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The purpose of this paper is to examine some basic
topics in category theory. A category conslsts of a class
of mathematical objects along with a morphism class having
an associative composition.

The paper is divided into two chapters. Chapter 1
deals with intrinsic properties of categories. Various "sub-
objects" and properties of morphisms are defined and examples
are given.

Chapter II deals with morphisms between categories
called fumctbrs and the natural transformations between func-

tors. Special types of functors are defined and examples are

given,



PREFACE

The origins of category theory are in algebraic
topology. The basic concepts of category, functor and
natural transformation were formulated by Samuel Eilenberg
and Saunders MacLane in 1945 in their paper, "General Theory
of Natural Eguivalences." Since then, category theory has
grown into & discipline in its own right., The main strength
of category theory i1s two-fold. First, it has applications
in other branches of mathematics and it unifies many disci-
plines in the sense that many concepts can be expressed in
functorial language. As a consequence of this unification,
category theory provides a groundwork for comparing different
branches of mathematics by comparing their isomorphisms.

It is the purpose of this paper to explore some basic
notions in category theory. These notions include both in-
trinsic characteristics of a category and how categories may
be compared, Category theory tries to abstract concepts
from many of the different disclpliines.

A category consists of two things, the mathematical
objects and the morphisms between these cbjects. Many of
the internal characteristics of a category are nothing more

than abstractions of & similar concept in an already existing
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discipline. For most of the noticns menticned in this paper,
examples are giveh in specific categories that suggest the
origin of the concept.

Categories are compared using categorical morphisms or
functors., A functor consists of twe things, an assignment of
an object of the domain category to an object of the codomain
category, and an assignment of morphisms. Many times 1t is
desirable to compare functors, and the ftool here is a natural

transformation.
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CHAPTER T

OBJECTS AND MORPHISMS

Most of the definitions and theorems come from the

book Categoeries and Functors,by Bodo Pareigls. Also some

of the examples appear in this book., In all cases, however,
the proofs are original.

Let ¢ conslst of two things, (1) an object class,
written obC, of mathematical objects, and (2) a family of

mutuelly disjoint sete {Mor, (&,B)} for all objects A,B ¢

o

ob C whose elements f,g,h««« ¢ Mor, (A,B) are called mor-

e !
phisms, Alsgo, a family of maps

(Mor, (A,B) xMor, (B,C)3 (f,g) - &f < Mor, (4,C)]

C C
for all A,B,Cecob C called compositions exists, When we have

£

f e Mor, (A,B) we will often indicate this by A SB orf :A-B,

C
where A ig the domain of £ and B is the codomain. Then &
is called a category if C fulfilis the following axioms.
(1) Associativity: TFor all A,B,C,D ¢ ob C and all
f ¢ Morc’(A,B), g € Morcl(B,C) and h ¢ Morc,(C,D), we have
h(gn) = (hg)f.
(2) Identity: For each object A in C there is a wor-
phism 1Ae;Mora’(A,A) called the identity such that for all

Beob G Ce obC £ e Mor, (A,B) and g ¢ Mor, (C,A) we

c
have flA =  and lAg w= g,



The following are some.examples of categories. More
examples appear in Appendix 7T,

(1) Set. The objects of this category are all sets. If
A and B are sets, then Morg . (A,B)= {f|f is a function from
A to B}. The composition in Set is the usual composition of

functicne. The 1dentity function 1, : A& - A defined by

A
,lA(a) = a for every a<A satisfies axiom 2 since if A £ B

and C § A, then (£1,) (a) = £{i,(a)) = £(a), and (1, g)(a)=
1,(g(a)) = g(a) for each acA., Composition of functions is

associative, since if A fs&¢ ~ D, then for every a ¢ A

((hg)T){a) = (he)(f(a)) = n(g(f(a)) = n{(gn)(a)) = (n(af))(a).
Therefore, Set is a category,

(t) Top. The object class in Top is the collection of
all topological spaces. If (X,T) and (Y,S) are topological

spaces (usually just writen as X and Y), then Mor (X,Y) =

Top
{f | f is a continuous function from X to Y} where f is con-
tinuous means f'l(U)esT for every UeS. Composition is the
usual composition of continuous functions, The composition
is known te preserve continuity. This composition ig asso-
clative since the composition of functions is associative.
The identity function on X is a continuocus function and
satisfles axiom 2, Therefore, Top is a category.

(3) Gp. The object class in Gp ie the collection of all

groups, If (A,*) and (B,*) are groups (usually written as A

and B), then o g (A,B)= {f | £ is a group homomorphism



from A to B} composition of morphisms 1s defined to be the
usual composition of homomorphisms which glves a homomorphism.
Thieg composition is associative slince composition of func-
tions is associative. The identity function is a homomcr-
phism. Hence the collection of all groups together with
thelr homomorphisms forms acategory.

The following nctaticns will be used. Capital Latin
letters will denote cbjects and small Latin letters will de-
note morphisms petween objects, When there is no ambigdity,
Morc'(A,B) will be abbreviated to Mor (A,B). MorC will de-
‘note!JMor(A,B) where the union is ftaken over all objects
A,B in C.

We would now like to construct a new category e“? from
a given category C. The class of objects of P 1s the same
ag the clase of objects of @, that is, ob ¢ = ob e. TIf
A,B ¢ ob C°P, then Mor op(A,B) = Morg (B,A). Compositions
are defined by the rule:
oop (BoB) X Mor@op(B;c), (£,8) ~fa < Mor o5 (4,0)
wlith fg formed in C. BSuppose At B &¢ @;D in ¢°P,  Then

(f,g) ¢ Mor

DB cS3 LAincand (fg)h = £(gh) in C. Therefore, n(gf)=
(hg)f in Gpp, which means the composition is associative,

The identity morphism on A, lA’ in C is also a morphism in
¢®, Tet AL Band c &84 in P, Then s L4 and 4 & C.
Since lAf==f and glﬂf=g in C, we have f]¥&= f and 1Ag = g in
%P, herefore P is a category and it is called the dual

category of C.



To indicate that anAobject A or morphism £ in a category
G ig being consldered as an object or morphism in the dual
category ¢°°, we often write AP or r°P. Also (Gpp)Op = C.
When we have a true statement about a category C we can ob-
tain & corresponding true statement about the dual category

@O

b by reversing the direction of all morphisms invclved.
We would now like to study some of the internal proper-
ties of categories. In this study there are two things to

consider: the morphlsms and the objects.

Morphisms

In the study of these morphisms we will ftry to generalize
some properties of the morphisms in some specific categories.,
In Set, suppose g,h: A - B and £:B - € such that fg = fh,
Then we know that g = h if £ is injective (1-1),and if fg=fh
implies g = h for every pair of functions g and h, then we
can show f is 1-1. Let A = {(a,b) |a,beB and f{a) = f(b)).
Define g and h to be the first and second projection func-
tions respectively from A to B. Then for every (a,b) €A,
we have (fg)(a,b) = f(a) = £(b) = (fh)(a,b}. Hence, by
hypothesis, g = h. Therefore, a = b implies £ is 1-1. With
this in mind we make the following definition.

Let C be a category and £ : A - B in ¢. Then ¢ is a

monomorphigm in € if fg = fh implies g = h for all C ¢ ob &

and for all g,heMor, (C,A); that is, £ is left cancellable,

C

We sometimes shorten f is a monomorphism to £ is monic.



Now, in Set, suppose £t A - B and g,h: B - C such that
gh = hf and f is surjective (onto). Then B = f(A), and if
b e B, then there i1s an ac¢ A such that f£(a) = B. Now g(b) =
g(f(a)) = (af) (&) = (hf)(a) = h(f(a)) = h(b). Therefore
h = g. Conversely, if gh = hf implies g = h whenever

afs

FReyioe]

C, then we want to show f is onto. Let § = ((£ *(b)} |
be:f(A)}LJ{O}lifl} where {0} and {1} are disjoint sets and
0#1+# {f“l(b)} for any be f{A). Define h,g:B - 8 by

| 11if
g(b) =

h(b) = h(f(a)) = (hf)(a). Therefore gf = hf and by hypothesis

h(b) = (o) = (£71(b)) 1f bef(a), n(b) = 0 and g(b)

b £ F(A). If ach and £(a) = b,then (gf)(a) = g(f(a))

g = h,which is a contradiction if f(A) # B. Therefore f(4) =3B,
which means f is onto. Generalizing this to other categories,
we have the following.

Let € be a category and f: A - B in ¢. Then f is an

epimorphism in C if gf = hf Implies g = h for all Ccob

and for all g,h ¢ Morc’(B,C)3 that is, if £ is right can-
cellable, The morphlsm £ is also called epl. The notion of
epimorphism is duvual to the notion of monomorphism, The dual
statement of the definitlon of monomorphism would read: a
morphism P4 5B iga monomorphism in P ip ¢©P gOp==

£OP nP tmplies g%P = n°® ror every C e ob P and for every

g%, nP ¢ Mor op (C,A). In C this would look like
B £ A % C,and hf = gf implies h = g, or exactly the notion



of epimorphic. Hence for every statement about monomorphisms
there 1is & corresponding statement about epimcrphisms and
the converse,.

Lemma 1.1, Let f and g be morphisms in a category‘which
can be composed. Then

(1) If fg is a monomorphism, then g is a monomorphism,

(2) If f and g are monomorphismg, then fg is a mono-
morphism,

(3) TIf fg is an epimorphism, then £ is an epimorphism.*

(4) If £ and g are epimorphisms, then fg is an epimor-
phism.

Proof. Let A 5B % ¢,

(1) Let h,h’:D - A such that gh = gh’. Then f(gh) =
f(gh’). Therefore (fg)h = (fh)h} and since fg is & monomor-
phism we have h = h’. Hence g is left cancellable,

(2) Let h,h’:D - A such that (fg)h = (fg)h’. Then
f(gh) = f(gh’) implies gh = gh’ since £ is a monomorphism,
and since g is a moﬁomorphism h = h', Therefore fg is &
moneomerphism,

(3) This statement is the dual of statement (1) and

hence true, A direct proof would be as follows, ILet

A&35¢ EID such that hf = h'f. Then (hf)g = (h'f)g or
h(fg) = h'(fg). Therefore h = h, since fg is an epimorphism.
(4) This statement is the dual assertion of (2) and

hence is also true. Directly, let A g 3 L C %,D such that



h{fg) = h'(fg). Then (hf)g = (h'f)g which implies hf = h'f,
Therefore h = h’, Hence fg is an epimorphismn.

Therefore Lemma 1,1 is proved,

That monomorvhism ig equivalent to injection and ep-
morphism is equivalent to surjection in Set follows from the
dlscussion preceding the definitions. We can generalize the
following lemma.,

Lemma 1,2, For a category C whose objects can be con-
‘sidered as sets and whose morphisms can be considered as
functions, injective implies monomorphic and surjective im-
plies epimcrphic.

Proof. Let C be a category satisfying the hypothesis.
Let £+ A - B be 1-1 and suppose h,h’:(C = A in ¢ such that
fh' = fh. Then for ceC, F(h'(c)) = (fh')(c) = (fh)(e) =
f(h(c)), and since f is injective,h’(c) = h(ec). Therefore,
h=nh'and f is monomorphic, Now let £f: A - B be surjective
and suppose h,h’': R = C in ¢ such that hf = h'f. Then for
beB there is an acA such that f{a) = b,since f(4) = B.
Therefore h(b) = h(f(a)) = (kf){a) = (h'f)(a) = h'(f(a)) =
h'(b). Therefore h = h' and f is epimorphic., Thus Lemma 1,2
18 proved.

The converse cof this lemma is not true for some cale-
gories, as indicated by the following examples,

This example appears in the book Categories and Functors.

Let £:A - B be a dense continuous map in Hd (Appendix I). A

continuous map is dense if for every nonempty open set U in B



there 1s an acA such that f(a) eU. Show £ is an epimorphism.
Suppose g,h ¢ B - C in Hd such that gf = hf, ILet beB such
that g(b) # h(b). Then there exist disjoint open sets U

and V in C such that g(b) e U and h(b) e V. Then be g™ (U) n
h'l(VL which is open in B. Since f is dense, there 1g an
a €A such that f(a)ezg-l(U) n h“l(
1

U). Therefore (gf)(a) ¢
a(e™H () n n7H (W) 2 Un g(r7H(Y)) and (nf)(a) e n(g (U n
h (V) €h{s

to hypothesis. Therefore g = h and a dense continuous map in

(U)) n V. Then (gf)(a) # (hf)(a), contrary

Hd is an epimorphism,

Now the reals IR with the usual topology is Hausdorff
and the rationals Q with the inherited topology is Hausdorff.
Then the embedding i:Q — R is a dense continuous map but it
18 not surjective., Therefore Hd is a category in which an
eplmorphism need not be surjective as a set map.

Define a category C by ob ¢ = {{a,bl},{b}} and let {a,b}=
A and (b} = B. Define the morphism sets as follows: Mor(4,A)=
(1,1, Mor(B,B) = (1.}, Mor(4,8) = {a|h(a) = b,h(b) = b} and
Mor(B,A) = (k| k(b) = a}. Composition in € is the composi-
tlon of set meps,and we know that this is associative, The
identities are given, Now h i1s a monomorphism since there is
only one morphism into A from A,and only cne morphism from B
intc A, but h is not an injection. Alsc, k is an epimorphism
since Mor{A,A) and Mor(A,B) consist of only one element and

k is not surjective as a set map. Hence C is a category



where the monomorphisms need not be injective nor the epi-
morphisms surjective as set maps.

Some categories besides Sel whose objects can be consi-
dered as sets and whose morphisms can be consildered as func-
tiong where we have the equivalence of monomorphisms and
injective functions are Gp, its subcategory Ab (Appendix I),
Top and some of 1ts subcategories T4 spaces, normal spaces,
TB’ completely regular, regular, Tl and TO spaces, along with
Hd andé CH, the category of compact Hausdorff spaces., The mor-
phisms in these subcategoeries are the continuous functions
between the obJecteg, Some more algebraic categories where
this result is true are Bm, Rg and Ri. The proofs for these
are all gimilar,

For Gp, let £+ A - B be a monomorphism., We know the
product Ax A is a group under coordinate-wise multiplication.
Show that ¢ = {((x,y)e &xA|f(x)= f(y)} is a subgroup of
Axd, TLet (x,y),(w,z)eC. Show (xw'l,yz-l)g C. Now f(xw"5‘2
T(x) f(w-lj = T(y) f(z-l)=x f(yz“l) since T is a homomorphism,
Therefore (xw—l,yzvl) € C, and hence C is a subgroup of AxA,
Therefore C e Gp. Define PisPp 2 C = A by pl(x,y) = x and
pg(x,y) = y. These are well defined and we need to know that
p; and p, are homomorphisms, Let (x,y) and (w,z} e C. Then
Py {({#:5)(w,2)) = py(xw,yz) = xw = py(%,y)p,(w,2z). Therefore
< 18 & homomorphism. Similarly Po is a homomorphism, Then

for (x,y) €C, (fpq)(x,y) = £(x) = £(y) = fpy(x,y). Since f
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is a monomorphism,p1 = Po. Therefore pl(x,y) = pg(x,y) for
every (x,y) € C,and hence x = y whenever f(x) = f(y). Hence
£ is injective. The same proof also shows that in Ab, mono-
morphism implies injection, since AXA 1s abelian if A is,
and hence, C would be abelian.

For Top, let £: (X,T) - (Y,S8) be a monomorphism. Let
¢ = {(a,b) | £(a) = £(b), a,becX}. Define py,p,:+C =X by
p,(a,b) = a and py{a,b) = b. Let C have the weak topology
determined by Pq and po. Hence Py and p, are contlinuous.
Then for every (a,b)eC, fpy(a,b) = f(a) = £(b) = fp,(a,b)
and as before p; = py. Therefore p,(a,b) = py(a,b) for every
(a,b) € C. Therefore if f(a) = f(b), then a = b and f ig in-
Jective, This same construction with the discrete topology
on ¢ also works for T4, normal, completely regular, regular,
Hausdorff, T

and T, spaces with their resgpective continuous

1 O
functions, since the discrete topology has each separation
property.

Let £+ A - B be a nonempty moncmorphism in CH. Then
AxA is compact and Hausdorff, Let C = {(a,b) | £(a)=f(b)l.
Show C 1g closed in AxA., If (a,b) £C, then f(a)#f(b),and
hence there are disjoint open sets U and V containing f(a)
and £(b) respectively. Now f‘l(U) and f"l(V) are open sets
containing a and b, and thence £™1(TU) x £7°(V) is an open set
of (a,b) disjoint from C. Therefore C is closed and hence

compact. Also C is Hausdorff since Hausdorffness 1s heredi-

tary (A,B # empty set). Define PysPp s C = A by pl(a,b) = g
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pg(a,b) = b. The functions p; and p, are continuous since
they are the restrictions to C of the projection functions.
Now, as hbefore, fpl = Dy» and hence 1 is an injection.

In the category Bm, let f: A - B be a monomorphlsm. We
would like to show thet the cartesian product Ax A is an R-
module under the operations (a,b) +(c,d) = (a+c, b+d) and
a{a,b) = (@@,ab), o €R. We know AxA is an abelian group

under the addition. Then

1) (a+8)(a,Db)

ii

({atpja,(a+g)b) = (aa+pa,ab+ o) =
aa,ab) + (pa,gb) = ala,b) +8(a,b) since A is an R-module.

2) a((a,b) +(c,d)) = a(a+c, b+d) = (ala+tec), a(b+d))

a(g(a,b)) = a(Ba,8b)=(ofpa), a(fb)) = ({a8)a, (aB)D)
8)(a,b) for every a,gecR and (a,b), (c,d) ¢ AxA,

(

(

(

(ea+oac,ab+ad) = (aa, ab) +(ac, ad) = a(a,b) +al(c,d) .
(3)

(o

Therefore Ax A is an R-module.

Let C = {(a,b) | £(a) = £(b)}. Show ¢ is & submodule of
AxA. TLet (a,b), (c,d)e C.

f(a-c) = f(a)- f(c) = £(b)-£(d) = £(b-d)

Therefore (a-c, b-d) e C and hence (a,b)-{(c,d) eC. Let a cR.
Then f(oaa) = af(a) = af(b) = flab), which means (ca,adb) eC.
Therefore a{a,b) ¢ C for every aeR and (a,b) eC. Thus C is
a. submedule of Ax A and hence an R-module.

Define py,py : C = A by pl(a,b) = a and p,y(a,b) = D.
We know Py and b, are group homomorphisms; show pl(a(a,b)) =
qpl(a,b).

pl(a(a,b)) = pl(a‘aaab) = ga = Qpl(a,b).
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It is similar for D5 - Therefore Py and D, are morphisms
in Em. Then for every (a,b)eC, fpq(a,b)=1=(a)="7(b) =TIp,(a,b),
which means Pq = Pp and therefore a = b,

Therefore £ is injective. Therefore monomorphism im-
plies injection in Rm,

Let £ +A - B in Rg be a monomorphism. Then AxA is a
ring under ccordinate-wise addition and multiplication, since
A is a ring.

Let ¢ = {{a,0) | f(a) = £(b)}. Show C is a subring of
AxA, We know C is a group under +. Let {a,b), (c,d) e C.
Then f(ac) = f(a)f(c) = £(b)f(d) = £{bd). This implies
{ac,bd) ¢ C and hence (a,b){c,d) ¢C. The associative and dis-

tributive laws are inherited from AxA,

Again define pq,p, i C ~ A as before. Now p,((a,b)(c,d))
p,(ac,bd) = ac = py(a,b)p,(c,d), and since p, was shown to be
a group homomorphlsm, Py is now a Rg-homomorphism. Also,
fpl(a,b) = f(a) = £(b) = fpy(a,b). Therefore Dy = Ppsand as
before f 1s an injection, Therefore in Rg monomorphism im-
plies injective,

The example also works for the category Ri since C will
have the ldentity (1,1) as an element where 1 1s the ldentity
in A,

The construction of the object C leads to the definition
of a pullback of a morphism in a category. Let f:A - B in

e category C. The triple (C,pl,pg) is a pullback of f means
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(1) fp, = fp, and (2) if fg, = fg, for any g,,g, ¢ Nor(D,A),
then there 1s a unique kK:D - C such that plk = gl.and
p2k = &5

For Top, let £ 1A - B and 1let C, Pq and Py be as before.
(C has the weak topology determined by p; and Ps.) Then Py
and p, are continuous. Show (C,pl,pg) is a pullback of f.

Now fpq(x,¥) = f(x) = £(y) = fpo(x,y) for every (x,y) e C.
Suppose there 1s a D e ob Top such that for 81280 :tD - A
fgy) = £8,. Then define k:D ~ C by k(d) = (2;(d),8,(d)),
d e D, which is well defined since g1 and g, are, and fg1==fg2._
Tet pi“l(v) be a subbase element of C where V is open in A.
Since g, 1s continuous, gi"l(v) is open in D. For every deD
(pik)(d) = py(8y(d),85(d)) = g;(d). Therefore p,k = g;.
Therefore k"l(pi'l(v)) = pik)‘l(v) = giﬂl(V),Which 1s open
in D since g is eontinuous. Therefore k ig continuous., To
show k is unique, suppose we have k' : D - C such that
p.k’ =gy and pok’ = g,. Let deD, and k’(d) = (x,y) eC.
Then (plk')(d) = pl(x,y) = X = gl(d), and (ngf)(d) =
Po(%,¥) = ¥ = g5(d) by hypothesis. Therefore (g,(d),g,(d)) =
(%,¥), which means k{d) = k'(d). Therefore k = k’ and hence
k is unigque. Therefore (C,pl,pg) is a pullback of f. Hence
every morphism has a pullback in Top.

Ancther way to do this construction is to give C the
‘inherited topology from AxA. Then p, and p, are Just the
restrictions to C of the prcjection maps and hence are con-

tinuous.
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Then the functicn k 1s g8till continuous since subbasze

elements for ¢ will be of the form Pgl(v) N C where P. is

i
the ith projection function on AxA. However, this agrees
with pgl(v). Everything else remains the same., In this way
we can see that if we are in a topcoleglcal cateogry where the
spaces have only properties that are productive and héreditary,
then this will be a category where every morphism (nonempty,
if necessary to avoid nonempty product) has & pullback. In

particular, since T,, T;, T,, regular, T3 (regular and Tl),

12
completely regular and Tychancff are hereditary and produc-
tive, every morphism has a pullback.

For the category of Tq—spaces we will show that every
1-1 function has a pullback. The set C used above has the
form ¢ = {(x,x) | xehA) if £:A - B is 1-1. The restricted
projections are now just the same function, say Pq- Now Py
1s a continuous bijecticon. Show pq is an open function.
Let U be open in C and let yep,{U). Then (y,y)eU. Since
U is open,there is an open set Vl>§V2 such that (y,y) e

(Vlicvg) n C. Therefore yeV,, yeV,. Hence yeV, N Vs,

1
which is open in A,and V; NV, ¢ py(U). Hence p; is an
open functicn., Therefore P, is a homeomorphism and A = C
(homeomorphic). Since A is Ty, then C is Ty..

Suppese we have fgl = ng’ where gl,gg +D = A, BSince 7
is injective, gq = g5. Define kx:D - C by k(d) = (g1(d),&(d)

for every deD. Then plk = 89 Show k 1is continuous., If U
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is open in C,then p,(U) is open in A. Hence gil(f,(U)) is
open in D, but (gilpl)(U). (If k(d) e U, then pl(gl(d),gl(d)) =
g;{(d) €py(U). Therefore dezgiz(pl(U)). If gy (d) epy(U),
then k(d) = (gl(d),gl(d))szU.) Hence k 1s continuous. Sup-
pose K': D - ¢ such that plk’ = gy. Then plk’ = g = pyk.
Since Pq is inJective, Py is left cancellable and hence
k' = k. Therefore (C,pl,pl) ig a pullback of f when f is
injective.

For the category ERm,show every morphism has a pullback,
Let £ : A - B in Rm and define C, Py and P, 28 before, Show
(C,pl,pg) is a pullback of f,

Suppcse fgl = fg2 where 81185 ¢ D - A, Define k:D - ¢
by k(d) = (g1(d),8,(d)). This map is well defined since
fgl = fgg by hypothesis. Show k is a morphism in Rm. For
every d,d’ ¢ D and reR we have k(d+d ') = (gy(d+d%),g,(a+a?) =
(81(a) T8,(a"),e5(d) +85(d7)) = (21(d),85(d)) + (g,(a"),
25(d 7)) = k(d) +k(d ). Therefore k is a group homomorphism
and k(rd) = (g, (rd),gy(rd)) = (rg;(d),reg,(d)) = r(g,(d),e,(a)) =
rk(d). Therefore k is an R-homomorphism.

The unigueness of k is the same as in Top. Therefore
every morphism In Rm hag & pullback. In fact, since C,pl
and P, can be conslidered groups or abelian groups as A is, and
p, and p, are group homomorphisms, (C,pl,pg) is a pullback
for morphisms in Gp and Ab,

Now we would like to find some categories whose objects

can be considered asg sets and whose morphisms can be considered
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as functions where the epimorphisms are exactly the surjec-
tive functions. We know this is true for Set,

In Top, let £:B - C be an epimorphism (abbreviate f is

epi). Suppose £(B) # C. Let A = {f_l(c)} U {w} U {-o}

cel
where = and -= are two objects not equal to £~1(c) for any
ceC. Let A have the Indiscrete topology and define h,g:
C = Aby g(e) = £ (c) if cef(B) or glc) = » ¢ ££(B) and
h(c) = £71(c) if c e £(B) or h(c) = -» ¢ ££(B). Then g and h
are contlnuous since A has the indiscrete topology. Tet b e B.
£(b) = c. Then (af)(b) = g(c) = £ 1(c) = n(c) = (hf)(b).
Since  is epi, h = g,which is a contradiction. Therefore,
f(B) = C and an epimorphism in Top is surjective.

Let Fgp stand for the category whose objects are finite

groups and whose morphicme are the group homomorphism between

them, This example 1s outlined in the bock Categories and

functors. Let £:G’ - G be epi. Then £(G') = H is a sub-
group of G. Let G/H be the set of left cosets of H in G.
Then Perm (G/H U {*}} is a finite group where = is an object
not in ¢/H. |

Define ¢ i G/H U {=»} - G/H U {=} by o(gH) = gH,z ¢ H,
6(H) = » and 0(«) = H. Then ¢ is well defined and a bijec-
tion, and therefore 0 ¢ Perm (G/H U {=«}), Since 0(0(gH)) =
c(gH), o(c(H)) = o(=) = H and 0(o(=)) = o(H) = =, we have
oo = id, the identity map on G/H U {*)}. Define t :3-Perm

(G/H U {«}) by t(g) : G/HU (=} - G/E U {=) where t(g)(g'H) =
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gg'H and t(g)(») = =, Suppose g = Z. Then t(g)(g'H) =
ggf =E8g'H=t(8)(g'd) and t{g)(=) = = = t(g). Therefore ¢
is a function. ‘Show t(g) 1s a bijection for every geG. Sup-
pose t(g){g’H) = t(g)(8H). Then gg'H = ggH, which
means Eg'lgg’ € H. Therefore E*lge H. Therefore g = g'H
and t(g) is an injection. The map is onto,for if g’'H ¢ G/H U
{=], then t(g)(gnlg’H) = g'H and t(g)(®) = ®». Therefore t(g)
ig a bijection and hence t is well defined.

Show t is a gp-homomorphism. Let g,2¢ G and g’'He G/H.
Then t(gg)(g'H) = ggg'H = t(e)(gg'H) = t(g)(t(g)(g'H)) =
(t(2)t(E))(a'H) and t(gg)(=) = = = (6(g)t(E))(=). Therefore
t is & gp-homomorphism,

Now define s: G - Perm(G/H U {=}) by s(g) = ot(g)o.
Then ¢ 1s well defined and we need to show s 1s & gp-homomor-
ot(g) 4(E)o =
ot(g)oct(E)o = s(g)s(g). Let gHeG/H, heH. Then t{h)(gH) =
&, (gH) = hgll and s(h)(gk) = (ot 0)(gH) = oty (&H) = o(heH) =
hgil.  Also, 6(h)(w) = ® and s(n) (=) = (ot o) (%) = ot (H) =

phism, If g,g ¢ G, then s(gg) = ot(gg)o

o(hH) = ¢{H) = =. Therefore t(h) = s(h) for every he H.

Now L : H » G by 1(h) = h 1s an epimorphism and ti = si
impiies t = s for every geG. Then if ge G, gl = tg(H) =
s(g)E = (otgo)(H) = otg(=) = of(») = H. Therefore g = H for
every ge¢G. Hence H= G and £ is a surjection., Therefore,
in Fgp, epi implies surjective,

In the category of abelian groups Ab,let £ : A - B be epi.

Now f(A) = H is a normal subgroup. Then B/H is an abelian
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bH. Then h is a homomor-

I

group. Let n:B - B/H by n(b)
phism. ILet v:B - B/H by v(b} = H, and v is a homomorphism,
Iet aeh and f(2) = b, Then (nf)(a) = n(b) = bH=H = v(b) =
(vf)(a). Therefore n = v since f is epi. Therefore bH = H
for every beB, Hence H= B and £ 1s surjective,

Let C be a category. We define f eMor, (A,B) to be an

e

isomorphism 1f there is a morphism g e Mor, (B,A) such that

C

fg=1_ and gf = lA’ Two objects A and B in C are called

B
igomorphic (A = B) if Mor, (A,B) contains an isomorphism.
Two morphisme £t A -» B and g: A’ » B’ are called isomorphic

(f = g) if there are morphisms heMor, (A,A") and ke Mor,(B,B’)

C
such that gh = kf,
Since © ¢+ A - B being an isomorphism implies that there is a

g+ B ~ A such that fg = 1.,,and gf = lA’ g is also an iscmor-

B.?
rhism and g is usually denoted by f'l because 1t is uniquely
determined by f.

We want to now show that the composition of isomorphisms

ig an isomorphism. Suppose A L B3 & ¢ with f and g ilsomor-

-1 -1 -1 - - -
phisms. Then ¢ © o BT - 4, and (gf) (£ T g ) =g(rrHe™t =
-1 -1 -1 -1, -1 -1
glgg = =1, Also (f 7g ")(af) = & (g "g)f = ¢ 1of = 1,.
Then f"lg_l =‘(gf)'1 and gf is an isomorphism.

Alsce 1A'is an isomorphism for every A in ob ¢ . There-
fore the relation of objects belng iscmorphic is an equiva-
lence relation. Similarly, the relation of mecrphisms being

isomorphic 1s an equivalence relation.
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Lemma 1,3, If f 1s an lsomcrphism, then f is a mono-
morphism and an epimorphism,

Proof, Buppose f:A - B is an ilsomorphism and there
existe h,g:+ C - A such that fh = fg. ©Since f Is ah 1lsomor-
! “H(ra) =

g, Therefore

B - A, Now £ Y(fh) = f

phism, there exists £~

li

(f_lf)h = (f-lf)g. Therefore 1,h = 1L,g or h

f is left cancellable and hence a monomorphism,

Now suppose there exists h,g: B - C such that gf = hf.

Therefore (gf)2 % = (nf)f ™t or g(ff™h) = n(e£™h).  Hence,

ng ==kllB or g =h and £ is right cancellable, Therefore,
f is an epimorphism, Thus Lemma 1.3 heas been proved.
The converse cf this lemma 1s not true. An example in

Hd will be shown in the section concerning functors. A cate-

gory in which the converse ig ftrue is called a bhalanced cate-

gory. Twe quick examples are Set and Ab, since in these
categories monic implies 1-1 and epi implies onto, so an in-

verse 1s guaranteed.

Objects
We now want to collect monomorphisms and generalize some
notiong like "subset" in set theory. Let C be a category and
M be the class of monomorphisms. Define two monomorphisms
f+A-Band g:0 - D to be equivalent (f ~g) if B =D and
there are two morphisms h: A - C and ¥ :C - A such that
gh = f and fk = g. Another way of saying this is that the

following diagrams commute.
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A A
R
h B k
Temma 1.4, ~ is an equivalence relation on 7.

Proof.

(1) Let f:A - 3 be monle. Then we have £1, =1, = f.
(2) Suppose f:A -Band g:C -~ B are menic and f~g, Then

the following commutative dlagrams exist,

Therefore g ~ T,
(3) Assume the hypothesis of (2) and further, that g~ s
D - B where s 1s monic. Show f ~s. Then the diagrams in

(2) exlist along with these two commutative diagrams:

p” ® p”~ ®

Then we would like to show the folliowing diagrams are com-

o h \B km B

mutative:



21

Now s(gh) = (s2)h = gh = £ and £{km) = (fk)m = gm = s,
Hence f ~g. Therefore ~ is an equivalence relation and
Lemma 1.4 has been proved.

If £ ~g then £ = gh and fk = g, hence f = fkh and g =
ghk, &Since f and g are left cancellable, we get.lA = kh and

1C = hk, Therefore A

C.

We are now ready to define a subobject. A subobject of
an object B in a category C is the equilvalence class of a
monomorphism £ in 7, with range By we write 'H(f>"for equi-
valence clags of £, Alternatively, let %Y be a complete set
of representatives fcf the equivalence relation. Then if
Beob @, a subobject of B is a moncmorphism in Y with range'B.
A subobject <> of B is said to be smaller than a subobject
{g> of B if there is a morphism h of C such that f = gh. This
order relation is well defined, for suppose {f) = <{g and

f~%, g~u where the following diagrams are commutative.
A D
\\\£$ \\\Q\ \\\53
T///HB h B niip
k / %
G g

D 2

L B

Now hm: C - D and g(km) = (gh)m < fm = k, Alsc nhm:C - E
and u(nhm) = (un)(fm) = g(hm) = k. Therefore (k& =< <{m).
Alsc, since £ = gh and f and g are monomorphisms, and by
Temma 1.1 (1), h ig a uniquely determined monomorphism. We
will often use only f toc stand for a subobject of B,or fur-

ther abtbreviating, we will use only the domaln of the
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subobject, assuming the monomorphism is known, and write A'C A
when f:4 » B, g: A"~ B and £ 2 g.

Lermma 1.5. The subobjects of an object Beob & form an
ordered class.

Proof, Let =g and g<h Dbe subobjects of B where
f+A-B, g:C~B, h:D - B. Then there exist morphisms k
and £ such that f = gk and g = hg. Then f = (hg}k = hgk).

Therefore £ <h. Now f=f, since f = £ 1 If f =g and g= 1,

Al
then there exists morphisms k and & such that f = gk and

g = £ Hence f and g are equivalent monomorphisms, There-
fore the class of subecbjects formsan ordered class,

Before continuing with some definitions we would like to
show the subobjects in certain categories, TLet Beob Set and
f:A - B be a subcbject of B. Then f is 1-1. Show 1i:
£(8) S B~f. We know i is 1-1,

Define T :A~f(A) by T(a) = f(a) and define h: f(A) - A
by h(f(a)) = a. Then f and h are functions., Now (if)(a) =
1(f(s)) = 1(£(a)) = £(a) and (fh)(£(a)) = £(a) = i(£(a)).
Therefore 1 ~ f. We know that f(A) is a subset of B and
1:f(A) -~ B is a subobject of B. Obviously if C is a subset
of B,then 1:+C - B is a subobject. There the subobjects of
a set B are the subsets of B.

In Gp a subobject £ : A - B of BeobGp is a subgroup
since £ is 1-1 and f(A) is a subgroup of B. Then use the

geame argument as in Set. I is not true in Top, however,
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that subcbjects are always subspaces., Let R denote the reals
wlth the usual topology and let Iy denote the interval [0,1]

wlth the discrete topolecgy. The inclusion 1 :I.- R is con-

D
tinuocus since I has the discrete topology. Hence 1 is a

D

subobject of R in Top.

Now in Top, if X = Y, then there exists h: X - Y such that
h is continuous, hliy - ¥ is continuous, hﬁ'l = 1, and
n i = ly. 1In other words, h is an isomorphism of the cate-
gory Top. Therefore h is monic and epi and therefore 1~1 and
onto. Hence h 1ls a homeomorphism. Therefore X is homeomor-
phic to Y. Since subobjects have the property that their
domains are isomcrphic, the gquesticn becomes: can there be
a subspace of R such that it has cardinality c¢ = |R| and has
a8 1ts relative topology the discrete topology?

Agsume the hypothesis for S. 8Since S 1s a subspace of
a second countable gpace R, then § must be second countable,
Therefore 8 must be separable. This is a contradiction to 8
having cardinality c., Therefore i :ID - R 1s a subobject of
R but is not a subspace, In Top, any contlinuous inclusion
map is & subobject.

The crdered class of subobjects of an object B ¢ ob &

is called the power class of B, If the power class of each

- object of a category C is a set, then C is called a locally

small category and the power classes are referred to as power

sets. Tor example, the category CH is locally small. Let

B e obCH. Let uB'be the ordered class of subobjects of B.
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Then UB is the collection of continuous 1-1 functions into B,
gince monic is equivalent to 1-1 in CH. DNow a 1-1 continuous
fuaction from a compact space onto (1ts image) a Hausdorff
space 1s a homeomorphism, Then if f£:A - B is monic, f(A) is
a subspace of B. Therefore Y, = collection of all {f: A - BD
such that f is monic is the same as {{f: A - B | Ae;gB},
which 12 a set. Therefore CH is locally small,

The category Gp is also locally small. Let uG dencte
the power class of G ¢ obGp. We want to show uG is a set.

@ by F(CF:+H » GY) = £(H). We need to show

Define F: uG‘—a 2
F is well defined and 1-1. To show well definition, suppose
<f: H - G> :<<g W G>. Then there exist monomorphisms
h,k such that gh = f and fk = g. Also h,k are 1-1. We must
show f(H) = g(k). Let aecf(H). Then there exists a unique
b eHd such that £(b) = a since f is 1I-1 onto £(H). .Then fJIa):
bed and h(b) e K. Now g(h(b)) = (gh)(b) = £(b) implies
f(b) eg(K) or acg(X). Hence f{H) c g(K).

Similarly, g(X) ¢ £{H). Hence F is well defined,

Now suppose F({f:H - &) = F({g:K - G>) or £(H) =
g(X). Define h:E -~ Kby h = g 1f. Tow g™* : 2(K) -~ K is
l-1 and onto since g 1s 1-1, onto. Then h is well defined
and gh = f.

Define k1 X - H by k = f’lg. Then k is well defined
and fk = g. Therefore {f)> =<{g> and F is 1-1. Hence Ug

is & set and Gp 1s locally small. This also shows Set is

locally smell,
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Let C be a locally small category. Let U be a subset
of the power set of an object B in €. A subobject AcU is

said to be minimal (maximal) in U if A’ ¢U and A’ c A (AcAh’)

always implies A’ = A, The power set of B is called artinian

(noetherian) if in each nonempty subset of the power set

there is a minimal (maximal) subobJect. If the power set is

artinian (ncetherian), then B is called an artinian (noethe-

rian) object. If all objects in ¢ are artinian or noetherian

then C is artinian or noetherian, respectively. A subset K

of the power set is called a chain if whenever A’, A ¢ K, we

nhave A’ A or ACA’. An object B € ob C complies with the

minimum (maximum) condition for chains if each nonempty chain

in the power set of B contains a minimel (maximal) element,

Lemma 1.6, An object BeC complies with the minimum
condition (maximum condition) for chains if and only if B is
artinian (noetherian). Instead of proving this particular
lemma, we shall dualize the notlons of subobjects, locally
smell, artinian and noetherian, and state and prove the dual
asserticn of this lemma,.

Let C be a category and & be the class of epimorphisms
of C. Define f+A-B~g:iC-D if and only if A= and the
following diagrams exist and are commutative.

A A
\\gga \\\5&
g B g
A
D
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This defines an equivalence relation on 8. (The proof
i1s similar to the proof involving monomorphisms.) As before,
1f f+A-DBand g:A - are equivalent, it is easy to show
that ¢ = B. Let U* be a complete set of representatives for
this equivalence relation,and we have the following defini-

tlons. A guotient object of A ¢ ob ¢ is an epimorphism in u*

with domain A, A quotient object f of A is said to be
smaller than a quotient object g of A if there is a mor-
phism h in C such that f = hg. Then h is a uniquely deter-
mined epimorphism. The dual to Lemma 5 can be stated as
folleows.

Tenma 1.50p. The quotient objects of an object BcobC

form an ordered class. The proof can be done by reversing
arrowg in the proof of Lemma 1.5,

The copower class of an object AeobC is the ordered

class of the quotient objects of A, A category is locally
cogmall 1f the copower class of each object A in € is a set.

In this case, we have copower sets. The dual notions of

artinian and noetherian are coartinian and conoetherian,

Lemna 1.6°%, An object B<obC complies with the mini-

mum conditicn (maximum condition) for chains with respect to

quotient objects if and only if B is coartinian (conoetherian).
Proof. Suppose B e ob ¢ complies with the minimum con-

ditions for chains with respect to quotient objects, Let U

be a subset of the copower set of £, Suppose U does not
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have a minimal slement., Then for each AiesU there is an

A ¢ U such that Ai+lus Ai and Ai+l%;Ai' Construct a chain

i+l
in this manner, choosing A, , = A, , and Ai+25£Ai+1’ Then
this chain can have nc minimal element contrary to hypothesis.

The other direction follows from the definition., The
statement using maximum condition for chains is similar.
Therefore, Lemma 1.6 has been proved and its dual is also
true.

We would like to now give some examples of quotient ob-
Jects and some categories that are not artinian, noetherian,
and some locally cosmall categories, and some categories that\
are not conoetherian,

The category Gp 1s not artinlan. Let(Z,+) denote the
group of integers under addition., For every nezt, 1let

S, = (2"4 | eZ}. Then (Sn’+) is a group. Define i,¢8,~ %

by in(Enj) = 2%, Then i, is 1-1, hence a monomorphism, and

in is a homomorphism. We would now like to show Sn+ S

1S Ops

that is, i for every ne 2%, Define h: Spe1 ~ Sy

<1
n-+1 n 1
by h(2n+1j) = 2n°2j. Then h 1s a 1-1 homomorphism and

. . ; n . . n+l . . n+l
(1,0)(B%Fhg) = 1 (2% .25y = 2% .25 = 2"y = 1,127,

Therefore in+l.5 in‘ Suppose there exists a k such that
1n+lk = 1. Then iy~ 1n+lAand 1Srl = hk, 1Sn+l = kh, There-
' =3 n _ N+lsy _ AN, ot . n _
fore k¥ = h = and hk(2" . 1) = h(2""4j) = 2«27 = 1q (7. 1) =
n

2™ for some jeZ. Therefore 2723 = 2", Hence J = %é, con-
trary to jeZ. fiherefore i_# 1 Then {<iﬂ>}°° is a

+1 =1
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chain which has no minimal element. Hence Gp is not artinian.
Since all the maps here are functions and all the groups are
abelian, this also shows Set and Ab are not artinian.

The category Set is not noetherian. ILet Z7 denote the
positive integers. Define §; = {1}, 8,= (1,2) and in general
S, = (1,2,3,+-+, n} for every neZ%, Define i 88, - 2% vy
1,(m) =m. Then {{i :8 ~2%>)%_; 1is a collection of sub-
objects of ZT. Show irxg ij whenever n<j. Define h: Sn-*Sj
by h(k) = k. This is well defined since as sets 8, C Sj‘ The
map h is also 1-1 and (ijh)(k) = 1j(k) = k=1 (k). Also,

i & i, since if there were an 43 SJ.--*Sn such that 1mg==1j.

then hy = 1 Since n + 1 €8, we have (hk){(n+l) = h(k(a+l))

St
n+l. Since i is 1-1 we have k(n+l) = n+l contrary to the
definition of S, . Hence {<im>};; 1 i & chain of subobjects
and it has no maximal element. Therefore, Set is not noethe-
rian, We would now like to show that Set 1s locally cosmall.
Let A € obBet, Show uﬁ,tme copower clagg of A,is a set.

Iin Set, eplmorphism impliies onto and each onto functicon sets
up an equivalence relation on the domain. For example, let
{fiA~ B) be a quotient object of A. Then R defined by

aRb = f(a) = f(b) 1s an equivalence relation on A,and since
R < AxA, R 1s a set. Then the collection of all equiva-
lence relationsg on A i3 contained in the power set of AxA

AxA (Set theory-wise). Define F: uz L oohxA

on 2
F({f:A- B>)= R,where R is the equivalence relation on A

induced by f.
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Show I is well defined. Suppose <f:A- B> = {g:a- D,
Then there exists h:B~ ¢ and k: C~B such that f = hg and
g = hf. Let f determine the equivalence relation R,and g
determine the equivalence relation 9. Suppose aRb. Then
f(a) = £(b) implies g(a) = (hf)(a) = h(f(a)) = n(f(v)) =
(nf) (b)

g(b). Therefore, aSb. Suppose aSb. Then f{a) =
(kg)(a) = k(g(a)) = k(g(b)) = (kg)(b) = £(b). Therefore aRb.
Therefore R = § and F is well defined., Show F is 1-1. Sup-

pose F({r>)= F({g>). Then R

i
i

S where R and S are as be-
fore. Define h:3B - C by h(b) = g ((f ( )1). Show h is
well defined. If c,de (F7+ (b))}, then f‘(c) = f(d) = b and
R = 8 implies g(c) = g(d). Then g({f" (b)}) € C. Therefore
h is well defined. If acA,then h(f(a)) = g({f“ (£(a))}) =
g(a). Therefcre hf = g, Similarly, define k: C - B to get
= kg, Hence £ ~ g and ¥ is 1-1. Therefore UX is embedded
in a set and hence Qﬁf is a set. Therefore Set is locally
cosmall,

To show Set is not concetherian, consider again Z7. TLet
S, = 11,2,3,++-,n} for every nc%t, Define £, 7t - 8, by
r;(z) = 1 for every zeZ%. Define £, zt - 8, by £5(1) =1
and fg(z) = 2 If z 2 2. In general, define £, ¢ AN S, by
£f.(z) =2 if 1<z<n and £ (z) =n if n< z, Now each r,
is an onto function; hence <fn PR/ Sn> ls a quotient ob-

ject of Z¥. Show <fn> < <fn+1> for every n., Define

Pe8 =8, by h(s) = s if 1<s<n and n(s) = n 1f s=n+l.



Then h is well defined, and if z ¢ Z% then (hf, 1) (2) = k(z)
if 1= z=n. Then h(z) = z = f (z). If z=n+1then
(hfn+1)(z) = h({n+l) = n = £, (n+l). Therefore hf 4 = I,
Now fn+1jéf}f51nce there can bte no onto function from Sn to
o

Therefore <fn> <<{f ,.>. Therefore {(fn>>}2=l is a

n+l1" n+1

chain of quotient objects of 7t. Since there can be no oﬁto
map for Sn to Sn+f this chain hag no maximal element. Hence
77 does not comply with the maximum condition for chains with
respect to quotient cbjects and, by the lemma, 7% is not co-
noetherian, Therefore Set is not conocetherian.

The empty set ¢ plays a special role when we consider
the functions asscciated with i1t, For any other set A, there
is only one function from ¢ to A, namely the empty function.
The empty topological space has a similar property. The set,
{0}, has the property that for any other set A there is only
one function from A into (Q}, namely that function which
assigns everything in A to § ¢ (§}. If we give {0} the indis-
crete topology, then {¢} hag a similar property--there is
only one continuous function into it. We can generalize this
notion to an arbitrary categoery.

An object A in a category C is called an initial object

if Mor@(A,B)consists of exactly one element for all BecobC.

Dualliy, we define A to be a final object if Mor, (B,A) con-

e
sists of exactly one element for all Beob ., An object is

called a zero object if it is an initial and a final object.
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Lemma 1.7. All initial objects are isomorphic.

Proof. Let A and C be initial objects in a category C.
Then 1, and 1, are the only elements in Mor.(4,A) and Mor,(C,C),
respectively. Let Mora(A,C) consist of the one element h and

Mor,(C,A) consist of the one element k. Then hk = 1. and

C
kh = 1,. Therefore, Mor,(4,C) contains an isomorphism,
Hence A and C are isomorphic. The dual is also true.

Lemma 1.8, A zero object O of a category ¢ ig a sub-
object of each object Beob (.

Proof. lLet BeobC. MNor, (0,B) consists of one element
hi0 - B, Suppose g,k:C - 0 such that hg = hk. Since 0O is
a final object,Morch,O) has at most one element, Therefore

g€ = k and h 1s a monomorphism. Hence O is a subobject of B.

A morphism £ !4 - B in a category € is called a left

zero morphism 1f fg = fh for all g,h ¢ Mor(C,A) and all

CeobC. Dually, we define a right zero morphism. A zero

mdrphism 1s both a right and left zero morphism.

Lemma 1.9. (1) If f is a right zero morphism and g
1s a left zero morphism, and if fg is defined, then fg is a
zero morphism.

(2) Let A be an initial object, Then f: A = B is al-
ways a right zero morphism,

(3) Let O be a zero object. Then £:0 - B and g£:C=0
and consequently, fg:C - B are zero morphisms.

Proof. (1) Suppose f:B - A is a right zero morphism

and g1 C - B is a left zero morphism. Suppose hy2 :tD—- C
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and k,m: A - D. Then (fg)h = f(gh} = £(gl) = (fg)? since g
is a left zero morphism. Therefore fg ig a left zero mor-
phism, Now k(fg) = (kf)g = (mf)g = m(fg) since f is a right
zero morphism. Therefore fg is a zero morphism.

(2) For an initial object A and Beob &, let Mor A,B)

ol
consist of the one element £ : A - B, Suppose g,h:B - (.
Then gf ,hf ¢+ A - C and gf = hf, since there is only one ele-
ment in Mcr(A,C). Hence f i1s a right zero morphism,

(3) Assume the hypothesis. TFrom (2), f is a right zero
morphism., Since Mor(D,0) consists of only one element for
each DeobC, £ is a left zero morphism, Hence f ig a zero
morphism. Since Mor(0,D) consists of only cne element, g is
a right zero morphism. Since Mor{D,0) consists of only one
element, g is a left zerc morphism. From (1), fg is a zero

morphismnm,

A category C is called a category with zero morphisms

1f there 1s a family {0(A,B) ¢ Mor(A,B) for all A,BeC} with
£ 0(A,B) = 0(A,C) and 0(B,C)g = O(4,C) for all A,B,Ceobe
and all feMor(B,C) and geMor(A,B). We must show O(4,B)

is a zero morphism., Let g,h:C - A, Then O(A,B)g = 0(C,B) =
O(A,B)h. Therefore O(A,B) is a left zero morphism. Now

g O(4,B) = 0(4,0) = h O(A,B). Therefore 0(A,B) is a right
zero morphism. Hence O(4,B) is a zero morphism. This family
is uniquely determined, since if (0’ (A,B)} is another family,
then O(A,B) = O(A,B) 0'(A,B) = 0’ (A,B). Hence the families

are the same,
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Lemma 1.10. A category C with a zeroc object Z is a

cetegory with zero morphisms.

Prcocof. Assume the hypothesis: let A,BeC. Then Ffrom

Lemma 1.9(3),f:2Z - B,and g: A - Z are zero morphisms and

go is fgt A -~ B. ©Bhow fg = O(A,B), TLet h:B ~C and k:Z - C,
where k is the only element in Mor(Z,C). Now kg is a zero
morphism from A to C. Show h(fg) = kg. Since hf:7Z - C,

we know k = hf, Then since g is a zero morphism, h(fg) =
(hf)g = kg. Hence the first condition is satisfied. For

the second condition, let k: ¢ - Z be the unigue morphism,
Then gh = k and (fg)h = f(gh) = fk. Hence the second condi-
tion is satisfied., Therefore the family (fg: A - B where

5 &2 5 B) is the famlly of zero morphisms.

In Top* (pointed topological spaces with pointed con-
tinuous functiong), we would like to show that the one point-
pointed topologlcal spaces are zerc objects. Let ((a},a) be
a one point-polnted topological space. Then if g,f: (B,b) -
({a},a) are pointed continuous functions, then £(b) = g(b)
and f(c) = g(e) = a for every ceB. Hence f = g, Therefore
({al,a) is a final object. To show ((al,a) is an initial
cbject, let g,f :({a},a)'w(B,b) be pointed continuous func-
tions. Then f(a) = g(a) = b, Therefore £ = g, Therefore
((a},a) is an initial object. Hence ({a},a) is a zero ob-
Ject in Top*.

In Gp, show the one point group (e,*) is a zero object,

e

Suppose g,f 1 G = (e,*). Then f(a) =e = g(n) and (e,.) is a
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final object. If g,f: (e,*)~G, then f£(e) = g(e) = e’ where
e’ is the identity in G since g and f are homomorphisms.
Therefore f = g and (e,+) is an initial object, hence a
zero object., The one point group is also a zero cobject in
Ab,

We would now like to show that the family of homomor-
phismg that map everything to the ldentity is the family of
zero morphisms in Ab. Denote elements in this family by
O(A,B) for A,BcobAb, Let £f:B ~ C., Show fO(A,B)= 0(4,C).
Element-wise we have for all a<hA (£0(A,B))(a)= £(0(4,B)(a)) =
f(e

= e since T 1s a homomorphism. By definition,

5) ¢’
0(A,C)(a) = e
show O(B,C)g = CO(A,C). For every ach (0(B,C)g)(a) =
0(B,C)(s(a))

0(4,C).

Hence £ O(A,B)=0(A,C). Let g:A - B and

Il

e~ and O(A,C)(a) = e,. Therefore 0(B,C)g =

C C

Let C be a category and f,g: A - B in C. A morphism

1:C ~ A is called a difference kernel of the pair (f,g) if

fi = gi and if for each Deob ¢ and each morphism h:D- A
such that fh = gh, there is exactly one morphism h’ : D= ¢
such that h = ih'.

Lemma 1,11, Each difference kernel is a monomorphism.

Proof. Iet f,gtA- B and let 1:C~- A be a difference

kernel of the pair (f,g). To show i is left cancellable,let
h,k : D=~ C be such that ih=ik. Then f(ih) = (fi)h = (gi)h =
h{ih), and by definition there exists a unique k' :D ~ O

such that ik = ik’. Therefore ih = ik, and h’ is unique
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I

implies k' = h’, Also ih = iH,and h’ unique implies h = h'
and ik = ik’ and k'’ unique implies kK = k', Thus k = k/ =
h’ = h, Therefore, 1 ig left cancellable and hence & mono-
morphilsn.

Temma 1,12, If i:0 - A and i‘: C'— A are difference

kernelg of the pair (f,z) f,g: A - B,then there is a uniguely
determined iscmorphism k: C - C’ such that i = i ‘k.

Proof. Since i and i’ are difference kernels, they are

monomorphisms by Lemma 1.11. We know fi = gi and fi’ = gi’.
Then, since 1’ is a difference kernel and fi = gi, there is
exactly one morphism k: C- ¢’ such that i = i’k. Since i

is a difference kernel and fi’ = gi’, there is exactly one mor-
phism h: C’ - C such that i’= ih, Then i = i‘’k = ihk,and
since 1 is monic, we have 1, = hk. Also i’=ih= ikh,and i’
monic implies 1C' = kh., Therefore k¥ is an isomorphicsm and k
is unique., Therefore Lemma 1.12 has been proved.

In a category C with zero morphisms,let f: A - B, A
morphism g : ¢ - A in C is called a kernel of f if fg=0(C,B),
and if, to each morphism h:D -~ A with fh = 0(D,B), there is
exactly one morphism k:D - C with h = gk,

Lemma 1.1%. ZLet g be a kernel of f. Then g is a dif-

ference kernel of (f, 0(4,B) where f: 4 - B,

Proof. TLet g:C - A, Show fg = O(A,B)g. Since g is
a kernel of f,we know fg = O(CB) and O(A,B) has the property
that O(A,B)g = 0(C,B). Hence g satisfies the first condi-

tion. For the second condition, let h':D - A such that
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fh = O(A,B)h. Then fh = 0(D,B),and since g is a kernel, there
is exactly one morphism h':D - C with h = gh’. Thus g is a
difference kernel of (f, O(A,B). By Lemma 1.11, g is a mono-
morphism,

By duelizing, we can define a difference cokernel and

a cokernel, Then each difference cokernel 1ls an epimorphism
dualizing Lemma 1,11l. The dual to Lemma 1.13 tells us that
if g is a cckernel of f, then g is a difference cokernel of
(f, 0(B,A)) where £ :B - A,

We would like to find scome difference kernels, kernels,
and cokernels. In Gp, let £,2:G = G’ and let C = {ceG |
f(c) = g(e)}. Then C # ¢ (since f(e) = g(e)), and we know
that C 1s a subgroup of GxG. Let 1:C - G be the inclusion
nomomorphlism. Let De ob Gp, and suppose h i D - G is such
that fh = gh. Show there is exactly one morphism h’:D - C
such that h = ih'. Define h': D - C by h'(d) = h(d). Then
f(n(d)) = (fh)d = (gh)(d) = g(h(d)), and therefore h(d)} cC.
Hence h‘ is well defined and a homomorphism. Also (ih’)(d) =
i{n’(d)} = i(h(a)) = h(d) for all ¢ cD). Show h' is unique.
Suppose there exists k:D - C such that h = ik. Iet deD.
Then h'(d) = h(d) = (ik)(d) = i(k(d)). But (ik)(d) = x(d).
Therefore h’(d) = k(d),and h’ is unique. Hence i:¢ - A is
a difference kernel of f and g. This also shows 1 is a dif-
ference kernel of f and g if f and g are in Set or Ab, A

category in which every pair of morphisms has a difference
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kerrnel is called a category with difference kernels. Hence

Set, Ab and Gp are categories with difference kernels,

In Top, let f,g:A - B and let C= {xeh|f(x) = g(x)}
with the relative topology from A. Again, let 1 :C = A be
the inclusion function which is continuous. Then,similar
to the above, 1 is a difference kernel of f and g,and hence
Top has difference kernels. In Rm, C is a submodule of A
and 1:C - A is an R-homomorphism., Again, i is a difference
kernel and Bm hag difference kernels,

We would now like to give an example of a kernel and =
cokernel in Ab. Let (Z,+) = A and C = ({2z]zecZ},+) = C.
Then C is a normal subgroup and A/C is abelian., Define
f+A-A/C=Bby f(a) = a+C. Define g:C - A by g(2z) =
2z. Then (fg)(2z) = £(2z) = C+2z = C = 0(C,B)(2z). (We
have shown what the family of zero morphisms in Ab is.)
Suppose h:D - A with fh = O0(D,B). Show there is exactly one
morphism k:D = C with h = gk. Define k(d) = h(d). This is
possible since fh = 0(D,B); that is, if deD then (fh)(d) =
f(h{d)) = C+h(a)

il

C. Hence h(d) = 2z for some z ¢ Z.
Therefore h(d) e C. Now (gk)(d) = g(k(d)) = k(d) = h(d).

Show k ls unique. BSuppose there exists X':D - ¢ such that
ho= gk'. Then k(d) = h(d) = @k’)(d) = g(k’(d)) = k'(d).
Therefore k = k' and g: C - A is a kernel of f. The group
theoretic kernel of f is ¢. If f were an arbltrary homomor-
phism and C the kernel of f, then i : (¢ - A, the inclusicn homo-

morphism, would be the kernel of f by almost the same argument.
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Now in Ab the difference kernel of two homomorphisms f,g:
A - B is the set C = (xeh | f(x) = g(x)}, which is the same
as {xehA|f(x) -g(x) = eg), which is the kernel of f -g.

Now let £ :B - A be a homomorphism in Ab. We know that
f(B) is a normal subgroup of A and that A/f(B) = C is an
abellan group. Define g:A - C by g(a) = a+f(B). Then g
is a homomerphism. Show g is a cokernel of f. Show gf =
0(B,C). DMNow for every beB, (gf)(t) = g(f(b)) = f(B)-+f(b) =
f(B) = ey = 0(B,C)(b). Let h:A - D with hf = 0(B,D). Show
there 1s exactly one morphism k:C - D with h = kg. Define

i

k:C - Dby kK(£(B) +a) = n{a)., If £(B)+a = £(B) +b, then

a-bef(B) and h(a-b) = (hf){c) Tor some c €B. Then (hf)(c) =

0(B,D)(C) = e, implies h(a-b) = e Therefore h(a)-h(b) = e

D D*
and h(a) = h(b). Hence k is well defined., Since h is a

D

homomorphism, so is k., If ach,then (kg)(a) = k(g(a)) =
k(f(B) +a) = h(a). Therefore h = kg. Tc show k is unique,
suppose that k'’ : ¢ - D is such that h = k'g. Let £(B) +acC.
Then k(f(B) +a) = h{a) = (k'g)(a) = K'(f(B) +a). Therefore
k= k', Hence g:A - C is a cokernel of f in Ab, and coker-

nels are characterized in Ab.



CHAPTER IT

FUNCTORS AND NATURAL TRANSFORMATIONS

In Chapter I we discussed some intrinslc propertles
of categories., These properties dealt mainly with the mor-
phisms of the category. 1In this chapter we will discuss
morphisms between categories and some of thelr properties.
Tet B and ¢ be categories, We say F: &8 - C is a co-

variant functor if (1) F:ob & - ob C where F(B) ¢ ob & for

every Beob B, and (2) for every f e Mor (A,B), F(f) ¢

5
Mor,(F(4),F(B)) and the assignment satisfies F(i,)
for every A ¢ ob #2,and if A &85 cin B then F(fg) =

F(f}F(g) in ¢. We say F: B - C 1s a contravariant functor

if condition (1) above is satisfied along with (2) for every
fezMorB(A,B), F(f)e;MorcﬁF(B),F(A)) and the assignment satis-
fies F(1,) = Lp(a) &nd if & €8 L ¢ then 7(rg) = F(g)F(1).

If there ig no ambigulity, we will write "FAw for F(A), and
v e for F(f). A functor is sometimes called a categorical
morphism, We will call a covariant functor simply a functor,
end we will use F,G,H,K, and I mostly for functors (unless
otherwise indicated).

Lemma 2,1, Composition of two covariant functors or

two contravariant functors 1s a covariant functor.

29
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Proof, Let F: B8 -C, G.C - B be two covariant func-
tors. The composition GIF will be defined by the composition
of the defining mape for F and G. That is, for Aecobf,
(GF)(A) = G(F(A)) cobb and if £: 4 - B in @ then (GF)(f) =
G(F(£)) & G(F(A)) =G(F(B)). Now (GF)(L,) = G(F(L,)) = G(1y,) =
1r A 2B 50 in 6, then (GF)(fe) =0 (F(fg)) =

1 =1

G(FA) (GF)A®
G(FfFg) = G(Ff)G(Fg) = (GF)f(GF)g. Hence GF is a covariant
functor.

For F and G contravariant functors, the definition is
the same in that we compose the defining maps. Now (GF)1,) =
6(F(14)) = G(1py) = 1igpy, and if & 83 £ ¢ then (GF)(fg) =
G(FgFf) = (GF)f(GF)g. Hence GF 1s a contravariant functor.
Thus, Lemma 2.1 has been proved.

When composing two functors of the cpposite sémse, that
is, one covariant and the other contravariant, the resultant
functor is contravariant., Condition 1 in the definition is
easily satlsfied. For condition 2, suppose G is contravariant
and ' 1s covariant, and we can form the composition GF. Then
(GF)(fg) = G(FfFg) = G(Fg)G(Ff) = (GF)g(GF)f. The other case
is similar.

Suppose F: B8 = C, G:C - fand H: /-~ & are covariant
functors. Then for Beob & ((HG)F)(B) = (HG)(FB) = H(G(FB) =
2((GF) (B}) = (H(GF))(B) and if f: A - B in B, then ((HG)TF)(f)=
(HG) (Ff) = H(G(FT)) = H((GF)f) = (H(GF))(f). Therefore the
composition of functors is associative, Let 16; C - C de-

note the functor that assigns each object to itself and each
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morphism to itself, This defines a functor, since the compo-
sition of morphisms in a category is already defined,. Then
for F:1C - pand G: F - C we have Fl6 = F and 1CG = G.

We are almost ready to conclude that the collection of
811 categories with the functore between them forms a cate-
gory. However, we must insure that the morphisms between two
categories form a set. To do this, 1t 1ls necessary to require
that we collect only those categories whose object class is
actually a set; that is, we allow only small categories
(sometimes called diagram schemes) in the object class of
this new category. Now we can ccllect the functore between
two small categories into morphism sets and we form the cate-
gory of small categories and their functores called Cat,

We would now iike tco give some examples of functors.

The identity functor lc’for a categeory € has already
been mentioned. Some categorles have cbjects that can be
considered as sets with certain other structures imposed on
the set, Likewlse, the morphisms in these categories are
functions with other prcperties, Examples are Top, Gp, Rg,
and Rm, among others, We can therefore define a covariant
functor ¥ : ¢ - Set by assigning the underlying set to each
cbject in € and the underlying function to each morphism in

¢, Tunctors of this type are called forgetful functors. Not

g1l forgetful functers have codomaln Set. For example, a
ring ig also an abelian group under the addition, and a ring

homomorphism is also a group homomorphism. Hence, we can
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get a forgetful functor from Rg to Ab., Similarly, functors
from any subcategories of Top to Top may be defined (Appendix
T).

The concept of duality may be expressed using a contra-
variant functor, Cp:C - Cpp, where Op(A) = A%? - Ayand 1f
f:A - B in C,then Opf = £°P ¢ B - A. Then %o show Op is

actually a contravariant functor we must show that Op(l,) =

1,5 8nd if A €5 % cin e then Op(fg) = OpgOpf. Now Op(l,) =

19P = 1, and Op(fe) = (£2)°F = g°P£F = op(g) Op(f) by derfi-
niticn of the dual category.

Let C be a category and Aeob@. Define h™:c - Set by

nH(B) = Mor,(4,B),and if f:B - C,then define h™*(f) : n*(B) -

ol

A .
(C) by hA(f)(g) = fg,where ge Mor,(A,B). Deflne hy:0C -

h

Set by h,(B) = Mor,(B,A), and if £:B - C, then define

ol
hy (£) 0y (C) = hy(B) by n,(f)(g) = ef for all geMor,(C,A).
Lemma 2.2, hA and hA are covariant and contravariant
functors, respectively.
Proof. We will show that hA is a contravariant functor.

The proof for t is similar. Iet B B 5 & A. Now hy(1y)(g) =

- o gt
gly = g. Therefore hA(lB) = lhA(B)f Suppose B 3 C 4 D

and let D 5 A. Then (n,(g)n,(f))(h) - n, (8) (2, () (B))

h,(g)(hf) = (hf){g) = h(fe)

fines & contravariant functor from & to Set.

1!

de-

I}

(hy(fg))h. Therefore h,
Lemma 2.3, If F:C - B is & functor and £ in € is an
igsomorphiem with inverse lsomorphism f'l, then F(f) is an

isomorphism in 4.
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Proof. Assume the hypothesis. Then F(f)F(f-l) =
F(ff"l) = (1) = 1= F(f"l)F(f). Hence we can write F(f)'lz
F(f"l). Thus Lemma 2.3 has been proved.

The category Hd provides an example of a morphism which
is a monomorphism and an epimorphism, but it 1s nect an iso-
morphism, The embedding 1. Q@ - R was shown to be an epimor-
phiem and since it is 1-1, 1t ié a monomorphism, Suppose
that 1 is an isomorphism and let F : Hd - Set be the forgetful
functor. Then F(f) is an isomorphism in Set. Now in Set we
have shown that monic 1s equivalent to 1-1 and epl is equi-
valent to onto. Since an iscmorphism is a monomorphism and
an epimorphism,F(f) must be 1-1 and cnto. However, there ig
no 1-1 functfion from Q onto R.

Lemma 2.4, If F: 4 - C is a functor that is injective
on the class of objects, then the image of F is a category.

Proof. Assume the hypothesis. The only thing that

needs to be checked is that possible combinations of mor-
phismg in the image are in the image., Suppose Ff :FA - FB
and Fg: FC - D where FB = FC. Then gince F is inJective on
the objects, B = C. Therefore f 1A -B and g:B - D and gf
is defined in §. Therefore F(gf) = FgFf. Hence FgFf is in
the image of F. Clearly, each object in the image has an
identity morphism in the image and fthe composition is asso-
ciative, Therefore the image of F is & category.

We would now like to give an example of a specific

functor. Let Top* denote the category of polnted topological
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spaces with pointed continuous functions. Then Tep* is a
subcategory of Topp (Appendix I). We will define a functor
™y Top* - Cp.

Define a locp based at pecX e Top to be a continuous
funetion f: (I,{0,1}) - (X,p), where £(C) = £(1) = p, I=1[0,1]
and (X,p) € Top*. Two loops f and g at p are homotopic (~)
means there exlsts a continuous function H:IxI - X satis-
fying (1) H(x,0) = f(x) for every xeI, (2) H(x,1) = g(x) for
every x ¢ I,and (3) H(C,y) = H(l,y) = p for every yeI. Show
this homoteopy defines an equivalence relation., If f is a
loop, then H:IxI - X defined by H(x,y) = £{x) shows f ~T,

If £ ~g by H, then G:IxI - X defined by G(x,y) = H(x,1-x)
shows g ~f., If f.~g by Hand g~ h by G, then F defined by
F(x,y) = H(x,2y) if 0= y = % and F(x,y) = G(x,2y~1) if
%%5575 1 shows £ ~ h., Therefore ~ is an eguivalence relatior.
Let [f] dencte the equivalence class of f,

We will now define a multiplication on the equivalence
classes. Define [f][g] = [fg] where (fg)(t) = £(2t) if
0< ts;%'and (fg)(t) = g{2t-1) 4if % = t<1, We nmust show fg
defines a loop. Now (£fg)(0) = £(0) = p and (fg)(1) = g(1) = p.

Also, f 1. =1 and fg| 1 = gz, h . ntin.
s L8 [0,%5] n gltﬁle g. Therefore fg is contin

uous. To show this multiplication is well defined, suppose
f~f' by Hand g~g by F. Then G:IxI -~ X defined by
G{x,y) = H{2x,y) if 0<x < %— and G(x,y) = F(2x-1,y) if
<=1 shows that fg ~f'g . Hence the multiplication is

well defined. This multiplication forms a group. We now
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define ﬂl(X,p) to be the group defined by this multipliication
of p-based loops.

If £3: (X,p) - (Y,q), define nl(f): ﬁl(X,p) - wl(Y,q) by
ﬁl(f)[g] = [fgl, which is well defined since fg:I - Y ig
continuous and (£g)(0) = £(g(0)) = £(p) = q = (fg)(1).

Show ™ is a functer. Let lX: X -~ X be the identity

pointed continucus function on (X,p}. Then for every

(flem{X,p), m(l,)[f] = [f1:1=1(f]= lnl(X,p)[f}‘ Sup-
pose (X,p) 5 (¥,q) &

m(Z,7). Let [h]e ﬁl(X,p). Then (m (fg))[h] = [{fg)(n)] =
'£(gh) ) = m(£)len] = w (2) (m (&) () = (m (£)m,(g)) ).

Therefore ™ is a covariant functer,

(Z,r) in Top*. Then m (fg) m (X,p0) -

Now we would like to define a central concept in the
study of categories. Let & and C be categories and let F,G:

B - C be covariant functors. A natural transformation

e: ¥ = G is a famlly of morphisms {p(A) : F(A) - G(&)) for all
Acob# such that we have @(B)F(f) = G(f)o(A) for all mor-
phisme f:A - B in B, The defining equation can be regtated

by stipulating that the following diagram is commutative.

F(A)-Jiﬂ*)-ﬁa(pl
G

o

F(B)———> (B

)
G(f)
E) )

If F and G are contravariant, the Tollowing diagram must

he commutative.
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=

(a)—28l, g(a)
F(f){ T G(f)
F(B)———ExgymmaG(B)

When there is no ambiguity, p(A) is written as "gAn and
ph is often called a component of .

Wow if ¢t F - G and §:G - H are natural transformations,
then so 1s Yp:!F - H defined by (o) (A) = (Agh. Since ¢ and
w are natural transformatilons, the small squares are commuta-

tive diagrams in the following.

r(a) — 9 aay—¥A) | ya

F(f) a(f) H(F)

F(B) (B G(B)-~—$(E7——9‘H(B)

Then (¥g) (2)7(2) = ¥B)e(B)F(2) = ¥(B)G(2)g(A) = H(£) §(A)g(A)=
H(f)(Vg) (A). Therefore the large diagram commutes and Yo is
a natural transformation.

This composition is alsc associative. Suppose @ F - G,
b:G - Hand p: H » K are natural transformatione. Component-
wise,we will show (py)o = p(¥p). By definition ((p¥)w)(4) =
(o0} (A) ot = (p(A)U(A))o(A). These separate components are
morphlemg in a category, and since the composition of mor-
philsms is associative, we have (p(A)y(A))o(A) = p(A) (¥(A)p(R)) =
o(A) (Vo) (A) = (p(Veg))(A). Therefore the components of these
two natural transformations are the same. Hence the compo-

sltion i1s assgocliative,
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Let F: C -~ b bea functor. Show that the family of morphisms

{1 : PC - FC} determines a natural transformation 1. where

me F
lF(C) = l;s. Suppose f:A - B in C. Then 1F(B)Ff = Ff =
Ff]?¥§ hence lF is the identity natural transformation on
the functor .

Let @ be a small category and B be any category. The
natural transformations between two functors F and ¢ from

d to & form & set, since they are a subset of the power set

of U Mor o(¥(A),G(L)). Therefore we can define morphism
Acoba

sets between functors from a small category. Define a new
category whose object class ig the class of all functors from
8 small category & to a category B and whose morphism sets
are the sets of natural transformations bhetween the two func-
tors, This 1s a category since we have an identity and an
associative composition., Call this category Funct(&@@)?

A natural transformation v:F - G where F,G0: B - C are

covariant functors is a natural isomorphism if there is g

natural transformation ot G - F such that Te= 1, and or = 1

G BT
In this cage the functors are isomorphic and we write t: F S (.

Two categoriesgs C and 5 are isomorphic if there are functors

F:C = bpand G: / ~»C such that PG = 1, and GF = 1. Two

b c
categories are equivalent if the functors F and ¢ are such

that FG = lﬁ_and Gh = 16‘

Then F and G are called equivalences. TIf ¥ and G are

contravariant, the categories are dual to each other.
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The relation of functors being naturally isomorphic is
an equivalence relation on the collection of functors be-
tween two categories. Obvicusly 1F : P = B where 1F is the
identity natural transformation. Suppose r,g: 6 - ¢, and
T:F = G. Then there exists ¢:CG - F such that ¢ is a natural

transformation, and To = lpand o 17 =1 Hence o@: G & F.

F.
Further, @ATth = lg, and TAgA = Loy for every Aeobd., Hence
TA 1s an isomorphism for every Acobd and At = ¢hA. There-
fore the family of morphisms {7D 7+ | De ob B} defines the
natural transformation ¢,and we say 1= e
If 7¢F =G and 9: G = H then or: T - H is a natural
transformation., To show @7 is a natural isomorphism, consi-
L -1 -1 -1 -1 -1
@+ H = F.o Now (@n)(7 o) = @l T = g = 1
and (T_l “l)( T) = T_ll T = T"lT =1 Therefore P F

Hence, functors being naturally isomorphic is an equivalence

der T

o

H,

relation,
We would now like to give an example of a natural trans-
formation and an example of a natural isomorphism,

We know h, : 8et - Set defined by h,(B) = M B,A) and

OT g
hy(f)(g) = gf for all £:B - Cyand g:C ~ A is a contravariant
functor for each Ac¢ob Set, ILet hi denote the covariant func-
tor hAhA' Let I denote 1Set'
hg(A) | o8 1s the function determined by evaluating each func-

Fix BeocbSet. Show {¢h: I(4A) -

tlon in Morg . (A,B) =hgy(A) at a fixed element & in A} defines
a natural transformation ¢@: I - hg. Then for each gt A~ C

we must show that the following diagram commutes.
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T(A)=A oh h%(A)
g) =g l l (@s
= 5 >n (C)
Let ach, Then [h@(g>¢ﬂ1(a) n2(8) ((98) (2)) and [(ge)al(a)

are functions from MorSet(C,B) to 8. Show that these func-

tlons are actually the same function. Doing this element-wise,
let £:C =B, Then [hg(g)(eh)(a) 1) = [(h)(s) hy(g) (2) =
(98)(a)(hy(8)(£)) = (¢8)(2)(fe) = (fz)(a). This is true, since
hg(g)(k) = k hy{g), where Kezhg( A) and (gh)(a) ¢ 2(A). Also,
fgehy(A), and oh evaluates functions at elements in A. lNow
[((90)(2))(8) 1(£) = [(0)(a(a)) 1(£) = £(g(a)) = (f&)(a), since
¢C evaluates functions at elements of C and g(a) ¢ C. There-
fore the dlagram commutes and o is a natural transformation.
Let Vect}{be the category of finite dimensional vector
spaces over the reals with the linear transformations betwesn
them. Define T: Vecty - Vecty by T(L) = Hom(L,R), where
Hom(L,R) = {f | £ is a linear transformation from L to IR},
which 1s a finite dimensicnal vector space over R, and if
f11; -1, 1s a linear transformation, then T(f) : T(Ly) ~ (L)
is defined by T(f)(g) = gf for linear transformations
g: L, » R, (Note: gf is a linear transformation from Ll
to ]R.) Show T is a contravariant functor. Now {1 )(f) =

f1, =f for all £ :1L - ], Therefore T(1 1

T, L) = (1) Sup-
pose I, § 1, % Ly and let h:L, = R. Then [T(fg)lh = n(fg)
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and [T{g)T(£)1(h) = T(g)(hf) = (hf)(g) = h(fg). Therefore

T(g)T(f) = T(fg) and T is a contravariant functor. Tet T°

denote the covariant functor TT and let I dencte 1

Vect:{R
lNow define a natural transformation 7: 71 - TE by the
family of linear transformations {r(L) : I(L) - TE(L)I

T(L) (x) : Hom (L,R) » R by [(L)(x)](f) = £(x) for f: L~ R).
We must first show 7(L)(x) is a linear transformation from
Hom (L,R) to R . Let f,g ¢ Hom (L,R). Then [7(L)(x) ](f+g) =
(£48) (%) = £(x)+a(x) = [7(L)(x)1(2£)+[7(L) (x) I(g) and
[5(L)(x) 1(af) = (af)(x) = af(x) = of 7(L)(x) I(£) for every
ace RR.

Now we must show 7(L) is a linear transformation from
I(L) = L to Tg(
£xty) = £(x)+(y) = [7(L)(x)1(£)+[ (L) (7) (£) =
[7(L)(x)+7(L) (v) 1(£) and [7(L)(ox)1(£) = #(ox) = ar(x) =
al (L) (x) J(f) for £:L - R and x,y € L. Therefore (L) is

L). Element-wise we have LT(L) (x+y) H{£) =

a morphism in VeCtEF We must now show that the following

diagram commutes for every f @ Ll - Lg.

7(Lq) 5
I(Ly)=L;y ———=—>T (Ll):=Hom(Hom(L1,IR),Iﬂ
I(f) =7 T (£)
I(Ly)=Ly, : %TE(LE):=Hom(Hom(L2,EU,]R)
T(Lg)

Let xsle. Then we must show the following functions

are the same, [T°(£)1(L;)](x) = 7(I,)(x)T(?) and
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[r(To) (£) 1(x) = 7(L,)(£(x)), each of which is & linear trans-

formation from Hom(L,,R) - R. Agaln we show this element-

wise. Let gil, » R. Then [1(L))(x)T(f)]1(g) = (L) (%) (&)
(7) (%) and [7(L,)(£(x))1(2) = a(f(x)) = (87)(x). Theresore
Che diegram is commutative, and hence T is a natural trans-
formation. Show 7 is actually a natural isomorphism. It is
sufficient to show T(L) is a vector space isomorphism for
each LeVecty, . Show kernel of (L) is just {0}. Suppose
7(L)(x) is the zero function. Then [7(L)(x)1(f)=rF(x)=0
for every f ¢ Hom(L,R). However, there is an f ¢ Hom(L,RR)
such that f(x) ¥ 0. Hence, x must be O. (For suppose
x=bja;+bya, + +e+b a, where {al,ae,---,aﬂ} form a basis.
Let £ be such that f(a )} = 1 and f(ay;) =0 if 2< i< n,
Then 0 = f(x) = f(bia, + bye,

blf(al)-+b2f(a2)-+---+bnf(an) = by +1l =Dy, Therefore

b, = 0 and there 1s an f for each i.) Therefore the kernel

+ c** + D a)
nn

of 7(L) is {0}, and hence (L) is 1-1. Show 7(L) is onto.
2
(1)

(L) or 7(L) is onto. Hence T(L)*l exists

Since dimjL=<ihnT2(L) and T1(L}(L) is a submodule of T

we have rv(L)(L) = i
for every L and we can define & natural transformation T"l.

Therefore I and T2 are'naturally isomorphic.

Let @ and B be categories. The product category @gx &

is defined by ob(@x B) = ob g xobl , and Mor st (AsB) 5 (A%,B"))=
Mor ,(A,A") x Mor . (B,B’). Composition is that induced by «
and B. To show this actually defines a category, we must show
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that the composition is associative and the existence of an

identity. ZLet

(f3,83) (fo,82) (f1,81)
(Aa,Bu)—-—-—-é——gé—)(A33B5)——%_i9(A23B2)—“ipg_j;—)(Alel)

in gx &. 'Then (fl,gl)((fg,gg)(fB,gB))==(fl,gl)(fng,g2g3)=

(fl(f2f3),gl(g2g5))==((fr%ﬁfjj(gﬁ%)g ) = (flfgsglgg)(f33%3) =
((fl’gl)(fQ’gE))(fB’gB)' Let (A,B) eocb@gx®£. Since ¢ and 8

are categoeries, we have lA and 1 the identities on ¢ and A,

B’
respectively.
(hak) (lA,lB) (f,g)
Let (Al,Bl)—_——ﬂaa(A,B)———_u———ﬁ(A,B)————ﬂmé(Ag,Bg).

Then (f,8)(1,,15) = (£1,,815) = (£,8) and (1,,1.)(h,k) =
(1ahs1gk) = (h,k). Therefore (1,51g) is the identity on
(A,B)., Hence ¢ xB is a category. Similarly, we can define
the product of any finite number of categorles.

A functor from a product category of two (n) categories

into a category ¢ ig called a bifunctor (multifunctor). For .

example, let @ x& be a product category. Then Pd P adxB - d
defined by PG(A,B)==A and Pa(f,g)==f is a functor and is
called the projection functor,

Lemma 2.5, Iet F_:1 & - C and GA: £ - C be functors for

B
all Acob @ and BeobB. If we have FBA::GAB and FBdf)GA(g)=
Gye (8)Fp(f) for ell A,A"c ob @, B,B"ec ob# and all morphisms
f:A-A"and g: B -~ B’, then there 1s exactly one bifunctor

H: @ xB - Cwith H(A,B) = G,(B) and H(f,g) = Fp/(£)G,(8).

Proof. Define H: g x & -C by H(A,B) = G,(B) and H(f,g) =

Fgr (£)G,(g). Show I defines a functor. Now H(1l,,1y) =
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Folla)Ga(lg) =1 1 =1 =1 since
32a)0aC8) = 1 (ayle, (3) = o () = ‘m(a,R)

Fp(&) = G4(B). Since Fp and G, are functors for every

A ¢ ob g and Becb B, we have the following commutative dia-

gram, where axBn Eop sh g and B*-A5p-Ep 1 1n g

Fpr(A%) = Gy (B') MFBI(A) = G_ﬁ(B')MFB,(A’) =a,(F")
Gy x(2) G, (&) Gy o(8)
Fa(A%) = Gua(B) L (8) = 6 (5)— B () = 6 (5)
Cpx(E) Gy (k) Gp (X&)
Py (5) o (£)

F o (89 = 0 (39) Bl B ()=, (925 p_ (4=, (2%
Then H((f,g)(h,k)) = H(fh,gk) = Fpo(fh)6,(gk) =
P (£) (Fae (R)Can(g))Gau(k) = (Fp/ (£)0,(8)) (Fa(n)a, 4(k)) =
H(f,g)E(h,k). Hence, H is a functor, It is unique because
any other functor H' satisfying the conditions E'(A,B) =
Gp{B) and H'(f,g) = Fgu/(f)G,(g) would be defined exactly as H.
Thus, Lemma 2.5 has been proved.

Lemma 2.6. Let H and H' be bifunctors, H,H' : ¢x 8 - C.

A family of morphisme ¢(A,B) ¢ H(A,B) - H'(A,B), Acobd and
Beob 2 is a natural transformation if and only if it is a
natural transformation in each variable; that is, o __,B) and
o{f,_ ) are natural transformations.
Note: TIf H: @xB - C is a fixed bifunctor, then define F_ for

B

each Beob B by Fpi 4 - C where F(A) = H(A,B) and F £) =

B( B(
H(f,1g) = H(f,B). Then Fp is a functor, since Fp(l,) =
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H(lA’lB):le(A,B)::lFB(A) and FB(fg)zzH(fg,lB)==H(fg,lBlB)=
H(f,lB)H(g,lB) = Fp(f)Fp(g). We will use the notation
H(__,B) for Fg. Similarly, one can define Gg = H(A,_ ) :

& - C. Then H(_ ,B) and H(A, ) satisfy the conditions of
Lemma 2.5.

Proof of Lemma 2.6. TIet H(_ ,B) and #'(__,B) be defined

2 above and suppose the family {p(A4,B) : H(A,B) - H'(A4,B) for
every (A,B) eob @x £} defines a natural transformation. Let
Beob B, Show ¢(__,B) tH(_ ,B) ~ H'(_,B) defined by
o(__sB)(A) = o(A,B) defines a natural transformation. Then
we must show that the following diagram commutes for each
f:A-4",
r(a,5) — 2Bl S pe e g
H(f,B) lH'(f,B)

H(A,B) ————H’ (A", B)
w(A’,B)

This diagram commutes since ¢ is a natural transformation and
(f,1g) tAxB ~ A'xB, Hence g is a natural transformation in
the first variable, Similarly, o i8 a natural transformation
in the second variable,

Now suppose that o(__,B) and g(A, ) are natural trans-
formations for each Aecob @ and Beob B. Show that the
family {eo(A,B) H(A,B) - H'(A,B)] defines a natural transfor-
mation. We must show the commutativity of the outer gquare

whenever (f,g) : {(A,B) - (47,B7).
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H(A,B) ?l8,5) >H (A,B)
H({f,B)
o(A’,B ‘
E(f,e) H(4 ' B)-——————-—-> H'(A,B) H(f,e)
¢/;(A’,g) \N
H(A’,B’ >H (A1 B
( ) Y )

Now small upper and lower gquadrilaterals commute, since
¢(__»B) 1s a natural transformation., The small outer tri-
angles commute, since H(__,B), E(A, ), H'(__,B) and H'(A, )
satisfy conditlions of Lemma 2,5, That is, H(f,g)=
H(f,B)H(A,g) = H(A',g)H(f,B). Similarly for H'(f,g).
Therefore the outer square is commutative, Thus Lemma 2.6
nas been proved.

Lemma 2.7. Let C be a category. Morc(mm;__)

¢®Px e~ Set is a bifunctor defined by Mora(__,_u)(A,B) =

Mor

c(A,B),and if (fOp,g): AxB - A'x B then Mor( )(fqig)==‘

Mor (£9P,g) : Mor (A,B) - Mor A" ,B’) is defined by
cr e c

Mor fOp,g)h = ghf.

ol
Proof., The proof is by definition of a bifunctor. Now

More{ ., )lp.m = Morc(lA,lB): Mor.(A,B) - Mor.(&,B). Then |
for heMor,(4,B) we have MorcflA,l J(h) = lgh 1, = h. There-

fore Morcﬁlﬂ,lB) = 1MoraﬂA,B)'

op op
Tet (ax,mx)L0 oK)y 5y (£ 78)0 (40 5ry 54 Py,

We need to show Morc(fOphOp,gk) = Mor (fop,g)Mor hOp,k):

c el

A'",B"). ‘Let reMor,(A%¥,B¥), Then

Mor,(A*,B¥) - Mor e

ol
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MorGIfOPhOp,gk)(r) = gkrhf and (MochfOp,g)MorcﬁhOp,k))(r)=
Morcifop,g)(krh) = gkraf. Therefore Mor,( , ) is a bifunc-
tor., Therefore Lemma 2.7 has been proved.

We would like to define two natural transformation that
will be useful later on. If f:A - A and g:B ~B inC
and hA + @ - 8et is the covariant representable functor and

nh, : @ - Set is the contravariant representable functor, then

A
. T A A f
define h™ : b - h" and h,:hp - hg/ by h™{C)(k) = kf and

hg(D)(z) = g¢ for all k+ A" - C and 2:D - B in C. We will
show hf is a natural transformation. Iet h:+:C - D in C.

Then we must show the followling diagram commutes.

2 (o)) e
i (h)l J/hA(h)
o (D) *‘ij"*—*}hA(D)
h™ (D)

/

Element-wisge, let ks A’ - C. Then [hA(h)hf(C)](k) =
bt (h) (kp) = B(ke) = ()£ = BT(D) (k) = [6°(D)n" (n)1(K).
Similarly, hg is a natural transformation.

Before stating the next lemma, we would like to give
some motivation, Tet A,Beob Ab. Then AxB ¢ obAb. Let

¢ ¢ ob Ab. A function fT 1 AxR - C 1lg a bilinear function

means f'{a;+e,,b) = f(a,,0)+f (ay,b) end f(a,b,+bs) =

f(a,bl)+f(a,b2). A triple (AxB,t,T) is a tensor product

of AxBmeans t+tAxB - T is a bilinear function, and if
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K e obAb such that if g+ AxB - K is bilinear, then there
exlsts a unique homomorphism h: T - K such that ht = g, |

Let Hom(A,B) = {f:A - B|f is a group homomorphism}.
Fix (AxB,t, A ® B) a tensor product of A and B, We want to
show Hom(A ® B,C) is a group isomorphic to Hom(A, Hom(B,C)).
Define F: Hom(A @ B,C) - Hom(4, Hom(B,C)) by F(£) : &~ Hom(B,C)
where F(f)(a) : B - C and [F(f)(a)](p) = £(t(a,b)} ¢ C for all
f+AQ@B ~Cand ach, beB. First we must show F(f)(a) is
a group homomorphism, Let bi,bs; €B. Then [F(f)(a)](bl+b2) =
r(t(a,by+by)) = f(t(a,bl)+t(a,b2))==ft(a,bl)+ft(a,b2) =
(F(f)(a) I(b)+[F(£)(a) 1(by). Hence F(f)(a) is & group homo-
morphism. Noﬁ we must show F(f) is a group homomorphism,

Let a,,a, e A, Show F(f)(a +e,) = F(f)(a )+F(f) (as).
We will show the maps act on elements in the same way. Let
b e B. Then [F(f)(a1+a2)](b) = f(t(al+a2,b)) = f(t(@vb)+tﬁﬁpbn=
£5(aq,0) 4t (ag,0) = [F(£)(aq) J(b)+[F(£)(a,) I(b). Hence F(r)
is a group homomorphism. Now F is & well defined function
and we must show that F is a group lsomorphism. Let f,g ¢
Hom(A @ B,C). Show F(f+g) = F(f)+¥(g) in Hom(A, Hom(B,C)).
Let a e A and show [F(f+g)1{a) = [F(f) +F (g)](a)
in Hom(B,C). Then forlevery be3, [F(f#g)(a)](b) -
(£+8) ((a,5)) = £(t(a,b)) +a(t(a,0)) = [F(£)(a)I(b) +
[F(g)(a)](b). Therefore F is a group homomorphism.‘ To show
B 1s 1-1, suppose F(f) = F(g), where f,gc Hom(A @ B,C). De-
fine h,k : AxB - C by h(a,b) = f£t(a,b) and k(a,b) = gt(a,b)

for all {(a,b) ¢ AxB. Show h and k are bilinear functions.
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Let a,ay,2,<A and b,by,0,¢B. Then h(al+a2,b) = ft(@ﬁ%@,m =

£(t(ag,b)+t(ap,0)) = £(ay,b)+ft(ayb) = n(a,,b)+h(ay,b) and
n(a,b40,) = Tt(abytby) = £(t(a,b ) +h(a,by)) =
ft(a,b)+5(a,b,) = hia,b,)+n(a,b,). Hence h is bilinear
and simiiarly k is bilinear. Now h(a,b) = f(t(a,b)) =
[F(£)(a) (b)) = [F(g)(a) {b) = g(t(a,b)) = k(a,b). Therefore
h = k. UNow since (AxB,t, A ® B) is a tensor product, there
exists a unigue homomorphism r s+ A @ B - C such that rt = h =
k=1t =gt. Therefore f = g=r and ¥ 1s 1-1, Now to show
that ¥ is onto, let he Hom(A, Hom(B,C)). Define k:AxB - ¢
by k(a,b) = [a(a)]l(b). Show k is bilinear., Then k(al+a2,b) =
[h(a1+a2)](b) = [h(al)](b)+[h(a2)](b) = k(al,b)+k(a2,b) and
k(a,bl+b2) = [h(a)](bl+b2) = [h(a)](b1)+[h(a)](b2) =
k(a,by)+k(a,by). Therefore k is bilinear. Since (AxB,t,AQ®B)
is a tehsor product of Ax B, there exists a unigue rsAxB=(
such that rt = k., Now ¥(r) ¢ Hom(A, Hom(B,C)) and for every
ach [F(r)](a) :B - C and h(a) : B - C. Show these maps are
the same. Let beBj then [F(r)(a)](b) = rt{a,b) = k(a,b) =
h(a)(v). Therefore F(r)(a) and h(a) are the same for every
a4 ¢hA., Hence F(r) = h and F is onto., Hence F is a 1-1, onto,
group homomorphilsm,and therefore Hom(A @ B,C) & Hom(A,Hom(EB,C)).
Now 1n a categorical sense we would like to show that
the product of two small categories, categories whose ob-
ject class 1is a set, behaves like the tensor product of

abelian groups. We have the fcllowing lemma.
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Terme 2.8, ILet ¢ and B be small categories and C be
an arbitrary category. Then Funct({a@xB,C) & Funct(d,Funct(5,C).

Proof. We will define X : Funct(gx &,C ) -

Funct(@,Funct(® C¢)). Let He Funct(@gx B,C). Then I is a
bifunctor. Define K(H) : ¢ » Funct(8,C) by X(H)(4)=H(A, )
where H(A, )(B) = H(A,B) and H(A,_ )(g) = H(A,g) for
BeobB andg:B - B’ in A Then we know K(H)(A) is a func-
tor from B to ¢ for each A¢ &. We must show how K(H)
assigns morphisms in &. Let f:A- A’ in ¢. Then K(H) (f) =

K(E)(A) - K(H)(A") and K(H)(f) : H(A, )~ H(A", ) must be

a natural transformation, Define K(H)(f) by the family
([R(H) (£) 1(B) : H(A,B) ~ H(A",B)} where [K(H)(f)](B) = H(f,B).

Tet g: B - B, Show the diagram commutes.

a(a,B)— EB) spea )
A(4,8) l JH(A ",g)
H(A,B') = H(A B )

g(f,B") |

From the definition of H and the proof of Lemma 2,6, this
diagram commutesi hence K(H){f) is a natural transformation,
To show K(H) defines a functor we must now show K(H)(1,) =
1K(H)(A)' Now K(H)(1,) is defined by the family {[K(H)(1)IE)} =
{H(1,,B)} = {H(1,,15)} by the notation, for every Beob &.
Also, if A% B4 L 4’ in @ then K(H)(fh) is defined by the
family {H(fh,B) : H(A¥,B) - H(A',B)} for Beob B and since T

is a bifunctor, H(fh,B) = H(f,B)H(h,B) = (K(H)(£)X(H)(h))(B).

Therefore K(H) defines a functor from & into Funét(@, ey,
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Now we must show how K assigns morphisms in Funct{(@xB,C).
Morphisms in Funct{dx B,C) are natural transformations be-
tween bifunctors. Let ¢:H - H’ in Funct(dx B,C) where g
ig a natural transformation. Define K(g) : K(H) - &(H')
by the family of morphisms (K(g)(4) : K(E)(A) ~ K(H)(A)} for
every Aeobd , where K(g)(A) = (A, ), as defined in Lem-
ma 2.6, Now (A, )} is a natural transformation for all
Beob H. Hence K(p) is a natural transformation from K(H) %o
K(H'). It remsins to be shown that K is a functor with an

inverse functor. Now K(1,;) is a natural transformation de-

1)
fined by the family (K(1p)(A)} = (1y(&,_)) = {1y, =

{1K(H)(A)}‘ Therefore XK(1y) = 1 Wow suppose

K(H)*
¢ 4 u 8 in Funct(@x 8,¢). Show K(e¥) = K{o)K(y).
Component-wise, we have K(ql)(A) : O¥(A, ) - H'(A, ), where
(b (8) = oh(R,_) = olhs_)¥(A,__) = [KE(o)K(§)1(A). There-
fore K 1s a functor.

We would now like to define L ¢ Funct (&, Funct (&, ¢)) -
Funct(dx B,C). Let F e Funct(a,Ffunct(F,C)). Now L(F)sdx B - 6
must be a functor. Define L(F)(A,B) = F(A)(B) cob ¢, and
if (f,g) tAxB - A'xB) let L(F)(f,g):F(A((B) - F(A")(B') re
defined by L(F)(f,g) = (F(X)(B))(F(A)(g)). This can be
seen in the following commutative diagram since F(f) :

F(A) - F(A’) is a natural transformation.
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F(a) ()5 (B) Sr(a’)(B)

2(8) (&) l F(A ) (a)

F(A)(B") Y >F(4")(B")

Show L(F) is a functor. Now L(F)(l(A’B)) = L(F)(1,,1p)

= (F( 1) (BN (F (8) (1) = (Lpeay (B) (Lpray(py) =

a(a)(s) tr(a)(B) T 'R(A)(B) T 'L(F)(a,B)" SUPROSE
(A*,B*)M)%(A,B)—M(A',B') in @x B . Then

L(F) (£,8)L(F) (k) = (F(£)(B))(F(A)(g)) (F(R)(B))F(A*) (k) =
(7(£)(B")) (F(n) (B')) (F(A%) () (F(&%)(K)) = (F(£h)(B))(F(4%) @K))

= L{F)(fh,gk). Since F(h) 1s a natural transformation and

F(4%) and F{A) are functore, the following commutative dia-

gram exists and explains the substitution.

F(h) (3
pa) () — 22 sy e
7(8%) (e) j lm)(g)
F(A%)(B") > F(A) (B’
T (o) (3') =

'~ Therefore L(F) is a functor,

We must now show how L aclis on morphisms in
Funct(d, Funct(B,C)). Let o:F - G be in Funct(g,Funct(B,C));
that is, ¢ is a natural transformation. Then L(@):
L(F) - L(G) must be a natural transformation. Now
L(F),L(G) : gx & - C are bifunctors, Define L(g) by the
family of morphisms {L(g)(A,B) : L(F)(A,B) — L(G)(A,B)} where

L{wp) (A,B) = @(A)(B). This is well defined, since o(A):
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F(A) - G{A) i1s a natural transformation for all A ¢ ob ¢ and
p(A) (B) : F(A)(B) - G(A)(B) is defined for all Beob &. To
show L(g) 1s a natural transformation between the bifunctors
L(F) and L(&), let (f,g): (A,B) -» (A',B') In ¢ x B . Since
w(A) is a natural transformation for all Acob & and by the

definition of L(¥), we have the following commutative diagram.

o(4) (B)
F(4)(B) > G(4) (B)

7 (@) G(4) ()
) (B) Wﬂﬁ?ﬂ)(y

O EwEEE /F(A) oy 2By Gy )
)

FE)(3")

F(A)(B

G(E)(E)

y

> F(A")(B")

o(A") (B")
Therefore L{¢) is a natural transformation,
show L is a functor, ILet lF: F - I be the ldentity
natural transformation on F: & - Funct(#,C). Then L(1,) is
defined by the family of morphisms (L{1.)(& B)} = (I(A)(B)]} =

(pay (B)] = [lg gy gy ) which defines 1 the identity

natural transformation on L(F). Supposi(?lp F¥¢ in
Funct(@,Funct(&,¢)). Then F,G,H: g - Funct{B,C) are func-
tors and g,y are natural transformations. Show L(g{) =
L{g)L(¥) = L(H) - L{G). Now L(p¥)(4,B) = (e¥)(4)(B)
[o(8) 6(2) 1(B) = o(&) (B) ¢(A)(B) = L(e) (A,B)L(¥)(4,B)
(L {)L(¥)) (A B), since w(A), §(A), L(e) and L{Y) are all

natural transformations., Hence L 1s & functor.

I
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Finally we must show KL = 1 and

Funct(d,Funct(8,C))

IK = 1 Let FeFunct(d,Funct(5,¢)). (KL)(F)

Funct(dx £,C)° |
is a functor from & to Funct(B,C). Show this functor is

the same as F. Let Acob@. Then [(KL)(F)](A):B -~ C is

a functor,and so is F(A) : B - ¢. To show these functors

are the same, let Beob®&., Then ([XL)(F)](A))(B) =

(IK(L(F)) 1(A)) (B) = (L(F)(A,_))(B) = L(F)(A,B) = #(A)(B).
Now let g:B-B' in & ([(KL)(F)1(A))(g) = (L(F)(A,_ ))(g) =
L(F)(4,g) = F(A)(g). Therefore [(KL)(F)](A) = F(A). We must
now show that (KLYF) and F act on morphisms in A the same.
Let £:A ~A"in g [(KL)(F)I(f) = [K(L(F)) () = L(F)(f, )
= F(f) by definition. (See the diagram where L(F) is de-
fined.) Therefore (XL)F = F and KL and the identity func-
tor agree on objects in Funct(d&,Funct(s,C)). We will now
show that they agree on the morphisms, Iet ¢:F - G be a
natural transformetion where F,G : & - Funct(s,C) are functors,
We must show (KL)(e) : K(L(g)) : X(L(F) = F -» K(L(G)) = G is
the same natural transformation as ¢. We will show that the
defining family of maps are the same. ILet Acobg. Then
o(A),K(L(g))(A) : F(A) -~ G(A) are natural transformations.
Again, show their components are the same. Iet Beob .

Then (X(L(9)) (8))(B) = L(w) (4,__)(B) = L(g)(£,5) = o(A)(3).
Since this is true for all Be ob B, the components of
K(L{¢))(A) and «(A) are the same, and since this is true

for all A e ob@, the components of K(L(gp)) and ¢ are the same,
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Hence (KL)y and ¢ are the same natural transformations.
Therefore KL = lFunct(d,Funct(B,GJ)'

We are now reedy to show KL = 1 Let

Funct(agx &,C) "
Htgx B ~ C. Then (IK)(H) = L(K(H)) : ax B - C. Let (A,B)¢
ob gx 8. L(K(E))(A,B) = (K(H)(A))(B) = H(A,B). Let (f,g):
Ax3 - A" xB’. Then (L(K(H))(f,g) = K(H)(£)(3")K(H) (&) (g) =
H(f,B)H(A,g) = H(f,g). Therefore (IX)H = H and LK and

i act on objects the same, For morphisms,

Funct(ax B,C)
let w:H - E' be in Funct(gx B,¢). Show (LK)g= . Now ¢
is defined by the family (¢(A,B) : H(A,B) - E'(A,B)} and
(IX) (¢) = L(K(y)) is defined by the family {L(K(y))(A,B) =
(X(@) () (B) * L) (A,B) = E(A,B) - L(H')(4,B) = H'(4,B)).
Then (K(p)(4))(B) = ofA, )(B) = o(A,B); hence these two

families are the same. Therefore IK = 1 Hence

Funct{agx 8,¢)"
Funct(@x B,C) = Funct(g,Funct(B,8)). Therefore Lemma 2.8 has
been proved,

In the following sequence of proofs, we have to gen-
eralize some concepts and notations, TLet F,G:C ~ & be
functors and let Mor,(F,G) be the collection of all natural
transformations between them. Now Moro(F,G) in this general
context will not be taken tc be a set or a class, but if C
is a small category, Morf(F,G) is a set, as we saw in Chapter
I. Whenever o: T - G ls a natural transformation, we write
"¢e:Morf(F,G)ﬂ and if ¢ is a small category, this will be

taken to mean "p is tn the set Mor.(F,G)." Let X be a set

£
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or a class. Then an applicaticn g1 Morf(F,G) - X willl assign

to esach natural transformation an element of X. The instruc-
tion will be denoted by -,

Theorem 2.1 (Yoneda Lemma). Let C be a category. Let

F:C - Qet be a covariant functor and Acob . Then the

application T: Morf(hA,F) ~ F(A) where T(¢) = ¢(A)1, € F(4)

is unique and invertible., The inverse of this applicatlon is

e FA) - Morf(hA,F) where t(a) = haezMorf(hA,F) and

h*(B)(f) = F(f)(a), for 811 £:A » B in C and acF(A).

Proof. MNow 7 is uniquely defined since qf4) : HA@Q-»FQQ.

We must show 1 © i1s well defined. That is, we must show h%
is a natural transformation from hA to F. let f:B - B’

in ¢, Show the following diagram 1s commutative.

pB(5) P (B) n ()

b (f) F(L)
Kt B') ————F(B’)
n% (%)
Let g: A - B. Then [P(£)n®*(B)(g) = F(£)F(g)(a) and

[e® (B )P (£) 1(g) = u®(®) (fa) = F(fg)(a) = F(£)F(g)(a).
Hence le 18 well defined.

1

-1 -
Show 71T lF(A) and T T = lMorf(hA,F)‘ Let acF(A).

Then (rr71)(a) = r(n®) = R*(A)(1,) = ¥(1,)(a) = ENORERS

Hencewv_l = lF(A)'

Lry(e) = 77 (e(A)1,) =

©- ILet Beob&. Then show

Let me]ﬂorf(hA,F). Then (v~

o(A)l | o(A)1
h A. Show h A
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B) »~ F(B). Let f:A~ B in ¢. Then

A8)1, |
h BB I(E) = B(2)(@(A)1,) = (P(F) o(8))(1,). Now since

¢ ig a natural transformation, we have the following commubta-

tive dlagram.

Therefore F(f)o(A)

B
b=
A

>

£). Therefore (F(f)q(4))(3,) =

(m(B)hA(f))(lA)=m o(B)(f). Since this is true for all

@(A)lg

Beobl, h = . Hence e =1 A ) Therefore

Morf(h N
Theorem 2,1 has been proved.

Lemma 2.9, Let F and G be functors from €@ into Set and
let @i F » G be a natural transformation, ILet f:A - B be a

morphlsm in C. Then the following diagrems are comnmutative,

wor o (1, F)— (1) Hor, (h*, 7 y—>T(A)
Morf(hﬁ_o@)l l p(A) Morf(hst)\l/ Jl F(f)

Morf(hA,G)ﬁ?aG(A) Morf(hB,F)—;?F(B)
where Morf(hﬁ,@)(w) = p¢ and Morf(hf,F)(w) = ¢hf.

Proof. Let ¥ hA - F be a natural transfeormation. Then

[o(B) 710 = of8) (¥(A)(24)) = (o(A)§(2))(1,) = (o) (A)1, =
T(ot) = T(Morf(hA;$)(¢)) = [TMorf(hA,m)](¢). Hence the first

diagram commutes.
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Since ¢ is a natural transformation, the following

diagram is commutative.

hA(A)—~JSEQMaF(A)

ey | | 7o)
A e
8 — =T (3)

F(E)(4(A)1,) = (F(£)4(A))(1,) =
W(E)RN(£)1(1,) = ¥(B)(£1,) = ¢(B)(£) and [rhor (x5, 7)](y) -
(") = [(") () 1(15) = ¥(B)(n(B) (1)) = ¥(B) (1) =

§(B)(f). Therefore the second diagram commutes, Therefore,

1l

Then [F(£)71(y)

Lemma 2.9 has been proved.
We would now like to define what is called the conira-

variant representatlon functor. Let C be a small category,

Define h™ : ¢ - Funct(C,Set) by h (A) = b and if F:A-B

in ¢ then h™(f) = nf : 1P - uP,

et 1, A -~ A, Then

A
- a 'a
h™(1,) = h'A. If BeobC and £:4 - B, then h A(B)(r) =

. Hence h™(1,) = 1 -

1
= A =
1, = f. Therefore h #(B) = 1 al =1, (&)

h*(B)

€A LB, chown™ = n8nf. Tet Decove and h:so D

Let C
in ¢. Then h'8(D)(h) = hfg and (h8nT)(D)(n) = (hE(D)ET@) (1) =
h®(D)hf = hfg. Therefore h is a contravariant functor,

Similarly, we define the covariant representation functor

O

h_:C - Funct(CP, Set).

Lemme 2.10. Let C be a small category. Then Morp(h™, ):
Cx Funct(C,8et) - Bet and &: Cx Funct(C,Set) - Set are bi-

functors. Mor.(h7,_} is defined by Mor.(h™, )(A,F) =
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Mor (hA,F) and Mor ,(h™, )(f,p) = Mor (hf,@). $ is defined

i f
by ¥A,F) = F(A) and ¥f,q = B)F(f) = G(f) ¢(A). In both
cases, ! - G 18 a natural transformation of the functors
F,G:C - 8Set. Turther, the application 1 is & natural iso-
morphism of the bifunctors. ¢ is called the evaluation
functor.

Proof, TLet (A,F} e ob{exFunct{e,set) Then (1,,1

A? F)

)
is the identity for (A,F). Show Morao(h™, (1, 1) =

1
1 (h8,1.) = 1

) (2,T)° That is, show Mor F) Mo

Morf(h",m f hA,F)‘

l
let o1 hA - F be a natural transformation. Then

Mor ( 1) (g = cFi’llA,and if DeobC and gt A - D, then
(o)) e ) = O (e) = o(2) (814) = w(D)(5)-

1
Hence Mor (h 5150 () = ¢ Hence Mor.(h A1) =1

F A )e

7) Mor.(h™,F
Now suppose (C,H)—22"1s (8, ¥) (A, T -——ﬂﬁ%(B G) in ¢x Funct{g,Set).
Show Morf(hfg,mw) = Morge(h ,@)Mor(hg,¢): Mor

£
f(hB,G). Then for p: n® ~ H a natural transformation,

we have 1or .(n"8, 01) (p) = (g¥) () (H"E) = gypnBn’ = o yPud)n
and [Morf(hf,cp)MOff(hg; ¥) 1{p) = MOff(hfscp)(diphg) = o ven®) (nh).

Hence Mor.(h7, ) is a bifunctor.

hJH)-’

Moyr

Show % is a bifunctor. Let (A,F) ¢ Cx Funct(C,Set).
Then §(1,,15) = L,(A)F(L,) = Lpeayle(a) = p(ay = HAF).
Suppose (C,H)M(A,F)M(B,G). Then (fg,o) =
QU(B)H(fg) = o(B)¥(B)E(f)H(g). Since § ie anatural trans-

formation, we have the following commutative diagram.
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¥(8)

H(A)————F(4)

(2) l e

H(B) —————> (B
(B) ) (B)

Then o(f,¢) 8, §) = o(B)(F(f) §(A))H(g) = o(B) y(B)H(f)H(g).
Hence & is a blfunctor.

Nowr( ,F) and 7(A, ) are natural transformations fol-
lows from Lemma 2.9. Hence 1 is a natural transformation
from Lemma 2,6,

Nowr ™ : & ~ Mory(h—,_) where + ' (A,F) t F(A) - Mor,(n",F)
is defined by T_l(A,F)(a) = n® and h*(B)(£) = F(f)(a). Let
(A,F)QLEiEQQ(B,G). Then we mugt show the diagram commutes.

T"l(ApF)

P(4) >tor (%, 7)
G(f)e(A)= '
@EngEf%= ‘ [ tor . (h', ¢)
(f,0)
G(B) * More(hpy,G)

7 1(8,8)
Let as7(A). Then (Mor,(nf,q)r " (4,F))(a) = Hor(nf)(n?)

= pn®n®, and (<TH(B,@) 9(B)F(£))(a) = TTH(B,0)e(B)n*(B) (£)

_ (BB (B))(F) | cach of which is a natural transformation
from h° to G. Let CcobSet and g+ B~ C. Then ((@nnl)(¢) (&) =
(5(0)2(0)17 (0)) (8) = (@) (0) (1T (0) () = o(C)EE(C) (ar) =

®(C)F(gf)(a). Since ¢:F - G is a natural transformation,

we have o(C)F(g) = G(g)v(B). Now (h(ﬁ(B)ha(B))(f)(C))(g) —

G(g)o(B)n”(B) (£) = G(g)o(B)F(f)(a) = o(C)F(g)F(f)(a) =

o(C)F(gf)(a). Therefore t™t ig a natursl transformation.
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Show rr ™l = 15, Let (A,F) e CxFunct(C,Set) and ac F(A).

Then ((r771)(8,5))(a) = ((&,F)r "1(4,F))(a) = T(4,F)n® =

ha(A)IA = F(1p)(a) = 1F(A)(a) = a. Therefore 17+ = 1s

1

1 -1 _
Show 1 "1 = 1Morf(h',_)' Show T “T(A,F) = Lvor hA,F)'

(
Let ¢ hA - I be a natural transformation and Bszobcf and
f:A -3Bin G. Then [T“IT(A,F))(w)(B)] (£) =
[P H(A,T) 7(8,5)) () (B) 1(E) = (17(8,F) ¥(8) (1,)) (B) (f) =
nV U (8) (5) (£) = #(0) (1) (1)) = ¥(B)RR(2)1, = 4(B) (£1,) =
§(B) (£) since ¥(B)RR(£) = F(£)y(4). Hence 7-1r = Liors (57, )"
Therefore T is a natural lsomorphism between the bifunc-

tors. Hence Lemma 2,10 has been proved.

Lemme 2,11, TLet A,BeobC., Then

B A)

(1) for feMor,(A,B), let A (f) = nf ¢ Mor . (n ,h

e e Then
A 1s a bijection;
{(2) the bijection of (1) induces & bijection between
the isomorphism in Mora(A,B) and the natural isomorphismg in
B A
Mora(h™,h");
(3) for contravariant functors F:C - Set, we have a
unigque invertible application between Mora(hy ,F) and 7(A);
(4) for feMor,(A,B), let o(f) = kg € Mora.(h,,hy). Then
¢ ls a bijection inducing a bijection between the isomor-
phisms in Mor@(A,B) and the natural iscomorphisms in
Mora{hy,hg).
Proof. (1) In the Yoneda Lemmea, let F = it e - get.
Then ™% : 1*(B) = Mor.(n®,n") 1s A in the hypothesis, Then

-1 . . . .
T 1s unigque and invertible,
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(2) Let £ be an isomorphism in Mor,(4,B). Show nt ie

2. natural isomorphism in Morf(hB,hA). Since f is an isomor-

phism, we know there exists g such that fg = lB and gf mgl

1
T8 = p8F - nA 14

T
1

Then nfh’ = 08 = ' =1 5 and b

Therefore hf is a natural isomorphism,

Suppose rY is & natural isomorphism in Morf(hA,hB). We

can choose hf since the application 1s a bijection. We must

. . . . £ . .
show that f is an isomcrphism, Since h™ is a natursl iscomor-

A B i

phism, there exists h® ¢ Mor.(h™,h") such that h

iy f

he = 1 4 and
f( hA il

hFrt = 1 5. Then 1 4= h'nf = n8" implies gf = 1, and

lhB = hghf = hfg implies fg =1 Hence f is an lsomorphism.

o
(3) This is the dual assertion of the Yoneda lemma,
(4) This is the dual assertion of (1) and (2). There-
fore Lemma 2,11 has been proved,

We would like to give some other properties that some

functors have, before proceeding. A full functor 1s a funcior

which induces surjective maps on the morphlsm sets. A faith-

ful functor is a functor which induces injective maps on the

morphism sets. Then by Lemma 2.11 (1), h™ is a full and
faithful functor, and by Lemma 2.11 (4), h is full and faith-
ful,

An interesting property cf full and faithflul functors is
that it 1s always the case that the image of a full and faith-
ful functor is a category. As in the beginning of this chapter,

we must check whether or nct Fghf is in the image of F when
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f:A-B, g:C =D and F(B) = F(C}. Now lgpeMor (FB,FB) =

P
MoriﬂFB,FC). Since F is a bijection on the morphism sets,

there is a morphism h e Mcr ,(B,C) such that Fh = 1_.. Then

G‘ FB
F{ghf) = FgFhFf = Fg}TTBFf = FgFf and ghf is the desired
morphism. Therefore the image of the functor will form a

category.

Lemma .12, Let F+C - B be a full and falthful func-
tor, Let & and A be small categories and Gs @~ C, G’ : B - b
be functors. (@ and B are scmetimes called diagram schemes
and ¢ and ¢' are called diagrams when the domains are dia-
gram schemes.)} Further, let E: ¢ - 8 be a functor which is

bijective on the objects such that the diagram is commuta-

a
Gl
c

Then there i1s exactly cne diagram H: B - C such that FH = &

tive.

E
_

ey
F

‘
and HE = G,

Proof, We will define H in the following way: since E
ig biljective on the objects, for each Beob £ there is a unique
Acobg such that E(A) = B. Define H(B) = G(A) eob ¢. Now
let £:B - C in B, Let A, A’ e ob ¢ be such that E(A) = B and
E(A') = C, Since F ls fulli and faithful, ¥ is bijective on
the morphism sets. Hence Mora(GA,GA’) = Mor o((FG)A,(FG)A") =

Morﬁ((G'E)A,(G’E)A’) since the diagram is commutative. Now
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by definition of H and choice of A,A’ we have Mor ,(HB,HC) =

ol
Mor 5(G'B,G'C). Since G’fszMorigG’B,G’C), there is a unique

h e Mor ,(EB,HC) such that Fh = G'f. Define Hf = h. Now H is
well defined.

Show H 1s a functor. Let 1B: BE~-R in A, Then.HlB = h

where Fh = G‘1_ =1 but Fl,.. = 1(

B alR? HB We need to show

FH)B'

that FHB = G'B, Now (FH)B = (FG)A = (G'E)A = G'B, where
EA = B. Since F ig full and faithful, then l,; = h. Let
8 &cLioins  Show H(fg) = HFEz. Let H(fg) = h where

Fn = ¢ (fg) = F'£G’'g. Let k,u be such that ¥k = G'f and Fg =
G'g. Then G'fG'g = Fkf'y = P(kg), which implies h = kg, since
F is full and faithful. Hence (FH)(fg) = Fh = F(kyp) =
F{HfHg), and since F is faithful H(fg) = HfHg. Hence H is &
functor.

Show HE = G and G’ = FH. Let Aecob@. Now (HE)A =
H(EA) = GA, If f:A - B in & then (EE)f = H(Ef) = h where

Fh = G'(Ef) = (FG)f. Then h = Gf, since ¥ is faithful. Hence

1l

HE = G. Let Beob #. Then F(H(B)) = F(GA) where EA = B,
Then (FG)A = (G'E)A = G'B. Let £f:B - C in B. Then (FH)f =
Fh where Fh = G'f., Hence F(Hf) = G'f. Therefore Lemma 2,12

has been proved.



APPENDIX

The foilowing are examples of categories, Most of

these examples are given in the book Categoriegs and Functors.

(1) The empty category. The object class 1s the empty

set and Mor ¢ 1s also the empty set. This is a category
vacuously.

(2) The category of ordered sets~-Ord. The object

class 1s the collecticn of all sets with an order relation <
satisfying (1) a <a, (2) if a <b and b < a, then a = b,

and (3) if a <b, b =c, then a <c., The morphism set.for
A,Becob Ord is Mor(A,B) = (f |f:A -~ B and £ is an order-
preserving function}. The composition of morphisms is defined
to be the composifion of functions., We must show that this
composition is order-preserving. If A E B & ¢ in Ord and

a <b in A thenf(a)< £(b) In B. Therefore g(f(a)) < g(f(b))
in ¢ or gf(a) < gf(b). Hence this composition is well de-
fined, This composition is associative, since the composlition

of functions 1s associative. The identity function 1, on A

A
is an order-preserving function and serves as the identity
morphism for A iIn Crd, Hence Ord is a category.

(3) An ordered set as categery. Tor any ordered set

(8,<), usually Just written as "S," let obC = S and a,beS

Th
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define Mor(a,b) = {(a,b)} if a =D and the empty set ¢
otherwise, Compositlion 1s defined to be the unique element
in Mor (a,c) or the empty set whenever we compose (a,b) and
(b,c). B8lnce <is transitive, this gives a unique composition.
Since the merphism csets consist of at most one element, the
composition is associative and a < a guarantees an identity.
Hence an ordered set forms a category.

(4} The category of pointed sets--Set*. A pointed set

is a pair (A,a) where A is a set and a<A., The collecticn of
a1l peinted sets forms the object class of Set¥*. A pcinted
map between two pointed sets (A,a) and (B,b) is a function
f:A - B such that f{a) = b. The collection of all pointed
maps between (A,a) and (B,b) forms Mor((4,a),(B,b)). Composi-
tion 1s the composition of functions. We must show that the
composition of pointed maps 1s a pointed map. Suppose

(8,2) 5 (B,5) & (C,c). Then (gf)(2) = g(f(a)) = g(b) = c.
Therefore the composition is well defined. Again the composi-
tion 1s asscociative since the morphisms are functions. The
identity map 1A on A is a pointed map. Hence Set* is a

category.

(5) An eguivalence relation as a category. Let M be a

set and R be an equivalence relation on M. Let obC = M.
Then let Mor,(a,b) = {(a,b)} if aRb and the empty set other-
wise. As in example (3), this defines a category.

A category & is callied a subcategory of a category C if

cb 8cobC and Mor (A,B)cMor,(A,B) for all A,Bcob B. Also

A o
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the composition of morphisms in & must coincide with the
composition of the same morphisms in € and the identity in
5 of an cbject A must be the same as the identity of A taken
in &,

(6) The category of abelian groups--Ab. The object class

of Ab is the collection of all abelian groups and the mor-

phiemg are all group homomorphisms between abelian groups.

Now these homomorphisms are also homomorphisms in Gp. The

composition and the identities are the same as in Gp also.

Then by the same proof as for Gp, Ab is a category. By the
above definition, Ab is a subcategory of Gp.

(7) A group ag a category. ILet G be a group. Let
ob & = B where B is any object. Definé Mor,(B,B) = G such
that the composition is the multiplication of elements of .
Since the multiplication is associative, the compeosition is
assoclatlive, The ldentity of the group is the identity mor-

phism, Thus € forms a category.

(8) The category of rings--Rg (not necessarily with

multiplicative ldentity). The collection of all rings form
the object class and Mdng(A,B) is the set of all ring homo-
morphisms between A and B. Composition is the usual compesi-
tion,and this 1s associative., For each AecbRg there is an
identity ring homomorphism. Hence Rg is a category.

{(9) The category of rings with identity--Ri. Let obRi

be the collection of all rings with a multiplicative ldentity.
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The morphisms are the usual ring homomorphisms with the
usual composition. Then R1 forms a subcategory of Rg.

(10) The category of all modules over a ring R--Rm. Let

ob Rm be the collectlion of all modules over R and let

Morg (8,B) be the collectlion of all R-homomorphlsms. Com-
position is the usual composition,which 1s assoclative., The
identity R-homomorphism serves as the identlty. Thus Rm 1s
& category.

(11) The category of vector spaces over a field E~—VectF.

Let ob'VectF be the collection of all vector spaces over
F, and the morphism sets are the collections of linear trans-
formations between vector spaces. VectF fforms a subcategory
cf Rm.

(12) The category of topological pairs--Topp. A topolo-

gical pair is an ordered pair (X,A) where X is a topological
space and A ¢ X. A morphism from (X,A) to (Y,B) is a con-
tinmuous function £ :X - Y such that f(A) € B. The composi-
tion is the composition of functions,and if (X,A)i(YQED %(Z,C),
then £(&) < B and hence (gf)A ¢ C. Therefore the composition
is well defined. The composition 1s asscociative since the
composition of functicons is assoclative and the identity

function is a morphism in Teopp. Hence Topp is a category.

(13) The category of Hausdorff topclogical spaces--Hd.

Let ob Hd be the collection of all Hausdorff topolegical

spaces and the collection of morphism is the ceollection of
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continuousg functions between them. Then Hd is a subcate-
gory of Top.

Similarly., we get other subcategories of Top by collecting
all those topological spaces with a certain property and using
the continucug functions between them. Some of these are T4,
T3’ Tl and TO spaces, compact Hausdorff spaces CH, and locally

compact Hausdorff spaces LCH.
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