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The purpose of this paper is to examine some basic

topics in category theory. A category consists of a class

of mathematical objects along with a morphism class having

an associative composition.

The paper is divided into two chapters. Chapter I

deals with intrinsic properties of categories. Various "sub-

objects" and properties of morphisms are defined and examples

are given.

Chapter II deals with morphisms between categories

called functors and the natural transformations between func-

tors. Special types of functors are defined and examples are

given.



PREFACE

The origins of category theory are in algebraic

topology. The basic concepts of category, functor and

natural transformation were formulated by Samuel Eilenberg

and Saunders MacLane in 1945 in their paper, "General Theory

of Natural Equivalences." Since then, category theory has

grown into a discipline in its own right. The main strength

of category theory is two-fold. First, it has applications

in other branches of mathematics and it unifies many disci-

plines in the sense that many concepts can be expressed in

functorial language. As a consequence of this unification,

category theory provides a groundwork for comparing different

branches of mathematics by comparing their isomorphisms.

It is the purpose of this paper to explore some basic

notions in category theory. These notions include both in-

trinsic characteristics of a category and how categories may

be c ompared. Category theory tries to abstract concepts

from many of the different disciplines.

A category consists of two things, the mathematical

objects and the morphisms between these objects. Many of

the internal characteristics of a category are nothing more

than abstractions of a similar concept in an already existing
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discipline. For most of the notions mentioned in this paper,

examples are given in specific categories that suggest the

origin of the concept.

Categories are compared using categorical morphisms or

functors. A functor consists of two things, an assignment of

an object of the domain category to an object of the codomain

category, and an assignment of morphisms. Many times it is

desirable to compare functors, and the tool here is a natural

transformation,
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CHAPTER I

OBJECTS AND MORPHISMS

Most of the definitions and theorems come from the

book Categories and Functors,by Bodo Pareigis. Also some

of the examples appear in this book. In all cases, however,

the proofs are original.

Let C consist of two things, (1) an object class,

written obC, of mathematical objects, and (2) a family of

mutually disjoint sets (Mor,, (A,B)} for all objects A,B E

ob C whose elements f,g,h. -- c More (A,B) are called mor-

phisms. Also, a family of maps

(MorC (A,B) xMorC- (B,C) 3 (f,g) - gf E MorC (A,C)}

for all A,B,C ob C called compositions exists. When we have

f c More (AB) we will often indicate this by A f B orf :A-+B,

where A is the domain of f and B is the codomain. Then C

is called a category if C fulfills the following axioms.

(1) Associativity: For all A,B,C,D c ob C- and all

f c More (AB), g c Mor0 (B,C) and h c MorC- (C,D), we have

h(gh) = (hg)f.

(2) Identity: For each object A in C- there is a mor-

phism 1A c Mor (A,A) called the identity such that for all

B E ob C-, CE ob C-, f c MorC (A,B) and g c MorC- (C,A) we

have f 1A = f and 1Ag g.
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The following are some examples of categories. More

examples appear in Appendix I.

(1) Set. The objects of this category are all sets. If

A and B are sets, then MorSet (AB) = (f I f is a function from

A to B). The composition in Set is the usual composition of

functions. The identity function 1A : A -+ A defined by

1A(a) = a for every acE A satisfies axiom 2 since if A X B

and C 9 A, then (f 1A) (a) = f(lA(a)) = f(a), and (lg)(a)

1A(g(a)) = g(a) for each a cA. Composition of functions is

associative, since if A B 4 C ... D, then for every a c A

((hg)f)(a) = (hg)(f(a)) = h(g(f(a)) = h((gh)(a)) = (h(gf))(a).

Therefore, Set is a category.

(t) Top. The object class in Top is the collection of

all topological spaces. If (X,T) and (Y,S) are topological

spaces (usually just writen as X and Y), then MorTop (xy)

(f f is a continuous function from X to YJ where f is con-

tinuous means f~1(U) E T for every U e S. Composition is the

usual composition of continuous functions. The composition

is known to preserve continuity. This composition is asso-

ciative since the composition of functions is associative.

The identity function on X is a continuous function and

satisfies axiom 2. Therefore, Top is a category.

(3) Gp. The object class in Gp is the collection of all

groups. If (A,.) and (B,*) are groups (usually written as A

and B), then MorGp (AB) = tffI f is a group homomorphism
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from A to B} composition of morphisms is defined to be the

usual composition of homomorphisms which gives a homomorphism.

This composition is associative since composition of func-

tions is associative. The identity function is a homomor-

phism. Hence the collection of all groups together with

their homomorphisms forms acategory.

The following notations will be used. Capital Latin

letters will denote objects and small Latin letters will de-

note morphisms between objects. When there is no ambiguity,

Mor (A,B) will be abbreviated to Mor (A,B). MorS0 will de-

note U Mor (A,B) where the union is taken over all objects

A,B in 0.

We would now like to construct a new category OP from

a given category 03. The class of objects of &P is the same

as the class of objects of 0, that is, ob COP = obJC. If

A,B c ob 0O, then Morp (AB) = Mor, (B,A). Compositions

are defined by the rule:

(f,g) c Mor0 0 (AB) x Morep0 (BC), (f,g) ->fg EMorep0 (AC)

with fg formed in 0. Suppose A f> B -+C D in j,. Then

D h+ C g, B f..A in C and (fg)h = f(gh) in 0. Therefore, h(gf)=

(hg)f in 00, which means the composition is associative.

The identity morphism on A, 1A, in ( is also a morphism in

CPP. Let A Z B and C Z A in O. Then B -A and A , C.

Since 1Af = f and g 1A = 9 in 0, we have f 1A= f and 1A = g in

e0. Therefore OOP is a category and it is called the dual

category of 0.
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To indicate that an object A or morphism f in a category

(a is being considered as an object or morphism in the dual

category -P, we often write A0o or fop. Also (-P)OP = 0.

When we have a true statement about a category C- we can ob-

tain a corresponding true statement about the dual category

C-P by reversing the direction of all morphisms involved.

We would now like to study some of the internal proper-

ties of categories. In this study there are two things to

consider: the morphisms and the objects.

Morphisms

In the study of these morphisms we will try to generalize

some properties of the morphisms in some specific categories.

In Set, suppose g,h: A - B and f: B - C such that fg = fh.

Then we know that g = h if f is injective (1-1), and if fg= fh

implies g = h for every pair of functions g and h, then we

can show f is 1-1. Let A = ((a,b) | a,bcB and f(a) = f(b)}.

Define g and h to be the first and second projection func-

tions respectively from A to B. Then for every (a,b) EA,

we have (fg)(a,b) = f(a) = f(b) = (fh)(a,b). Hence, by

hypothesis, g = h. Therefore, a = b implies f is 1-1. With

this in mind we make the following definition.

Let C-be a category and f: A - B inC-. Then f is a

monomorphism in C if fg = fh implies g = h for all C- E ob C-

and for all gh Mor (CA); that is, f is left cancellable.

We sometimes shorten f is a monomorphism to f is monic.
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Now, in Set, suppose f : A - B and g,h: B - C such that

gh = hf and f is surjective (onto). Then B = f(A), and if

be B, then there is an ac A such that f(a) = B. Now g(b) =

g(f(a)) = (gf)(a) = (hf)(a) = h(f(a)) = h(b). Therefore

h = g. Conversely, if gh = hf implies g = h whenever

A B C, then we want to show f is onto. Let S = {(f~ (b) }1

b E f(A)} U (0} U (1} where (0} and (1) are disjoint sets and

0 / 1 (f~1 (b) } for any b c f(A). Define h,g: B - S by

h(b) g(b) = (f~1 (b)} if b Ef(a), h(b) = 0 and g(b) = 1 if

b/ f(A). If acEA and f(a) = b,then (gf)(a) = g(f(a)) = g(b)

h(b) = h(f(a)) = (hf)(a). Therefore gf = hf and by hypothesis

g = hwhich is a contradiction if f(A) # B. Therefore f(A)= B,

which means f is onto. Generalizing this to other categories,

we have the following.

Let C-be a category and f: A -B in C. Then f is an

epimorphism in C- if gf = hf implies g = h for all C E ob C-

and for all g,h c MorC (BC)-, that is, if f is right can-

cellable. The morphism f is also called epi. The notion of

epimorphism is dual to the notion of monomorphism. The dual

statement of the definition of monomorphism would read: a

morphism fop : A - B is a monomorphism in C-P if fp O9=op

fOP hop implies gOP = h0 for every C E ob C 0P and for every

g p, hOP E MorCop (CA) . In C this would look like

f 4B - A h C, and hf = gf implies h = g, or exactly the notion
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of epimorphic. Hence for every statement about monomorphisms

there is a corresponding statement about epimorphisms and

the converse.

Lemma 1.1. Let f and g be morphisms in a category which

can be composed. Then

(1) If fg is a monomorphism, then g is a monomorphism.

(2) If f and g are monomorphisms, then fg is a mono-

morphism.

(3) If fg is an epimorphism, then f is an epimorphism.

(4) If f and g are epimorphisms, then fg is an epimor-

phism.

g fProof. Let A B - C.

(1) Let hh': D - A such that gh = gh'. Then f(gh) =

f(gh'). Therefore (fg)h = (fh)h' and since fg is a monomor-

phism we have h = h'. Hence g is left cancellable.

(2) Let h,h': D - A such that (fg)h = (fg)h'. Then

f(gh) = f(gh') implies gh = gh' since f is a monomorphism,

and since g is a monomorphism h = h'. Therefore fg is a

monomorphism.

(3) This statement is the dual of statement (1) and

hence true. A direct proof would be as follows. Let

A B C4D such that hf = h'f. Then (hf)g = (h'f)g or

h(fg) = h'(fg). Therefore h = h,' since fg is an epimorphism.

(4) This statement is the dual assertion of (2) and

hence is also true. Directly, let A g B ChD such that
-4



7

h(fg) = h'(fg). Then (hf)g = (h'f)gwhich implies hf = h'f.

Therefore h = h'. Hence fg is an epimorphism.

Therefore Lemma 1.1 is proved.

That monomorphism is equivalent to injection and ep-

morphism is equivalent to surjection in Set follows from the

discussion preceding the definitions. We can generalize the

following lemma.

Lemma 1.2. For a category 3 whose objects can be con-

sidered as sets and whose morphisms can be considered as

functions, injective implies monomorphic and surjective im-

plies epimorphic.

Proof. Let (? be a category satisfying the hypothesis.

Let f : A - B be 1-1 and suppose h,h': C - A in a such that

fh' = fh. Then for c cC, f(h'(c)) = (fh')(c) = (fh)(c) =

f(h(c)), and since f is injective,h'(c) = h(c). Therefore,

h = h" and f is monomorphic. Now let f : A - B be surjective

and suppose hh': B - C in S such that hf = h'f. Then for

be B there is an a cA such that f(a) = b,since f(A) = B.

Therefore h(b) = h(f(a)) = (hf)(a) = (h'f)(a) = h'(f(a)) =

h'(b). Therefore h = h' and f is epimorphic. Thus Lemma 1.2

is proved.

The converse of this lemma is not true for some cate-

gories,as indicated by the following examples.

This example appears in the book Categories and Functors.

Let f : A - B be a dense continuous map in Hd (Appendix I). A

continuous map is dense if for every nonempty open set U in B
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there is an acEA such that f(a) cU. Show f is an epimorphism.

Suppose g,h: B - C in Hd such that gf = hf. Let b E B such

that g(b) / h(b). Then there exist disjoint open sets U

and V in C such that g(b) c U and h(b) E V. Then b c g~ (U) n

h l(V), which is open in B. Since f is dense, there is an

acEA such that f(a) cg~ (U) n h~1(U). Therefore (gf)(a) c

g(g~ (U) A h1(V)) c U A g(h 1(V)) and (hf)(a) c h(g~1(U) n

h~ (V)) c h(g~ (U)) n V. Then (gf)(a) / (hf)(a), contrary

to hypothesis. Therefore g = h and a dense continuous map in

Hd is an epimorphism.

Now the reals R with the usual topology is Hausdorff

and the rationals Q with the inherited topology is Hausdorff.

Then the embedding i: Q -4 R is a dense continuous map but it

is not surjective. Therefore Hd is a category in which an

epimorphism need not be surjective as a set map.

Define a category a by ob a = (a,b}, (b}}1 and let (a,b}=

A and (b} = B. Define the morphism sets as follows: Mor(AA)=

(lA}, Mor(B,B) = (1BJ, Mor(A,B) = (h | h(a) = bh(b) = b} and

Mor(BA) = (k | k(b) = al. Composition in a is the composi-

tion of set maps,and we know that this is associative. The

identities are given. Now h is a monomorphism since there is

only one morphism into A from Aand only one morphism from B

into A, but h is not an injection. Also, k is an epimorphism

since Mor(A,A) and Mor(A,B) consist of only one element and

k is not surjective as a set map. Hence C is a category
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where the monomorphisms need not be injective nor the epi-

morphisms surjective as set maps.

Some categories besides Set whose objects can be consi-

dered as sets and whose morphisms can be considered as func-

tions where we have the equivalence of monomorphisms and

injective functions are Gp, its subcategory Ab (Appendix I),

Top and some of its subcategories T4 spaces, normal spaces,

T , completely regular, regular, T and T0 spaces, along with

Hd and CH, the category of compact Hausdorff spaces. The mor-

phisms in these subcategories are the continuous functions

between the objects. Some more algebraic categories where

this result is true are Rm, Rg and Ri. The proofs for these

are all similar.

For Gp, let f :A - B be a monomorphism. We know the

product Ax A is a group under coordinate-wise multiplication.

Show that C = ((x,y) E Ax A j f(x)= f(y)} is a subgroup of

Ax A. Let (x,y),(w,z) c C. Show (xw~1,yz~1) c C. Now f(xw~)=

f(x) f(w~1)= f(y) f(z1) = f(yz~1) since f is a homomorphism.

Therefore (xw~ ,yz~1) cC, and hence C is a subgroup of AxA.

Therefore C c Gp. Define p1 ,p2 : C - A by p1(x,y) = x and

p2 (xy) = y. These are well defined and we need to know that

p and p2 are homomorphisms. Let (x,y) and (w,z) c C. Then

pl((x,y)(w,z)) = pl(xw,yz) = xw = p1 (x,y)p1 (w,z). Therefore

P is a homomorphism. Similarly p2 is a homomorphism. Then

for (x,y) cC, (fp1 )(x,y) = f(x) = f(y) = fp2(xy). Since f
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is a monomorphism,pl = p2 . Therefore p1(x,y) = p2(xy) for

every (x,y) cC,and hence x = y whenever f(x) f(y). Hence

f is injective. The same proof also shows that in Ab, mono-

morphism implies injection, since AxA is abelian if A is,

and hence, C would be abelian.

For Top, let f: (XT) - (Y,S) be a monomorphism. Let

C = ((a,b) I f(a) = f(b), a,b cX}. Define p1 ,p2 : C -* X by

pl(a,b) = a and p2(a,b) = b. Let C have the weak topology

determined by p1 and p2 . Hence p1 and p2 are continuous.

Then for every (a,b) c C, fp1(a,b) = f(a) = f(b) = fp2(a,b)

and as before p1 = p2 . Therefore p1(a,b) = p2(a,b) for every

(a,b) c C. Therefore if f(a) = f(b), then a = b and f is in-

jective. This same construction with the discrete topology

on C also works for T4 , normal, completely regular, regular,

Hausdorff, T1 and T0 spaces with their respective continuous

functions,since the discrete topology has each separation

property.

Let f : A -. B be a nonempty monomorphism in CH. Then

Ax A is compact and Hausdorff. Let C = ((a,b) If(a)= f(b)}.

Show C is closed in Ax A. If (ab) / C, then f(a) #f(b),and

hence there are disjoint open sets U and V containing f(a)

and f(b) respectively. Now f~1(U) and f (V) are open sets

containing a and b, and thence f~ (U) x f (V) is an open set

of (a,b) disjoint from C. Therefore C is closed and hence

compact. Also C is Hausdorff since Hausdorffness is heredi-

tary (A,B / empty set). Define p1 ,p2 : C - A by p1(ab) = a



11

p2 (a,b) = b. The functions p1 and p2 are continuous since

they are the restrictions to C of the projection functions.

Now, as before, fp1 = fp2 , and hence f is an injection.

In the category Rm, let f : A - B be a monomorphism. We

would like to show that the cartesian product A x A is an R-

module under the operations (a,b) +(cd) (a +c, b +d) and

a(a,b) = (aa, ab), a ER. We know Ax A is an abelian group

under the addition. Then

(1) (a+ p)(ab) = ((a + )a,(+ $)b) = (aa+ pa, ab + pb) =

(aa,ab) + ( a, b) = a(a,b) + $(a,b) since A is an R-module.

(2) a((a,b) +(cd)) = a(a+c, b+d) = (a(a+c), a(b +d)) =

( aa + ac, ab +ad) = (a a,cab) + (ac,ad) = a(a,b) + a(c,d) .

(3) a( p(ab)) = a( $a, p b) = ( a( a), a( pb)) = ((a $)a, (a p)b) =

( ap) (a,b) for every a, p E R and (ab), (cd) E A x A.

Therefore A xA is an R-module.

Let C = ((a,b) |f(a) = f(b)}. Show C is a submodule of

A x A. Let (a,b), (c,d) c C.

f(a-c) = f(a)- f(c) = f(b)-f(d) = f(b-d)

Therefore (a-c, b-d) E C and hence (a,b)-(cd) E C. Let a c R.

Then f(aa) = af(a) = af(b) = f(ab), which means (aa,ab) cC.

Therefore a(a,b) E C for every a ER and (ab) c C. Thus C is

a submodule of AxA and hence an R-module.

Define p1 ,p2 : C - A by pl(ab) = a and p2 (a,b) = b.

We know p1 and p2 are group homomorphisms; show p1 (a(a,b))

(pa(a,(b).

pl(a(a,b)) = pl(aa,ab) = aa = apl(a,b).
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It is similar for p2 . Therefore p1 and p2 are morphisms

in Rm. Then for every (a,b) s C, fpl(a,b)= f(a)= f(b) = fp2 (a,b),

which means p,= p2 and therefore a = b.

Therefore f is injective. Therefore monomorphism im-

plies injection in Rm.

Let f : A - B in Rg be a monomorphism. Then AxA is a

ring under coordinate-wise addition and multiplication, since

A is a ring.

Let C = ((a,b) I f(a) = f(b)}. Show C is a subring of

AxA. We know C is a group under +. Let (a,b), (c,d) c C.

Then f(ac) = f(a)f(c) = f(b)f(d) = f(bd). This implies

(ac,bd) c C and hence (ab)(c,d) c C. The associative and dis-

tributive laws are inherited from AxA.

Again define p1 ,p2 : C - A as before. Now p1((a,b)(c,d))=

pl(ac,bd) = ac = p1(a,b)p1 (c,d), and since p1 was shown to be

a group homomorphism, p1 is now a Rg-homomorphism. Also,

fp1(ab) = f(a) = f(b) = fp2(a,b). Therefore p1 = p2, and as

before f is an injection. Therefore in Rg monomorphism im-

plies injective.

The example also works for the category Ri since C will

have the identity (1,1) as an element where 1 is the identity

in A.

The construction of the object C leads to the definition

of a pullback of a morphism in a category. Let f : A - B in

a category C. The triple (C,p1 ,p2 ) is a pullback of f means



(1) fp1 = : 2 and (2) if fg = f 2 for any g E,g2 E Mor(DA),

then there is a unique k :D - C such that plk = g and

P2 k = g2.

For Top, let f : A - B and let C, p1 and p2 be as before.

(C has the weak topology determined by p1 and p2 .) Then p1

and p2 are continuous. Show (C,p1 ,p2 ) is a pullback of f.

Now fp,(xy) = f(x) = f(y) = fp2 (X,y) for every (x,y) c C.

Suppose there is a D E ob Top such that for g!g2 : D -* A

fg1 = fg2 . Then define k : D - C by k(d) = (g (d),g2(d)),

dc D, which is well defined since g, and g2 are, and fg1 =fg2 .

Let pjj (V) be a subbase element of C where V is open in A.

Since g1 is continuous, g ~ (V) is open in D. For every d E D

(pik)(d) = p1(g1 (d),g2 (d)) = g1(d). Therefore p k = g1 .

Therefore k '1  (V)) = p k)~l(V) = g ~1 (V),which is open

in D since g1 is continuous. Therefore k is continuous. To

show k is unique, suppose we have k' : D - C such that

p k ' = g, and p2k kI= g2. Let d c D, and k '(d) = (x,y) E C.

Then (pk')(d)= p1(x,y) = x = g1(d), and (p2k')(d) =

p2 (x2y)=y:g2 (d) by hypothesis. Therefore (g,(d),g2(d)) =

(x,y), which means k(d) = k'(d). Therefore k = k' and hence

k is unique. Therefore (C,p1,p2 ) is a pullback of f. Hence

every morphism has a pullback in Top.

Another way to do this construction is to give C the

inherited topology from A xA. Then p1 and p2 are just the

restrictions to C of the projection maps and hence are con-

tinuous.
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Then the function k is still continuous since subbase

elements for C will be of the form Pi1 (V) n C where P. is

the ith projection function on Ax A. However, this agrees

with p1 (V). Everything else remains the same. In this way

we can see that if we are in a topological cateogry where the

spaces have only properties that are productive and hereditary,

then this will be a category where every morphism (nonempty,

if necessary to avoid nonempty product) has a pullback. In

particular, since T0 , T1 , T2 , regular, T (regular and T1),

completely regular and Tychanoff are hereditary and produc-

tive, every morphism has a pullback.

For the category of T4 -spaces we will show that every

1-1 function has a pullback. The set C used above has the

form C = ((x,x) I x E A} if f : A - B is 1-1. The restricted

projections are now just the same function, say p1. Now p1

is a continuous bijection. Show p1 is an open function.

Let U be open in C and let ycEp1 (U). Then (y,y) EU. Since

U is open,there is an open set V1 x V2 such that (y,y) G

(V1 x V2 ) A C. Therefore y E V1 , yETV2 . Hence y cV1 n 2

which is open in Aand V1 n V2 Sp 1(U). Hence p1 is an

open function. Therefore p1 is a homeomorphism and A_= C

(homeomorphic). Since A is T4, then C is T4.

Suppose we have fg1 = fg2 , where g1 ,g2 :D - A. Since f

is injective, g1 = g2 . Define k :D - C by k(d) = (g1(d),g1(d))

for every dcED. Then plk = g1 . Show k is continuous. If U
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is open in C, then pl(U) is open in A. Hence g~1(f,(U)) is

open in D, but (g~lp1 )(U). (If k(d) EU,then p1(g1(d),g1 (d))

g1(d) Ep1 (U). Therefore dc g 1 (p(U)). If g1(d) Ep1 (U),

then k(d) = (g1(d),g1(d)) c U.) Hence k is continuous. Sup-

pose k': D - C such that plk' = gl. Then plk' = g = pik.

Since p1 is injective, p1 is left cancellable and hence

k = k. Therefore (C,p1 ,p1 ) is a pullback of f when f is

injective.

For the category Rm, show every morphism has a pullback.

Let f : A - B in Rm and define C, p1 and p2 as before. Show

(CpI,p2 ) is a pullback of f.

Suppose fg1 = fg2 where g1 ,g2 : D - A. Define k : D - C

by k(d) = (g1(d),g2 (d)). This map is well defined since

fg1 = fg2 by hypothesis. Show k is a morphism in Rm. For

every d,d' ED and rcR we have k(d+d') = (g1(d+d'),g2 (d+d')=

(g1(d) +g1 (d'),g2 (d) +g2 (d')) = (g1(d),g2 (d)) + (gl(d'),

g2(d')) = k(d) +k(d'). Therefore k is a group homomorphism

and k(rd) = (g1 (rd),g 2 (rd)) = (rg 1 (d),rg2 (d)) = r(g1 (d),g2 (d))=

r k(d). Therefore k is an R-homomorphism.

The uniqueness of k is the same as in Top. Therefore

every morphism in Rm has a pullback. In fact, since C,p1

and p2 can be considered groups or abelian groups as A is, and

p1 and p2 are group homomorphisms, (C,p1 ,p2 ) is a pullback

for morphisms in Gp and Ab.

Now we would like to find some categories whose objects

can be considered as sets and whose morphisms can be considered



as functions where the epimorphisms are exactly the surjec-

tive functions. We know this is true for Set.

In Top, let f : B -+ C be an epimorphism (abbreviate f is

epi). Suppose f(B) 51 C. Let A = f- (c))cC U fO)} U ( - C}

where w and -w are two objects not equal to f-l(c) for any

c c C. Let A have the indiscrete topology and define h,g :

C - A by g (c) = f~ (c) if ccf(B) or g(c) = oc/f(B) and

h(c) = f- (c) if c c f(B) or h(c) = -CO c/f(B). Then g and h

are continuous since A has the indiscrete topology. Let b E B.

f(b) = c. Then (gf)(b) = g(c) = f1 (c) = h(c) = (hf)(b).

Since f is epi, h = g,which is a contradiction. Therefore,

f(B) = C and an epimorphism in Top is surjective.

Let Fgp stand for the category whose objects are finite

groups and whose morphisms are the group homomorphism between

them. This example is outlined in the book Categories and

Functors. Let f :G"' - G be epi. Then f(G') = H is a sub-

group of G. Let G/H be the set of left cosets of H in G.

Then Perm (G/H U {m}) is a finite group where * is an object

not in G/H.

Define aj: G/H U (o} - G/H U (c} by a(gH) = gH,g / H,

a(H) = c and a(o) = H. Then a is well defined and a bijec-

tion, and therefore aEPerm (G/H U (oo). Since a(a(gH)) =

a(gH), a(a(H)) = a(o)= H and a(a(oo)) = a(H) = co, we have

a = id, the identity map on G/H U (oo}. Def ine t :G -Perm

(G/H U (ool) by t(g) : G/H U (oo} -* G/H U too where t(g) (g'H) =

16
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gg'H and t(g)(O) = . Suppose g = g. Then t(g)(g'H) =

gg'H = gg'H = t(9)(g'H) and t(g)( ) = oo = t(K). Therefore t

is a function. Show t(g) is a bijection for every g E G. Sup-

pose t(g)(g'H) t(g)(gH). The n g g'H = gg'EH, which

means 9g1 g g' E H. Therefore g~1geH. Therefore gH = g'H

and t(g) is an injection. The map is onto,for if g'H c G/H U

(co, then t(g)(g~ g'H) = g'H and t(g)(O) = O. Therefore t(g)

is a bijection and hence t is well defined.

Show t is a gp-homomorphism. Let g,gE G and g'HcEG/H.

Then t(gg)(g'H) = ggg'H = t(g)(g'H) = t(g)(t(T)(g'H)) =

(t(g)t(g))(g'H) and t(gi)(o) = co= (t(g)t(9))(o). Therefore

t is a gp-homomorphism.

Now define s: G - Perm(G/H U (m)) by s(g) = at(g)a.

Then s is well defined and we need to show s is a gp-homomor-

phism. If gjgc G,then s(gT) = at(g)a = at(g)t(T)a =

at(g)cat(g)a = s(g)s(g). Let gHe G/H, hcEH. Then t(h)(gH)=

th(gH) = hgH and s(h)(gH) = (atha)(gH) = Gth(gH) = a(hgH) =

hgH. Also, t(h)(co) = and s(h)(w) = (attho)(CO) = cath(H) =

a(hH) =a(H) = c. Therefore t(h) = s(h) for every h EH.

Now i: H - G by i(h) = h is an epimorphism and ti = si

implies t = s for every g E G. Then if g e G, gH = tg(H) =

s(g)H = (atga)(H) = otg(co) = a(co) = H. Therefore gH = H for

every g c G. Hence H = G and f is a surjection. Therefore,

in Fgp, epi implies surjective.

In the category of abelian groups Ab,let f : A - B be epi.

Now f(A) = H is a normal subgroup. Then B/H is an abelian
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group. Let n: B - B/H by n(b) = bH. Then n is a homomor-

phism. Let v: B - B/H by v(b) = H, and v is a homomorphism.

Let aEA and f(a) = b. Then (nf)(a) = n(b) = bH = H = v(b) =

(vf)(a). Therefore n = v since f is epi. Therefore bH = H

for every b E B. Hence H = B and f is surjective.

Let Cbe a category. We define f c Mor0 (AB) to be an

isomorphism if there is a morphism g E Mor (B,A) such that

fg = 1B and gf = 1A. Two objects A and B in 3 are called

isomorphic (A = B) if More(A,B) contains an isomorphism.

Two morphisms f : A -) B and g : A'/ - B' are called isomorphic

(f = g) if there are morphisms he MorQ(A,A') and k c Mor0 (B,B')

such that gh = kf.

Since f A - B being an isomorphism implies that there is a

g: B -+ A such that fg = 1 and gf = 1A, g is also an isomor-

phism and g is usually denoted by f~ because it is uniquely

determined by f.

We want to now show that the composition of isomorphisms

is an isomorphism. Suppose A 9 B-9 C with f and g isomor-

g-1  n- -1 1 1 -1_
phisms. Then C B - A, and (gf)(f g ) = g(f f )g

g 1 Bg1=1 C.Also(f g~ )(gf) = f ~(g g)f= f~ 1 f-A

Then f 1 g = (gf)~ and gf is an isomorphism.

Also 1A is an isomorphism for every A in ob20. There-

fore the relation of objects being isomorphic is an equiva-

lence relation. Similarly, the relation of morphisms being

isomorphic is an equivalence relation.
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Lemma 1.3. If f is an isomorphism, then f is a mono-

morphism and an epimorphism.

Proof. Suppose f : A - B is an isomorphism and there

exists h,g : C - A such that fh = fg. Since f is an isomor-

phism, there exists f~ : B - A. Now f~ (fh) = f1 (fg) =

(f~ f)h = (f~1f)g. Therefore 1Ah = 1Ag or h = g. Therefore

f is left cancellable and hence a monomorphism.

Now suppose there exists h,g: B - C such that gf = hf.

Therefore (gf)f~ - (hf)f or g(ff~ ) = h(ff~ ). Hence,

g B = h 1B or g = h and f is right cancellable. Therefore,

f is an epimorphism. Thus Lemma 1.3 has been proved.

The converse of this lemma is not true. An example in

Hd will be shown in the section concerning functors. A cate-

gory in which the converse is true is called a balanced cate-

gory. Two quick examples are Set and Ab, since in these

categories monic implies 1-1 and epi implies onto, so an in-

verse is guaranteed.

Objects

We now want to collect monomorphisms and generalize some

notions like "subset" in set theory. Let C be a category and

7? be the class of monomorphisms. Define two monomorphisms

f : A -, B and g: C - D to be equivalent (f ~g) if B = D and

there are two morphisms h: A - C and k: C - A such that

gh = f and fk = g. Another way of saying this is that the

following diagrams commute.
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A A

hB k

Lemma 1.4. ~ is an equivalence relation on 7/.

Proof.

(1) Let f:A - B be monic. Then we have f 1=1A

(2) Suppose f : A - B and g : C - B are monic and f'-g. Then

the following commutative diagrams exist.

A A

hW k B

Therefore g ~f.

(3) Assume the hypothesis of (2) and further, that g~ s

D - B where s is monic. Show f ~s. Then the diagrams in

(2) exist along with these two commutative diagrams:

B B

D D

Then we would like to show the following diagrams are com-

mutative:

A A

hkm$ B

D D
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Now s(kh) = (sk)h = gh = f and f(km) = (fk)m = gm = s.

Hence f ~s. Therefore is an equivalence relation and

Lemma 1.4 has been proved.

If f ~-g then f = gh and fk = g, hence f = fkh and g =

ghk. Since f and g are left cancellable, we get1 A = kh and

1I = hk. Therefore A ~ C.

We are now ready to define a subobject. A subobject of

an object B in a category C is the equivalence class of a

monomorphism f in '/, with range B;, we write "Kf>1" for equi-

valence class of f. Alternatively, let 'U be a complete set

of representatives for the equivalence relation. Then if

B c ob C,, a subobject of B is a monomorphism in U with range B.

A subobject <f> of B is said to be smaller than a subobject

Kg> of B if there is a morphism h of (2 such that f = gh. This

order relation is well defined, for suppose <f> <g> and

f ~ k, g u where the following diagrams are commutative.

A

Z m B h B n p u B

C D E

Now hm:C -D and g(hm) = (gh)m < fm = k. Also nhm: C - E

and u(nhm) = (un) (hm) = g(hm) = k. Therefore <k <m>.

Also, since f = gh and f and g are monomorphisms, and by

Lemma 1.1 (1), h is a uniquely determined monomorphism. We

will often use only f to stand for a subobject of Bor fur-

ther abbreviating, we will use only the domain of the
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subobject,assuming the monomorphism is known, and write A'c A

when f : A - B, g : A' -B and f:5g.

Lemma 1.5. The subobjects of an object B cob a form an

ordered class.

Proof. Let f: g and g 5 h be subobjects of B where

f : A - B, g: C -B5, h: D - B. Then there exist morphisms k

and k such that f = gk and g = h9. Then f = (h)k = h(kk).

Therefore f 5h. Now f5f, since f = 'A. If f 5 g and g 5 f,

then there exists morphisms k and Z such that f = gk and

g = fk. Hence f and g are equivalent monomorphisms. There-

fore the class of subobjects forms an ordered class.

Before continuing with some definitions we would like to

show the subobjects in certain categories. Let B cob Set and

f : A B be a subobject of B. Then f is 1-1. Show i :

f(A) - B ~f. We know i is 1-1.

Define f: A -f(A) by 1(a) = f(a) and define h: f(A) - A

by h(f(a)) = a. Then f and h are functions. Now (if)(a) =

i(f(a)) = i(f(a)) = f(a) and (fh)(f(a)) = f(a) = i(f(a)).

Therefore i ~ f. We know that f(A) is a subset of B and

i: f(A) - B is a subobject of B. Obviously if C is a subset

of B, then i: C -, B is a subobject. There the subobjects of

a set B are the subsets of B.

In Gp a subobject f :A - B of B c ob Gp is a subgroup

since f is 1-1 and f(A) is a subgroup of B. Then use the

same argument as in Set. It is not true in Top, however,



that subobjects are always subspaces. Let R denote the reals

with the usual topology and let ID denote the interval [0,1]

with the discrete topology. The inclusion i: ID - R is con-

tinuous since ID has the discrete topology. Hence i is a

subobject of R in Top.

Now in Top,if X ~ Y, then there exists h: X - Y such that

h is continuous, h 1 : Y -) X is continuous, hh 1 = 1Y and

h~ h = 1X. In other words, h is an isomorphism of the cate-

gory Top. Therefore h is monic and epi and therefore 1-1 and

onto. Hence h is a homeomorphism. Therefore X is homeomor-

phic to Y. Since subobjects have the property that their

domains are isomorphic, the question becomes: can there be

a subspace of R such that it has cardinality c =RI and has

as its relative topology the discrete topology?

Assume the hypothesis for S. Since S is a subspace of

a second countable space R, then S must be second countable.

Therefore S must be separable. This is a contradiction to S

having cardinality c. Therefore i: ID - R is a subobject of

R but is not a subspace. In Top, any continuous inclusion

map is a subobject.

The ordered class of subobjects of an object B c obC-

is called the power class of B. If the power class of each

object of a category 0 is a set, then 0 is called a locally

small category and the power classes are referred to as power

sets. For example, the category CH is locally small. Let

B E ob CH. Let VB be the ordered class of subobjects of B.



Then tB is the collection of continuous 1-1 functions into B,

since monic is equivalent to 1-1 in CH. Now a 1-1 continuous

function from a compact space onto (its image) a Hausdorff

space is a homeomorphism. Then if f : A - B is monic, f(A) is

a subspace of B. Therefore %B = collection of all <f : A - B>

such that f is monic is the same as (K<f : A -B> IAc 2B

which is a set. Therefore CH is locally small.

The category Gp is also locally small. Let G denote

the power class of G E obGp. We want to show VG is a set.

Define F: G - 2 by F(Kf: H - G>) = f(H). We need to show

F is well defined and 1-1. To show well definition, suppose

<f : H -. G> = Kg : K - G>. Then there exist monomorphisms

h,k such that gh = f and fk = g. Also h,k are 1-1. We must

show f(H) = g(k). Let acEf(H). Then there exists a unique

bcEH such that f(b) = a since f is 1-1 onto f(H). Then f (a

bcH and h(b) cK. Now g(h(b)) = (gh)(b) = f(b) implies

f (b) c g(K) or a c g(K). Hence f(H) c_ g(K) .

Similarly, g(K) cf(H). Hence F is well defined.

Now suppose F(Kf: H - G>) = F(K g : K - G>) or f (H) =

g(K). Define h : H -K by h = g~ f. Now g1 : g(K) -K is

1-1 and onto since g is 1-1, onto. Then h is well defined

and gh = f.

Define k: K -H by k =f~1g. Then k is well defined

and fk = g. Therefore Kf> = <g> and F is 1-1. HenceVG

is a set and Gp is locally small. This also shows Set is

locally small.
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Let 0 be a locally small category. Let U be a subset

of the power set of an object B in 0. A subobject A EU is

said to be minimal (maximal) in U if A' U and A' c A (AcA')

always implies A' = A. The power set of B is called artinian

(noetherian) if in each nonempty subset of the power set

there is a minimal (maximal) subobject. If the power set is

artinian (noetherian), then B is called an artinian (noethe-

rian) object. If all objects in C are artinian or noetherian

then C, is artinian or noetherian, respectively. A subset K

of the power set is called a chain if whenever A', A E K, we

have A' c_ A or A c A'. An object B c ob C complies with the

minimum (maximum) condition for chains if each nonempty chain

in the power set of B contains a minimal (maximal) element.

Lemma 1.6. An object c -3Ecomplies with the minimum

condition (maximum condition) for chains if and only if 8 is

artinian (noetherian). Instead of proving this particular

lemma, we shall dualize the notions of subobjects, locally

small, artinian and noetherian, and state and prove the dual

assertion of this lemma.

Let C be a category and 6 be the class of epimorphisms

of C. Define f : A -B 'g C - D if and only if A= C and the

following diagrams exist and are commutative.

A A

D D
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This defines an equivalence relation on 6. (The proof

is similar to the proof involving monomorphisms.) As before,

if f : A - B and g : A -) C are equivalent, it is easy to show

that C ~ B. Let 4* be a complete set of representatives for

this equivalence relation,and we have the following defini-

tions. A quotient object of A E ob 0 is an epimorphism in J *

with domain A. A quotient object f of A is said to be

smaller than a quotient object g of A if there is a mor-

phism h in S such that f = hg. Then h is a uniquely deter-

mined epimorphism. The dual to Lemma 5 can be stated as

follows.

Lemma 1 .50 The quotient objects of an object /3Eobc-

form an ordered class. The proof can be done by reversing

arrows in the proof of Lemma 1.5.

The copower class of an object AcobS is the ordered

class of the quotient objects of A. A category is locally

cosmall if the copower class of each object A in 3 is a set.

In this case, we have copower sets. The dual notions of

artinian and noetherian are coartinian and conoetherian.

Lemma 1 .60P. An object 8c obS complies with the mini-

mum condition (maximum condition) for chains with respect to

quotient objects if and only if 3 is coartinian (conoetherian).

Proof. Suppose 1 c ob 0 complies with the minimum con-

ditions for chains with respect to quotient objects. Let U

be a subset of the copower set of 13. Suppose U does not
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have a minimal element. Then for each A E U there is an

A i+1 EU such that A i+ !A. and Ai+/= Ai. Construct a chain

in this manner, choosing A 2 5 Ai+ 1 and A.2 2/Ai+1. Then

this chain can have no minimal element contrary to hypothesis.

The other direction follows from the definition. The

statement using maximum condition for chains is similar.

Therefore, Lemma 1 .60P has been proved and its dual is also

true.

We would like to now give some examples of quotient ob-

jects and some categories that are not artinian, noetherian,

and some locally cosmall categories, and some categories that

are not conoetherian.

The category Gp is not artinian. Let(Z,+) denote the

group of integers under addition. For every n E Z+, let

Sn = (2n I j EZ). Then (Sn,+) is a group. Define in :Sn -4,Z

by in(2nj) = 2nj. Then in is 1-1, hence a monomorphism, and

in is a homomorphism. We would now like to show Sn+l - 5

that is, in+ in for every n E Z+. Define h: Sn+ Sn

by h(2n+l) = 2n - 2j. Then h is a 1-1 homomorphism and

(inh) (2n+l) = in(2n . 2) -=2n- 2j - 2n+l = in+1(2n+lj).

Therefore in+ < i n. Suppose there exists a k such that

in+ 1 k =in. Thenin ~i n+l and In = hk, 1Sn+ 1 =kh. There-

fore k h 1 and hk(2n . 1) = h(2n+lj) 2n.2j = ln(2n. 1)

for some jcEZ. Therefore 2 n2 j 2 n. Hence j = con-

trary to j c Z. Therefore in n in+l. Then (<i n} 0 is a
nis1
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chain which has no minimal element. Hence Gp is not artinian.

Since all the maps here are functions and all the groups are

abelian, this also shows Set and Ab are not artinian.

The category Set is not noetherian. Let Z+ denote the

positive integers. Define Sl = (1), S2= (1,2) and in general

S = (1,2,3,- -, n) for every ncE Z+. Define in :Sn -Z+ by

in(m) = m. Then (>i : n - Z+)O is a collection of sub-n n n n=1

objects of Z+. Show i 5 i . whenever n 5j. Define h: S -> S .n n j

by h(k) = k. This is well defined since as sets Sn C S. The

map h is also 1-1 and (i h)(k) = ij(k) = k = in(k). Also,

i. i since if there were an k:S.--S such that i n=i..

then h = 1 1. Since n + IES. we have (hk) (n+l) = h(k(n+l))=

n+l. Since h is 1-1 we have k(n+l) = n+l contrary to the

definition of Sn. Hence (in>)=l is a chain of subobjects

and it has no maximal element. Therefore, Set is not noethe-

rian. We would now like to show that Set is locally cosmall.

Let A c ob Set. Show A'*, the copower class of A,is a set.

In Set, epimorphism implies onto and each onto function sets

up an equivalence relation on the domain. For example, let

Kf : A - B> be a quotient object of A. Then R defined by

aRb = f(a) = f(b) is an equivalence relation on Aand since

R c A x A, R is a set. Then the collection of all equiva-

lence relations on A is contained in the power set of AxA

on 2AX (Set theory-wise). Define F : * 2AxA by

F (<f : A - B>) = R, where R is the equivalence relation on A

induced by f.
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Show F is well defined. Suppose <f : A-4 B> = <g : A- C>.

Then there exists h : B - C and k : C -B such that f = hg and

g = hf. Let f determine the equivalence relation R,and g

determine the equivalence relation S. Suppose aRb. Then

f(a) = f(b) implies g(a) = (hf)(a) = h(f(a)) = h(f(b)) =

(hf)(b) = g(b). Therefore, aSb. Suppose aSb. Then f(a) =

(kg)(a) = k(g(a)) = k(g(b)) = (kg)(b) = f(b). Therefore aRb.

Therefore R = S and F is well defined. Show F is 1-1. Sup-

pose F(Kf>))= F(g>)). Then R = S where R and S are as be-

fore. Define h : B - C by h(b) = g ((f~ (b)}). Show h is

well defined. If c,dc (f~ (b)J,then f(c) = f(d) = b and

R = S implies g(c) = g(d). Then g((f~ (b)}) EC. Therefore

h is well defined. If acA,then h(f(a)) = g((f1(f(a))J) =

g(a). Therefore hf = g. Similarly, define k: C -. B to get

f = kg. Hence f ~ g and F is 1-1. Therefore is embedded

in a set and hence V is a set. Therefore Set is locally

cosmall.

To show Set is not conoetherian, consider again Z+. Let

Sn = (1,2,53,-o.-, n} for every n c Z+. Define f 1 : Z+ - S1 by

f1 (z) = 1 for every z c Z+. Define f2 : Z+ -2 by f2(l) = 1
and f2 (z) = 2 if z 2. In general, define fn : Z+ -4n by

fn(z) = z if 1 5 z <n and fn(z) = n if n ! z. Now each fn
is an onto function; hence <fn : Z+ - S > is a quotient ob-n n
ject of Z+. Show <fn> :Kfn+1> for every n. Define

h : Sn+ 1 Sn by h(s) = s if 1< s5 n and h(s) = n if s= n+l.
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Then h is well defined, and if zc(2Z+, then (hfn+1)(z) = h(z)

if 1 5 z n. Then h(z) = z = fn(z). If z n +1,then

(hfn+1)(z) = h(n+l) = n = fn(n+l). Therefore hfn+=fn'

Now fn+ fn, since there can be no onto function from Sn to

Sn+l.Therefore <fn >:<n+1. Therefore (ffn>) O= is a

chain of quotient objects of Z+. Since there can be no onto

map for Snto ,n+r this chain has no maximal element. Hence

Z+ does not comply with the maximum condition for chains with

respect to quotient objects and, by the lemma, Z+ is not co-

noetherian. Therefore Set is not conoetherian.

The empty set I plays a special role when we consider

the functions associated with it. For any other set A, there

is only one function from ( to A, namely the empty function.

The empty topological space has a similar property. The set,

[ ), has the property that for any other set A there is only

one function from A into ((J, namely that function which

assigns everything in A to (E (}. If we give ( J the indis-

crete topology, then ( J has a similar property--there is

only one continuous function into it. We can generalize this

notion to an arbitrary category.

An object A in a category a is called an initial object

if Moral (A,B) consists of exactly one element for all B E ob 2.

Dually, we define A to be a final object if Mor0 (B,A) con-

sists of exactly one element for all B e ob C,. An object is

called a zero object if it is an initial and a final object.



31

Lemma 1.7. All initial objects are isomorphic.

Proof. Let A and C be initial objects in a category a.

Then 1 and 1 are the only elements in Mor (A,A) and Mor5CC),

respectively. Let Mor(A,C) consist of the one element h and

Mor5(C,A) consist of the one element k. Then hk = 10 and

kh = 1A* Therefore, Mor0 (A,C) contains an isomorphism.

Hence A and C are isomorphic. The dual is also true.

Lemma 1.8. A zero object 0 of a category 0 is a sub-

object of each object BEob 0.

Proof. Let B c ob a. Mor 0 (0,B) consists of one element

h :0 - B. Suppose g,k:C - 0 such that hg = hk. Since 0 is

a final object,Mor 0 (C,O) has at most one element. Therefore

g = k and h is a monomorphism. Hence 0 is a subobject of B.

A morphism f : A - B in a category 0 is called a left

zero morphism if fg = fh for all g,h E Mor(C,A) and all

C E ob 0. Dually, we define a right zero morphism. A zero

morphism is both a right and left zero morphism.

Lemma 1.9. (1) If f is a right zero morphism and g

is a left zero morphism, and if fg is defined, then fg is a

zero morphism.

(2) Let A be an initial object. Then f : A - B is al-

ways a right zero morphism.

(3) Let 0 be a zero object. Then f: 0 - B and g: C - 0

and consequently, fg: C - B are zero morphisms.

Proof. (1) Suppose f : B - A is a right zero morphism

and g: C - B is a left zero morphism. Suppose h,*
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and k,m: A - D. Then (fg)h = f(gh) = f(gt) = (fg)> since g

is a left zero morphism. Therefore fg is a left zero mor-

phism. Now k(fg) = (kf)g = (mf)g = m(fg) since f is a right

zero morphism. Therefore fg is a zero morphism.

(2) For an initial object A and B e ob C, let Mor,(AB)

consist of the one element f : A -* B. Suppose gh : B - C.

Then gf,hf: A - C and gf = hf,since there is only one ele-

ment in Mor(A,C). Hence f is a right zero morphism.

(3) Assume the hypothesis. From (2), f is a right zero

morphism. Since Mor(D,O) consists of only one element for

each D cob a, f is a left zero morphism. Hence f is a zero

morphism. Since Mor(O,D) consists of only one element, g is

a right zero morphism. Since Mor(D,O) consists of only one

element, g is a left zero morphism. From (1), fg is a zero

morphism.

A category 0, is called a category with zero morphisms

if there is a family (O(A,B) E Mor(A,B) for all A,B EC} with

f O(AB) = O(A,C) and O(B,C)g = O(A,C) for all A,B,C c ob a

and all f cMor(B,C) and gceMor(A,B). We must show O(A,B)

is a zero morphism. Let g,h: C - A. Then O(A,B)g = O(CB)=

O(A,B)h. Therefore O(A,B) is a left zero morphism. Now

g O(AB) = O(AC) = h O(AB). Therefore O(A,B) is a right

zero morphism. Hence O(A,B) is a zero morphism. This family

is uniquely determined,since if (0'(AB)) is another family,

then O(A,B) = O(A,B) O'(A,B) = 0'(AB). Hence the families

are the same.



Lemma 1.10. A category 0, with a zero object Z is a

cetegory with zero morphisms.

Proof. Assume the hypothesis: let A,B ca. Then from

Lemma 1.9 (3), f : Z - B,and g : A - Z are zero morphisms and

so is fg : A - B. Show fg = O(A,B). Let h: B - C and k: Z - C,

where k is the only element in Mor(Z,C). Now kg is a zero

morphism from A to C. Show h(fg) = kg. Since hf : Z- C,

we know k = hf. Then since g is a zero morphism, h(fg) =

(hf)g = kg. Hence the first condition is satisfied. For

the second condition, let k: C - Z be the unique morphism.

Then gh = k and (fg)h = f(gh) = fk. Hence the second condi-

tion is satisfied. Therefore the family (fg : A - B where

f
A + Z - B) is the family of zero morphisms.

In Top* (pointed topological spaces with pointed con-

tinuous functions), we would like to show that the one point-

pointed topological spaces are zero objects. Let ((a},a) be

a one point-pointed topological space. Then if gf : (B,b) -

((a},a) are pointed continuous functions, then f(b) = g(b)

and f(c) = g(c) = a for every cE B. Hence f = g. Therefore

(ta},a) is a final object. To show (fa},a) is an initial

object, let g,f : ((a),a) -(B,b) be pointed continuous func-

tions. Then f(a) = g(a) = b. Therefore f = g. Therefore

((a),a) is an initial object. Hence ((a),a) is a zero ob-

ject in Top*.

In Gp, show the one point group (e,-) is a zero object.

Suppose g,f : G -4 (e,-). Then f(a) = e = g(n) and (e,.) is a
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final object. If g,f : (e,') -G, then f(e) = g(e) = e ' where

e' is the identity in G since g and f are homomorphisms.

Therefore f = g and (e,-) is an initial object, hence a

zero object. The one point group is also a zero object in

Ab.

We would now like to show that the family of homomor-

phisms that map everything to the identity is the family of

zero morphisms in Ab. Denote elements in this family by

O(A,B) for A,B E ob Ab. Let f : B - C. Show f O(AB) = O(AC).

Element-wise we have for all acE A (f O(A,B))(a) = f(O(A,B)(a))=

f(eB) = eC, since f is a homomorphism. By definition,

O(A,C)(a) = e0 . Hence f O(AB) = O(AC). Let g : A - B and

show O(BC)g = O(A,C). For every ac A (O(B,C)g)(a) =

O(B,C)(g(a)) = eC and. O(A,C)(a) = e0. Therefore O(B,C)g

O(AC).

Let 0, be a category and f,g : A - B in 0. A morphism

i : C - A is called a difference kernel of the pair (f,g) if

fi = gi and if for each D c ob 0 and each morphism h : D - A

such that fh gh, there is exactly one morphism h' : D - C

such that h ih'.

Lemma 1.11. Each difference kernel is a monomorphism.

Proof. Let f,g : A - B and let i : C - A be a difference

kernel of the pair (f,g). To show i is left cancellablelet

h,k : D - C be such that ih= ik. Then f(ih) = (fi)h = (gi)h =

h(ih), and by definition there exists a unique k': D - C

such that ik = ik'. Therefore ih = ik, and h' is unique
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and ik = ik' and k' unique implies k = k'. Thus k = k'

h'= h. Therefore, i is left cancellable and hence a mono-

morphism.

Lemma 1.12. If i: C - A and i': C'- A are difference

kernels of the pair (f,g) f,g : A -* B,then there is a uniquely

determined isomorphism k: C - C' such that i = i'k.

Proof. Since i and i' are difference kernels, they are

monomorphisms by Lemma 1.11. We know fi = gi and fi'= gi'.

Then, since i' is a difference kernel and fi = gi,there is

exactly one morphism k: C - C' such that i = i'k. Since i

is a difference kernel and fi'= gi', there is exactly one mor-

phism h: C' -. C such that i'= ih. Then i = i'k = ihk,and

since i is monic, we have 1C = hk. Also i'=ih= ikhand i'

monic implies 1C = kh. Therefore k is an isomorphism and k

is unique. Therefore Lemma 1.12 has been proved.

In a category a with zero morphismslet f : A - B. A

morphism g: C - A in C is called a kernel of f if fg= O(CB),

and if, to each morphism h :D - A with fh = O(D,B), there is

exactly one morphism k :D - C with h = gk.

Lemma 1.13. Let g be a kernel of f. Then g is a dif-

ference kernel of (f, O(AB) where f: A - B.

Proof. Let g: C - A. Show fg = O(AB)g. Since g is

a kernel of fwe know fg = O(CB) and O(A,B) has the property

that O(A,B)g = O(C,B). Hence g satisfies the first condi-

tion. For the second condition, let h':D - A such th at
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is exactly one morphism h': D - C with h = gh'. Thus g is a

difference kernel of (f, O(AB). By Lemma 1.11, g is a mono-

morphism.

By dualizing, we can define a difference cokernel and

a cokernel. Then each difference cokernel is an epimorphism

dualizing Lemma 1.11. The dual to Lemma 1.13 tells us that

if g is a cokernel of f, then g is a difference cokernel of

(f, O(B,A)) where f : B - A.

We would like to find some difference kernels, kernels,

and cokernels. In Gp, let f,g : G - G' and let C = (c c G I
f(c) = g(c)). Then C / 4(since f(e) = g(e)), and we know

that C is a subgroup of Gx G. Let i: C - G be the inclusion

homomorphism. Let D E ob Gp, and suppose h:D -4 G is such

that fh = gh. Show there is exactly one morphism h':D - C

such that h = ih'. Define h': D - C by h'(d) = h(d). Then

f(h(d)) = (fh)d = (gh)(d) = g(h(d)), and therefore h(d) cC.

Hence h' is well defined and a homomorphism. Also (ih')(d) =

i(h'(d)) = i(h(d)) = h(d) or all dcED). Show h' is unique.

Suppose there exists k :D - C such that h = ik. Let d c D.

Then h'(d) = h(d) = (ik)(d) = i(k(d)). But (ik)(d) = k(d).

Therefore h'(d) = k(d), and h' is unique. Hence i : C A is

a difference kernel of f and g. This also shows i is a dif-

ference kernel of f and g if f and g are in Set or Ab. A

category in which every pair of morphisms has a difference
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kernel is called a category with difference kernels. Hence

Set, Ab and Gp are categories with difference kernels.

In Top, let f,g : A - B and let C = (x EA f(x) = g(x)

with the relative topology from A. Again, let i : C - A be

the inclusion function which is continuous. Then,similar

to the above, i is a difference kernel of f and gand hence

Top has difference kernels. In Rm, C is a submodule of A

and i: C - A is an R-homomorphism. Again, i is a difference

kernel and Rm has difference kernels.

We would now like to give an example of a kernel and a

cokernel in Ab. Let (Z,+) = A and C = ((2z | zcZ),+) = C.

Then C is a normal subgroup and A/C is abelian. Define

f : A - A/C = B by f(a) = a+C. Define g: C - A by g(2z)=

2z. Then (fg)(2z) = f(2z) = C+2z = C = O(C,B)(2z). (We

have shown what the family of zero morphisms in Ab is.)

Suppose h: D - A with fh = O(D,B). Show there is exactly one

morphism k : D - C with h = gk. Define k(d) = h(d). This is

possible since fh = O(DB); that is, if dcED then (fh)(d) =

f(h(d)) = C+h(d) = C. Hence h(d) = 2z for some z cZ.

Therefore h(d) EC. Now (gk)(d) = g(k(d)) = k(d) = h(d).

Show k is unique. Suppose there exists k': D - C such that

h = gk'. Then k(d) = h(d) = k')(d) = g(k'(d)) = k'(d).

Therefore k = k' and g: C - A is a kernel of f. The group

theoretic kernel of f is C. If f were an arbitrary homomor-

phism and C the kernel of fthen i: C -A, the inclusion homo-

morphism, would be the kernel of f by almost the same argument.
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A - B is the set C = (x A f(x) = g(x)}, which is the same

as (x c A I f(x) - g(x) = eB}, which is the kernel of f - g.

Now let f : B - A be a homomorphism in Ab. We know that

f(B) is a normal subgroup of A and that A/f(B) = C is an

abelian group. Define g : A - C by g(a) = a+f(B). Then g

is a homomorphism. Show g is a cokernel of f. Show gf =

O(B,C). Now for every bcEB,(gf)(b) = g(f(b)) = f(B) +f(b) =

f(B) = eC = O(B,C)(b). Let h : A ->D with hf = O(B,D). Show

there is exactly one morphism k: C -4D with h = kg. Define

k : C - D by k(f(B) +a) = h(a). If f(B) +a = f(B) +b, then

a-b c f(B) and h(a-b) = (hf)(c) for some c cB. Then (hf)(c)=

O(B,D)(C) = eD implies h(a-b) = eD. Therefore h(a)-h(b) = eD

and h(a) = h(b). Hence k is well defined. Since h is a

homomorphism, so is k. If a cA,then (kg)(a) = k(g(a)) =

k(f(B) +a) = h(a). Therefore h = kg. To show k is unique,

suppose that k' : C I-D is such that h = k'g. Let f(B) +a c C.

Then k(f(B) +a) = h(a) = (k'g)(a) = k'(f(B) +a). Therefore

k = k'. Hence g : A - C is a cokernel of f in Ab, and coker-

nels are characterized in Ab.
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CHAPTER II

FUNCTORS AND NATURAL TRANSFORMATIONS

In Chapter I we discussed some intrinsic properties

of categories. These properties dealt mainly with the mor-

phisms of the category. In this chapter we will discuss

morphisms between categories and some of their properties.

Let /3 and S be categories. We say F: -- - is a co-

variant functor if (1) F : ob /3 ob a where F(B) e ob a for

every B c ob/3, and (2) for every f c Mor3(AB), F(f) E

Mor(F(A),F(B)) and the assignment satisfies F(lA) F(A)
g f

for every A csob /,and if A B - C in 13 then F(fg) =

F(f)F(g) in C. We say F : / - C is a contravariant functor

if condition (1) above is satisfied along with (2 ') for every

fc Mor(A,B), F(f) c Mor0 (F(B),F(A)) and the assignment satis-

fies F(lA) F(A) and if A B C then F(fg) = F(g)F(f).

If there is no ambiguity, we will write "FA1" for F(A), and

"Ff " for F(f). A functor is sometimes called a categorical

morphism. We will call a covariant functor simply a functor,

and we will use F,G,H:,K, and L mostly for functors (unless

otherwise indicated).

Lemma 2.1. Composition of two covariant functors or

two contravariant functors is a covariant functor.
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Proof. Let F : 13 - S, G : C - . be two covariant func-

tors. The composition GF will be defined by the composition

of the defining maps for F and G. That is, for A EobS,

(GF)(A) = G(F(A)) Eob.6and if f: A - B in B then (GF)(f) =

G(F(f)) : G(F(A)) -G(F(B)). Now (GF)(lA) = G(F(lA)) = G(1FA)
1G(FA) 1(GF)A. If A E- B -C in 8, then (GF)(fg)= G(F(fg))=

G(FfFg) = G(Ff)G(Fg) = (GF)f(GF)g. Hence GF is a covariant

functor.

For F and G contravariant functors, the definition is

the same in that we compose the defining maps. Now (GFXlA)

G(F(lA)) G(lFA) = l(GF)A and if A e Bf C then (GF)(fg) =

G(FgFf) = (GF)f(GF)g. Hence GF is a contravariant functor.

Thus, Lemma 2.1 has been proved.

When composing two functors of the opposite sense, that

is, one covariant and the other contravariant, the resultant

functor is contravariant. Condition 1 in the definition is

easily satisfied. For condition 2, suppose G is contravariant

and F is covariant, and we can form the composition GF. Then

(GF)(fg) = G(FfFg) = G(Fg)G(Ff) = (GF)g(GF)f. The other case

is similar.

Suppose F: 1 - 3 C, G:- - and H: . -. 5 are covariant

functors. Then for B cob/3 ((HG)F)(B) = (HG)(FB) = H(G(FB) =

H((GF)(B)) = (H(GF))(B) and if f,: A - B in 1, then ((HG)F)(f)=

(HG)(Ff) = H(G(Ff)) = H((GF)f) = (H(GF))(f). Therefore the

composition of functors is associative. Let 11: C- - C- de-

note the functor that assigns each object to itself and each
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morphism to itself. This defines a functor, since the compo-

sition of morphisms in a category is already defined. Then

for F:O -*.&and G:8--CSwe have F1 =Fand1 G =cG.

We are almost ready to conclude that the collection of

all categories with the functors between them forms a cate-

gory. However, we must insure that the morphisms between two

categories form a set. To do this, it is necessary to require

that we collect only those categories whose object class is

actually a set; that is, we allow only small categories

(sometimes called diagram schemes) in the object class of

this new category. Now we can collect the functors between

two small categories into morphism sets and we form the cate-

gory of small categories and their functors called Cat.

We would now iike to give some examples of functors.

The identity functor 1C for a category 0 has already

been mentioned. Some categories have objects that can be

considered as sets with certain other structures imposed on

the set. Likewise, the morphisms in these categories are

functions with other properties. Examples are Top, Gp, Rg,

and Rm, among others. We can therefore define a covariant

functor F: S - Set by assigning the underlying set to each

object in C and the underlying function to each morphism in

0. Functors of this type are called forgetful functors. Not

all forgetful functors have codomain Set. For example, a

ring is also an abelian group under the addition, and a ring

homomorphism is also a group homomorphism. Hence, we can
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get a forgetful functor from Rg to Ab. Similarly, functors

from any subcategories of Top to Top may be defined (Appendix

I).

The concept of duality may be expressed using a contra-

variant functor, Op : -3 0P where Op(A) = A0P = A,and if

f : A -> B in Othen Opf fop : B -> A. Then to show Op is

actually a contravariant functor we must show that Op(lA)
f

lA, and if A, B -> C in C,then Op(fg) = OpgOpf. Now Op(lA)

1Ao = 1A, and Op(fg) = (fg)OP = gOPfOP = Op(g) Op(f) by defi-

nition of the dual category.

A
Let 0 be a category and AcE ob 0. Define hA :0 - Set by

h A(B) = Mor(A,B), and if f : B -> C, then define hA(f) : hA(B) -

hA(C) by hA(f)(g) = fg,where gclvMor(A,B). Define hA : C,

Set by hA(B) = Mor,(B,A), and if f : B - C, then define

hA(f) : hA(C) -> hA(B) by hA(f)(g) = gf for all g E Mor0 (C,A).

Lemma 2.2. hA and hA are covariant and contravariant

functors, respectively.

Proof. We will show that hA is a contravariant functor.

The proof for hA is similar. Let B 1B B , > A. Now hA(lB)(g)
f

gl B = g. Therefore hA(B) = hA(B). Suppose B C - D

and let D A. Then (hA(g)hA(f))(h) = hA(g)(hA(f)(h)) =

hA(g)(hf) = (hf)(g) = h(fg) = (hA(fg))h. Therefore hA de-

fines a contravariant functor from 0 to Set.

Lemma 2.3. If F : 0 -> is a functor and f in 0 is an

isomorphism with inverse isomorphism f~ , then F(f) is an

isomorphism in &.
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Proof. Assume the hypothesis. Then F(f)F(f~1) =

F(ff ) F(l) = 1 = F(f~1)F(f). Hence we can write F(f) -

F(f ). Thus Lemma 2.3 has been proved.

The category Hd provides an example of a morphism which

is a monomorphism and an epimorphism, but it is not an iso-

morphism. The embedding i: Q - I was shown to be an epimor-

phism and since it is 1-1, it is a monomorphism. Suppose

that i is an isomorphism and let F : Hd - Set be the forgetful

functor. Then F(f) is an isomorphism in Set. Now in Set we

have shown that monic is equivalent to 1-1 and epi is equi-

valent to onto. Since an isomorphism is a monomorphism and

an epimorphismF(f) must be 1-1 and onto. However, there is

no 1-1 function from Q onto R.

Lemma 2.4. If F : & - - is a functor that is injective

on the class of objects, then the image of F is a category.

Proof. Assume the hypothesis. The only thing that

needs to be checked is that possible combinations of mor-

phisms in the image are in the image. Suppose Ff : FA - FB

and Fg: FC - FD where FB = FC. Then since F is injective on

the objects,B = C. Therefore f : A - B and g : B - D and gf

is defined in .6. Therefore F(gf) = FgFf. Hence FgFf is in

the image of F. Clearly, each object in the image has an

identity morphism in the image and the composition is asso-

ciative. Therefore the image of F is a category.

We would now like to give an example of a specific

functor. Let Top* denote the category of pointed topological
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subcategory of Topp (Appendix I). We will define a functor

rr : Top* - Gp.

Define a loop based at p c X c Top to be a continuous

function f : (1(0,1)) - (Xp), where f(0) = f(l) = p, I= [0,1]

and (Xp) ETop*. Two loops f and g at p are homotopic (~)

means there exists a continuous function H : I x I - X satis-

fying (1) H(x,O) = f(x) for every xEI, (2) H(xl) = g(x) for

every x cI,and (3) H(O,y) = H(1,y) = p for every ycEI. Show

this homotopy defines an equivalence relation. If f is a

loop, then H: Ix I - X defined by H(xy) = f(x) shows f ~f.

If f ~ g by H, then G : I x I - X defined by G(xy) = H(x,1-x)

shows g ~f. If f ~g by H and g ~ h by G, then F defined by

F(x,y) = H(x,2y) if 0:5 y 2 and F(x,y) = G(x,2y-l) if

5 y < 1 shows f ~ h. Therefore ~ is an equivalence relation.

Let [f] denote the equivalence class of f.

We will now define a multiplication on the equivalence

classes. Define [f][g] = [fg] where (fg)(t) = f(2t) if

0 51 (g()=g2-) 1
0 t 2 and (fg) (t) = g(2t-l) if 5 t 5 1. We must show fg

defines a loop. Now (fg)(0) = f(0) = p and (fg)(1) = g(l) =p.

Also, fg 1[Or = f and fgjl = g. Therefore fg is contin-

uous. To show this multiplication is well defined, suppose

f ~f' by H and g ~g' by F. Then G : Ix I - X defined by

G(x,y) = H(2x,y) if 0 < x and G(x9y) = F(2x-l,y) if

<x < 1 shows that fg -f'g'. Hence the multiplication is

well defined. This multiplication forms a group. We now
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define n1(X,p) to be the group defined by this multiplication

of p-based loops.

If f: (X,p) -+ (Y,q), define 7 1 (f) : r(Xp) - rr(Y,q) by

T (f) [g]= [fgl,which is well defined since fg : I - Y is

continuous and (fg)(0) = f(g(O)) = f(p) = q = (fg)(l).

ShowTT is a functor. Let 1X :X - X be the identity

pointed continuous function on (X,p). Then for every

[fc iCr 1(X,p), (l X)if-=[ 1II = ',=1(x,p)[f]. Sup-

g f
pose (X,p) - (Y,q) -4 (Z,r) in Top*. Then 7 1 (fg) : rTr(X,p) -

TT (Z,r).Let [hiE (X,p). Then (rr(fg))[h] = [(fg)(h)]

[f(gh)] = n1 (f)[gh] = 7(f)(r 17(g)[h)= (1r(f)r 17(g))[h].

Therefore17 is a covariant functor.

Now we would like to define a central concept in the

study of categories. Let 13 and 0 be categories and let F,G.

S- C be covariant functors. A natural transformation

p: F - G is a family of morphisms (p(A) : F(A) - G(A)) for all

A cob/S' such that we have p(B)F(f) = G(f)cp(A) for all mor-

phisms f : A -B in S. The defining equation can be restated

by stipulating that the following diagram is commutative.

F(A) (A G(A)

F(f)I G(f)

F(B) -p(B) G(B)

If F and G are contravariant, the following diagram must

be commutative.



F (A) p(A) G(A)

F(f) IG(f)

F (B) -pB) G(B)

When there is no ambiguity, p(A) is written as "cpA." and

cpA. is of ten called a component of cp.

Now if p: F - G and *f: G - H are natural transformations,

then so is cp : F - H defined by (tcp) (A) = $ACpA.. Since $ and

p are natural transformations, the small squares are commuta-

tive diagrams in the following.

F(A) p(A) >G(A) (A) H(A)

F(f) G(f) H(f)

F (B) p(B)> G (B) $(B) H(B)

Then (tcp)(B)F(f) = $(B)cp(B)F(f) =I$(B)G(f)cp(A) = H(f)l$(A)cp(A)=

H(f)(*Jcp)(A). Therefore the large diagram commutes and $cp is

a natural transformation.

This composition is also associative. Suppose p:F - G,

t: G -4 H and p: H -+ K are natural transformations. Component-

wise,we will show (p4$)cp= p(t$cp). By definition ((p$)cp)(A) =

(ph)(A)cpA = (p(A)$(A))cp(A). These separate components are

morphisms in a category, and since the composition of mor-

phisms is associative, we have (p(A)t(A))cp(A) = p(A)($(A)p(A))=

p(A)($cp)(A) = (p(4$p))(A). Therefore the components of these

two natural transformations are the same. Hence the compo-

sition is associative.
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Let F : 0 - .& be a functor. Show that the family of morphisms

(lFC : FC - FC) determines a natural transformation 1F where

1F(C) =-
1FC* Suppose f : A - B in S. Then 1F(B) Ff = Ff =

Ff 1FA; hence 1F is the identity natural transformation on

the functor F.

Let c? be a small category and 1 be any category. The

natural transformations between two functors F and G from

67 to 13 form a set, since they are a subset of the power set

of U Mor/,(F(A),G(A)). Therefore we can define morphism
A c ob67

sets between functors from a small category. Define a new

category whose object class is the class of all functors from

a small category c7 to a category 13 and whose morphism sets

are the sets of natural transformations between the two func-

tors. This is a category since we have an identity and an

associative composition. Call this category Funct(67,).

A natural transformation T :F -) G where F,G: .& - are

covariant functors is a natural isomorphism if there is a

natural transformation p : G - F such that TCp = 1 and CpT=F'
In this case the functors are isomorphic and we write T: F ~G.

Two categories S and & are isomorphic if there are functors

F:S--*.&and G:.&-.-SOsuch that FG l= 1&and GF = 10. Two

categories are equivalent if the functors F and G are such

that FG~l and GF~l5 .

Then F and G are called equivalences. If F and G are

contravariant, the categories are dual to each other.
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The relation of functors being naturally isomorphic is

an equivalence relation on the collection of functors be-

tween two categories. Obviously 1F : F ~ F, where 1F is the

identity natural transformation. Suppose F,G(: 3 - 6, and

T : F G. Then there exists cp: G - F such that cp is a natural

transformation, and Tcp= 1G, and P T = 1F* Hence cp: G F.

Further, pATA = 1FA, and TAcpA = 1GA for every A E ob.&. Hence

TA is an isomorphism for every AEob& and TA = cpA. There-

fore the family of morphisms (TD' ]Dcob.&} defines the

natural transformation cpand we say T~ =p.

If T: F G and cp: G H, then CpT: F - H is a natural

transformation. To show cpT is a natural isomorphism, consi-

der T1 CP :H -F. Now (pT)(T~ cp ) =cplGcp1 = cPcp =-1 H
1 1 -1 -1and (T )(CpT) = T lGT = T T= 1. Therefore CP:F~ H.

Hence,functors being naturally isomorphic is an equivalence

relation.

We would now like to give an example of a natural trans-

formation and an example of a natural isomorphism.

We know hA : Set - Set defined by hA(B) = MorSet(B,A) and

hA(f)(g) = gf for all fo: B -> C,and g : C - A is a contravariant

2functor for each A E ob Set. Let hA denote the covariant func-

tor hAhA. Let I denote 1Set. Fix BE ob Set. Show (cpA: I(A)

h (A) jcpA is the function determined by evaluating each func-

tion in MorSet(AB)= hB(A) at a fixed element a in A) defines

2a natural transformation cP: I - hB. Then for each g : A - C

we must show that the following diagram commutes.



I(A)=A h2(A)

2 2

I(g)=g 21h (g)

I (C)=C P h B(C)

Let a cA. Then [h2(g)cpA](a) = h2(g)((cpk)(a)) and [(cpc)gJ(a)

are functions from MorSet(C,B) to 13. Show that these func-

tions are actually the same function. Doing this element-wise,
2let f : C - B. Then [h (g)(cpA)(a)](f) = [(cpA)(a) hB(g)(f

(cpA)(a)(hB(g)(f)) = (cpA)(a)(fg) = (fg)(a). This is truesince

hB(g)(k) = k hB(g), where k E:h (A) and (cpA)(a) c hB(A). Also,

fg E hB(A), and epA evaluates functions at elements in A. Now

[((cpC)(g))(a)](f) = [(cpC)(g(a))J(f) = f(g(a)) = (fg)(a), since

epC evaluates functions at elements of C and g(a) c C. There-

fore the diagram commutes and cp is a natural transformation.

Let Vect be the category of finite dimensional vector

spaces over the reals with the linear transformations between

them. Define T : Vect -> Vect by T(L) = Hom(L, R), where

Hom(L,JR) = ff I f is a linear transformation from L to MR),

which is a finite dimensional vector space over R, and if

f : L1 -4 L2 is a linear transformation, then T(f) : T(L2) - T(L1 )

is defined by T(f)(g) = gf for linear transformations

g : L2 - JR. (Note: gf is a linear transformation from L

to AR.) Show T is a contravariant functor. Now T(lL)(f)

f lL = f for all f: L - R. Therefore T(lL T(L). Sup-

Sfpose L 1 - L 2 _->L 3 and let h: L -_* JR. Then [T(f g)7IJh = h(f g)
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and [T(g)T(f)](h) = T(g)(hf) = (hf)(g) = h(fg). Therefore

T(g)T(f) = T(fg) and T is a contravariant functor. Let T

denote the covariant functor TT and let I denote 1Vect

Now define a natural transformation T: I - T2 by the

family of linear transformations (T(L) : I(L) - T (L)

T(L) (x) : Hom (L,IR) - E by [ T(L) (x) ]1(f) = f(x) for f : L - IR).

We must first show T(L)(x) is a linear transformation from

Hom (LE) to E. Let f,g c Hom (L,JR). Then [T(L)(x)](f+g)

(f +g)(x) = f(x)+g(x) = [T(L) (x) ](f)+[ T(L)(x)](g) and

[T(L)(x)) =f (x)(x) = a[T(L)(x)](f) for every

a ER.

Now we must show T(L) is a linear transformation from

I(L) = L to T (L). Element-wise we have [T(L)(x+y)](f) =

f(x+y) = f(x)+f(y) = [T(L)(x)](f)+[ T(L)(y)](f) =

[T(L) (x)+T(L)(y)](f) and [ T(L) ( ax) ](f) = f ( ax) = af(x) =

I[T(L)(x) 1(f) for f:_L - R and x,y cL. Therefore T(L) is

a morphism in Vect . We must now show that the following

diagram commutes for every f : L1 - L20

I(L)=L T( IT 2(L) = Hom(Hom(LR)IR)

I(f) = f T 2 (f)

I((L2)=L2 (L 2 ) = Hom(Hom(L 2 -9R) R)

Let x E L1 . Then we must show the following functions

are the same, [T (f) T(L1 )IJ(x) = T(L1 )(x)T(f) and
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[ T(L2)(f)I](x) = T(L2) (f(x)), each of which is a linear trans-

formation from Hom(L2 ,]R) - R. Again we show this element-

wise. Let g: L2 - R. Then [T(L 1 )(x)T(f)](g) = T(L 1)(X)(gf)=

(gf)(x) and [T(L2)(f(x))](g) = g(f(x)) = (gf)(x). Therefore

the diagram is commutative, and hence T is a natural trans-

formation. Show T is actually a natural isomorphism. It is

sufficient to show T(L) is a vector space isomorphism for

each LcEVect . Show kernel of T(L) is just (01. Suppose

T(L)(x) is the zero function. Then [ T(L)(x)](f)= f(x)= 0

for every fcEHom(L,IR). However, there is an f c Hom(L,R)

such that f(x) ' 0. Hence, x must be 0. (For suppose

x = b a1+b2 a2 +-2 - - + bnan, where (a ,a2 - -.- ,5an) form a basis.

Let f be such that f(a1 ) = 1 and f(a.) = 0 if 2 5 i ! n.

Then 0 = f(x) = f(b1a1 +b 2 a2 + +b- + nan) =

b f (a) +b2f(a2 ) +---+bnf(an) = b 1 = b . Therefore

b = 0 and there is an f for each i.) Therefore the kernel

of T(L) is (o, and hence T(L) is 1-1. Show T(L) is onto.

Since dim L= dim T (L) and T(L)(L) is a submodule of T (L),

we have T(L)(L) = T (L), or T(L) is onto. Hence T(L)~ exists

for every L and we can define a natural transformation T.

2Therefore I and T are naturally isomorphic.

Let 7 and 1 be categories. The product category 0x /8

is defined by ob(ax/3) = ob a x ob /3, and Mor ((A,B), (A',B'

Mor (A,A') x Mor, (B,B'). Composition is that induced by 6

and /. To show this actually defines a category, we must show
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that the composition is associative and the existence of an

identity. Let

(f 3593) (f2592) (fi1391)

(A 4 ,BO) (A 3,1B 3) (A2,9B 2) >(AlBl)

in ax8. Then (f 1,g1)((f 2 , 2 )(f3,g) = (f1 g1)(f2f 35 2g3) =

(f1 (f2f3)g1 (g2 g3)) = ((f1f2)f3(g1g2)g) = (f2291 2  )g(f22 g3) =

((.iglW2192 f3'g3).Let (A,B) cob 6ixI3. Since a and 13

are categories, we have 1A and 1B' the identities on 6 and /,

respectively.
(h,k) (.9)(1 A5 1B)-(A3B gBLet (A,B) (2(AB)(A 2)

Then (fg)(lAlBA) = (f1gl B) = (f,g) and (lAlB) (hk) =

(lAh,1Bk) = (h,k). Therefore (lAlB) is the identity on

(A,B). Hence a x 8 is a category. Similarly, we can define

the product of any finite number of categories.

A functor from a product category of two (n) categories

into a category 0 is called a bifunctor (multifunctor). For

example, let c x / be a product category. Then P : 67x/a - i

defined by P,(AB) = A and P,(f,g) = f is a functor and is

called the projection functor.

Lemma 2.5. Let FB : 7 - Cand GA: :9 -* be functors for

all A E:obci and B cob 8. If we have FBA= GAB and FB A

GA/ (g)FB(f) for all A,A' E ob ci, BB' c ob/B and all morphisms

f: A - A'and g: B - B', then there is exactly one bifunctor

H : c x 13 -0 with H(A,B) = GA(B) and H(fg) = FBA(f)GA(g)

Proof. Define H: ci x 13 -0 by H(AB) = GA(B) and H(f, g)=

FB A(f)G(g). Show H defines a functor. Now H(lA, lB) =
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FB(lA)GA(lB) -= FB(A)GA(B) GA(B) 1H(AB) since

FB(A) = GA(B). Since FB and GA are functors for every

A E ob 67 and B c ob 13, we have the following commutative dia-

gram, where A*-+A fA' in c7 and B*- B-AB' in 1.

FB'(h) FB,(f) (B'
FB'(A*) = GA*(B') ->FB(A) = GA(B')-B >FB(A') = G'A/

G(A* g)}GA (g) f GA'(g)

F B(h) F B(f)F B (A*) = GA*(B) >FB(A) = G (B) F B(A') = G A(B)

GA* (k)f GA(k) GA.'(k)

FB*(h) FB(f)
FB* GA*(*) GAF*(A)=GA(B*) B >F*((B*)

Then H((f,g)(h,k)) = H(fh,gk) = FB'(fh)GA*(gk) =

FB'(f)(F B(h)GA*( A*(k) = (F fA(g))(FB(h)GA*(k)) =

H(f,g)H(h,k). Hence, H is a functor. It is unique because

any other functor H' satisfying the conditions H'(A,B) =

GA(B) and H'(f,g) = F:B A(g) would be defined exactly as H.

Thus, Lemma 2.5 has been proved.

Lemma 2.6. Let H and H' be bifunctors, H,H' : x 7.

A family of morphisms ep(A,B) : H(AB) - H'(A,B), A E ob c7 and

B c ob / is a natural transformation if and only if it is a

natural transformation in each variable; that is, p( ,B) and

ep(A,_) are natural transformations.

Note: If H: 67x - is a fixed bifunctor, then define FBfor

each B c ob 8 by FB: 67 - S where FB(A) = H(A,B) and FB(f)

H(fIB) = H(f,B). Then F B is a functorBsince FB(lA)=
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H(lA- 1B) ='H(AB) -1F B(A) and F B(fg) = H(fg,1 B) = H(fg,1B 1 B

H(f,1B)H(g,1B) = F B(f)F B(g). We will use the notation

H( ,B) for F1B. Similarly, one can define GA = H(A,_):

8 - a. Then H(_,B) and H(A,_) satisfy the conditions of

Lemma 2.5.

Proof of Lemma 2.6. Let H(_,B) and H'(__,B) be defined

as above and suppose the family (cp(A,B) : H(A,B) - H'(A,B) for

every (A,B) E ob ax /} defines a natural transformation. Let

B e ob 13. Show cp(_,B) : H(_,B) - H'(_,B) defined by

cp(_,B) (A) = cp(A,1B) defines a natural transformation. Then

we must show that the following diagram commutes for each

f : A-A'.

H(A,13) p(A,B) H'(A',B)

H(fB)0H'(fB)

H((A'9) H)'/(A,B)
cp(A "',9B)

This diagram commutes since cp is a natural transformation and

(f,1B) :A x B - A'x B. Hence cp is a natural transformation in

the first variable. Similarly, c is a natural transformation

in the second variable.

Now suppose that p(_,B) and ep(A,_) are natural trans-

formations for each A cob 6 and B c ob S. Show that the

family (cp(A,B) : H(AB) - H'(A,B)} defines a natural transfor-

mation. We must show the commutativity of the outer square

whenever (f,g) : (AB) -+ (A',B').
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H~~f.1g) p(AB) VH 3

H(A,B) >p(A'(),AB)

H(f,B) H '(f,1B)

H(f,g) H(A ',B) cp(A "13)> H '(A ',B) H '(f, g)

H(A',g) H '(A/',g)
H(A ',B') >H '(A ',B')

ep(A ', B ')

Now small upper and lower quadrilaterals commute, since

cp(_,B) is a natural transformation. The small outer tri-

angles commute,since H(_,B), H(A,_), H'(_,B) and H'(A,_)

satisfy conditions of Lemma 2.5. That is, H(fg)=

H(f,B')H(A,g) = H(A',g)H(fB). Similarly for H'(f,g).

Therefore the outer square is commutative. Thus Lemma 2.6

has been proved.

Lemma 2.7. Let 0, be a category. Mor,( , ) :

e xe,- Set is a bifunctor defined by Mor,(",)(AB) =

Mor0 (A,B), and if (fOPg) : A x B - A'x B', then Mor(_,)(fmPg)

Mor(f0 Pg) : Mor, (A,1B) - MorC-(A' ,B') is defined by

Mor0 (f 0P,g)h = ghf.

Proof. The proof is by definition of a bifunctor. Now

Mor(,)lAxB = Mor (lA9lB) : Mor0 (A,B) -. Mor,(A,B). Then

for h ,Mor (AB) we have Mor (1BB)(h) = 1Bh 1A = h. There-

fore Mor(,(lA5lB) =More(AB)

Let (A*,B*) (h ,4(AB) >fOP, (A',B' ) in C xe,.

We need to show Mor,(foPhOP,gk) = Mor C(fop,g)Mor,(hoP,k) :

Mor,(A*,B*) - Mor(A',B'). Let r e Mor,-(A*,B*). Then
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Mor'(fOhOP,gk)(r) = gkrhf and (Mor (fPg)Mor,(hoP,k))(r)=

More(fOP,g)(krh) = gkrhf. Therefore Mor (, ) is a bifunc-

tor. Therefore Lemma 2.7 has been proved.

We would like to define two natural transformation that

will be useful later on. If f : A -- A' and g : B -B'in 0

and hA : C - Set is the covariant representable functor and

hA: - Set is the contravariant representable functor, then

define h : hA' -hA and hg: hB _4hB' by h (C)(k) = kf and

h g(D) ( Z) = gZ for all k : A' - C and k: D -* B in S. We will

show h is a natural transformation. Let h: C - D in S.

Then we must show the following diagram commutes.

hA (C) h(C) >hA

hA(h) jhA(h)

hA' (D) -hA

h (D)

Element-wise, let k : A' - C. Then [hA(h)h (C) 1(k) =

h A(h)(kf) = h(kf) = (hk)f = h (D)(hk) = [h (D)hA'(h)](k).

Similarly, h is a natural transformation.

Before stating the next lemma, we would like to give

some motivation. Let A,BcobAb. Then A x B E ob Ab. Let

C E ob Ab. A function f : A x B - C is a bilinear function

means f(al+a2 ,b) = f(al,b)+f(a2 ,b) and f(a,bl+b2 )

f(a,bl)+f(a,b2 ). A triple (A xB,tT) is a tensor product

of A x B means t: A x B - T is a bilinear function,and if
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K e ob A b such that if g : A x B -*K is bilinear, then there

exists a unique homomorphism h: T - K such that ht = g.

Let Hom(AB) = (f : A - B I f is a group ,homomorphism}.
Fix (A x B,t, A @ B) a tensor product of A and B. We want to

show Hom(A 0 B,C) is a group isomorphic to Hom(A, Hom(B,C)).

Define F : Hom(A 0 B,C) - Hom(A, Hom(BC)) by F(f) : A-, Hom(B,C)

where F(f)(a) : B - C and [F(f)(a)](b) = f(t(ab)) e C for all

f : A 0 B - C and a c A, b E:B. First we must show F(f)(a) is

a group homomorphism. Let b1 ,b2 cB. Then [F(f)(a)](b1 +b2 )

f(t(a,b1+b2 )) = f(t(a,b1)+t(a,b2)) = ft(a,b1 )+ft(a,b2 ) =

[F(f)(a)](b1) [F(f)(a)](b2 ). Hence F(f)(a) is a group homo-

morphism. Now we must show F(f) is a group homomorphism.

Let a1 ,a2 c A. Show F(f)(a1 +a2 ) = F(f)(a1)+F(f)(a2 )'
We will show the maps act on elements in the same way. Let

b E B. Then [F(f)(a1 +a2 )7](b) = f(t(a1 +a2 ,b)) = f(t(a1 ,b)+t(a 2 ,b))=

ft(a1,b)+ft(a2 ,b) = [F(f)(al)](b)+[F(f)(a2)1](b). Hence F(f)

is a group homomorphism. Now F is a well defined function

and we must show that F is a group isomorphism. Let f,g

Hom(A 0 B,C). Show F(f+g) = F(f)+F(g) in Hom(A, Hom(B,C)).

Let a A and show [F(f+g)](a) = [F(f ) +F (g) I (a)

in Hom(B,C). Then for every b cB, [F(f+g)(a)](b) =

(f+g)(t(a,b)) = f(t(a,b))+g(t(a,b)) = [F(f)(a)](b) +

[F(g)(a) ](b). Therefore F is a group homomorphism. To show

F is 1-1, suppose F(f) = F(g), where f,g cHom(A® B,C). De-

fine h,k : AxB - C by h(a,b) = ft(a,b) and k(a,b) = gt(a,b)

for all (ab) cAxB. Show h and k are bilinear functions.



58

Let a,a1,a2 cA and b,b1 ,b cB. Then h(a1+a2,b) = ft(al+a2 ,b)=

f(t(a 1 ,b)+t(a 2 ,b)) = ft(a 1 ,b)+ft(a 2 ,b) = h(a 1 ,b)+h(a2,b) and

h(a,b1+b 2 ) = ft(a,b +b2 ) = f(t(a,b1 )+t(ab2)

ft(a,bl)+ft(a,b2) = h(ab 1 )+h(ab2). Hence h is bilinear

and similarly k is bilinear. Now h(a,b) = f(t(a,b)) =

[F(f)(a)i(b) = [F(g)(a)I](b) = g(t(a,b)) = k(ab). Therefore

h = k. Now since (A x B,t, A 0 B) is a tensor product, there

exists a unique homomorphism r : A ® B - C such that rt = h =

k = ft = gt. Therefore f = g = r and F is 1-1. Now to show

that F is onto, let h c Hom(A, Hom(BC)). Define k :AxB - C

by k(a,b) = [h(a)](b). Show k is bilinear. Then k(a1+a2 ,b) =

[h(a a2 )](b) = [h(al)](b)+[h(a2)1](b) = k(al,b)+k(a2 ,b) and

k(a,b1+b2 ) = [h(a) I(b.l+b2 ) = [h(a) I(bl)+[h(a)1I(b2 )

k(a,bl)+k(a,b2 ). Therefore k is bilinear. Since (AxB,t,AOB)

is a tensor product of Ax B, there exists a unique r :Ax B 0

such that rt = k. Now F(r) E Hom(A, Hom(BC)) and for every

ac A [F(r)](a) :B - C and h(a) :B - C. Show these maps are

the same. Let b c B; then [F(r)(a)](b) = rt(a,b) = k(a,b) =

h(a)(b). Therefore F(r)(a) and h(a) are the same for every

ac A. Hence F(r) = h and F is onto. Hence F is a 1-1, onto,

group homomorphism, and therefore Hom(A D B,C) ~Hom(AHom(B,C)).

Now in a categorical sense we would like to show that

the product of two small categories, categories whose ob-

ject class is a set, behaves like the tensor product of

abelian groups. We have the following lemma.
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Lemma 2.8. Let a and 13 be small categories and 0 be

an arbitrary category. Then Funct(6U8,0) =Funct(7,Funct(/(3,0)).

Proof. We will define K : Funct(a x 8S, C ) -

Funct(67,Funct(A C)). Let H c Funct(67x5,8). Then H is a

bifunctor. Define K(H) : 67 - Funct(Q,C) by K(H) (A) = H(A,_)

where H(A, )(B) = H(A,B) and H(A,_)(g) = H(A,g) for

B c ob / and g : B - B' in 8. Then we know K(H) (A) is a func-

tor from /3 to 0 for each A c67. We must show how K(H)

assigns morphisms in 67. Let f : A - A' in 67. Then K(H) (f)

K(H) (A) - K(H) (A') and K(H) (f) : H(A,_) - H(A' _) must be

a natural transformation. Define K(H)(f) by the family

{[K(H)(f)](B) : H(AB) - H(A',B)} where [K(H)(f)](B) = H(f,B).

Let g : B - B'. Show the diagram commutes.

H(AB) H(fB) >H(A/',B)

H(A~g) H(A ',g)

H(A,B'). >H(A 'B')
H(f,B')

From the definition of H and the proof of Lemma 2.6, this

diagram commutes; hence K(H)(f) is a natural transformation.

To show K(H) defines a functorwe must now show K(H)(lA)

1 K(H)(A) .Now K(H) (lA) is defined by the family ([K(H)(]A)J(B)}=

(H(lAB)} = (H(lA'lB)l by the notation, for every B cob/3.

Also, if A* A i A' in 67,then K(H)(fh) is defined by the

family (H(fh,B) : H(A*,B) - H(A'5,B)}) for B E ob 13, and since H

is a bifunctor, H(fhB) = H(f,B)H(h,B) = (K(H)(f)K(H)(h))(B).

Therefore K(H) defines a functor from 67 into Funct(Q, C-).
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Now we must show how K assigns morphisms in Funct(cx.,c).

Morphisms in Funct(ax/3,) are natural transformations be-

tween bifunctors. Let ep: H - H' in Funct(6x /,0) where cp

is a natural transformation. Define K(p) :K(H) - K(H')

by the family of morphisms (K(cp)(A) : K(H)(A) - K(H')(A)} for

every A cobc7 , where K(cp)(A) = p(A,_), as defined in Lem-

ma 2.6. Now p(A,_) is a natural transformation for all

B c ob 8. Hence K(Cp) is a natural transformation from K(H) to

K(H'). It remains to be shown that K is a functor with an

inverse functor. Now K(lH) is a natural transformation de-

fined by the family (K(lH)(A)} = (lH(A,_) = H(A

(lK(H)(A)}. Therefore K(lH) = 1K(H). Now suppose

H* H - H' in Funct(ax ,C). Show K(cp$) = K(cp)K(4$).

Component-wise, we have K(cp$)(A) : H*(A,_) - H'(A,_), where

K(cp )(A) = ep$(A,_) p(A,_)(A,_) = [K(cp)K($)](A). There-

fore K is a functor.

We would now like to def ine L : Func t (a., Func t (13, S) )

Func t ( 7x B,) . Let F EFunct(7,Funct(8, ) ). Now L(F)c1x/8- -

must be a functor. Define L(F) (A,1B) = F (A) (B) c obS0,, and

if (f,g) : A x B -A'xB',let L(F)(f,g):F(A((B) - F(A')(B') be

defined by L(F)(f,g) (F(f)(B'))(F(A)(g)). This can be

seen in the following commutative diagram since F(f) :

F(A) - F(A') is a natural transformation.
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F (A) (B) F(f)(B) >F(A')(B)

F(A)(g) F(A )(g)

F(A)(B') ->F(A')(B)
F(f)(B')

Show L(F) is a functor. Now L(F)(l(AB)) = L(F)(lA'lB)

=(F( IA)(B))(F (A) (B)) = (F(A) (B)) (1F(A)(B)) -

F(A)(B) 1F(A)(B) -. F(A) (B) -1L(F)(A,B). Suppose

(A*,B*) (h k) (AB) (A',B') in ax13 . Then

L(F)(f,g)L(F)(hk) = (F(f)(B'))(F(A)(g))(F(h)(B))F(A*)(k) =

(F(f ) (B')) (F(h) (B')) (F(A*) (g) ) (F(A*) (k) ) = (F(fh) (B')) (F(A*) (gk))

= L(F)(fh,gk). Since F(h) is a natural transformation and

F(A*) and F(A) are functors, the following commutative dia-

gram exists and explains the substitution.

(A*) (:B) F(h)(B) (A) (B)

F(A*)(g) F(A)(g)

( (A*) I _______ (A) (B )

Therefore L(F) is a functor.

We must now show how L acts on morphisms in

Funct(6, Funct(/&,C-)). Let p: F - G be in Funct(a,Funct(/,-));

that is, p is a natural transformation. Then L(Qp):

L(F) - L(G) must be a natural transformation. Now

L(F),L(G) : 67x /8 - are bifunctors. Define L(cp) by the

family of morphisms (L(cp)(AB) : L(F)(A,B) - L(G)(A,B)} where

L(zp)(AB) = ep(A)(B). This is well defined, since p(A):
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F(A) - G(A) is a natural transformation for all A c ob a and

cp(A) (B) : F(A) (B) - G(A) (B) is defined for all B c ob /. To

show L(cp) is a natural transformation between the bifunctors

L(F) and L(G), let (f,g) : (A,B) - (A',B') in a x 1 . Since

ep(A) is a natural transformation for all A c ob 6, and by the

definition of L(F), we have the following commutative diagram.

cp(A) (B)

F(A)(B) >-G(A) (B)

F(A) (g) G(A) (g)

L(F)(fjg)= cp(A) (B') G(f)(B')G(A)(g)=
F(f)(B')F() (g) F (A) (B') G (A) (B' L(G) f, g)

F(f)(B') G (f)(B')

F(A')(B') p(A')(B') > F(A' ) (B')

Therefore L(cp) is a natural transformation.

Show L is a functor. Let 1F: F - F be the identity

natural transformation on F: - Funct(BC). Then L(lF) is

defined by the family of morphisms (L(lF)(A B)) = (lF(A)(B)} =

(lF(A) (B)} = flF(A)(B)}),which defines 1L(F), the identity

natural transformation on L(F). Suppose H .I F G in

Funct(6,Funct(/3,0)). Then F,G,H: 6 - Funct(/3,S) are func-

tors and cp,$ are natural transformations. Show L(CpO) =

L(cp)L($) : L(H) - L(G). Now L(cp$)(AB) = (cp$)(A)(B) =

[ p(A) * (A) I (B) = p(A) (B3) *(A) (B) =L (ep) (A_,B) L() (A,9 B) =

(L (cp)L( 1)) (A B), since p(A), t(A), L(cp) and L( $) are all

natural transformations. Hence L is a functor.
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LK = Funct(67x 1,3). Let F E Funct(7,Funct(/,c)). (KL)(F)

is a functor from 7 to Funct(/3,0). Show this functor is

the same as F. Let A cob67. Then [(KL)(F) I(A) :13 - is

a functor, and so is F(A) :1& - 5. To show these functors

are the same, let B E:ob3B. Then ([KL) (F) ](A)) (B) =

([K(L(F)) 1(A))(B) = (L(F)(A,_))(B) = L(F)(A,B) = F(A)(B).

Now let g: B -B' in 5. ([(KL)(F) ](A))(g) = (L(F)(A,_))(g) =

L(F)(Ag) = F(A)(g). Therefore [(KL)(F)](A) = F(A). We must

now show that (KLXF) and F act on morphisms in A the same.

Let f : A -> A' in a. [(KL)(F) 1(f) = [K(L(F)) 1(f) = L(F)(f,_)

= F(f) by definition. (See the diagram where L(F) is de-

fined.) Therefore (KL)F = F and KL and the identity func-

tor agree on objects in Funct(6,Funct(&,C,)). We will now

show that they agree on the morphisms. Let cp :F - G be a

natural transformation where F,G: c6 - Funct(,0) are functors.

We must show (KL)(cp) : K(L(cp)) : K(L(F) = F -> K(L(G)) = G is

the same natural transformation as cp. We will show that the

defining family of maps are the same. Let A c oba. Then

p(A),K(L(cp))(A) : F(A) - G(A) are natural transformations.

Again, show their components are the same. Let B Eob.

Then (K(L(p))(A)) (B)= L(p) (A,) (B) = L(cp) (AB) = p(A) (B) .

Since this is true for all B E ob 8, the components of

K(L(cp))(A) and cp(A) are the same, and since this is true

for all AcEobc7,the components of K(L(p)) and cp are the same.
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Hence (KL)cp and cp are the same natural transformations.

Therefore KL = 1Funct(a,Funct(/,0))'

We are now ready to show KL = 1Funct(ax C,). Let

H: 1x13- C,. Then (LK)(H) = L(K(H)) : 7x/3-4a. Let (AB)E

ob ax 8. L(K(H))(A,B) = (K(H)(A))(B) = H(A,B). Let (f,g)

A x B -A'x B'. Then (L(K(H)) (f,g) = K(H) (f)(B')K(H)(A) (g) =

H(f,B)H(A,g) H(f,g). Therefore (LK)H = H and LK and

1Funct(2x , act on objects the same. For morphisms,

let cp: H - H' be in Funct(6x S,-). Show (LK) ep = cp. Now Qp

is defined by the family (cp(AB) : H(A,B) - H'(A,B)} and

(LK)(cp) = L(K(zp)) is defined by the family (L(K( p))(A,B)

(K(cp) (A)) (B) : L(H) (AIB) = H(AB) - L(H') (AB) = H' (AB)).

Then (K(cp)(A) ) (B) = cp(A,_) (B) = p(AB) ; hence these two

families are the same. Therefore LK = 1Funct(dx13,C). Hence

Funct(ax/3,O) = Funct(1,Funct(6,')). Therefore Lemma 2.8 has

been proved.

In the following sequence of proofs, we have to gen-

eralize some concepts and notations. Let F,G: a - . be

functors and let Morf(FG) be the collection of all natural

transformations between them. Now Morf(FG) in this general

context will not be taken to be a set or a class, but if C

is a small category, Morf(F,G) is a set, as we saw in Chapter

I. Whenever p: F - G is a natural transformation, we write

"cp E Morf(FG)," and if a is a small category, this will be

taken to mean "cp is tn the set Morf(FG)." Let X be a set
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or a class. Then an application T: Morf(F,G) - X will assign

to each natural transformation an element of X. The instruc-

tion will be denoted by T.

Theorem 2.1 (Yoneda Lemma). Let a be a category. Let

F : C -4 Set be a covariant functor and A E ob C. Then the

application T : Morf(hAF) - F(A) where T(cp) = cp(A)1A E F(A)

is unique and invertible. The inverse of this application is

T~ : F(A) - Morf(hA,F) where T(a) = h acMorf(hA,F) and

ha(B)(f) = F(f)(a), for all f: A - B in C and acEF(A).

Proof. Now T is uniquely defined since cp(A) : hA(A)-.F(A).

We must show T~ is well defined. That is, we must show ha

is a natural transformation from hA to F. Let f : B - B'

in C-. Show the following diagram is commutative.

h (B) ha(B) ,F(B)

h A(f) F(f)

A hALB')h'FIB)

ha(B')

Let g :A -B. Then [F(f)ha(B)IJ(g) = F(f)F(g)(a) and

[ha(B')hA(f)](g) = ha(B')(fg) = F(fg)(a) = F(f)F(g)(a).

Hence T~1 is well defined.

Show rT-~1 = 1F A) and T~ T Mor (hAF). Let acEF(A).

Then (T T 1 )(a) = T(ha) = ha(A)((lA) = F(lA) (a) =l'F(A) (a) = a.

Hence TT~1 = 1F(A)'

Let pcEMorf (h,F) . Then ( T_ 1T)(p) = T1(cp(A)1A) =

p(A)1A p(A)l
h Showlh = P. Let B cobC,,. Then show

Y WW '-" ., " .%-
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h p(A)1A(B) = cp(B) .:hA(B)-- F(B). Let f : A - B in S. Then

[h cp(A)lA(B)](f) = F(f)(cp(A)lA) = (F(f) cp(A))(lA). Now since

cp is a natural transformation, we have the following commuta-

tive diagram.

hA(A) ep(A) >F(A)

hA~f) )
AhA___F__
hA(B) cp(B) F(B)

Therefore F(f)cp(A) = p(B)hA(f). Therefore (F(f)cp(A))(lA) -

(cp(B)hA ())( 1A) = ep(B)(f). Since this is true for all

cp(A)1A -1 --

B c o b Q , h

Theorem 2.1 has

Lemma 2.9.

let cp: F - G be

morphism in S.

= cp. Hence T T = IMorf(0F)* 'ierefore

been proved.

Let F and G be functors from 0 into Set and

a natural transformation. Let f : A - B be a

Then the following diagrams are commutative.

A4, T
Morf(hA ,F)-+F(A)

Mor (hA, p) hp(A)
Morf(hA, G)-G(A)

A T
Morf(h ,F)->F(A)

Morf(hfF) {F(f)
Morf(hBF)-->F(B)

where Morf(hA,cp)($) = cp* and Morf(hfF)(t) = $hy.

Proof. Let * : hA - F be a natural transformation. Then

[cp(A)T](*) = cp(A)($(A)(1A)) = (cp(A) $(A))(lA) (cp*)(A)lA =

T(cpf) = T(Morf(hA,p)( )) [TMOr (hACp)]($). Hence the first

diagram commutes.
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Since * is a natural transformation, the following

diagram is commutative.

h A (A) *(A)>F(A)

hA(f) F(f)

hA(B) $(B) F(B)

Then [F(f)T]($) = F(f)($(A)lA) = (F(f)t(A))(lA)

[*(B)hA (f)('A) = $(B)(fl'A) = t(B)(f) and [TMorf(hfF)]($)=

T( $h ) = [($h )(B)I](l B) = $(B)(h (B)(lB)) = $(B)(lBf) =

$(B)(f). Therefore the second diagram commutes. Therefore,

Lemma 2.9 has been proved.

We would now like to define what is called the contra-

variant representation functor. Let 0 be a small category.

Define h~ : C - Funct(0,Set) by h~(A) = hA and if f : A - B

in C then h~(f) = h : hB -hA. Let 1A : A -A. Then

h~(lA) = h1A. If B c ob C- and f : A - B, then h A(B)(f)

f 1A = f. Therefore h A(B) = 1hA(B). Hence h~(lA) h(A)'

g f> fg f.Let C A -B. Show h h h LetDEobC and h:B-D

in C. Then hfg(D)(h) = hfg and (hghf)(D)(h) = (hg(D)hf(D))(h)

hg(D)hf = hfg. Therefore h is a contravariant functor.

Similarly, we define the covariant representation functor

h_ : C- - Funct(C-0P, Set).

Lemma 2.10. Let C- be a small category. Then Morf(h~,_9:

C-x Funct(CSet) - Set and : Cx Funct(C-,Set) - Set are bi-

functors. Morf(h~,_) is defined by Morf(h~, ) (AF) =
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Morf (hA,F) and Morf(h~,_)(f,cp) = Morf(h ,p). i is defined

by (AF) = F(A) and (f, cp) = cp(B)F(f) = G(f) c(A). In both

cases, cp: F -> G is a natural transformation of the functors

F,G : C0 - Set. Further, the application T is a natural iso-

morphism of the bifunctors. f is called the evaluation

functor.

Proof. Let (A,F) Eob(CxFunct(C-,Set)). Then (lA1F)

is the identity for (AF). Show Morf(h,_)(lA'F) -

1Morf(h~ _)(AF)* That is, show Morf(hAlF) = 'Morf(hAF)*

Let cp: hA - F be a natural transformation. Then

Morf(hAlF) ( Ph) = A, and if D Eob C- and g: A - D, then

(( = [p(D)hIA(D) (g) = cp(D)(g1A)= cp(D)(g).

Hence Morf(h1A,F)(cp) = cp. Hence Morf(hA,lF) =Morf(hA,F)

Now suppose (C,H) ( >(AF) .>(B,G) in CxFunct(e-,Set).

Show Morf(h fgp$5) = Morf(hffp)Mor(hg,$) :Morf(hCH) -

Morf(hBG). Then for p: h -, H a natural transformation,

we have Morf(hfgcp$)(p) (cp$)(p)(hfg) = -p ph h = p(*Ph)hf

and [Morf(hf,ep)Morf(h,)J( p) = Morf(hqp)(*phg) = p(*phg)(h )

Hence Morf(h~, ) is a bifunctor.

Show is a bifunctor. Let (A,F) cC-xFunct(O,Set).

Then (lA'1F) = lF(A)F(IA) = 1 F(A)1F(A) = 1F(A) = (AF).

Suppose (CH) c >(A,F)-(L )4 (B,G). Then (fg,p*) =

p$(B)H(fg) = cp(B) (B)H(f)H(g). Since $ is natural trans-

formation, we have the following commutative diagram.
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H(A) $(A) >F(A)

H(f) I F(f)

H(B) $(B) >F (B)

Then (fep) (g,*) = p(B)(F(f)*(A))H(g) = p(B)*(B)H(f)H(g).

Hence is a bifunctor.

Now T(_,F) and T(A,_) are natural transformations fol-

lows from Lemma 2.9. Hence T is a natural transformation

from Lemma 2.6.

Now T : - Morf(h,) where T~1(A,F) : F(A) - Morf(hAF)

is defined by T~1(AF)(a) = ha and ha(B)(f) = F(f)(a). Let

(A,F) * SP)>(BG). Then we must show the diagram commutes.

F(A), >Morf(hA,F)

G(f)cp(A)= f
p(B)F(f)= Morf(h ,zp)

(f,p) V

G(B) > Morf(hB3G)
T1 (B,G)

Let a c F(A) . Then (Morf(hf,cp)rK~(A, F) )(a) = Morf(h,>p)(ha)

= ph ah , and (T~1(BG)cp(B)F(f))(a) = T (B, G)p(B) ha(B)(f)

= h(p(B)ha(B))(f), each of which is a natural transformation

from hB to G. Let Cc ob Set and g : B - C. Then ((phah )(C)) (g)=

(cp(C)ha(C)h (C))(g) = p(C)ha(C)(h (C)(g)) = p(C)Ha(C)(gf)

p(C)F(gf)(a). Since cp : F - G is a natural transformation,

we have p(C)F(g) = G(g)cp(B). Now (h( p(B)ha(B))(f)(a))(g)

G(g)cp(B)ha(B)(f) = G(g)cp(B)F(f)(a) = p(C)F(g)F(f)(a) =

p(C)F(gf)(a). Therefore T1 is a natural transformation.
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Show T 1~ = . Let (A,F) cOx Funct(S,Set) and acE F(A).

Then ((TT )(A,F)) (a) = (T(AF)T ~1(A,F))(a) = T(A,F) ha

ha(A)1A = F(lA)(a) = 1F(A)(a) = a. Therefore TT~I = 1 .

Show T~1T = 1Mor (h~,). Show T~ T(AF) = 1Morf(hAF)'.

Let $ hA - F be a natural transformation and B c ob C and

f : A -B in Sl. Then [T~ T(AF))($)(B)] (f) =

[(T 1 ~ (AF) T(AF)) ( $) (B) J(f) = (T-1(A,F) (A) (1A)) (B) (f) =

ht(A)(lA)(B)(f) = F(f)($(A)(lA)) = $(B)hA(f)1A = (B)(flA)

$(B)(f) since $(B)hA(f) = F(f)$(A). Hence T~ T 1 .Morf(h.

Therefore T is a natural isomorphism between the bifunc-

tors, Hence Lemma 2.10 has been proved.

Lemma 2.11. Let A,Bcob 2. Then

(1) for f cMoro(A,B), let A(f) = h cMorf(hB,hA). Then

A is a bijection;

(2) the bijection of (1) induces a bijection between

the isomorphism in Mor5(A,B) and the natural isomorphisms in

Morf(hBh );

(3) for contravariant functors F: C3 - Set, we have a

unique invertible application between Morf(hAF) and F(A);

(4) for fcMor5 (AB), let a(f) = hfCMorf(hAhB). Then

a is a bijection inducing a bijection between the isomor-

phisms in Mor5 (A,B) and the natural isomorphisms in

Morf (hA, hB).

Proof. (1) In the Yoneda Lemma, let F = hA : - Set.

Then T~1 : hA(B) - Morf(hBhA) is I\ in the hypothesis. Then

T~1 is unique and invertible.
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(2) Let f be an isomorphism in Mor5(A,B). Show hf is

a natural isomorphism in Morf(hB,hA). Since f is an isomor-

phism,we know there exists g such that fg =1B and gf =1A*

Then hg h = h = h B - hB and hhg = hg = h'A = A-h h

Therefore h is a natural isomorphism.

Suppose h is a natural isomorphism in Morf(hA,hh.B We

can choose h since the application is a bijection. We must

show that f is an isomorphism. Since h is a natural isomor-

phism, there exists hg c Morf(hA,hB) such that hf fh=1hA and

h f = hB. Then 1hA = h f -=hf implies gf = 1A and

1hB h -h = h fgimplies fg = 1B Hence f is an isomorphism.

(3) This is the dual assertion of the Yoneda lemma.

(4) This is the dual assertion of (1) and (2). There-

fore Lemma 2.11 has been proved.

We would like to give some other properties that some

functors have, before proceeding. A full functor is a functor

which induces surjective maps on the morphism sets. A faith-

ful functor is a functor which induces injective maps on the

morphism sets. Then by Lemma 2.11 (1), h~ is a full and

faithful functor, and by Lemma 2.11 (4), h_ is full and faith-

ful.

An interesting property of full and faithful functors is

that it is always the case that the image of a full and faith-

ful functor is a category. As in the beginning of this chapter,

we must check whether or not FgFf is in the image of F when
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f : A -- B, g: C -Dand F(B) = F(C). Now 1 FB GcMorj(FBFB) =

Mor,(FB,FC). Since F is a bijection on the morphism sets,

there is a morphism hcEMor(B, C) such that Fh = 1FB. Then

F(ghf) = FgFhFf = Fgl FBFf = FgFf and ghf is the desired

morphism. Therefore the image of the functor will form a

category.

Lemma 2.12. Let F: Ca - .be a full and faithful func-

tor. Let 67 and /3 be small categories and G:: 67 -, G': -

be functors. (c and / are sometimes called diagram schemes

and G and G' are called diagrams when the domains are dia-

gram schemes.) Further, let E: 67 - 1 be a functor which is

bijective on the objects such that the diagram is commuta-

tive.

E
67->13

F

Then there is exactly one diagram H: 13 - C such that FH = G'

and HE = G.

Proof. We will define H in the following way: since E

is bijective on the objects, for each B ob / there is a unique

A c ob67 such that E(A) = B. Define H(B) = G(A) cobC0. Now

let f :B - C in 1. Let A, A'cEob a be such that E(A) = B and

E(A') = C. Since F is full and faithful, F is bijective on

the morphism sets. Hence MorC-(GAGA') Mor ((FG)A,(FG)A')

Mor ((G'E)A,(G'E)A') since the diagram is commutative. Now
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by definition of H and choice of A,A' we have Mor (HB,HC)

Mor6(G'B,G'C). Since G'fc Mor.D(G'B,G'C), there is a unique

h c Mor (HB,HC) such that Fh = G'f. Define Hf = h. Now H is

well defined.

Show H is a functor. Let 1B: B Bin B. Then H1B=h

where Fh = G'/B G/B G'B but RFHB (FH)B. We need to show

that FHB = G'B. Now (FH)B = (FG)A (G'E)A = G'B, where

EA = B. Since F is full and faithful, then 1HB h. Let

9 fB C - D in 8. Show H(fg) = HfHg. Let H(fg) = h where

Fh = G'(fg) = F'fG'g. Let k,2 be such that Fk = G'f and Fk =

G'g. Then G'fG'g = FkF, = F(k), which implies h = k, since

F is full and faithful. Hence (FH)(fg) Fh = F(k) =

F(HfHg), and since F is faithful H(fg) = HfHg. Hence H is a

functor.

Show HE=G and G'=FH. Let A s ob67. Now (HE)A=

H(EA) = GA. If f : A - B in c, then (HE)f = H(Ef) = h where

Fh = G'(Ef) = (FG)f. Then h = Gf, since F is faithful. Hence

HE = G. Let B cob/3. Then F(H(B)) = F(GA) where EA = B.

Then (FG)A = (G'E)A = G'B. Let f : B - C in S. Then (FH)f =

Fh where Fh = G'f. Hence F(Hf) = G'f. Therefore Lemma 2.12

has been proved.
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The following are examples of categories. Most of

these examples are given in the book Categories and Functors.

(1) The empty category. The object class is the empty

set and Mor 3 is also the empty set. This is a category

vacuously.

(2) The category of ordered sets--Ord. The object

class is the collection of all sets with an order relation <

satisfying (1) a a, (2) if a < b and b 5 a, then a = b,

and (3) if a b, b c, then a 5 c. The morphism set for

A,B c ob Ord is Mor(AB) = (f j f : A - B and f is an order-

preserving function). The composition of morphisms is defined

to be the composition of functions. We must show that this

f g
composition is ordera-preserving. If A > B -4 C in Ord and

a b in A, then f(a) f(b) in B. Therefore g(f(a)) g(f(b))

in C or gf(a) 5 gf(b). Hence this composition is well de-

fined. This composition is associative, since the composition

of functions is associative. The identity function 1 A on A

is an order-preserving function and serves as the identity

morphism for A in Ord. Hence Ord is a category.

(3) An ordered set as category. For any ordered set

(S, ), usually just written as "S, " let obe0 = S and a,b c S
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define Mor (a,b) = ((a,b)} if a :5b and the empty set }

otherwise. Composition is defined to be the unique element

in Mor (a,c) or the empty set whenever we compose (a,b) and

(b,c). Since is transitive, this gives a unique composition.

Since the morphism sets consist of at most one element, the

composition is associative and a 5 a guarantees an identity.

Hence an ordered set forms a category.

(4) The category of pointed sets--Set*. A pointed set

is a pair (A,a) where A is a set and acE:A. The collection of

all pointed sets forms the object class of Set*. A pointed

map between two pointed sets (A,a) and (B,b) is a function

f : A -4 B such that f(a) = b. The collection of all pointed

maps between (A,a) and (B,b) forms Mor((A,a),(B,b)). Composi-

tion is the composition of functions. We must show that the

composition of pointed maps is a pointed map. Suppose

f g
(A,a) -> (Bb) - (C,c). Then (gf)(a) = g(f(a)) = g(b) = c.

Therefore the composition is well defined. Again the composi-

tion is associative since the morphisms are functions. The

identity map 1A on A is a pointed map. Hence Set* is a

category.

(5) An equivalence relation as a category. Let M be a

set and R be an equivalence relation on M. Let ob C = M.

Then let Mor (a,b) = ((a,b)} if aRb and the empty set other-

wise. As in example (35), this defines a category.

A category 13 is called a subcategory of a category a if

ob 3 cobO0 and Mor (A,B)cMor.(A,B) for all A,B 3ob. Also
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the composition of morphisms in 8 must coincide with the

composition of the same morphisms in 0 and the identity in

1 of an object A must be the same as the identity of A taken

in 0.

(6) The category of abelian groups--Ab. The object class

of Ab is the collection of all abelian groups and the mor-

phisms are all group homomorphisms between abelian groups.

Now these homomorphisms are also homomorphisms in Gp. The

composition and the identities are the same as in Gp also.

Then by the same proof as for Gp, Ab is a category. By the

above definition, Ab is a subcategory of Gp.

(7) A group as a category. Let G be a group. Let

ob C = B where B is any object. Define Mor (B,B) = G such

that the composition is the multiplication of elements of G.

Since the multiplication is associative, the composition is

associative. The identity of the group is the identity mor-

phism. Thus 0 forms a category.

(8) The category of rings--Rg (not necessarily with

multiplicative identity). The collection of all rings form

the object class and MorRg(A,B) is the set of all ring homo-

morphisms between A and B. Composition is the usual composi-

tion, and this is associative. For each A c ob Rg there is an

identity ring homomorphism. Hence Rg is a category.

(9) The category of rings with identity--Ri. Let ob Ri

be the collection of all rings with a multiplicative identity.
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The morphisms are the usual ring homomorphisms with the

usual composition. Then Ri forms a subcategory of Rg.

(10) The category of all modules over a ring R--Rm. Let

ob Rm be the collection of all modules over R and let

MorRm(A,B) be the collection of all R-homomorphisms. Com-

position is the usual composition,which is associative. The

identity R-homomorphism serves as the identity. Thus Rm is

a category.

(11) The category of vector spaces over a field F--VectFe

Let ob VectF be the collection of all vector spaces over

F,and the morphism sets are the collections of linear trans-

formations between vector spaces. VectF forms a subcategory

of Rm.

(12) The category of topological pairs--Topp. A topolo-

gical pair is an ordered. pair (X,A) where X is a topological

space and A c X. A morphism from (X,A) to (Y,B) is a con-

tinuous function f : X - Y such that f(A) B. The composi-

f g
tion is the composition of functions, and if (XA)-6(YB) -. (ZC),

then f(A) c B, and hence (gf)A c C. Therefore the composition

is well defined. The composition is associative since the

composition of functions is associative and the identity

function is a morphism in Topp. Hence Topp is a category.

(175) The category of Hausdorff topological spaces--Hd.

Let ob Hd be the collection of all Hausdorff topological

spaces and the collection of morphism is the collection of
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continuous functions between them. Then Hd is a subcate-

gory of Top.

Similarly, we get other subcategories of Top by collecting

all those topological spaces with a certain property and using

the continuous functions between them. Some of these are T4,

T , T and T0 spaces, compact Hausdorff spaces CH, and locally

compact Hausdorff spaces LCH.



BIBLIOGRAPHY

Books

MacLane, Saunders, Categories for the Working Mathematician,
New York, Springer-Verlag New York, Inc., 1971

Pareigis, Bodo, Categories and Functors, New York, Academic
Press, Inc., 1970.

Articles

Eilenberg, Samuel, and Saunders MacLane, "General Theory of
Natural Equivalences," Transactions of the American
Mathematical Society, 58 (September, 1945), 231-294.

79


