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This paper is an investigation of several basic proper-
ties of ordered Abelian groups, valuations, the relationship
between valuation rings, valuations, and their value groups
and valuation rings.

The proofs to all theorems stated without proof can be

found in Zariski and Samuel, Commutative Algebra, Vol. I,

1858.

In Chapter I several baéic theorems which are used in
later proofs are stated without proof, and we prove several
theorems on the structure of ordered Abelian groups, and the
basic relationships between these groups, valuations, and
their valuation rings in a field. In Chapter II we deal with
valuation rings, and relate the structure of valuation rings

to the structure of their value groups.
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PREFACE

This thesis presents some basic theorems on ordered
Abelian groups, then theorems on the relationship between
these groups and their associated valuation rings, and fin-
ally theorems on valuation rings alone. 1In the beginning
of Chapter Ilwe will present several standard theorems
which will be assumed without proof. The proofs of these

theorems may be found in Zariski and Samuel, Commutative

Algebra, Vol. I, 1958. The remainder of Chapter I will be
devoted to properties of value groups and valuations.

In Chapter II we will begin with theorems relating
the structure of valuation rings to the structure of their
value groups. Then we will prove some theorems on valuation
rings.

All definitions will be placed immediately before they
are to be used. Notation conventions used in this thesis

may also be found in Zariski and Samuel.
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CHAPTER I

THEOREMS ASSUMED WITHOUT PROOF
AND SOME THEOREMS ON VALUATIONS

The following theorems, one through nine, will be used
later, but for reasons of economy their proofs will mot be
shown. They are listed in the order in which they will be
used.

Definition 1.1: An ordered Abelian group, denoted

(G,+,=) is an Abelian group G on which there is defined a
total ordering = such that if o,B,y € G and o< B then
atysg+y.

Any subgroup of an ordered Abelian group with the in-
duced ordering is an ordered Abelian group.

Definition 1.2: If Gl’GZ""’Gn are all subgroups of a

group G such that for any i,j € {1,2,...,n} where i # j,
Gifmj = {0}. Then

G, 8G,8... 8G = {(gl,...,gn)lgi‘e G, for i=1,...,n}

is called the direct sum ofGl, through Gn’ and it is a group
with pointwise addition. |

Theorem 1.1: If Gl""’Gn are ordered Abelian groups,

and G = G1 # G2 ... @8 Gn so the elements of G may be

denoted by n-tuplet (al,az,...,an) where each ay € G and




if (al,...,an) and (Bl,...,Bn) are distinct elements of G,
then

(oo e ray) < (Byseens8)
if @y < By or for some k>1, a; = B for i = 1,...,k-1 and
ak<:8k. Then < is a total order on G and G is an ordered
Abelian group.

Definition 1.3: The above ordering is called the lexi-

cographic ordering.

Definition 1.4: A valuation ring is a domain D with

1l =0, and quotient field K such that if x € K either

x . €D or ike D.
X

Theorem 1.2: If A is an ideal in a valuation ring D,

then (1 A" is prime.
n=1

To say that an ideal Q in a ring R is primary means that
if a,b € R, and a .¢ Q then b™ € Q for some n. And if an
ideal Q is primary and P = /G, then P is prime and Q is
said to be P primary.

Theorem 1.3: If Q is P primary in a ring, and A and

B are ideals in R such that AB<Q and A¢Q, then BcP.

Theorem 1.4: If Q and P are ideals in a ring R such

that P is prime and Q<P, then /QcP,
A domain D is quasi-local if it contains exactly one
maximal ideal M, such that(0) <M< D,

Theorem 1.5: 1In a quasi-local domain the maximal ideal

is the set of nonunits.




This is an ordered semigroup in the sense that if

asBsy € G* and a<$ then o + y< B + vy,

Definition 1.6: Let X be a field. A valuation on K

is a mapping from K onto G*, where G is an ordered Abelian
group such that
i} v(a) = « iff a = 0
1i) v(ab) = v(a) + v(b) for any a,b €K
iii) v(a+b)zmin(v(a),v(b)) for any a,b € K.

Definition 1.7: 6 is called the value group of the

valuation v.
Given a field K and G* if v(a) = 0 for any a # 0, and

v(0) = », v is called the trivial valuation.

Theorem 1.10: If K is a field and v is a valuation

with value group G, then
i) wv(l)
. x 1
ii) VCE)

Proof: 1) Since v(1) = v(1-.1) = v(1) + v(1), v(1)

i

v(-1) = 0, 0 being the identity in G

n

-v(a), for any a €K, a # 0.

is the unique identity in G.
From this we get
0 =v(1) = v((-1)(-1)) = v(-1} + v(-1).
If v(-1) <0, we get the contradiction 0 = v(-1) + v(-1)< 0.

If v(-1) >0, we get 0

v{(-1) + v{(-1) > 0. Therefore
v(-1} = 0, too.
ii) For any a €K, a # 0
0 = v(1)

viarg) = via) + v(D).

Therefore -v(a) = V(%).




Theorem 1.11: If K is a field with value group G,
let V = {ala €K, and v(a)=0}. Then V is a valuation ring.

Proof: First we must prove V is a ring. To get clo-
sure under addition, if a,b €V, v(a).20, and v(b) =0, then
v(a+b) zmin(v(a),v(b)) =20. To get additive inverses, for
any a €V, notice -1 € V, so

v(-a) = v((-1)a) = v(-1) + v(a) = 0 + v(a) =0,
and -a €V. Clearly 0 €V since v{(0) = «==0. Commutativity
and associativity under addition and multiplication are
inherited from K. To get closure under multiplication, if
a,b €V, then v(a) 20, and v(b) 20, and v(ab) = v{a) + v(b).
Since v(a) 20, v(a) + v(b) =20 + v(b) = v(b) 20. Distri-
butivity is inherited from XK. Therefore V is a ring.

If a €Xanda ¢V, v(a)<0. So, a7 0. If v(Heo,
we would have the contradiction

0 = v(1) = v(a-%) = v(a) + v(;}) <0.

So v(%) 20, and % € V. Therefore V is a valuation ring.

Theorem 1.12: If V is a valuation ring with quotient

field K, then there exists a valuation v on K such - that
V = {ala €X and v(a) =0}.
Proof: Let U be the multiplicative group of units of
V. Then U is a subgroup of K*, the multiplicative group
of nonzero elements of K.
Let G = K*/U, and we write G additively such that if
a,b € K¥, aU + bU = abU. We define a relation on C such

that if a,b € K*, bU'<al if and only if & €V,




We will show this relation is well defined. TIf
a,a',b,b' . € K* such that bU = b'U and aU = a'U, we need to
show bU <aU if and only if b'Us=a'lU, So, if bU*< al,

% € V. Since b'Us=bU, %, €V, and since alU'sa'U, 3'5 V.

Thus &5 = 2.22.0 ¢y, and b'U<a'v. Sinilarly if b'Usa'v
then bU =< aU.

Next we will show that this relation is a total order
on G, |

To get =< is reflexive for any a,b € K* such that
al = bU, % € U, (remember we are dealing with a group of
cosets whose operation is -+ not +). Also % €V since
UcV. Therefore bU =al.

To get =< is antisymetric, for any a,b € K* such that

al =bU and bU =al, since aU =blU, % €V, and since

L[}

bUsaU 2 € V. Therefore g €U and au = bU.

b
To get = is transitive, for any a,b,c € K* such that

alU-=bU and bU.=cU, g €V and % €V, so

@10
I
mio

o
T E€v,
and all:= cU.
To get that any two elements are related, for any

a,b.¢ K*, consider either % or g is an element of V because

V is a valuation ring. If g €V, then alU<bU. If % €V,
then bU.=al,
Next we must show that (6,+,<) is an ordered Abelian

group. If a,b,c € K* such that bU <aU, and cU € G, since




bU =al, g— €V. So %-gev and

bU + cU = bcU =aclU = alU + cU,
Now, define v:K - G* by v(0) = », and v(a) = aU if
a# 0.
We must show that v is a valuation.

Clearly v({a) = « if and only if a = 0 by definition.

For any a,b .€ K, if either a or b is zero, say b = 0,
via) + v(b) = v(a) + »« = w = v(0) = v(ab).
If a # 0 and b # 0,
v(a) + v(b) = alU + bU = abU = v(ab).
For any a,b € K, if either a or b is zero, say b = 0,

v(a} =« = v(b), and v(a+b) = v(a) = min(v(a),v(b)). If
a# 0and b # 0, then alU,bU € G so alU=bU, or bU:zal, say
bU.<al. 8o v(b} =v(a), and min(v(b),v(a)) = v(b). Also

because bU =al, % €V, so % +1 €V, If % + 1 # 0, since

3,1
B ev, w=@+1U and v(1) svi@+1). 1£ 241 =0,
still v(l)=5v(%f+1J = . From the fact that for any c,d €K,
v(c) + v(d) = v(cd) we can get v(1) = 0. So in either case

v(%+ 1) 20, and v(_%+ 1) + v(b) 2v(b), so
v(a+b) = v((z+1)b)

= v(%+l) + v(b) zv(b)=min(v(a),b(b)).

Finally we must show if S = {a]a € K and v(a) 20},

then § = V. If a €5, al = v(a) 20 = v(1) = 1U, so a = &€V,




Therefore ScV. If a €V, and if a = 0, v(a) = ©>(,

soa €S. Ifa#0, a= -"il.e V, so 1UsaU, and 0=v(l)=v(a),

so a € 8. Therefore V&S, and V = S.

Definition 1.8: A v as determined above is said to

be the valuation determined EZ V.

Definition 1.9: If v and v' are valuations on a field

K, with value group G and G' respectively, then v and v'

are equivalent if and only if there is an Orderipreserving

isomorphism ¢ from G onto G' such that vi(a) = d(v(a)) for
any a € K%,

This relation is an equivalence relation. To show it
is reflexive, for any valuation and valué group G, let
¢ = I(G), the identity map on €. To show it is symmetric
for any valuations v and v' with value groups G and G?
respectively such that v is equivalent to v' there exists

Logr s G

an order-preserving isomorphism ¢:G + G'. So )
is an isomorphism, and if a',b' € G' such that a'=bh' there
exist a,b .€ G such that ¢(ay = a', and ¢(b) = b'. It

follows a=b since if a<b we would have the contradiction

a' = ¢(a)<¢(d) = b'. So ¢ 1(a') = azb = ¢ L(b'), and

¢ ~ is order-preserving. And, for any x € K*, v'(x)=¢(v(x))
SO ¢_1(v'(x)) = v(x). To show it is transitive, given val-
uations v, v', and v" with value groups G, G', and G" re-

spectively, there exists order-preserving isomorphisms

¢ and 8 such that ¢:G > G', and &:G" - G". So gog:G - G




is an isomorphism. And if a,b € G such that a =b, then
¢(a) 2 ¢(b), and 6°¢(a) 26 ¢(b). So go¢ is order-preserving.
Also for any x < K*, v"(x) = g(v'(x)), and v'(x) = (v (x)),
so v'(x) = p9¢(v(x)).

Theorem 1.13: 1If K is a field, and v and v' are equi-

valent valuations on K with value groups G and G! respec-
tively, and V is the valuation ring determined by v, and V'
is the valuation ring determined by v', then V = V',

Proof: There exsists ¢:G » G', and ¢"1:G' + G both
order-preserving isomorphisms onto such that for any a € K*#,
v'(a) = ¢(v(a)) and v(a) = ¢ Y(v'(a)). For any b .€V, if
6(v (b)) =4 (0)=0.
V.

b=20,Db €V'. Ifb#0, v(b)20, and v'(b)

f

i

So b €V', and VCV'. Similarly V'cV, so V

Theorem 1.14: If K is a field and V is a valuation ring

in K, and v is a valuation on G with value group G.such that
V is the valuation ring of v, and v' is the valuation deter-
mined by V, then v and v' are equivalent.

Proof: Let U be the group of units in V. Define
$:G > K*/U such that if g € G, g = v{(a) for some a .€ X*,
and ¢(g) = ¢(v(a)) = al.

First we must show ¢ is well-defined. If g,g'.é G
such that g = g', g = v(a) and g' = v(b) for some a,b.€ K*,
So, v(a) = v(b), and

0 =v() - v(b) = v(a) + v(}) = v(D).

For any x .€ K such that v{x) = 0, x € U since
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1 1

0 = vexx™h) = v ¢ vl = vl ‘
so x 1 ¢ V, and x is a unit in V.

I

Therefore %.E U, and ¢(g) al = bU = 4(g').

To show ¢ is a homomorphism, for any g, g!' € G there
exists c,d € K* such that g = v(c), and g' = v(d), so
o(v(c) + v(d))
= ¢(v(cd))
= ¢cdU

il

¢(g+g")

= cU + dU
= ¢(v(c)) + 9(v(d))
= ¢(g) + 9(g").
To show ¢ is an injection, if g € G such that o(g) = 0,
g = v(a) for some a.€ K*, so ¢(v(a)}) = 0 (the zero in K*/U).

U, so al = U, and a € U,

Therefore ¢(v(a))

For any x €U, v(x) = 0, since if x € U then there exists

x”l €V, and since x €V, v(x) 20, but if v(x) >0, we get

'1) = -v(x) <0 which contradicts xnl

v(x €V, so v(x) = 0.
Therefore g = v(a) = 0, and ¢ is an injection.
For any z € K*/U, z = aU for some a € K*. Therefore
v(a) € G such that ¢(v(a)) = z, and ¢ is onto.
To show ¢ is order-preserving, for any g,g' €G such

that g=<g', g = v(a), and g' = v(b) for some a,b.€ K*, Since

v{a)

SO g € V. Therefore,

¢(g) = ¢lv(a)) = aUsbU = ¢(v(b)) = ¢(g').

g=g' = v(d), 0sv(b) - v(a) = v(b) + v(d) = vy,
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As an immediate corallary to Theorem 1.14, we can say
if v and v' are valuations on a field K having the same
valuation ring, v and v' are equivalént.

Also from Theorem 1.14, we have, if U is the set of
units in V, U = {a € K|v(a) = 0}.

Definition 1.10: If G is an ordered Abelian group, a

subgroup H of G is an isolated subgroup if and only if for
each o €H if 3 €C and 0 <8 =<a then g € H. If H # G,

then H is a proper isolated subgroup.

Definition 1.11: If an ordered Abelian group G has

only a finite number of isolated subgroups, then the number
of proper isolated subgroups of G is the rank of G.

So G is of rank one if and only if G'# 0 and G and 0
afe the only isolated subgroups of G.

Theorem 1.15: If G is a nonzero ordered Abelian group,

then G has rank one if and only if there is an order-pre-
serving isomorphism from ¢ onto a sﬁbgroup of the additive
group of real numbers,

Proof: 1If there is an order-preserving isémorphism )
from G onto a subgroup G' of the additive group of real
numbers, let H' be a nonzero isolated subgroup in G'.

There exists o' € H' such that o' # 0. Either o' or
~a' 1is positive. Without loss of generality, assume o' is
positive. If g8' € G', and B' =0, there exists a positive
integer n such that no'zg' =20, and na' € H', so g € H'. It

follows H' = G' and G' has rank one.
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If H is a nonzero isolated subgroup of G, #(H) is a
nonzero subgroup of G'. For any o' € ¢(H) and for any
B' €G' such that 0<B' <qo' there exists o,B € G such that
¢(a) = a' and ¢(B) = B'. Since 0<B=<g, B € H, so 8' € ¢(H),
and ¢(H) is an isolated subgroup of G'. Therefore $(H) = G
and H = G, so G has rank one.

Converseiy, if G has rank one we first want to show that
for any a,B € G such that o >0 and g8 >0 there exists a
natural number n such that g.=ng. If not, there exists
a,B €G éuch that o >0 and 8> 0, and g >ng for any natural
number n. Let

S={y €G]y=0, and v sno for some natural number n},
and notice B ¢ S. Also, if Y1,Y, €8, clearly Yy * vy €8,
so if H is the subgroup of G generated by §, |
H= {y; - vylvyrv, €81
For any h € H and for any § € G such that 0<§=<h since
h = Y1 " Yy for some Y12Y9 € S, and Yy Do for some natural
number n, and Y, 20, so
§=8 + yysh + vy, = {yp-vy) +y, = Yy =na,

S0 6 €5 and § € H. So, H 1s an isolated subgroup of G,
and H # 0. Therefore H = G which leads to a contradiction
since B €G, so B €H, and 0sg =<8, so by the same argument
as we used just above, B € S, but B.¢ S.

If there exists a least positive element o of G for

any 8 € G, there exists n such that (n-1)a<g =ng. From
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this 0 <8 - (n-1)a =g but since o is the least positive ele-

ment in G, B8 - (n-1)a = o, and B = na. So G = (g). Let

¢(na) = n for any natural number n. Clearly ¢ is an iso-

morphism. For any two natural numbers ny and Ny, if

njo'sn,a, Ny sn, since if n, >n, we get this contradiction
njo = Nyg * (nl-nz)a:>nza.

So ¢(n1a) S¢(n2m) and ¢ is order-preserving.

If G has no least positive element, choose one o € G
and consider it fixed. Let ¢(a) = 1. If g € G such that
8>0, and g # o let |

1 (R) ='{%¢ma £ng, m and n natural numbers}

and

i

u(g) {%|ma:>n8, m and n natural numbers}.
There exist natrual numbers p and q such that a =pg and

8<qa. So, % €1(g) and & €u(g), and 1(g) # ¢ and u(g) # 4.

1£ I €1(g) and T €u(p), me =ng and kg <hq, so

makR < nghe, and mk < nh, so %«:%. Clearly

[1(B)U {q €Q]q=0}7Uu(g) = Q.

Thus we have a Dedekind cut of the rational numbers. Let
$(B) be this positive real number, and let $(0) = 0, and
1f vy € G such that y<0, let ¢(y) = -¢(-y).

Next we want to show ¢(g;+8,) 2¢(By) + ¢(B,) for any
31,82 € G such that Bl> 0 and By > 0. If not,

| $(B1¥By) <o (B) * ¢(By)

for some 51> 0 and By > 0. So,
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i

glb(u(g;+8,)) = ¢(8;*6,)

A

o(B) + 9(8y)

LI}

Lub(1(g8))) + 1ub(1(g,))

lub{x+y|x. € (g;), ¥ €1(8;)}.

. P Py
So, there exists % € u(81+52), and a% € ]{31) and EE‘E 1[32)

such that
p p +
a 9 q, qlqz
SO
P(414,) <a(p9, + pyay)
and

(d;9,)ap < (P14, + pyaq)qo.

Since % € u(51+82],
Pao > Q(Bl+82)
and

Py

A P2
Since aI € (8)) and 3, €. (By)s pqa <qy8y, and P,0'=q,8,, and

2’

Pyady * Poady = (9;4,)61 * (q;9,)8,,
50
(P19,*P,ay)aq = (8y*8,) (a,49,)4,
which leads to the contradiction
(By*8,) (d4795)a = (p1d,*P,d Jaq
> (q14,)op
> (B1*8,) (4q9,)4.
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By a similar argument ¢(8,+8,) =¢(B;) *+ ¢(8,), so
0(8;*B,) = ¢(By) * ¢(By). It follows quickly ¢ is a homo-
moxphism.

If 8,,8, €G such that 6, >0, 8,>0, and ¢(B;) > ¢(8,),

P p
1ub(1(8,)) >glb(u(8,)). There exist Ei% €1(8,) and a_z_ € u(g,)

Pq -pz .
such that azﬁ>ag.‘ So P19, > Ppdys and P19,% > Pyq; 0. Since

Py Py
a; € 1(81) and ag € u(Bz), Ppe'=qqB and Pye > q,8,, SO

qQ,P; 0 Sqlqzﬁl and QP > q19,8,- Therefore
419287 2d2P10 > Ppdy0 > q19,8,
and Bl>82, $0 ¢ is order-preserving.
For any y € G such thaty# 0 if v > 0 there exists n
such that ny>a, so % € 1(y) and ¢(Y)>’%> 0. If y<0,

¢$(-v) >0, and -¢(y) > 0, so ¢(y)<0. So, ker(¢) = 0,

and ¢ is an isomorphism.




CHAPTER 11

THEOREMS ON VALUATION RINGS

Theorem 2.1: If R is a ring, the following are equiv-

alent:
1) For any sequence of ideals Al,AZ,... in R with

Aﬁ:A2<:... there exists anatural number n such that for all
mzn, An = Am.
2) Any nonempty set of ideals in R has a maximal

element.
3) Every ideal in R is finitely generated.
Proof: First, if part 1) is true, assume there exists

a nonempty set S of ideals which contains no maximal ele-

ment. Since S # ¢ there exists an ideal Al‘G S. Al is not

maximal so there exists AZ'E S such that A1<:A2. A2 is
not maximal so there exists A3‘€ S such that A2<<A3.
Clearly we can construct

Al‘iAz < e

which contradicts part 1).

Second, if part 2) is true, assume there exists an
ideal A in R such that A is not finitely generated. Let
S = {(al,az,...,an)[n is a positive
integer and 31’32""ani€ A},

Since A # ¢, S # ¢. There exists al,az,...;anee A

such that (al,az,...,an) is maximal in A. Since

16
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al,az,...,an_é A, (alfaZ""’anJC:A’ and since A is not
finitely generated (al,az,,..,an) # A so (al,az,...,an) <A.
So there exists a € A\(al,az,...,an) which leads to

(al,az,...,anﬁﬂé S and (al,az,...,an) <(al,az,...;an,a)

which contradicts (al,az,...,an) is maximal in S.
Finally, assume part 3) is true, and let Al,AZ,... be

any sequence of ideals in R such that A1<:A2(:... . Let

oo
A= U A;. For any a €A, and r €R, a € A£ for some 3,
i=1

so ar € Ag’ and ar € A, If al,az.E A, ay S Agl, and

a, E.A2 for some positive integers %, and 2,. Without
2

loss of generality, assume A CAg . Since a, €A,

| 17 L7y

- a, €A

c 5 22’ and a; - a, €A. So A 1s an ideal and

therefore there exists al,az,...an‘é A such that

(al,az,...,an) = A, There exist natural numbers Lysfgseeesly

such that € AQ , a4, €A resd € Aﬂ . Letm =

a ?
L 1 vy n
max(llsﬂz,...,am). For i = 1,2,...,n,A21(:Am, $0

Aqs89,. .8 € Am and A CAm. For any natural number g such

that 2= m, Am<:A£<:At:Am, so Am = AQ’

Definition 2.1: A ring with these three equivalent

-

conditions is called Noetherian.

Definition_Z.Z: An  ideal A is irreducible if and

only if A is not a finite intersection of ideals strictly

containing A,
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Theorem 2.2: If A is an ideal in a Noetherian ring R
then A is a finite intersection of irreducible ideals.

Proof: Let T = {A|A is an ideal in R and A is not a
finite intersection of irreducible ideals}. We claim
T = ¢ since if T # ¢ the fact that R is Noetherian means
that there exists a maximal ideal A in T. A is not irre-
ducible since if it were A = A(A would be the intersection
of two irreducible ideals which contradicts A € T. So there
exist ideals B and C in R such that A = B(IC, A«:B; and A<C.
Since A is maximal in T, B and C are not in T, and therefore
can be written as a finite intersection of irreducible ideals.
So A can be written as a finite intersection of irreducible
ideals, which contradicts A € T.

Theorem 2.3: If Q and P are ideals in a ring R, and

1) QcPp.

2) if b € P then b™ € Q for some natural number n,

3) for any £ﬁ>€ R such that ab € Q if b ¢ P then a € Q,
then Q is P primary. |

Proof: Notice that the contrapositive of 3) states for
any a,b € R such that ab € Q if a ¢ Q, then b € P. So b € Q

for some natural number n. So, Q is primary.

If x . € yQ, x" .€Q for some n. Let m be the least n.
Ifm=1,x €Qsox €P. Ifm# 1, ¥ x €q, and x™* ¢

so x € P. Therefore y§ <P. If x €P, x" € Q for some n,

m

so x €vQ, and Y§ = P. Therefore Q is P primary.
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Theorem 2.4: If I is an irreducible ideal in a Noether-

ian ring R then I is primary.

Proof: We will show if I is not primary then I is not
irreducible. If I is not primary there exists a,b € R such
that ab €1, b § I and a" ¢ I for every positive integer n.

For any positive integer m if x € I:(am), x(am)CI, SO
x(am+1JCI. Therefore

I:(a)CI:(aZ)CI:(aS)C...

Since R is Noetherian, there exists a natural number k

such that I:(ak) = I:(ak+1). Clearly
T[T+ () 37 (14 (b) 7.
If x € [I+(ak)]rl[1+(b)] there exist r,r' €R, and i,i' € I

such that x = 1 + rak = i' + r'b. It follows rak = i'-i+r'h,

SO rak+1 = [i'-iJa + r'[ab], and rak+li€ I, rf(a

r € I:(ak+1), r € I:(ak), rak €I, and x =i + ra~ € 1. So,
I = [I+(a) 10 [I+(b) ],
and T<T + (a%), and 1<1 + (b) since a¥ ¢ I, and b ¢ I.
Therefore I is reducible.
n

Definition 2.3: A representation A = ‘fiQi of an ideal
i=1

A as a finite intersection of primary ideals is said to be

irredundant if
1) No Qi contains the intersection of the other Qj’
2) The associated primes of the Qi are distinct.

Theorem 2.5: If an ideal A has a representation

n
A= NQq,
i=1 *

as a finite intersection of primary ideals, then
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A has an irredundant representation as a finite intersection
of primary ideals,
~Proof: Clearly A has a representation in which no
primary ideal contains the infersection of the other primary
ideals.
If Q; and Qj are two primary ideals with the same prime

ideal P, replace both ideals with QiﬁQj. Since QjCP,

Qifk{f:P. If b € P, there exist positive integers m and n

such that b" € Q, and b" € Q;, so R € Q;1Q;.  If a,b.€R
such that ab € Q and b § Q than a €Q;, and a € Qs so

a € Qi(WQj. Therefore QifWQj is P primary.

Theorem 2.6: If R is a Noetherian ring every ideal in

R has an irredundant representation as a finite intersection
of primary ideals,
Proof: This theorem follows immediately from Theorems

2.2, 2.4 and 2.5.

Theorem 2.7: If A and B are two ideals in a ring R,

A is finitely generated, and AB = A, then there exists
b € B such that (1-b)*A = (0). _
Proof: There exist Aqs85y 00058, € A such that
A = [al,az,...,an). For i = 1,2,...,n let Ai=a(§i?af%1’”'”an)

and let At = (0).

Tt

First we must show for any i 1,2,...,n,n+1 there exists

1
(1~b1)A = (1JA = A = A,. Suppose for some positive integer

bi € B such that (l~bi)ACAd. If i =1 let b, = 0. Then




Theorem 1.6: In a valuyation ring, every finitely

generated ideal is principal.

Theorem 1.7: If the nonunits of a ring R form an ideal

then the ring is quasi-local.

Theorem 1.8: TIf P is a prime ideal in a ring and

n € N, n>1 then P" is not prime.

Definition 1.5: For an ordered Abelian group (G,t,s),

and for any o .€¢ G, the absolute value of o, denoted |af,
is defined by |a| = o if O <o and Ja] = -o if o < 0.

Theorem 1.9: If (G,t,=<) is an ordered Abelian group,

and a €G, then -|al=a <|a|and -a< [a].
Proof: If a=0, |a| = a, and -|a}l = -a. Since a=0,
a-a =z 0-a so 0=-a, and we can write
-la| = ~a=0=a = |a].
Therefore -|a] =a s |a| and -a = |a}.

If a<0, -a = |a] and a = -]a

. Since a<0, a-a<0-a
and 0<-a, and we can write
-la} = a<0<-a = |a].

Therefore -|a|<a <|a| and -a< |a].

If G is an ordered Abelian group, and {«} is a set
whose single element is not in G, let G* = GU {x}, and make
G* into a semigroup by defining for o, B € G*

their sum in G if a,B € G
o+ B=
w if o = 0 Or B = =,
Extend the ordering of G to G* and define a= « for every

o € G*,
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i, (1-b;)ACA;. Then (1-b;)ABSA;B, so (1-b,)AcA B, and

since ai:E A, [1~bi)ai,€ AiB,.so

(1-bi)ai¢€ (ai,ai+1,...,an)B,

(1“bi)ai"€ aiB + ai+lB oL, F anB,

and

(1~bi)ai==a.b.

R b
17173

+ Q. R .
1+171,1i+1 n'i,n

where each by €B for t = i,...,n. Then

, L
(1-by=by )8y = ay,1 Dy gep * ooe ¥ oagby
and (1-bi—bi’i)ai.& Ai+1' Since
Cl"bi)(l"bi“bi’i)
=1-2b, - b, . *b.%+b.b, .
i i,i i i7i,i

i

1 - (2b.+b, .-b.%-b.b, .),
i Ti,i Vi titiLi

. _ _ 2 _

if we let by ;= 2b; + b, . - bl - b

)

s 9
.1

it

(1-bj A = (1-b ) (1-by-b, )A

)

< A, (1-b,-b.
i i 1,1

)

[(ai)+(ai+l’ai+2"'°’an)}(l-bi_bi,l

]

[(ai)+Ai+l](l"bi-bi,i)

At A

A
Specifically, (l»bn+l}ACAn+l = (0), so

1t

(1-b,,)A = (0).
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Theorem 2.8: If A is a proper ideal of a Noetherian

0,

ring R, then ,flAn = {r € R|[1-alr = 0 for some a € A}.
n=1

Proof: Let

S = {r €R[[1-a]r = 0 for some a .€ A}

and let T =

n

1AM, For any s € S there exists a . € A such
=1

that [l-a]s = 0, so s = as. So, s €A, and since s = as,
s .€ AZ, and since s € A® and s = as, s € AS. Clearly

[ee]
s € A%, so scT.
n=1

Next we want to show AT = T. C(learly ATCT. Since R

is Noetherian there exist QI,QZ,...',-Qn primary ideals im R

m
such that AT = f}Qj is an irredundant representation of
j=1

AT as a finite intersection of primary ideals. For each

i''=1,...,m we clainm TCQj,. if T¢Qj, since

AT

fl

m
f1Q.<Q.,, AcP., where P,, is the associated prime
je1d 3! ] j

ideal of Qj" So, there exists a natural number t such
that P;chjr, and AtCPE., so since T = (1 A"cAt we
n=1 '

m
get the contradiction TCQj,. Therefore TC (]Qj = AT,
j=1

and T = AT.
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By Theorem 2.7, there exists a €A such that (1-a)T = (0).
For any t € A", t ¢ T, so [l-ajt € (1-a)T, and
n=1

fl-alt = 0, so t € S. Therefore

{r € R|[1-alr = 0 for some a . € A}.

" g
x=
=
1l
H
I
w
1

The following theorem is one form of the Krull inter-
section theorem.

Theorem 2.9: If A is a proper ideal of a Noetherian

ring R then (1 A™ = (0) if and only if no element of
n=1

1-A = {l1-a|a € A} is a nonzero zero divisor.

Proof: If () AP =(0) and there exists b € 1-A such that
n=1

b is a nonzero zero divisor, there exists c.€ R such that
c # 0 and cb = 0, and there exists a € A such that b = 1-a.

So,

[a]
i

cb = cl1-a]
and
c.€{r €R|[l-a]r = 0 for some a.-€A} = (0),
which leads to the contradiction ¢ = 0.
If no element of 1-A is a nonzero zero divisor, and
there exists x € ﬁ A® such that x £ 0,
n=1
X € {r € R{[l-a}r = 0 for some a € A}.

There exists a € A such that [1l-a]x = 0. Since [1-a] € 1-A,
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l-a is not a nonzero zero divisor, and also x # 0, so
l-a = 0, and a = 1. This leads to the contradiction A = R.

Theorem 2.10: If A is a proper ideal in a Noetherian

[sv]
domain R, then [ A"
n=1

= (0).

Proof: Since R is a domain there are no zero divisors

in 1-A. Therefore by Theorem 2.9,

A" = (0).
1

t g

n

Definition 2.4: If D is a domain with quotient field K,

an element x € K is integral over D if and only if there

exist Ay Oy .l.,an‘é D such that Xn4-an_1xn_l-k X+ .= 0.

..+0L1 0

And the integral closure D of D in K is

{x € Kf{x is integral over D}.

Theorem 2.11: If D is a Noetherian integral domain

which is not a field, then the following statements are
equivalent:

1} D is a valuation ring.

2) The nonunits of D form a nonzero principal ideal.

3) Diﬁ.integralbrclosed,D=ﬁ}andhasexactly one nonzero
proper prime ideal.

Proof: First, if D is a valuation ring, let

M= {x €D|x is a nonunit in D}.

To show M # (0), assume M = (0) then for any x € D such that
X # 0, x §M, so x is a unit. This leads to the contradiction

D is a field.
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Since D is a valuation ring, D is quasi-local, and M is
an ideal in D. Since D is Noetherian M is finitely generated.
Since D is a valuation ring and M is finitely generated, M is
principal.

Second, if the nonunits of D fbrm a nonzero principal
ideal, since the nonunits of D form an ideal, D is quasi-
local. Let M be the maximal ideal of D. Then M is prime
and M = (a) for some a € D.

For any nonzero ideal A in D such that A # M we claim

A = M" for some positive integer n. Clearly AcM., By

oo

Theorem 2.10, AM? = (0). Therefore there exist a positive
i=1

integer m such that AM™ since if AcM" for every n,
Ac [ M® = (0) which gives the contradiction A =(0). So,

there exist a positive integer n such that AcM™ and.A#Mn+l.
We will show A = M". There exists x € A such that
x 4 Mn+1. Since AcM™, x € Mn, and M* = (a)" = (a™), so

x = ua” for some u . € D. We claim u is a unit. If u is

I

not a unit u €M (a), so u = ra for some r .€ D. Therefore

~ n n n+1
X = ua = raa = ra

n+}

’

and we get the contradiction x ¢ M For any z € M7,

z = wa" for some w € D, and therefore

n - T -1
Z = wa = wu 1ua = wWu "X,

so z €A, since x € A and u t,w €D. So MPCA, and A = M".
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Also, n>1 since A # M. Since M is prime and n>1,
A =M is not prime, so D has exactly one nonzero proper
prime ideal.
Next, we claim that for any x €D, x = ua® for some u,
a unit in D, and n a nonnegative integer. To show this,
let x . €D. If x €M, then x is a unit and x = xao. If
x €M, x = tja for some tl €D. If tl«E M, t1 is a unit
1

a~. 1If tl.E M, tl = ta for some t, €D. So,

and x = t 9

1

We claim for some positive integer n, tn is a unit.

If not

x = tia = tzaz = t3a3 =
For any positive integer‘m, tmam = tm+1am+1, so t = t 18>
tme{tm+l), and (tm)C(tm+l). Further (tm)‘:(tm+1), since if

(tp) = theg)styey € (g}, sot . =t b for some b €D,

m+1 m

+
a s tha = tmbam 1

Since tmam =t , and 1 = ba which

m+1

gives the contradiction a is a unit.

Therefore,
(t)) < (t5) < (tg) < ...
which contradicts D being Noetherian.
If ¢ €K such that ¢ # 0 and ¢ is integral over D,

r . . .
c =z for some r,s € D. There exist nonnegative integers

S
and u, such that r = u,a 1

1 and

m, and My, and units in D,u

1 1

2
s = uja “. If mlamz,
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m m. -m
v.a 1 ual 2
U S | _ 1
c=3- my u
N u,a 2
If ml sz ml
S S L |
S |
2 2

So, without loss of generality we can assume either r or s

is a unit.
There exist a positive integer n and dO’dl""’dnﬂg D
such that

So,
T h r.n-1 T -
(=) + dn_lfg) + ... + d 5 +d. = 0.

Multiplying through by s™ we get

T S + ... * dlrsn"l + d.st

and
2

_ . n-1 _ - I-
r = s{ dn_lr - dlrs

If s is a unit then ¢ €D. 1If s is a nonunit we get a con-

tradiction since r is a unit, but '

€M, sor €M. There-
fore ¢ €D and D is integrally closed.

Finally, if D is integrally cldsed and has exactly one
nonzero proper prime ideal, clearly D is quasi-local and
the nonunits of D form an ideal M, the maximal ideal.

We claim that there exists a € D such that M = (a).

If for any x €D, M # (x) since D is not a field, there
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exists xl,e M\(0), and (xl) f M. Since also (Xl)Chi there
exists x, € M\(xl).

Now, we must show that there exists X4 € M\(xl,xz).
If not M = (xl,xz). We can also get (xl)fﬁxz) = {0) since
if there exists vy € (xl)fﬁ(xz) such that y, # 0 there
exist r;r, .€ D\(0) such that y; = ryXy and Yq = TpX,. So
TiXq = ToX,. If T, is a unit in D we.weuld have a contra-

. . . -1 .
diction since Xqryr, © = X, and x2.¢ (x;). If r, is not
-1 -1

3 1 = = 1 =
a unit in D, Ty, "T1Xg TyTiT,X,, T, Xy = X,, and
-1 _ -1 ... _ .
Ty "T1X; - Xy = 0, so T, 1s 1integral over D. This leads
to a contradiction since D is integrally closed, so r, e

2
but r, is not a unit in D. For any b,c.€ R such that

b ¢ (XI) and c § (xl) if b,c . € D\M then bc € D\M so
bc .4 (xq}. If b €M or c €M without loss of generality
assume b € M. Then b .€ M\(xl) =(x2), so bc € (x,) and
bc . d (x;). Therefore (x;) is prime and (x7) <M which con-
tradicts the fact that M is the only proper prime ideal in D.

Continuing this process you get

(xl) <(x1,x2) <(xl,xz,x3) < ...

which contradicts the fact that D is Noetherian.

By a proof similar to that in the second part of this
theorem for any nonzero ideal A in D there exists a positive

integer n such that A = M.

So, the ideals of D are 1lin-
carly ordered by set inclusion, and D is a valuation

ring.
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Theorem 2.12: If D is a domain with 1 # 0 and quotient

field K the following are equivalent:

1} For any x . € K either x . € D or % €D,

2) If x,y €D then (x)<(y) or (y)<(x).

3) If A,B are ideals in D, then ACB or BCA.

Proof: First, assume that for any x.€ K either x € D
or % €D, If x,y.€D, if x = 0 or y = 0, clearly (x)c<(y)
or (y)e(x). If x # 0 and y # 0, % € K, so either %:E D or
%16 D. If % € D there exists ¢ . € D such that % = C, SO
X =cy, x € (y), and (x)=(y). Also, if % €D, (v)c(x).

Second, assume if x,y € D, either (x)<(y) or (v)e(x).
If A, and B are ideals in D and AdB, there exists x.€ A
such that x ¢ B. For any y €B, if y = 0, then y € A. If
y #0, (X)) or (y)e(x). If (x)S(y), x € (y), and
X € B which contradicts x § B. If (y)o(x), y € (x), and
y €A. So BCA.,

Finally, assume that for any ideals A,B in R either
A<B or B<A. Then, if x €K, if x = 0, then x.€ D. If
x #0, x = % where a,b €D and a # 0, and b # 0. Then
(a)<(b), a.€ (b), so a = bc for some ¢.€ D. Therefore
= 3 = cand x €D. If (b)c(a), 2 €, so-i— € D.

Theorem 2.13: If D is a domain with 1 # 0, A is an

ideal in D, and (b) is a principal ideal in D, such that
(b)>A then there exists an ideal C in D such that

A = (b)c.
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Proof: Let
C={c €Dlc(b)cA} = A:(b).
If c €C, and r . €D, for any r'€ D,cl[r'b] € ¢c(b), c[r'b] € A,
rlc[r'b]] € A, and rc{r'b] € A, so rc{(b)x<A, and rc . € C.
If €15¢, € C, for any r €D, cl[rbjle A, and cz[rbje A,
So, [cl—czj[rb] €A, [clncz}(b)CA, and Cy - c2‘€ C. There-
fore C is an ideal in D.

If x € (b)C, there exist CiseersCy € C and Tysee ot €D

n
such that x = Zﬁr‘bc.. For each i = 1,...,n, r.b € (b),

S0 Cirib € ci(b), and ci(b)CA. since c. €C. So, Cirib = a.
for some a; € A, and X,E.A. Therefore (b)CcA.
If x €A, since AS(b), x = rb for some t €D, For
any y € r(b) there exists r'€ D such that
y = r[r'b] = rbr' = xr',
and since x €A, y €A, and r(b)cA. So, r .€C, and x € (b)C.
Therefore A = (b)C.

Theorem 2.14: Let P be a proper prime ideal in a valu-

ation ring D.

1) If Q is P primary and x € D\P then Q = Q- (x).

2} The finite product of P primary ideals in D is
a P primary ideal. And, if P # p? then the only P primary
ideals of D are powers of P.

3) The intersection of all P primary ideals. of D is
a prime ideal of D, and, there are no prime ideals of D

properly between it and P.
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Proof: For 1) assume Q is P primary and x € D\P.
Either (x)<Q or Q< {x). If (x)Q, x.€ P since QCP
which contradicts x € D\P. Therefore Q=(x) and for any
q9.€Q, q € (x), so g = ax for some a . €D. If a ¢ Q since
Q is P primary and ax € Q, x.€ P which again contradicts
x € D\P. So, a €Q, and ax € Q-(x), q .€ Q+(x), and
Q=@+ (x). Also Q-(x)=Q, so Q = Q-(x).

For 2), if Q1 and Q2 are both P primary in D,
Ql-QZCQ1CEL And, if p € P there exist positive integers
m, and n such that pm‘G Q> and pn € QZ' So pmpn € QI'QZ’

and p" "€ Q+Qp. If ab €Q;-Q,, and b ¢ P, ab - ;glxiyi
1:

for some xl,xz,...,xn.e Q1 and yl,yz,...,yn_e QZ' In the
proof of part 1} of this theorem it was shown that we could
write each X, as ql,ib where ql,ie Ql and each y; as

qz’ib where qz,iE Q,. So,

-
ab = 2 g
i=1

1,iP%2,5P>

o
i

n
- b(z ql iq2 i)’
i=1 S0t

and a € Q1-Q2. Therefore Ql-Q2 is P primary. By simple
induction the product of any finite number of P primary
ideals in D is P primary.

Also, if Q is a P primary ideal in D, we claim there

exists a positive integer m such that Pm¢HQ. If PmZMQ for
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every m, QC 0 PY, denote [1P¥ by P*#. Then P* is prime and
,Q_,:]_ Q;:l

P=’=CP2

< P, and since P* is prime and QcP*, VQcP¥*, and we
get the contradiction
P = /QepP*<p.
So there exist m such that P™=Q, and Pm+1$NQ. We

will show Q = P,

If Q # P", Q <P"™ and there exists x .€ P"
such that x € Q. So (x)4Q, and Qc(x). 'Thérefore there
exists an ideal B in D such that (x)B = Q. Since (x)B<q,
and (x)4Q, BcP. So Q = (x)BCImﬁ5= Pm+1 which contradicts
Q¢P™?l. o, g = PT.

For 3) if P is the only P primary ideal in D there is
nothing to prove. If there exists a P primary'ideal Q of D
such that Q # P let {Q&}&€I1 be the set of all P primary
ideals of D with an apporpriate index set I'. Since for any
positive integer n, Qn is P primary,

. ® n
fimEFQacILHQ.

We want to show that if A and B are ideals in D such
that vB> A then BoA". If, BcA® for every natural number n

and B <1 A", Since NA" is prime we get the contradiction
n=1 - n=1

A<vBa N AMca,
n=1

Then for any o € I', since P #(B) fﬁ; = P>Q, so

Qa:Mfl for some n, and Q> 1 Q™. Therefore
n=1
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Qn, and is prime in D. If there exists P', a

I8

[ Q =
a & n=1

prime ideal of D such that f]uETQa<<P'«<P, there exist

x.€ P\P'. For any positive integer n, x! €P' so (xn)¢1“

and P'C(xn) . So, P« 1 (x™). There exists y € P'\ e, -
=] o [8)

So, y € (1 (x™). For some m,x" € Q. For any positive in-
n=1
teger §

e

L xMe ™y = oM et

I

n
SO

oy )i = n o_
nzl (.X )C p Q - nOt,ETQO&,

1

1 n=1

and y € f]quQa which contradicts y ¢ r]quQu‘ So there is
no prime ideal of D properly between rlqEFQm and P,

Definition 2.5: If v is a valuation on a field K,

with value group G, and if DV is the valuation ring of v,

1) v and D are of rank n if and only if G has rank n,

and

2} v and Qv are discrete if and only if G is cyclic.

Theorem 2.15: Let v be a valuation on a field K. Let

G be its value group, and let DV be its valuation ring.
Then, there exists a one-to-one corresponsdence between the
isolated subgroups of G and the proper prime ideals of DV.
Proof: If H is any isolated subgroup of G, let
v(H) = {x € Dv[v(x) >h for any h € HJ.
Clearly V¥ is well defined.
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For any a,b € y(H), for any h € H,

v{a-b)zmin{v(a),vc)) = min(v(a),v(b)) > h.
So, (a-b) .€ y(h). For any a € ¢(h) and r € Dv’ for any h.€ H,

v{ar) = v(a) + v(r) > h,

since v(a) > h and v(r)z0. Therefore ar € w(H), and ¥ (H)
is an ideal in D, .

If a,b E-Dv\ Y (H), since a ¢ ¢(H) there exists h € H
such that v(aysh. Since a € D, v(a)=0. So v{a) € H,
Similarly v(b} € H, so v(a) + v(b) € H, and v(ab) € H. Also,
v{ab)=v(ab), so v(ab)} 4 ¢(H), and w(H)_is.prime in Dv'

If H and H' are isolated subgroups of G such that
Y(H) = $(H') for any x € H, if x20, and x ¢ H' we claim
X >h' for every h'€ H'. If not, Osxsh' for some h'€ H',
and therefore we get the contradiction x € H*. There
exists k.€ K such that v(k) = x. So k € Y(H'), k € y(H)
and we get the contradiction x = v(k) >x since x € H.
So x € H'. And if x<0, -x20, and -x € H, so using the
same proof as we ﬁsed above we get -x € H' and x € H',
Therefore HCH'. Similarly H'<H, so H = H' and ¥ is one-
to-one.

To get ¥ is onto, let p be any prime ideal in Dv' Let

S = {g €Gi-v(p) <g<v(p) for every p € P}.

We want to show that if a,b € S such that az0, and b=20,
a +b €8. To prove this, a =v(x) and b = v(y) for some

X,y . € DV. Since v(x) = a<v(p) for every p . €5, x ¢ P.
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Similarly y § P. So, xy .€ D,\P. For any p € P we clainm

B P Xy Xy i -
Xy €D . If Xy ¢ D, 5 €D_, and P € DV which gives

the contradiction xy € P. So, v(%%)zo, and since %? ¢ D,

P it i P, _
Xy 1s not a unit in Dv’ 50 v(xy) >0. It follows that

v{p)-(v(x)+v(y)) >0,
v(p) - (at+b) > 0,

and
v(p) > (a+b) >0 > -v(p).
So a+b € S.
Next, we want to show that if x,y € G, |x-y|= |x] + |y].
If x-y=0, |x-y| = x-y. Also, x= x|, and -y =|-y| = Iy,

50

|x-y| = x-ys |x] +]|y][.

If x-y<0, [x-y] Y - X, so as before

i

lx-y[ =y-xs|y|+ [x] = |x] +]y]|.

For any a,b €8, clearly lal,|b] €5, so |a|+ [b[UE S.
For any p € P,

O< la-b[< |a] + ] b]| <v(p),
$o a-b.€S5, and S is a subgroup of G.

If a,b € G such that a €S, and O0<b=a, and b ¢ S,
there exists p € P such that -v(p)zb or bzv(p). If
-v(p)lzb, we already know v(p) >0 since p € DV, and p is
not a unit in DV, so we get the cqntradiction

b= -v(p) <0=h.
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If b= v(p), azb=v(p) which contradicts 3 <v(p), since a € §.
Therefore S is an isolated subgroup of G.

If x §P, if x 4§ D, X g ¢(8) since w(S)CDV. If
x € DV we claim v(x) € S. If not, there exists p € P such
that -v(p)=v(x) or v(p)=<v(x), if -v(p)=v(x). Since x € Dv’
v(x}z0, and since p € DV and p is not a unit in D,, v(p) >0,
which leads to the contradiction -v(p) <0 and -v(p)zv{x)=0.
If v(p)=v(x),

0=<v(x) - v(p) = vcg),

S0 %.E DV, and p% € P which gives the contradiction x € P.
So v(x) €8, and since v(x)=v(x), x .4 ¢(S). Therefore
p(S)<P.

For any x € D, if x €P and x § y(8), since x § y(S)
there exists s € S such that v(x)ss. .Since s € S we get
the contradiction v(x) >s. Therefore PcC p(S), énd P = y(8),

so ¢ is onto.

Theorem 2.16: If D is a valuation ring in a field K,

and D is not a field, then D has rank one and is discrete
if and only if D is Noetherian.
Proof: IfD has rank one and is discrete, and if G # {0},
there exists g.€ G such that g # 0 and
| G = {ng|n.€ I} = {n(-g)In.€ I}.
Without loss of generality we can assume g>0. We claim
that if m,n € I then ng>mg if and only if nzm. To show

this, if ng=mg, and n<m, since -ng = -ng, ng - ngzmg - ng
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which gives the contradiction 0= (m-n)g, and since g > 0,
(m-n)g >0. If n=m, mg = mg, and g >0 so (n-m)g=0, and
mg + (n-m}g=0 + mg
and |

ngzmg.

If A is an ideal of D such that A # 0, and A # D, pick
any a € A such that a # 0. Then a is not a unit, and
v(a) = ng for some n,€ I. Since ng = v(a)>0 = og, nz0.

If r.,€ A such that r ¢ (a) we claim v(r) <v(a). If
v(r)zv(a), v(r) -v(a)z0, v(i)=0, Z €D, and al € (a),
which leads to the contradiction r € (a).

Let

S = {gbh|b€1I,1sb=n-1, and there
exists a € A such that v{a) = gbl.
Then
S ='{gb1,gb2,...,gb£}

for some & € I, and 1<g%sn-1. Choose al’QZ"“’“g‘e A such

that
V(al) = gbl,V(az) = gbzs"-sv(az) = g(bg)-
We claim
(al’QZ""’ug’a) = A.
Clearly

(ocl,ozz, el ,ag,a)CA.
If x €A, if x .€ (a), x € [ul,..”awaj. If x € (a), since
X 1s not a unit,

0<v(x)<v(a) = nx,
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so v(x) = gbm for some m € I, l<m=g, and v(x) = v(am].
We claim gi €D, If not, v(éij <0, v(x)-—v(am) <0
m m
which leads to the contradiction v(x) <v{am).

Thus am-gi € (am), so0 x € (am),'and X € (ar...,ag,aL
Therefore A = (al,...,aﬂ,a).

If G = {0}, v(k) = 0 for every k € K such that k # 0,
and D = K which contradicts D is not a field. Therefore
D is Noetherian.

If D is Noetherian let M be the maximal ideal in D.
Since D is not a field, and M is the set df nonunits in D,
M # (0). Since D is Noetherian, M is finitely generated,
and since D is a valuation ring M is principal. So there
exists a €D such that M = (a). Since a is not a unit
v{a) > 0.

For any g € G such that g=0, if g = 0 then g = 0.v(a).

If g>0 there exists x.€ D such that v(x)

i

g. Since
v(x) = g>0, x is not a unit in D, so x € M. There exists

x1€ D such that x = axl. If Xy is a unit

g =vx) = v(axl) = v(a)-Pv(xl) = v(a).
If X4 is not a unit, Xy € M, and there exists XZE D such
that Xy = ax,. If X, is a unit
g = v(x) = v[azxz) = v(a)-rv(a)-kv(xz) = 2v(a).

If X, is not a unit, xzé M, so X, = axg for some XSE D.
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We want to show that for some natural number n, X, is
a unit. 1If not, there are infinitely many nonunits X
We claim Xy ¢ (x). 1If xIE (x), X, = XY for some y € D,

X = ax; = axy, so 1 = ay which contradicts a is not a unit.
Therefore (xl)¢(x), so (x) <(x1). Similarly (Xl) <(x2),
and

(x) < (xl) < (xz) <.
is an infinitely ascending chain of ideals in D which con-
tradicts D is Noetherian.

Therefore g = nv(a) for some positive integer n. If
g'€ G such that g*' <0, -g' 30, so -g' = mv(a) for some
natural number n, and g' = -mv(a). Also for any n € I,
nv(a) € G by simple induction from the fact v(a) € G. There-
fore G is cyclic and D is discrete.

Let S be any nonzero isolated subgroup of G. Let
% = v(a) as defined above. Then G = (g). There exists s € S
such that s # 0. Without loss of genefality we can assume
s 0. Also, s = mg for some m € I.

We claim m>0. If m=<0, if m = 0 we get the contra-

]

diction s mg = 0. Ifm<0 since % >0 we get the contra-

mi < Q.

i

diction s
Since m=1, s =mL =2 > 0 and therefore ¢ € S. Since

S is closed under addition by simple induction ng .€ S for

every positive integer n. Since S has inverses, -np € S for

every positive integer n. Since S is a subgroup of G,
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0.€5, Therefore G = () = S, and G is of rank one, so D
is of rank one.

Definition 2.6: If D is a domain with quotient field K,

an element o € K is almost integral over D is and only if

there exists an element d . € D such that 4 # 0 and dane D

for every natural number n. Also D is completely integrally

closed if and only if D = D* where D* is called the complete

integral closure of D, and

D* ={a€ K{a is almost integral over D}.

Theorem 2.17: If D, is a valuation ring which is not

a field, then D, is completely integrally closed if and only
if Dv has rank one.

Proof: If D has rank one, clearly D,eD *. If
a €D, * there exists d € D, such that do" € D, for every
natural number n. If o .¢ D, % €D, and_we claim there exists
a positive integer m, such that d ¢ ([é]m). If not,
d € ; ([l]n), so d € Fl(lﬁn which is prime. And since

n=1 ¢ n=1 % '
é is not a unit in D, this leads to

* o1 n
(0) < n{=i1 (a’) <D,
which contradicts Dv has rank one.

But, this leads to the contradiction d { ({%]m), and

since d = [ljmdam,d € ([l]m)_ Therefore o € D , and D * = D_,
o o : Vv v v
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If DV is completely integrally closed, let S be a
nonzero isolated subgroup of G. There exists s.€ S such
that s>0. So, =s<% 0 and there exists k € X such that

-s = v(k), so k { Dv' Therefore k is not almost integral

over Dv'

For any d € Dv there exists a positive integer ny such

that
n n
dk 44D, so v(ax 9 <o,
24
v(d) + v(k T) <0,
v(d) + ngv(k) <o,
v(d) + ng [*S]<0,
and
O0=v(d)< n,s.

Since s € 8§, ngs € S, and therefore vi{d) € 8.
For any g € G either g=0 or -g=0. If g=0,g = v(a)
for some a .€ DV. Therefore g € S. If -g =0, similarly

g €35, and therefore g € S. So, S = G, G has rank one,

and DV has rank one.
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