ideal in D and

A' is an ideal in J, then Ae = A-J and Ac = A'AD. A is

called the extension of A to J and Ac is called the con-

traction of A' to D.

Definition 1.7: If P is a proper prime ideal of D,

then Dp = {Ir, s E D, s 4 P1.
Theorem 1.4: If DcJcK and A and B are ideals in D

and A' and B' are ideals in J, then the following are true.

(a) (i) If AcB, then AecBe

(ii) If A'cB', then AcCBc
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(b) (i) (AC)e A'

(ii) Ac(A)C

(c) (i) ECAtcI)ec Ac

Cii) Ae . [(Ae)c]e

(d) (i) (A' + B')C DAIC + BIC

(ii) (A + B)e = Ae + Be

(e) (i) (A t nB')c = ACABC

(ii) (AlB)ecAeClBe

(iii) if J = Dp for some proper prime ideal P of

D, then (AflB)e=Aef1Be.

(f) (i) (A' B')CD(AIC).(BIc)

(ii) (A.B)e -,Ae.Be

(g) (i) (A' :B')cc(Atc): (Bc
, e e e

(ii) (A:.B) c A : B

(h) (i) (/AT) c = /A , c

-e e
(ii) ( :/A)c

Definition 1.8: A non-empty subset N of K is a frac-

tional ideal of D if and only if

(i) if x, y E N, then x - y E N,

(ii) if rE D and x E N, then rx E N, and

(iii) there exists an element 0 d E D such, that

Nc d i.e., dNcD.

Theorem 1.5: If N is a fractional ideal of D and

d E D such that dNcD, then dN is an ideal of D.

Theorem 1.6: If M and N are fractional ideals of D,

then N + M, N.M, NAM, and N:M are fractional ideals of D.
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Definition 1.9: D is a valuation ring if and only if

for every x E K, either x E D or x 1  E D.

Definition 1.10: D is quasi-local if and only if there

exists a unique maximal ideal of D.

Theorem 1.7: If DCD'cK, then D' is a valuation ring,

every non-unit in D' is in D, and if M' is the maximal ideal

of D', then M' is a prime ideal of D and D' = DMt.

Theorem 1.8: If P is aproper prime ideal of D, then

D is quasi-local with maximal ideal PD, and PD AD= P.P P P
Theorem 1.9: If A is a proper ideal of D and c E K

such that a 0, then 1 A*D[a] or 1 4A-D[a ].



CHAPTER II

PROPERTIES OF SOME CLASSICAL

INTEGRAL DOMAINS

Theorem 2.1: Let D be a . domain and let a, b E D

such that (a,b) d where a = ad and b =fSd, then (a, ) 1.

Proof: Suppose that (a,f) h. We show h1l. Now we

know that hJa and hjg which implies that hw1 = and

hw2 = for some w1 , w2 E D. This implies that a = ad = hdw

and b = d hdw2 . Therefore hdja and hdlb which implies

hdfd or h-d-k = d for some k ,E D. This implies that h-k = 1

or h|l. Hence (a, 3) 1.

Theorem 2.2: Let D be a S,,C-..&. domain and let a, b -E D

such that (a,b) = d, then (ka, kb) = kd for any k E D.

Proof: Since (a,b) = d, then a = ad and b = d where

o, E D and (a,3) = 1. This implies that ka = a.kd and

kb = -kd or kdlka and kdjkb. Suppose (ka, kb) = d', but

since kdlka and kdjkb, then kdjd' which implies kd w = d".

This implies kdwjkda and kdwfkd3 which implies wfa and wJ.

Therefore wf(a,3) or wjl. Hence w-w1 = 1 and since kdw =d'

then kd-ww V = d'ow or kd = d'w which implies d'Ikd and

then (ka, kb) = kd.

Theorem 2.3: Let D be a ... domain and a, b ,E D

such that (a,b) 1. If ajbc, then afc.

5
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Proof: Since (a,b) = 1, then from Theorem 2.2,

(ac,bc) = c. But now ajac and ajbc which implies ajc.

Theorem 2.4: If D is a .C..6. domain and a, b E D

such that (a,b) = 1, then (a, bn) = 1 for every n E I+.

Proof: We use induction., The theorem is true clearly

for n = 1. Suppose the theorem true for n = k. We show

(a,bk+l) =1. Since (abk)= 1, then (a2b,abk+l) = ab from

Theorem 2.2. Suppose (a,b k+) = d. Then (a2,ab k+) = ad

and since adja2, then adja2b and adjabk+1 which implies

adjab or djb. But now dja and djb which implies d1l.

Hence (a,bk+l) = 1 and induction is complete.

Theorem 2.5: If D is an integral domain and a, b E D

such that bja, then bnlan for every n E I+.

Proof: Since bja, we know b-k = a for some k E D.

Let n C I+.Then (bk1)n --=an which implies bn.k1n = an or

bn an.

Theorem 2.6: Let D be a . domain with quotient

field K. If u E K such thatun + an-lun- + + a1u +a 0 =0

where a. E D for every i E {0,l,...,n-l}, then u C D.

Proof: Since u .E K, then u = r where r, s E D and
s

s 0. Now D is a . domain so there exists d C D such

that d (r,s). Now r = ad and s = td where (a,3) = 1.

If r = 0, the theorem is trivial. So suppose r 0. Then

Un + an-lu n-1+... + a1u +1 a0 =,0 implies

ad)n +a ad)dn-1 + + a 2-d +
d +n- ) +d+ a0 =0
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which implies

n n-1

+n n- -1 + ... + a - + a 0.

This implies

n + an-Io n + + aan- + a0n = 0

which implies

an = a n- an-i - . . -a 1 n-z - a 0 n-i

This implies Najn but from Theorem 2.4 since (3,a) = 1

then (,an) = 1 for every nE I+. Now W3J is clear and

rIan from the above which implies |1l. Hence 3 is a unit

in D which implies u = a-=oa E D.

Theorem 2.7: If D is a S.0... domain and d E D such

that d y 0, and if f(x) is a primitive polynomial in D[x],

then (f (x),d) is 1 in D.

Proof: Suppose that (f(x),d) = di .E D. Then d

divides the coefficients on f(x) and d1 jd which implies

dlji since f(x) is primitive in D[x], i.e., the greatest

common divisor of the coefficients is 1 in D.

Theorem 2.8: Let D be a S.S. . domain and let f(x)

and g(x) be primitive polynomials in DEx]. Then f(x).g(x)

is a primitive polynomial in D[x].

Proof: We use induction on the degrees of f(x) and

g(x). First we show that if the degree of f(x) is 1 and

the degree of g(x) is k then f(x)-g(x) is primitive in D[x].

Then we suppose the theorem true for any f(x) of degree

less than or equal to p, i.e., if we have any two primitive
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polynomials in D[x], one of which has degree less than or

equal to p, then the product of these two polynomials is

primitive in D[x]. Then we show the theorem true for f(x)

of degree p + 1, i.e. if deg{f(x)} = p + 1 and deg{g(x)} = m,

then f(x)-g Cx) is primitive in D[x]. This will complete

the induction and the product of primitives in D[x] will

once more be primitive.

Suppose deg{f(x)} = 1 and deg{g(x)} = m. Then

m
f(x) =a0 + a x and g(x)= b + b x + ... + bmx This

implies

f(x)-g(x) = a0b0 + (a0b1 + a1 b0)x +

+ (a b + a.b )x2 + + (a b + a b )x +0 2 1 1 0 1 j-l
.lm b m+l+...+(a0bm + a1b M-1lm + a1bm +

Suppose d divides each of the coefficients on f(x)-g(x) and

let (d,ao) = u. Since ula0 then ula0b for every

i E {l,...,m} which implies that ufa b for every

i E {1,. .. ,m} but this implies that u divides (a bO)* 9.,ab

which implies ula1 but since ula0 and uja1 then ull or u

is a unit in D. Therefore (a0,d) = 1 which implies that

djb0 which implies that dja0bl since dja1b0 and dIa 0b 1 +a1 b0
but this implies djb1 . This implies that d~b2 since dia b

and dja0b2 + a b1 . By an analogous argument d~bi for

i E {1,...,m} which implies d1l. Hence f(x).g(x) is

a primitive polynomial in D[x].

Now suppose the theorem is true if deg{ f(x)} p and

any g(x), i.e., if h(x) and k(x) are primitive polynomials
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in D~x], one of which has degree less than or equal to p,

then f Ex) g(,x) is primitive in Dfx]. Now suppose the degree

of f Cx) is p + 1 and the degree of g (x) is n. Let us consi-

der f (x) in K[x]. Now either fc(x) is prime in KI] or

f (x) is not prime in Kfx]. If f (x) is prime in Kx] then

f (x) is clearly prime in Dlx]. So if f (gx) -gx) = d-h(x)

in D[x] then f(x)Ihcx) which implies gW d-g (x) where

glcx) E Dlx]. This implies that d divides the coefficient of

g(x) which implies d1. Hence if f(x) is prime in KEx] then

f(x)-g(x) is primitive in Dlx]. Now suppose f(x) is not

prime in K[x], then f(x) = f1 (x)f2(x) where f1 (x) and

f2(x) are both of positive degree, say s and t respectively,

such that s + t = p + 1. Now

f 1(x) .+ + xS
0s

and

Y yt t
f2(x) -- + -6 ~ ~X

Q t

where a,:3,,y., 6 E D and i 0 and 6 0 for every i.

Now
s

1 ) 
(x) E DlEx]

and
s

( ) f (x) Dx]

which implies that
s

a d f1 Cx) d1 fx)
=1

and

R . )f -X 2 X
i= 1 2(*f
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where d1,d2 E D and f (x)and f'() are primitive poly-

nomials in DExi.

Now f xg(;x).gx) f(x).f2 (x) g(x) which implies that

s t
C i)C 6) f Cx).g x) = die.d2  2 ' Ex)
i=l il

This implies that
s t

C. i)Ci ) f(x) = d1 ,.d2.f{x).f (x)
1 2 1 2

Now f (x).f (x) is primitive by the induction hypothesis

s t
which implies that ( Hi)(C11 60) =u.di.d2 where u is a

i=1 1

unit in D. Hence

f CX)I.g(x) = uqf (x).f (x).g(x)

but now f (x).g(x) is primitive in D[x] since deg{f (x)}< p + 1

and so is f (x).(f Cx) g (x)) since deg{f (x)}< p + 1. Hence

f'(x)-f (x).g x) is primitive in D[x] and so is

u.f'(x).f'(x).g (x) since u is a unit in D. This implies

that f(x).g (x) is primitive in D[x]and the induction is

complete.

Theorem 2.9: If D is a j...... domain, then D[x] is a

.. &. domain.

Proof: Let f(x),g(x) be primitive polynomials in DEx].

Note that if D[x] is a . domain with respect to the

primitive polynomials in D[x], then any polynomial in D[x]can

be written as the greatest common divisor of the coefficients
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multiplied by a primitive polynomial, and it will then be

clear that Dfx] is a J.S.. domain. Consider now fCx),,g(x)

in KIxj. Kix] is a PJID. with a unity and therefore

Cf(x),g(x)) (dx)) in Kix], Now

d (x) _ +_ X . . +9 n xn

T-O 1 n

where each a, E D and 6 0. Now f Cx) E E(d(x)) and

g Cx) E EdCx)) which implies that f(x) d (x).k (x) and

g (x) d(x)-k2(x), where k1 (x),k Ex) E K[x]. This implies

that

f(x)+ .I.+ n

(-L-+Ox + + ! +x )
0 1 m

and

ax =a _ - ++ nxn

WO 1 Wt t+ -- x + .+-x
T0 nl TIt

where Yi,65,, Ci.E D and 6 /-' 0 for any i. We can ra-

tionalize the denominator on d(x), k1(x), k2(x) and then

n
H *-d () =d ( ,X
i=0

H6 Si-k1 Cx) r(x)
i=0

t
I yij'k 2  r r2 x)

in0
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Now dl(x), r1 (x), and r2(x) are in D[x] which implies that

n m

(. ki .(H 6) -f(x) = d, (x)-r(x)
i=0 =0

and
n n

i.0 i).HEi) -g(x) = di W-r2(x)

Let d be the greatest common divisor of the coefficients of

di(x) so that di(x) = d -d2(x) where d2(x) is primitive in

DEx]. This implies that

n m

. ( 6 i)-f(x) = d-d 2 (x)-r(x)i=0 i=0
and

n t

i. i)=- Wg(x) = d-d2(x)-r2(x)

but now f(x) and g(x) are primitive which implies that the

greatest common divisor of the coefficients of f(x) and d is

1 and also the coefficients of g(x) and d is 1 in D. Hence

n m n t
d I ( H I)(I S161) and d|( H r.)( H n ) which implies

i=0 1=0 i=0 1i=

n m n t
that d-w1 = ( H ) ( T I6i) and that d-w2 = ( 1 ii rli)

i=0 1i=0 1i=0 i=

for some w1 ,w2 E D. Hence w1 -f(x) = d2(x)-r(x) and

w2 -g(x) = d2(x)-r2 (x). Now let y1 and y2 be the greatest

common divisors of the coefficients of rl(x) and r2(x),
respectively. Then ri(x) = yiui(x) and r2 (x) = y2 u2 (x)
where ui(x) and u2 (x.) are primitive polynomials in D[x].

Therefore w-of(x) = d2 (x).y1ul(x) and w2-g(x) = d2 (x)'y2 u2 (x)
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which implies that y1l1w1 and y2 1w2 but now also d2(x)-u1 (x)

is primitive and d2(x)-u2 (x) is primitive which implies

that w jy1 and w2 Y2:. This implies that w1 = u y1 and

w2 = u2*y2 whereu and u 2 are units in D. Hence

u -(f(x) = d2(x)-u1 (x) and u2 -g(x) = d2(x)-u2(x) which

implies that

f(x) = u1  -d(x)-u1 (x)

and

g(x)=u2 -1*d2 (x) -u2 (x).

Therefore d2 (x) Jf(x) and d2(x) g(x).

Suppose now that there exists d3(x) E D[x] such that

d 3(x)ff(x) and d3 (x)fg(x). This implies that

f(x) = d3(x).q1(x)

and

g(x) = d3(x).q2 (x)

where ql(x),q2 (x) E D[x]. This implies that (f(x)c(d3 (x))
and (g (x))c (d3(x)) which implies that (f(x),g(x))c (d3(x))'

Consider once again (f(x),g(x)) in K[x]. This implies

(f(x),g(x)) = (d(x))c (d3 (x)) in K[x], which implies that

d(x) = d3(x)-c(x) where c(x) E K[xI. This implies that

n
d,(x) = ( )d3 (x)-c(x)

i=0
which implies that

n
d-d2(x) I)-d2 (x)-c(x).

i=0

Let c'(x) be the rationalized polynomiaI of c(x) in D[x].
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i.e., c'(x) = k-c(x) where k is the product of the denomi-

nators of the coefficients of c(x). Let d' be the greatest

common divisor of the coefficients on c'(x) so that

c(x) = k-d'-c"(x) where c"(x) is a primitive polynomial in

D[x]. Then
n

d-d2 (x) .( 1 (k-d') -d3(x) -c"(x).
i=0

But now we claim d3(x) is primitive in D[x] also. Since

d3 (x)|f(x) in D[x] then d3(x)'w1(x) = f(x) and if d3(x)

is not primitive then neither is f(x). So d3(x) is a prim-

itive polynomial in D[x] which implies as before that d

n
and ( H 1 .)(k-d') are associates. This implies that

i=O
n

v-d = ( H 1 i)(k-d') where v is a unit in D. Hence
i=O

d2 (x) = v-d3 (x).-c"(x) which implies that d3(x)|d2(x), and

therefore D[x] is a ... domain.

Theorem 2.10: Let D be a . domain and let P be

a prime ideal in D[x] such that PAD = (0) in D. Then P is

principal.

Proof: Let f (x) E P. such that if g (x) E P then

deg f(x)s deg g(x). 'Let d ECD be the greatest common

divisor of the coefficients of f(x), then f(x) = d-f1(x)

where f1 (x) is primitive in D[x]. We show P = (f Wx).

Now d-f1 (x) E P implies that fi(x) E P since d q P.

Therefore, this implies that (fl(x))cP. Let g(x) E P,
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then deg g(x)>_ deg f1 (x). Suppose deg g(x) = deg f1 (x),

then if

f1(x) = a0 + alx + ... + ann
1 n

g(x) = b0 + b1 x + ... +bn

This implies that bnf1(x) - ang(x) E P of degree n-i, which

implies that bnf1(x) = ang(x) = 0 which implies that

bnf 1(x) = ang(x) but now (an, f1(x)) = 1 which implies that

anlbn or an -k = bn. Hence k f1(x) = g(x) which implies

g(x) E (f1 (x)). Suppose that deg g(x) >deg fl(x). Let

d(x) = (g(x),f1 (x)), then d(x)-k1(x) = g(x) and

d(x)k2 (x) = f1 (x), where k1(x),k2 (x) E D[x]. Suppose

deg d(x) = 0, then d(x) = d E D and if dIf(x) then d1l

which implies d is a unit in D. This implies that

(fl(x),g(x)) = 1. Consider the ideal (f1(x),g(x)) in K[x].

Since (fl(x),g(x)) = 1 in DEx], then (f 1 (x),g(x)) = (1)

in K[x] since K[x] is a P.I.D. with a unity. Hence there

exists r ,(x),r2 (x) C KEx] such that 1 = r1 (x)f1 (x) +2 (x)'g(x).

By rationalizing the denominators on the coefficients of

r (x) and r2(x), we get

d = rj(x)-fix) + r2(x).g(x)

where rl(x),r (x) C DExI. This implies that

d C (fl(x),g(x))cP in D[x]

which is a contradiction since PD = (0) in D. Hence

deg d(x) 0. This implies 1 deg d(x)sn which implies that

g(x) = d(x)-k1 (x) and fj(x) = d(x)-k2 (x) where the degrees of
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d(x),k1 (x),k2 (x) are all positive. Suppose deg d(x) n.

Then deg d(x) <n and deg k2(x) <n which implies d(x) .j P

and k2(x) J P but this implies that f1 (x) q P which is a
contradiction since f(x) ,E P. Therefore deg d(x) = n

which implies that deg k2(x) = 0. Therefore k2(x) = k E D

and f1 (x) = d(x)-k but now f1(x) is primitive which implies

that k is a unit in D. Hence fl(x) -k 1 = d(x) and since

g(x) = d(x)-k1 (x) then g(x) = fi(x)-k -k(x) which implies

g(x) E (f 1 (x))I. Hence Pc(f 1 (x)) and P = (f1 (X).

Theorem 2.11: The following are equivalent.

(a.) D is a valuation ring.

(b.) If A and B are ideals in D, then either AcB

or BcA.

(c.) If (a) and (b) are principal ideals in D, then

either (a)c(b) or (b)c(a).

Proof: (a.) implies (b.) Let A and B be ideals in D.

Suppose, to the contrary, that AIB and BcjA. This implies

that there exists x E A such that x q B, and there exists

y E B such that y q4A. Now- EK, which implies - E D or
y y

E D. Suppose-E D, then -y E B which implies x E Bx y y
which is a contradiction to the supposition that x q B.
Suppose now that I E D. This implies that Y-x E A whichx x
implies y E A which is a contradiction to the supposition

that y q A. Hence either AcB or BcA. (b .) implies (c.)

Let (a) and (b) be principal ideals in D. Then (a) and (b)
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are ideals in D and from (b.) either (a)c (b) or (b) c(a) .

(c.) implies (a.). Let x E K. Then x = -O where a,3 E D.

From (c.) we know that either (a) c(3) or ( ) c (a). Suppose

(a)c (f). This implies that a E (j) which implies a = d-3

where d E D. But then = d which implies E D. Suppose

(3)C(a). This implies 3 E (a) which implies 3 = dI.a

where d1 E D. But then which implies E D. Hence

either x .E D or x ED, and D is a valuation ring.

Definition 2.1: An integral domain D is a Bezout domain

iff every finitely generated ideal of D is principal.

Theorem 2.12: An integral domain D is a Bezout domain

iff D is a .$.2. domain and Dp is a valuation ring for every

proper prime ideal P of D.

Proof: Suppose D is a Bezout domain. Let a,b E D,

then (a,b) (d) for some d E D. We show d is the greatest

common divisor of a and b. Since (a,b) = (d), then a E (d)

and b E (d) which implies a = r1 d and b = r2d where r1 ,r2 ED.

This implies that dja and djb. Suppose there exists an

element d1 E D such that d1 fa and d1 Jb. This implies that

d1-k1 = a and d -k2 = b for k ,k2 E D which implies a E (d1 )

and b E (dl). This implies (a)c(d1) and (b)c(dI) which

implies (a,b)c(d1 ). Therefore (d)c (d1 ) which implies

d.E (dj) or d = k3 *d 1 and d1 |d. Hence D is a .. S.. domain.

Let P be a proper prime ideal of D and let x E K. Then

x = a where a, t E D and j y 0. Now (a,j) = (d) for some
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d E D since D is a Bezout domain. This implies that a = k d

k
and 6 = k2 -d for some k1 ,k2 E D which implies = and

2

. Suppose k E P and k2 E P, then (k )CP and (k

which implies (k,k2)cP. But now the greatest common

divisor of k and k2 is 1 from Theorem 2.1. Hence (k1 ,k2) = 1)

which implies (l)cP and therefore P = (1). This is a con-

tradiction since P is a proper prime ideal of D. Therefore
eitherkkk

either kl q P or k2 Pwhich implies E D or- 1  ED.1k21 p 2 p

Hence either a- ED or - ED which implies x E D orp p p

x~ 1 E Dp and Dp is a valuation ring.

Suppose conversely that D is a .. domain and that

DP is a valuation ring for every proper prime ideal P of D.

Let a, b E D, then the greatest common divisor of a and

b is d E D. We show that (a,b) = (d). Since dfa and dib

then d-k1 = a and d-k2 = b for some kl,k2 E D which implies

that (a)c (d) and (b)c (d). Therefore (a,b)c(d). Consider

[(a,b):(d)] as an ideal of D. If [(a,b):(d)] = D, then

(d)c (a,b) and the theorem is proved. Suppose to the con-

trary that [(a,b):(d*)] D, then [(a,b):(d)]cM where M is

a maximal ideal of D. This implies that [(ab): (d)] DMCMDM< DM
k

which implies [(a,b)DM: (d)D cMDM<DM. Now = -and

2

b k2 k= k and since DM is a valuation ring then E DM ora M
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k2 E D which implies that k ri where s1 ED,

E- DM whchimlis ha = whrer sy2 2
k2 r

s 1  M or -= where r2 ,s2 E, s2 s M. This implies that
1 2

k -s1 = k2 -r1 or k2 -s2 = k1 *r2 which implies k21k1 -s1  or

ki1k2 -s2 . But now (k1,k2) = 1 from Theorem 2.1, which

implies k21s1 or k 1fs2 from Theorem 2.3. But if k2js1 then

k2 1 M and if k1 fs2 then k, qM, for suppose k21s1 and

k2 , E M, then k2 d1 = s for some d' .E D which implies s E M

which is a contradiction. The same argument holds for k1 .

k k
Hence if E D then and if E DM then

k
k M.asuppose =IEDM, then E DM since k 2  M

which implies that d = a-0 + b- This implies that
R2

d E (a,b)DM which implies that (d)DMc(a,b)DM and therefore

1 E [(ab)DM: (d)DM] which is a contradiction since

[(a,b)M: (d)DM ]cMD On the other hand suppose b= E DM

then E DM since k,;qM. This implies that d = a- 1- + b-0

which implies that d E (a,b)DM. Therefore (d)DMc(a,b)DM and

1 E [(ab)DM: (d)DM which is a contradiction since

[(a,b)DM: (d)DM]cMDM. But then [(a, b):(d)] = D and (d) c(a, b) .

Hence (d) = a,b). An obvious induction argument extends to

any finitely generated ideal, and therefore D is a Bezout

domain.
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Definition 2.2: A non-zero element p is prime iff p

is not a unit and if plab then pja or pjb.

Definition 2.3: A non-zero element q is irreducible iff

q is not a unit, and if q = bc, then b is a unit or c is a

unit.

Theorem 2.13: If D is a ... domain, then p E D is a

prime element iff p is irreducible.

Proof: Suppose p is a prime element of D and that

p = a-b where a,b E D. Then since p = a-b, pja-b which

implies that pfa or pib. But then p-k1 = a or p-k2 = b

for some k1,k2 E D. This implies that p p -k 1 -b or

p = p-k2 *a which implies that 1 = k 10b or 1 = k2 -a. There-

fore either a or b is a unit.

Suppose conversely that p is an irreducible element of

D and that pla-b. Let (p,a) = d where d E D. This implies

that p = k1 *d and a = k2 -d where k1 ,k2 E D. Since p is

irreducible, then d is a unit or k is a unit. If d is a

unit, then dil which implies (p,a) = 1 and since D is a

.Q... domain and pla-b where (p,a) = 1, then pjb. If

k is a unit, then there exists k E D. Since d-k1 = p

then d-k -k~ -l p-k which implies d = k1~ p. But then

p/d and dja which implies pfa. Hence p is a prime element

of D.

Theorem 2.14: If D is a . domain and P is a proper

prime ideal of D, then Dp is a . domain.
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r

Proof: Let D be a proper prime ideal of D. Let ,
1

r r
E D If either rl q P or r2 q P, then (-,s-)=s1.

S2 P 1 2

Since if rl P or r , then rE D s E D which
12 qPr 1 P r 2 P

implies that either is a unit or 2 is a unit and any
s s 2

divisor of a unit is itself a unit and therefore divides 1.

r r2  r2
Suppose now that 1,2 C PD . Then define (-,-) = d

S s2 p -s1S2

where d = (r1,r2 ) in D. Since d = (rI,r2), then d-kl =-r

and d-k2  r2 where (k1,k2) = 1. This implies that

r k r 2 k 2 r r 2- d,-- and r =d--which impliesth d l -1- and d -
s 2 2s1 2

rrl an r2 r1  r1 r2  r Z2 .
Suppose ands then - =and - = -. This

1 2 1 1 S2 2

implies that r1st1 = rs1 1 and that r2st2 = rs2k 2 . Since

s,t1 ,t2 E P then s-t1 E P and s.t2 q P which implies that
s-tj 1q PDp and s t21 PDp. Therefore the (s-t2,r) = 1 and

and (s-t1 ,r) = 1 which implies rjr1 and rfr2 since rjr1(st1 )

and rjr2 (st2 ). Hence rid which implies r-k = d and there-

fore r-s-k = d. Then d = (s1s2) and D is a S... domain.
s S1 s2 p

Theorem 2.15: An integral domain D is quasi-local iff

the set N of all non-units of D form the maximal ideal.

Proof: Suppose D is quasi-local, and let N be the set

of all non-units of D. Since D is quasi-local there exists
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a unique maximal ideal M of D. We show M = N. McN is

clear. Let x E N, then (x) D which implies (x)cM since

M is the only maximal ideal of D. This implies x E M and

N = M.

Suppose conversely that N forms a maximal ideal of D.

Suppose also that there exists a maximal ideal M of D. We

show M = N. Now McN is clear which implies that N = D or

M = N. N D since 1 qN which implies M = N. Hence D

is quasi-local.

Theorem 2.16: An integral domain D is a valuation ring

iff D is a Bezout domain and D is quasi-local.

Proof: Suppose D is a valuation ring. LetA = (a1,...,an)

be a finitely generated ideal of D. We use induction on n.

If n = 1, then clearly A is principal. Suppose that if A is

generated by k generators then A is principal. Suppose

n = k + 1, then

A = (a1,. ..,ak,ak+l) = (a1,...,ak) + (a)k+.)

Now (a1 ,...,ak) = (d) where d E D which implies that

A = (d,ak+l) but now since D is a valuation ring either

(d)oc (ak+l) or (ak+l)c (d). If (d)c(ak+l) , then A = (ak+l).

If (ak+l)c(d) then A = (d). In either case A is principal.

Therefore the induction is complete and D is a Bezout domain.

Suppose there exists maximal ideals M 1 and M2 of D.

Since D is a valuation ring then either M cM or M2cM..

SupposeM 1CM2 Tht 1 2 M2#D.
Supose M 2 Then this implies that either NI2 *D or
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M = M2 . Since M2 is a maximal ideal of D, M2  D. Hence

M1  M2. Suppose that M2CM1 . Then this implies that

either M1 = D or M1 = M2 . Since M1 is a maximal ideal of D,

then M D. Hence M1 = M2 . In either case M1 = M2 and

there is a unique maximal ideal of D. Hence D is quasi-local.

Suppose conversely that D is a Bezout domain, and D is

quasi-local. From Theorem 2.12 DP is a valuation ring for

every proper prime ideal P of D. From Theorem 2.15 we know

that the set of all non-units N of D form the maximal ideal

of D. We show D = DN. DcDN is clear. Let w .E DN, then

w = r , where r,s ED, s q N. Since s N, then s1 ED

r -lwhich implies that w =r= r-s E D. Hence D = D and
s N

therefore D is a valuation ring.

Definition 2.4: A fractional ideal N of D is inver-

tible iff there exists a fractional ideal M such that

N-M = D. If N is a fractional ideal then N 1 = {x EKfxNcD}.

Theorem 2.17: If a fractional ideal N is invertible,

then N has a unique inverse M and M = D:N.

Proof: Since N is invertible then there exists a

fractional ideal M such that N-M = D. We show M = N~1 . Let

x E M. Then x-NcM-NcD which implies x-NcD and x E N-.

Let x E N_ . Then x E K such that x-NcD which implies

x-NcM-N . This implies x-N-NcM-N-N which implies x E M.

Hence M = N1 . It is clearly unique since if N-M = D then
1

M = N = M which implies M1 = M. Also N_ 1 = D:N by def-

inition and so M = D:N.
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Theorem 2.18: Let A and B be ideals of D. Then A = B

iff ADp= BD for every maximal ideal P of D.
p p
Proof: Suppose A = B, then Ae = Be for any extension

of A or B. This implies AD = BD for every maximal ideal
p p

P of D.

Suppose conversely that AD = BD for every maximal
p p

ideal P of D. This implies AAD = ABD where the inter-
p p

section is taken over all maximal ideals P of D. Clearly

AcAAD . Let x ,E flAD . Let C = {r E DIrx E A}. C is an
p p

ideal of D. If C D, then we are through. So suppose

C D, then CcM where M is a maximal ideal of D. But now

x E ADM which implies x = -where a ,EA and s M. This

implies sx = a which implies s E C which is a contradiction

to CcM. Hence C = D which implies x E A. Therefore

fADp = A and by a similar argument ABDp = B and hence

A =B.

Corollary 2.1: If D is an integral domain, then

D = D where the intersection is over all maximal ideals
p

P of D.

Proof: From the proof of Theorem 2.3, given an ideal

A of D, A = hIADp where the intersection is taken over all

maximal ideals P of D. But D = (1) and therefore

D = (1) = h(l)-D = AD where the intersection is taken
p p

over all maximal ideals P of D.

Theorem 2.19: (a) If a fractional ideal A of D is

invertible, then A is finitely generated.
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(b) If A and B are fractional ideals of D such that

AcB and B is invertible, then there exists a fractional

ideal C of D such that A = B.C.

(c) A fractional ideal A of D is invertible iff there

exists a fractional ideal B of D such that A-B is principal.

Proof: (a) Since A is invertible, then there exists

a fractional ideal B of D such that A-B = D = (1). Now

n
this implies that 1= a. -b. where a. E A and b. E B.1 1 

i1 1

i=l

We show that A = (a1 ,...,an) (a1...,an)cA is clear since

each a. E A. Let x E A, then x b E D for every b C B. Now

n n
x = x-1 = x a.-b. = Z a. (x.b.),

i=l1 1 i=l1 1

but x-b. E D for every i E {1,2,. . . ,n}. This implies that

(x-b ) a. E (a.) for every i E {1,2,...,n} which implies

that x E (a1 ,...,an) and A = (a1,...,an).

(b) Since B is invertible, there exists a fractional

ideal N such that B-N = D. We show B-(N-A) = A. Now

B.(N-A) = (B-N).A = D-AcA.

Let x E A, then 1-x E D-A which implies 1-x E (B.N).A.

This implies x E B- (N-A) which implies B. (NA)DA and there-

fore A = B(N-A).

(c) Suppose A is invertible, then there exists a

fractional ideal B such that A-B = D = (1) which implies

that A-B is principal.
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Suppose conversely that A-B (x) where x E K. Since

x E K, then x = where a,f. E D and f / 0. Now ( ) is

invertible which implies A-B( ) ()( ) and A-B( )=(1) D.

Hence A is invertible.

Definition 2.5: D is a Priifer domain if and only if

every non-zero finitely generated ideal is invertible.

Theorem 2.20: The following are equivalent.

(a). D is a Priifer domain.

(b). Every non-zero ideal of D generated by two elements

is invertible.

(c). If AB = AC, where A,B, and C are ideals of D,

and A is non-zero finitely generated, then B = C.

(d). For every proper prime ideal P of D, DP is a

valuation ring.

(e). A(BflC) = ABAAC for all ideals A, B, C of D.

(f). (A+B) (AAB) = AB for all ideals A, B of D.

Proof: (a,) implies (b.) is clear. (b.) implies (a.).

Let C ( c,c2 ,...,cn) be a non-zero finitely generated

ideal of D; we show C is invertible by induction on n. The

theorem is true for n = 1 and n = 2. Suppose n >2 and

every non-zero ideal of D generated by n - 1 elements is

invertible. We may assume that c1,c2 ,.. . , cn are all non-

zero. Let A = (c1 ,c2 ,...,cn-1), B = (c2 ,c3 ,.. . ,cn),

E = (c ,cn), and F = c1A 1 E_ + cnB 1 E 1 . Then we see

that
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CF [A+Cc)]c A'B 1 + [( 1)+B]CnB BE_

c E1  +cnc A + c cB E + cnE
n 1 1-i

c 1B E D+cInB 3 +1 cE BE1D+c A-1

but cnBcD and c1A-1 cD. This implies

CF = c1E 1 + cnE = (c,,cn)E1 D.

Therefore C is invertible.

(b.) implies (c.).

We know that (b.) implies (a.) from above so we show

(a.) implies (c.). Let A, B and C be ideals of D such that

AB =,AC and A is finitely generated. Then A (AB) = A- (AC)

which implies B =1C. Hence (b.) implies (c.).

(c.) implies (d.).

If A, B and C are ideals of D with A (0) finitely

generated and if ABcAC then BcC, for we have AC = AB + AC

A(B+C) which implies C ='B + C and therefore BcC.

Let P be a proper prime ideal of D. We must show that

if , E D, then (a) c (b) or (b)c( ). However, since we

1TTmay assume s,t 4 P, then - and I are units in Dp. Therefore

it is sufficient to show that aD PcbDP or bDPcaDp. This is

clear if either a = 0 or b = 0, so we may assume a 0 or

b 0. It is clear that (ab) (a,b)c (a2,b2) (a,b) which

implies that (ab)c(a2 1,b2). This implies that ab= xa2 + yb2

for some x,y E D which implies that (yb) (a,b) c (a) (a,b) and

so (yb)c(a). Let yb = au for some u E D. Then ab = xa2 +uab

which implies xa2 = ab(l-u). If u 4 P, then a=b(l) E bD.
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If u E P, then 1 - u j P and b = a(y) E aD . Hence either1-u p

aD CbD or bD caD . Therefore D is a valuation ring by
p p p p p

Theorem 2.11.

(d). implies (e).

Let P be a maximal ideal of D. Then

A(BA)C)Dp = (ADp) (BflC)Dp

from Theorem 1.4, but (AD ) (BflC)D = AD (BD flCD ) from
p p p p p

Theorem 1.4. Now

AD (BD ACD ) = (AD BD )fl(AD CD )
p p p pp pp

= ABD PACD = (ABAAC)D
p pIp

since Dp is a valuation ring. Therefore from Theorem 2.18,

A(BFnC) = ABAAC.

(e.) implies (f.)

Suppose A(BAC) = ABAAC for all ideals A, B, and C of D.

Then

(A+B)(AflB) = [(A+B)A]fl[(A+B)B]

= [A2+AB]fl [AB+B2]DAB

which implies that ABc (A+B)(AA1B). Now

(A+B)(AflB) = A(AflB) + B(ACB)

is always true, which implies (A+B)(ACIB) = (A2 nAB) + (B2FnAB)

but now A2iiABcAB and B2 IABcAB which implies that

(A2AnAB) + (B2CIAB)cAB + AB = AB.

Hence

(A+B) (AAB).cAB

and therefore

(A+B) (AlB) AB.
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(f.) implies (a.)

We show (f.) implies (b.) and then clearly (f.) implies

(a.) since (b.) implies (a.) has already been shown.

Let C (c1,c2 ) be a non-zero ideal of D generated by

two elements. If c = 0 or c2 = 0, then clearly C is inver-

tible. Suppose c 0 and c2 # 0. Then let A = (c1) and

B = (c2) so that

C(AfB)B A = (A+B)(AfiB)B1 A

= AB B-1 A = D.

Thus C is invertible.

Definition 2.6: An overring T of D is flat iff for

every prime ideal P of D, either PT = T or TcDp.

Theorem 2.21: An overring T of D is flat iff

[(y): (x)].T= T for every - CT.
y

Proof: Suppose T is a flat overring of D, and let

CT. Suppose, to the contrary, that [(y):(x)]-T T.
y

Then [(y):(x)]-TcM where M is a maximal ideal of T. This

implies that MAD is a prime ideal of D containing [(y):(x)].

Since T is a flat overring of D, we know that either

(MID) - T = T or TcDMfD. (fMAD)- T = T is untenable since

(MAD)TcM from Theorem 1.4. This implies that TcDMPD but

now E CT implies CDMD which implies y=swhere

r, s E D and s MAD. This implies that sx = ry which

implies s E [(y):(x)]. But [(y):(x)]cMAD which implies

s E MAD which is a contradiction to the fact that T is flat.
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Suppose conversely that P is a prime ideal of D and

that P-T / T. We show TcD . Let t E T, then t =-where
p y

x,y E D. Suppose [(y):(x)] DpcPD . This implies

[(y): (x)].D ADcP which implies [(y): (x)]cP. This implies
p

that [(y):(x)]-TcP.T which implies that TcP.T. This

implies T = P-T which is a contradiction since P.T T.

Suppose [(y):(x)]D 4P -D . This implies that [(y): (x)] D = D
p pp p

which implies that 1 E [(y):(x)I].D . This implies that
p

n r.
1 = d- 1  where d,rt,s. E D, s. P and d. E[(y):(x)]

i=l 1i11111

n d.x r.
which implies d.(x)c(y). This implies that x- -L

y i=l Y si

but now d.x .E (y) which implies that d.x = k.y for each i and
1 1 1

for some k. E D. This implies
1

n k y r

Y i=l ys
which implies that

n r.

n=1 1

Therefore x E D and TcD . Hence T is a flat overring of D.
y p p

Theorem 2.22: The following are equivalent.

(a.) T is a flat overring of D.

(b.) T P= DPqD for every maximal ideal P of T.

(c.) T = fDPfD, where the intersection is taken over

all maximal ideals P of T.

Proof: Suppose T is a flat overring of D and let P

be a maximal ideal of T. Let x E DPFD, then x = , where
P CID t5
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r,s C D and s ,q PAD. This implies rs C T and s q P which

implieSr ET or x E TTherefore TD c D p Let E T

x1 x

where r,s E T and s q P. This implies r and s=-
y 1

where x1,y1 ,x2 ,y2 E D. Now we can write r = 11 and

x2y1s = 2. Let xly2 = a), yy2 = 3, and x2y1 = y. Let
yly2

w E (W3: (a)]An[(IU) :(Y)]I

We show W-T = T. Suppose W-T / T, then W-TcM where M is

a maximal ideal of T. Now MAD is a prime ideal of D which

implies (MAD) -T = T or TcDMrlD. (MID).T = T is untenable

since (MAD).TcM from Theorem 1.4. Therefore TcDMAD.

a
This implies E CD which implies that = andMAD 

- and

= , where r1 ,r2,s1 ,s2 E D and ss2 4 MCID. This implies
2

that s1a = r 1 and s2y = r2r3 which implies that s1s2 a= s2r

and s -s2Y = s1r2r3. This implies that s-s2 E W which im-

plies sl 'SC2 E MD which is a contradiction since s-s2 "nD.

Hence T4DMFID but then T is not flat which is a contradiction

since T is flat. Hence W T = T.

Now we show W-DPACD = DPAD. Suppose W-DPA D DPACD'

then W*DPID is contained in (PAD) -DPfCD. This implies

WcPAID which implies W-Tc(PAID)-TcP which is a contra-

diction since W-T = T. Hence

W-DPCiD = DPnD'
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This implies that 1 E W-DPfD which implies that

n r.
1 = I d.

i sl

where d.,r.,s. E D, s. 4P and d. ,W. This implies that
1 1 1 11

a n (dict)r-=1 1. Now s. 4 P implies s. is a unit in D
Y i s 1 1 p

Now s E DP implies s E W-DP which implies s.E[ (Y)]-DP,

U.

This implies that s = where u E [(6):(y)] and s!ED\P.
1

-l I -- This implies s - r but now s E D\P also which implies
1 1!

1

s . u. = s!. This implies u. j P. Let d.-a = k. - and
1 1 1 1 1 1

u. -Y =b. - where k.,b. ED for each i. Now
11 1 1

n (d ot)r. n (k.-6)r.s!ID 1 ID 1 1

n=l Ysi i=l Yu

but now remember s = P which implies that u -= b 4 P

for each i. Hence

n (k.- S)r.-s. n (k.-1)-r.-s!
S1 1 1 1 1 1

Y*u. b.7Vi1 1 n=l 1

n k-r s!

n=1 i

is an element of DPnD Therefore Y-is an element of

DPAD and TPcDPflD which implies TP DPAD'

Suppose TP= DPfD for every maximal ideal P of T.

Then from Corollary 2.1 lTP = T where the intersection is
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over all maximal ideals P of T. This implies that

nD A T T
P AD ; ,P

where the intersection is taken over all maximal ideals

P of T.

Suppose T = DPfD where the intersection is over all

maximal ideals P of T. Let ? E T. We show that
y

[ (y):(x).= T. Since E T, then E D Supposey y pAD'
(Y) (x)].T T, then [ Cy): (x)].TcM where M is a maximal

ideal of T. This implies that E CEDMAD since E C AD
y MDy PAD

where the intersection is over all maximal ideals P of T.

Therefore X where r, s E D and S M. This implies

that sx = ry which implies s E [(y): (x)] which implies that

s E MAD since

[ (y): (x) ]c [(y): Cx) I. TAOcMAD.

This is a contradiction since s .q M. Therefore there is no

such maximal ideal M and [(y):( x)].T = T.

Theorem 2.23: An integral domain D is a Priifer domain

iff every overring of D is flat.

Proof: Suppose D is a Prifer domain. Let T be an

overring of D, and let P be a maximal ideal of T. We show

T = DPAD. It is clear that DPADcT, but since D is a

PrUfer domain DPAD is a valuation ring. Then from Theorem

1.7 we know that TP is a valuation ring and that T P= [DPAD]P.

Now (PAD). DPADCP is clear. But now PcDPAD from Theorem
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1.7 and 1 A P which implies Pc(PflD)DPrID. Therefore

P = (PAD)D PD which implies that P is the set of all non-

units. Hence

[DPnD]P DPAD

and therefore

T P = DPD

From Theorem 2.22, T is flat.

Suppose conversely that every overring of D is flat.

Let P be a prime ideal of D. We show DP is a valuation ring.

Let x E K and suppose that xjq DP and X~ 1 Dp. This implies

that DP < Dy[x] and D< Dp[x~ 1. Now it is obvious that

PDP is a proper ideal of DP which implies that 1 q PDP[x1

or 1 q PD,[x ] from Theorem 1.9. This implies that

DP[x]cD or DP[x1 ]cDP since both are flat overrings of D.

Hence x E DP or x E DP which implies that DP is a valuation

ring and D is a Pruifer domain.

Corollary 2.2: Every overring of a Priifer domain is

a Pri*fer domain.

Proof: Let T be an overring of D and let J be an

overring of T, i.e., DcTcJcK. Let P be a prime ideal of T.

Then PAD is a prime ideal of D which implies (PnD).J J

or Jc DPAD. This implies that P.J = J since (PAD).JcP.J

or that Jc TP since clearly DPADcTP. Hence J is a flat

overring of T and from Theorem 2.23 , T is a Pruifer domain.
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