
3?
At1

/Orsvo-/

VALUATIONS AND VALUATION RINGS

THESIS

Presented to the Graduate Council of the

North Texas State University in Partial

Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

By

Sig H. Badt, B.S.

Denton, Texas

Aug., 1975



Badt, Sig H., Valuations and Valuation Rings. Master

of Science, (Mathematics),Aug., 1975, 42 pp, bibliography,

1 title.

This paper is an investigation of several basic proper-

ties of ordered Abelian groups, valuations, the relationship

between valuation rings, valuations, and their value groups

and valuation rings.

The proofs to all theorems stated without proof can be

found in Zariski and Samuel, Commutative Algeb'ra, Vol. I,

1858.

In Chapter I several basic theorems which are used in

later proofs are stated without proof, and we prove several

theorems on the structure of ordered Abelian groups, and the

basic relationships between these groups, valuations, and

their valuation rings in a field. In Chapter II we deal with

valuation rings, and relate the structure of valuation rings

to the structure of their value groups.



PREFACE

This thesis presents some basic theorems on ordered

Abelian groups, then theorems on the relationship between

these groups and their associated valuation rings, and fin-

ally theorems on valuation rings alone. In the beginning

of Chapter I we will present several standard theorems

which will be assumed without proof. The proofs of these

theorems may- be found in Zariski and Samuel, Commutative

Algebra, Vol. 1, 1958. The remainder of Chapter I will be

devoted to properties of value groups and valuations.

In Chapter II we will begin with theorems relating

the structure of valuation rings to the structure of their

value groups. Then we will prove some theorems on valuation

rings.

All definitions will be placed immediately before they

are to be used. Notation conventions used in this thesis

may also be found in Zariski and Samuel.
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CHAPTER I

THEOREMS ASSUMED WITHOUT PROOF

AND SOME THEOREMS ON VALUATIONS

The following theorems, one through nine, will be used

later, but for reasons of economy their proofs will not be

shown. They are listed in the order in which they will be

used.

Definition 1.1: An ordered Abelian group, denoted

(G,+, s) is an Abelian group G on which there is defined a

total ordering such that if a,,y E G and a:9 then

a + y sf+ y.

Any subgroup of an ordered Abelian group with the in-

duced ordering is an ordered Abelian group.

Definition 1.2: If G 1 ,G2,...,Gn are all subgroups of a

group G such that for any i,j E {1,2,...,n} where i j,

G.AG.= {O}. Then

G 1 G 2 f... @ G n= l'''''n iE Gi for i= 1,...,n}

is called the direct sum of G, through Gn and it is a group

with pointwise addition.

Theorem 1.1: If Gl,...,Gn are ordered Abelian groups,

and G = G1  G . Gn so the elements of G may be

denoted by n-tuplet (a ,a2,.. .,an) where each a E G and

1
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if (i,...,n) and (f,..., Sn)are distinct elements of G,

then

if a < or for some k>l, a = S. for i = l,...,k-1 and

a k < k.Then s is a total order on G and G is an ordered

Abelian group.

Definition 1.3: The above ordering is called the lexi-

cographic ordering.

Definition 1.4: A valuation ring is a domain D with

1 = 0, and quotient field K such that if x E K either

x .E D or E D.
x

Theorem 1.2: If A is an ideal in a valuation ring D,

CO

then V Anis prime.
n=l

To say that an ideal Q in a ring R is primary means that

if a,b E R, and a 4 Q then bn E Q for some n. And if an

ideal Q is primary and P = , then P is prime and Q is

said to be P primary.

Theorem 1.3: If Q is P primary in a ring, and A and

B are ideals in R such that ABcQ and A Q, then BcP.

Theorem 1.4: If Q and P are ideals in a ring R such

that P is prime and QcP, then /QcP.

A domain D is quasi-local if it contains exactly one

maximal ideal M, such that(0) < M<D.

Theorem 1.5: In a quasi-local domain the maximal ideal

is the set of nonunits.
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This is an ordered semigroup in the sense that if

E G* and cas f then a + ys 13 + y.

Definition 1.6: Let K be a field. A valuation on K

is a mapping from K onto G*, where G is an ordered Abelian

group such that

i) v(a) = a> iff a 0

ii) v(ab) v(a) + v(b) for any a,b E K

iii) v(a+b)>-min(v(a),v(b)) for any a,b E K.

Definition 1.7: G is called the value group of the

valuation v.

Given a field K and G* if v(a) = 0 for any a 0, and

v(0) = o>, v is called the trivial Valuation.

Theorem 1.10: If K is a field and v is a valuation

with value group G, then

i) v(l) = v(-l) = 0, 0 being the identity in G

1
ii) v-) =v(a), for any aE K, a 0.

Proof: i) Since v(l) = vC1-1) = v(1) + v(l), v(l)

is the unique identity in G.

From this we get

0 = v(l) = v((-l) (-1)) = v(-1) + v(-l).

If v(-l) 0, we get the contradiction 0 = v(-l) + v(-l) < 0.

If v(-l) > 0, we get 0 = v(-l) + v(-l) > 0. Therefore,

v(-1) = 0, too.

ii) For any a.E K, a / 0

0 = v(l) = v(a-.) = V(a) + v

Therefore -v(a) =v() a



5

Theorem 1.11: If K is a field with value group G,

let V = {ala E K, and v(a) 0 }. Then V is a valuation ring.

Proof: First we must prove V is a ring. To get clo-

sure under addition, if a,b EV, v(a) 0, and v(b) 0, then

v(a+b) min(v(a),v(b)) L0. To get additive inverses, for

any a E V, notice -1 E V, so

v(-a) = v((-l)a) = v(-l) + v(a) = 0 + v(a) 0,

and -a EV. Clearly 0E V since v(0) = co>0. Commutativity

and associativity under addition and multiplication are

inherited from K. To get closure under multiplication, if

a,b EV, then v(a) 0, and v(b) 0, and v(ab) = v(a) + v(b).

Since v(a) 0, v(a) + v(b) 0 + v(b) = v(b) 0. Distri-

butivity is inherited from K. Therefore V is a ring.

If a E K and a ( V, v(a) < 0. So, a 0. If v( )< 0,

we would have the contradiction

0 = v(1) = v(a-1) = v(a) + v(s) < 0.
1 1

So v(s) 0, and E V. Therefore V is a valuation ring.

Theorem 1.12: If V is a valuation ring with quotient

field K, then there exists a valuation v on K such that

V = {afa C K and v(a) 20}.

Proof: Let U be the multiplicative group of units of

V. Then U is a subgroup of K*, the multiplicative group

of nonzero elements of K.

Let G = K*/U, and we write G additively such that if

a,b C K*, aU + bU = abU. We define a relation on G such

that if a,b E K*, bU s aU if and only if E V.
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We will show this relation is well defined. If

a,a',b,b' ,E K* such that bU = b'U and aU = a'U, we need to

show bU s aU if and only if b'U s a'U. So, if bU aU,

a E V. Since b'Us bU, , EV, and since aU a'U, E CV.

at a a' ,bThus a7 = C - -1 E V, and b'U sa'U. Similarly if b'U <a'U

then bU s aU.

Next we will show that this relation is a total order

on G.

To get s is reflexive for any a,b E K* such that

aU = bU, E U, (remember we are dealing with a group of

cosets whose operation is - not +). Also E V since

UCV. Therefore bU s aU.

To get s is antisymetric, for any a,b E K* such that

aU sbU and bU s aU, since aU s bU, EV, and sincea, a,

bU saU a EV. Therefore b. EU and aU = bU.b a
To get s is transitive, for any a,b,c E K* such that

aU bU and bU cU, aC Vand CEV, so
a b

c=- 
EcCV,a a

and aUls cU.

To get that any two elements are related, for any

a,b ,E K*, consider either t orais an element of V because

V is a valuation ring. If E V, then aU s bU. If a V,

then bU s aU.

Next we must show that (G,+,s) is an ordered Abelian

group. If a,b,c E K* such that bU s aU, and cU E G, since
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bU aUa E V. So ac EV and

bU + cU = bcU sacU = aU + cU.

Now, define v:K + G* by v(O) = o, and v(a) = aU if

a / 0.

We must show that v is a valuation.

Clearly v(a) = c if and only if a = 0 by definition.

For any a,b ,E K, if either a or b is zero, say b = 0,

v(a) + v(b) = v(a) + o0 = = v(0) v(ab).

If a / 0 and b 0,

v(a) + v(b) = aU + bU = abU = v(ab).

For any a,b E K, if either a or b is zero, say b = 0,

v(a) -- o = v(b), and v(a+b) = v(a) = min(v(a),v(b)). If

a 0 and b 0, then aU,bU E G so aU sbU, or bU's aU, say

bU s aU. So v(b) s v(a), and min(v(b),v(a)) = v(b). Also

because bU s aU, E V, so a+ 1 E V. If + 1 0, since

a+1bU v6 If+a1= 0
1 EV, lUs (F +1)U and v(l) +sv( + 1). If 5 + 1 = 0,

still v(1) s v( + 1) = c. From the fact that for any c,d E K,

v(c) + v(d) = v(cd) we can get v(l) = 0. So in either case

v( a+1) 0, and v(a+ 1) + v(b) ;v(b), so

v(a+b) = v((a+ 1)b)

= v( + 1) + v(b) !v(b)= min(v(a),b(b)).

Finally we must show if S = {ala.E K and v(a) O},

then S = V. If a E S, aU = v(a) t0 = v(1) = 1U, so a = EV.

*Ww"Ww"
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Therefore ScV. If a E V, and if a = 0, v(a) = 0 ,

so a E S. If a 0, a =a EV, so 1UsaU, and 0 =v(l) v(a),

so a E S. Therefore VcS, and V = S.

Definition 1.8: A v as determined above is said to

be the valuation determined by V.

Definition 1.9: If v and v' are valuations on a field

K, with value group G and G' respectively, then v and v'

are equivalent if and only if there is an order-preserving

isomorphism p from G onto G' such that v'(a) = 4(v(a)) for

any a E K*.

This relation is an equivalence relation. To show it

is reflexive, for any valuation and value group G, let

$ = I(G), the identity map on G. To show it is symmetric

for any valuations v and v1 with value groups G and G'

respectively such that v is equivalent to v' there exists

an order-preserving isomorphism 4:G + G'. So ~1 :G' + G

is an isomorphism, and if a',b E G' such that a' !:b' there

exist a,b ,E G such that $(a) = a', and 4(b) = b'. It

follows am b since if a< b we would have the contradiction

a' = $(a) <4(b) = b'. So ~ (a') = amb = $~1(b'), and

$ is order-preserving. And, for any x E K*, v' (x) = 4(v(x))

so $~ (v'(x)) = v(x). To show it is transitive, given val-

uations v, v', and v" with value groups G, G', and G" re-

spectively, there exists order-preserving isomorphisms

4 and 0 such that 4:G + G', and 8:G> + G". So eo$:G + G"
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is an isomorphism. And if a,b E G such that a b, then

$(a) q$(b), and Ooq(a) 0 p $(b). So eo4 is order-preserving.

Also for any x c K*, v"(x) = 0(v'(x)), and v'(x) = $(v(x)),

so v"(x) = O$4(v(x)).

Theorem 1.13: If K is a field, and v and v' are equi-

valent valuations on K with value groups G and G' respec-

tively, and V is the valuation ring determined by v, and V'

is the valuation ring determined by v', then V = V'.

Proof: There exsists q:G + G', and q1 :G' + G both

order-preserving isomorphisms onto such that for any a E K*,
v'(a) = $(v(a)) and v(a) = (vl(a)). For any bE V, if

b = 0, b EV'. If b 0, v(b) ;0, and v'(b) = $(v(b))24(O)=0.

So b EV', and VcV'. Similarly V'cV, so V = V'.

Theorem 1.14: If K is a field and V is a valuation ring

in K, and v is a valuation on G with value group G such that

V is the valuation ring of v, and v' is the valuation deter-

mined by V, then v and v' are equivalent.

Proof: Let U be the group of units in V. Define

$:G + K*/U such that if g.E G, g = v(a) for some a E K*,

and p(g) = p(v(a)) = aU.

First we must show q is well-defined. If g,g' ,E G

such that g = g', g = v(a) and g' = v(b) for some a,b ,E K*.

So, v(a) = v(b), and

0 = v(a) - v(b) = v(a) + vv) =

For any x ,E K such that v(x) = 0, x E U since
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0 = v(xx1 ) = v(x) + v(x ) = v(x )
-1so x E V, and x is a unit in V.

Therefore .E U, and p(g) = aU = bU = c(g').

To show $ is a homomorphism, for any g, g' E G there

exists c,d ,E K* such that g = v(c), and g' = v(d), so

$(g+g') = $(v(c) + v(d))

= $(v(cd))

= cdU

= cU + dU

= $(v(c)) + $(v(d))

= $Cg) + $(g').

To show $ is an injection, if g ,E G such that c(g) = 0,

g = v(a) for some a E K*, so $(v(a)) = 0 (the zero in K*/U).

Therefore $(v(a)) = U, so aU = U, and a E U.

For any xEU, v(x) = 0, since if xE U then there exists

x EV, and since x EV, v(x) - 0, but if v(x) >0, we get

v(x ) = -v(x) < 0 which contradicts x E V, so v(x) = 0.

Therefore g = v(a) = 0, and $ is an injection.

For any z ,E K*/U, z = aU for some a ,E K*. Therefore

v(a) E G such that O(v(a)) = z, and $ is onto.

To show $ is order-preserving, for any g,g'E G such

that g sg', g = v(a), and g' = v(b) for some a,bE K*. Since

v(a) = g sg' = v(b), 0 sv(b) - v(a) = v(b) + v(1) = v(b)
so - E V. Therefore,

a
0 (g) = (v (a)) =aU -bU5; = (v (b)) c(g')

-
__________________



11

As an immediate corallary to Theorem 1.14, we can say

if v and v' are valuations on a field K having the same

valuation ring, v and v' are equivalent.

Also from Theorem 1.14, we have, if U is the set of

units in V, U = {a E Klv(a) = 01.

Definition 1.10: If G is an ordered Abelian group, a

subgroup H of G is an isolated subgroup if and only if for

each a EH if VCEG and 0Oso a then 3 EH. If H G,

then H is a proper isolated subgroup.

Definition 1.11: If an ordered Abelian group G has

only a finite number of isolated subgroups, then the number

of proper isolated subgroups of G is the rank of G.

So G is of rank one if and only if G - 0 and G and 0

are the only isolated subgroups of G.

Theorem 1.15: If G is a nonzero ordered Abelian group,

then G has rank one if and only if there is an order-pre-

serving isomorphism from G onto a subgroup of the additive

group of real numbers.

Proof: If there is an order-preserving isomorphism p

from G onto a subgroup G' of the additive group of real

numbers, let H' be a nonzero isolated subgroup in G'.

There exists a' E H' such that a' 0. Either a' or

-a' is positive. Without loss of generality, assume a' is

positive. If ' E G', and 1' >0, there exists a positive

integer n such that nax 1' 0, and nac' E H', so 3 EH'. It

follows H' = G' and G' has rank one.
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If H is a nonzero isolated subgroup of G, $(H) is a

nonzero subgroup of G'. For any ao' E $(H) and for any

S'E G' such that 0 s<' <a' there exists o, C E G such that

$(a) = a' and $(s) = 3'. Since 0s sa, S E H, so E $(H),

and $(H) is an isolated subgroup of G'. Therefore $(H) = G'

and H = G, so G has rank one.

Conversely, if G has rank one we first want to show that

for any a, S E G such that a> 0 and 5 > 0 there exists a

natural number n such that f3.<na. If not, there exists

ac, E G such that a >0 and 5 >0, and r3>na for any natural

number n. Let

S = {y CE GCy O, and ynsna for some natural number n},

and notice S : S. Also, if y1 ,y2 E S, clearly y1 + Y2 E S,

so if H is the subgroup of G generated by S,

H ={yl - y2j 1 'Y2 C S}.

For any h E H and for any 6 E G such that 0 6sh since

h = yl- Y2 for some yV,y2 E S, and yi sna for some natural

number n, and y2  0, so

6 6 + Y2 + 2= (y - Y2) +2 = y 1 na,

so 6 E S and 6 E H. So, H is an isolated subgroup of G,

and H / 0. Therefore H = G which leads to a contradiction

since S E G, so S E H, and 0s : s , so by the same argument

as we used just above, E S, but S 1 5.

If there exists a least positive element a of G for

any 5 E G, there exists n such that (n-l)a < S sna. From
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this 0 <5 - (n-1)acs<a but since a is the least positive ele-

ment in G, - (n-l)a = a, and = na. So G = (a). Let

$(nq) =n for any natural number n. Clearly $ is an iso-

morphism. For any two natural numbers n1 and n2 'if

nlacn2.a, n1 sn2 since if n1 >n2 we get this contradiction

n1a = n 2a + (n1 -n2 )a >n2a.

So $(nla) $(n 2 a) and p is order-preserving.

If G has no least positive element, choose one a.E G

and consider it fixed. Let p(c) = 1. If 3 E G such that

>0, and 3 a c let

= { f|masn , m and n natural numbers}

and

u(m) = { Ima>>n, m and n natural numbers}.

There exist natrual numbers p and q such that a sp and

p 1qa. So,1E I() u(a), and ( ) q and u(s) .

ifnmCl(s) and h Eu m -n n <hs
n k

mhmak <n~ha, and mk <nh, so n<. Clearly

[1(3)U {q E Q]q s0}]Uu( ) = Q.

Thus we have a Dedekind cut of the rational numbers. Let

p(5) be this positive real number, and let p(0) = 0, and

if y.E G such that y< 0, let p(y) =-(-y).

Next we want to show ( J+ 2) ;*: 1) + $(2) for any

1C2 E G such that > 0 and 2> 0. If not,

$(+ 2) < $( 1 ) + q( 2

for some 1 > 0 and 52 o,'0
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glb(u(3 1 +2 =()

< + c(32)

= iub(i(3)) + lub(i(" 2))

= lub{x+yfx.E ("l), yE(132)

So, there exists 11 Eu ( +2, and Eq 1 2)q 1(13) and

such that

P-.C1 _+2 _plq 2 + P2q 1

q q1  q2  q1q2

p(qIq 2) <q(p1q2 + p2q1)

(q1q2 )cap < (plq 2 + p2q1q) q.

Since R E u

pa >

and

p1Since - E and E pc2'la <qI, and p2"Iq 2 2'and

plaq 2 + p 2 aq (qlq 2)32 + q22'

so

(plq 2+P2 1) aq s 91+ 2) 1lq2)q

which leads to the contradiction

+2(q1q2)q -a(p 1q2+p2q1 )aq

> (qlq2 )ap

> (11+12 )(q 1q 2)q'

P2

so

E 1(132)

and

1qlq2)aP > 0 + 2) 1lq2 )'
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By a similar argument (fS +I 2  1) + ) s

$(+2 ) + C_32). It follows quickly $ is a homo-

morphism.

If 3, 2 E G such that > > ,2 > 0, and$1) >$2)

lub(1()) > glb(uf2)). There exist E 1(l) and -2E u(3 2)

such that >_ . So plq 2 >P 2q 1 , and plq 2a >p 2 1ca. Since

1q 1 2
lE 1() and E Eu(2) p clq f3and p2ct>q232, so

q2p1 t !qlq 2 1 and q1p2 > qlq 2 2. Therefore

q1q2 1  q 2plao > p2q1 xa> qlq 232
and 61> 2, so $ is order-preserving.

For any y EG such thaty 0 if y> 0 there exists n

such that ny> a, so E 1(y) and $(y) > > 0. If y < 0,

> 0, and -$(y) > 0, so $(y) < 0. So, ker($) = 0,

and $ is an isomorphism.



CHAPTER II

THEOREMS ON VALUATION RINGS

Theorem 2.1: If R is a ring, the following are equiv-

alent:

1) For any sequence of ideals Al,A2,... in R with

NcA2 c... there exists a natural number n such that for all

m an, A = AM.
n m

2) Any nonempty set of ideals in R has a maximal

element.

3) Every ideal in R is finitely generated.

Proof: First, if part 1) is true, assume there exists

a nonempty set S of ideals which contains no maximal ele-

ment. Since S $ there exists an ideal A1 ES. A1 is not

maximal so there exists A2 E S such that A1 < A2 * A2 is

not maximal so there exists A3 E S such that A2 < A3 .

Clearly we can construct

Ai<A2 ..'.A1 <A2<

which contradicts part 1).

Second, if part 2) is true, assume there exists an

ideal A in R such that A is not finitely generated. Let

S = {(a 1,a2 ,...,an)|n is a positive

integer and a1 ,a2 ,...an E Al.

Since A $, S $. There exists al,a2,...,an E A

such that (a1 ,a2 ,...,,an) is maximal in A. Since

16

, 4'4*. -W,, f, -
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a1 ,a2 ,...,an EA, (a 1 ,a2 ,...,an)c A, and since A is not

finitely generated (a1 ,a2 ,...,an) Z A so (a1 ,a2 ,...,an) <A.

So there exists a EA\(a1 ,a 2 ,...,a) which leads to

(a1 ,a2 ,...,a na) E S and (a 1 ,a2 ,...,an) < (aj,a2 ,....an ,a)

which contradicts (a1 ,a2 ,...,,an) is maximal in S.

Finally, assume part 3) is true, and let A,A2 ,. ..be

any sequence of ideals in R such that A cA 2 c*.. . Let

CO

A= UA . For anya EA, and r ER, a E A for some k,

so ar E A., and ar E A. If a1 ,a2 E A, a1 E A 1,and

a2 E A for some positive integers k 1 and P2  Without

loss of generality, assume AP1 cA . Since a E At

a1 - a2 E At2, and a1 - a2 E A. So A is an ideal and

therefore there exists a1 ,a2 ,...an E A such that

(aa 2 ,. . .,an) = A. There exist natural numbers z1 ,z2 '','' ' n
such that a E A t, a2 E A 2,...,a E A n. Let m =

max(t1 ,22 .''''m). For i 1,2,.. .,n A cAmp so

a,a2,...an E Am and A cA . For any natural number z such

that Z m, AM cA cA cAm, so Am = A9.

Definition 2.1: A ring with these three equivalent

conditions is called Noetherian.

Definition 2.2: An ideal A is irreducible if and

only if A is not a finite intersection of ideals strictly

containing A.
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Theorem 2.2: If A is an ideal in a Noetherian ring R

then A is a finite intersection of irreducible ideals.

Proof: Let T = {AjA is an ideal in R and A is not a

finite intersection of irreducible ideals}. We claim

T = p since if T 4 the fact that R is Noetherian means

that there exists a maximal ideal A in T. A is not irre-

ducible since if it were A AAA would be the intersection

of two irreducible ideals which contradicts A E T. So there

exist ideals B and C in R such that A = BCC, A<B, and A< C.

Since A is maximal in T, B and C are not in T, and therefore

can be written as a finite intersection of irreducible ideals.

So A can be written as a finite intersection of irreducible

ideals, which contradicts A E T.

Theorem 2.3: If Q and P are ideals in a ring R, and

1) QCP.

2) if b E P then bn E Q for some natural number n,

3) for any a,bER such that ab EQ if b [P then a EQ,

then Q is P primary.

Proof: Notice that the contrapositive of 3) states for

nany a,b E R such that ab E Q if a.j Q, then b C P. So b E Q

for some natural number n. So, Q is primary.

n
If x E /Q, x E Q for some n. Let m be the least n.

If m = 1, x E Q so x E P. If m 1, xmx E Q, and xn- Q

so x E P. Therefore /Q cP. If x E P, xn E Q for some n,

so x E /Q, and /Q = P. Therefore Q is P primary.



19

Theorem 2.4: If I is an irreducible ideal in a Noether-

ian ring R then I is primary.

Proof: We will show if I is not primary then I is not

irreducible. If I is not primary there exists a,b E R such

that ab E I, b ~fI and an q I for every positive integer n.
For any positive integer m if x E I:(am), x(am)CI, so

x(a )cI. Therefore

I: (a)c I: (a2)c I: (a)3

Since R is Noetherian, there exists a natural number k

such that I:(ak) = I:(ak+). Clearly

I c[ I+ (ak) ]f FI+(b) ].

If x E [I+(ak)]fl [I+(b)] there exist r,r' E R, and ii' CI

such that x = i + rak = i' + r'b. It follows rak = it -i+r'b,
k+l k+l k+lso ra = [i'-i]a + r'[ab], and ra , E I, r(a )c I,

r E I: (ak+1), r E I: (ak), rak E I, and x = i + rak C I. So,

I = [I+(ak)]fl I+(b)],

and I < I + (ak), and I <I + (b) since ak I, and b 4 I.
Therefore I is reducible.

n
Definition 2.3: A representation A = fiQ. of an ideal

i=l
A as a finite intersection of primary ideals is said to be

irredundant if

1) No Qi contains the intersection of the other Q.,
2) The associated primes of the Q. are distinct.

Theorem 2.5: If an ideal A has a representation

n
A = Q as a finite intersection of primary ideals, then

i=l1
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A has an irredundant representation as a finite intersection

of primary- ideals:,

Proof: Clearly A has a representation in which no

primary ideal contains the intersection of the other primary

ideals.

If Q and Q are two primary ideals with the same prime

ideal P, replace both ideals with QiAQ.. Since Q.cP,

Q.AQ cP. If b E P, there exist positive integers m and n

such that bn EQ andbm EQ , sobm+n E QAQ. If a,b E R

such that ab E Q and b , Q than a EQ., and a EQ., so

a E QifQ . Therefore QFi Q. is P primary.

Theorem 2.6: If R is a Noetherian ring every ideal in

R has an irredundant representation as a finite intersection

of primary ideals.

Proof: This theorem follows immediately from Theorems

2.2, 2.4 and 2.5.

Theorem 2.7: If A and B are two ideals in a ring R,

A is finitely generated, and AB = A, then there exists

b E B such that (1-b)'A = (0).

Proof: There exist a1 ,a2 ,...,an E A such that

A = (al,a2 ,....,an). For i = 1,2,...,n let Ai ' ai ,,..,an)

and let A

First we must show for any i = 1,2,...,n,n+l there exists

b. E B such that (-b.)AcA.. If i = 1 let b = 0. Then
1 1 1 1

(l-b1)A = (l)A = A = A1 . Suppose for some positive integer
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Theorem 1.6: In a valuation ring, every finitely

generated ideal is principal.

Theorem 1.7: If the nonunits of a ring R form an ideal

then the ring is quasi-local.

Theorem 1.8: If P is a prime ideal in a ring and

n C ]N, n >1 then Pn is not prime.

Definition 1.5: For an ordered Abelian group (G,t,s),

and for any a .E G, the absolute value of a, denoted a|,

is defined by Jai = a if 0-<a and Jai = -a if a < 0.

Theorem 1.9: If (G,t, ) is an ordered Abelian group,

and a E G, then -a-sa slaland -as |a|.

Proof: If a0, faf = a, and -|a| = -a. Since a>0,

a-a : 0-a so 0 -a, and we can write

-|af = -a s0sa = faf.
Therefore -faf s-a faf and -a s |af.

If a< 0, -a = faf and a = -faf. Since a < 0, a-a< O-a

and 0 <-a, and we can write

-faf = a < 0 < -a = Jaj.

Therefore -|afsa sfaf and -as faf.

If G is an ordered Abelian group, and {o} is a set

whose single element is not in G, let G* = GU {o}, and make

G* into a semigroup by defining for a, C C G*

their sum in G if ,C C G
+ +

co if a = co or = o.

Extend the ordering of G to G* and define asL o for every

a C G*.

'i OPINION III i i
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i, (1-bi)AcA.. Then (1-b)ABcA B, so C1-b )AcA B, and

since a. EA, (1-b.)a. EA.B, so
11 1

1-b 1 1a E (ai ai+l,...,an)B,

(l-b.)a. E a.B + a. B + ... + anB,1 1 1 1+1n'

and

(1-b.)a. = a ibi. . + a. b. + ... +a b.1 1 i i+l ,+ n 1,n

where each bi EB for t = i,...,n. Then

(1-b. -b. . )a. a. b. + + a b.
1 1, 1 1+, 11+1 ''' n i~n

and (1-b.-b. .)a. ECA. . Since
1 ,1 1 1+1' ic

C1-b.) (1-b.i-b. .P )1 1 1,1

1 - 2b. - b. . + b.2 + b.b.
1 1,1 1 1 1,1

= 1 - (2b.+b. .-b.2 -b.b. .)
1 1,1 1 1 1,1

if we let b.+= 2b. + b. . - b2 - b.n.

(1-b. )A= (1-b.)(1-b.-b. .)A1+11 111

cA.(1-b. -b. .)
1 1 1,1

= [(a.)+(a .,a.,...,a)](1-b.-b. .)1 i+l++2 n 1 1,1

= [ a ) A ( - .- . .

c A. +A.
1+1 i+l

c A..i+1*

Specifically, Cl-b )AcAn+ = CO), so

(l-bn+1 )A = (0).
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Theorem 2.8: If A is a proper ideal of a Noetherian

nring R, then fJ'A n {r E R|{l-a]r = 0 for some a ,E A}.
n=l

Proof: Let

S = {rE R|l-a]r = 0 for some aIE A}

00

and let T = n A . For any s E S there exists a .E A such
n=l

that [1-a]s = 0, so s = as. So, s ,E A, and since s = as,

sE A2 , and since s E A2 and s.= as, s , E A3. Clearly

00

s E hf An, so ScT.
n=l

Next we want to show AT = T. Clearly ATcT. Since R

is Noetherian there exist QlQ2'..'Qn primary ideals in R

m
such that AT = n Q. is an irredundant representation of

j=l j

AT as a finite intersection of primary ideals. For each

'= ,...,m we claim TcQ.,. If T Q., since

m
AT = nQ cQ,, AcP., where P, is the associated prime

j=l i j

ideal of Q.,. So, there exists a natural number t such

that Pt ,CQ,, and At p.,, so since T = fIAncAt we
n=l

m
get the contradiction TcQ.,. Therefore Tc flQ. = AT,

j=1j

and T = AT.
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By Theorem 2.7, there exists a EA such that (1-a)T = (0).

00

For any t E A n, tE T, so [1-a]t E (1-a)T, and
n=1

[1-a]t = 0, so t.E S. Therefore

nlAn = T = S = {r E R|[l-a]r = 0 for some a ,EA}.
n=1

The following theorem is one form of the Krull inter-

section theorem.

Theorem 2.9: If A is a proper ideal of a Noetherian

ring R then An = (0) if and only if no element of
n=l

1-A = {l-ala E A} is a nonzero zero divisor.

Proof: IfnA n =(0) and there exists b E 1-A such that
n=l

b is a nonzero zero divisor, there exists c E R such that

c / 0 and cb = 0, and there exists a.E A such that b = 1-a.

So,

0 = cb = c[l-a]

and

cE {rE Rj[l-ajr = 0 for some a-EA} = (0),

which leads to the contradiction c = 0.

If no element of 1-A is a nonzero zero divisor, and

there exists x E A An such that x 0,
n=l

x ,E {r ,E R[l-a]r = 0 for some a E A}.

There exists a.E A such that [1-a]x = 0. Since [1-a]E 1-A,



24

1-a is not a nonzero zero divisor, and also x 0, so

1-a = 0, and a = 1. This leads to the contradiction A = R.

Theorem 2.10: If A is a proper ideal in a Noetherian

CO

domain R, then A An = (0).
n=l

Proof: Since R is a domain there are no zero divisors

in 1-A. Therefore by Theorem 2.9,

00

AAn = (0).
n=l

Definition 2.4: If D is a domain with quotient field K,

an element x E K is integral over D if and only if there

exist a0a, ... ,1an E D such that xn+ an-1n-l+ ... 1X + a0!20.

And the integral closure D of D in K is

{x E Kjx is integral over D}.

Theorem 2.11: If D is a Noetherian integral domain

which is not a field, then the following statements are

equivalent:

1) D is a valuation ring.

2) The nonunits of D form a nonzero principal ideal.

3) D is integrally closed, D=IU,andhas exactly one nonzero

proper prime ideal.

Proof: First, if D is a valuation ring, let

M = {xE Dfx is a nonunit in D}.

To show M / (0), assume M = (0) then for any x .E D such that

x 0, x j M, so x is a unit. This leads to the contradiction

D is a field.
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Since D is a valuation ring, D is quasi-local, and M is

an ideal in D. Since D is Noetherian M is finitely generated.

Since D is a valuation ring and M is finitely generated, M is

principal.

Second, if the nonunits of D form a nonzero principal

ideal, since the nonunits of D form an ideal, D is quasi-

local. Let M be the maximal ideal of D. Then M is prime

and M = (a) for some a E D.

For any nonzero ideal A in D such that A M we claim

A = Mn for some positive integer n. Clearly AcM. By

00

Theorem 2.10, Mn = (0). Therefore there exist a positive
i=l

integer m such that A4m since if AcMn for every n,

00

Ac lMn = (0) which gives the contradiction A =(O). So,
n=1

there exist a positive integer n such that AcMn and A4Mn+l

We will show A = Mn. There exists x E A such that

x .Mn+1. Since AcMn x E MnnandM =(a) n (a),so

x = uan for some u E D. We claim u is a unit. If u is

not a unit u E M = (a), so u = ra for some r ,E D. Therefore

x = uan = raan = ranl,

n+1 nand we get the contradiction x E M+. For any z ,E M

z = wan for some w E D, and therefore

z = wan = wu luan = wu -lx,

- E n nso zECA, since xECA andu ,w CED. So M cA, and A =M
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Also, n >1 since A M. Since M is prime and n >1,

A = Mn is not prime, so D has exactly one nonzero proper

prime ideal.

Next, we claim that for any x E D, x = uan for some u,

a unit in D, and n a nonnegative integer. To show this,

let x ,E D. If x ( M, then x is a unit and x = xa0 . if

x E M, x = t a for some t E D. If t E M, t is a unit

and x = t1 a1 . If t1 E M, tj = t2a for some t2 E D. So,

22
x = t2a2

We claim for some positive integer n, tn is a unit.

If not

x = t1 a = t2 a
2 =t3 a

3

For any positive integer m, tmam = tm+l a M+ so t = t+am +1m m+Ia'
tE(tM 1 ), and (tm)C(tm+i). Further (tM)< (tm+1), since if

(tM) = tm+ 1), tm+1 E (tm), so tm+l = tmb for some b ED.

Sic am ~ m+1l tm m+l
Since tma = tm+la , tma = tmba , and I = ba which

gives the contradiction a is a unit.

Therefore,

(t 1) < (t2) < (t3) < ...

which contradicts D being Noetherian.

If c ,E K such that c 0 and c is integral over D,

r
c = r for some r,s E D. There exist nonnegative integers

m and m 2 , and units in D,u and u2 such that r = u 1 ml and

s= u2 a If M 1M2'
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r u1 a ua 2

c

s m2  u 2
u2a2

If m1 s

There exist a positive integer n and d0,d1,.. *,dniE D

such that

cn + dncn-l+ + 1 +do0.

So,

(r)n d (r- + + d r + do 0.s n-tsls 0

Multiplying through by sn we get

rn + dn-I rn- s + +dr1 n-1+ dosn = 0

and

rn= (d ~n-l - drsn~2 - d snl)

If s is a unit then c E D. If s is a nonunit we get a con-

tradiction since r is a unit, but r n a , M, so r M. There-

fore c E D and D is integrally closed.

Finally, if D is integrally closed and has exactly one

nonzero proper prime ideal, clearly D is quasi-local and

the nonunits of D form an ideal M, the maximal ideal.

We claim that there exists a( D such that M = (a).

If for any x E D, M (x) since D is not a field, there
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exists x1 ,E M\(O), and (xl) / M. Since also (x1)cM there

exists x2 E M\(x1 ).

Now, we must show that there exists x3 ;*E M\(x1 ,x2 )'
If not M = (x1,x2). We can also get (x)fi(x2) = (0) since

if there exists y1 ,E (x 1 )(x 2) such that y1 $ 0 there

exist r r2 E D\(0) such that y, = r x and y1 = r2x2. So

r x =r 2x2  If r 2 is a unit in D we would have a contra-

diction since x r = 1 X2 and x2,4 ). If r2 is not

a-ni inD, 1 =rKr-la unit in D,1r2  rx1 =r2 2x2 ' r2  r1 x = x2 , and

r2 1 r1x - x2 = 0, so r2 ~ is integral over D. This leads

to a contradiction since D is integrally closed, so r2 ~ E D

but r2 is not a unit in D. For any b,c ,ER such that

b E (xl) and c Ef (x 1 ) if b,c E D\M then bc E D\M so

bc El (xi). If b E M or c E M without loss of generality

assume b EM. Then bCE M\(x ) = 2), so bc.C (x2) and

bc .l (xl). Therefore (x1) is prime and (x1) <M which con-

tradicts the fact that M is the only proper prime ideal in D.

Continuing this process you get

(x1) < (x1,x2 ') < (xx 2 'x3) <

which contradicts the fact that D is Noetherian.

Bya proof similar to that in the second part of this

theorem for any nonzero ideal A in D there exists a positive

ninteger n such that A = Mn. So, the ideals of D are lin-

early ordered by set inclusion, and D is a valuation

ring.
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Theorem 2.12: If D is a domain with 1 0 and quotient

field K the following are equivalent:

1) For any x ,E K either x E D or E D.
x

2) If x,y ;E D then (x)c(y) or (y)c(x).

3) If A,B are ideals in D, then AcB or BcA.

Proof: First, assume that for any x .E K either x ,E D

or .1E D. If x,yE D, if x = 0 or y = 0, clearly (x)c(y)x

or (y)c(x). If x 0 and y 0, E K, so either E D or
y y

E D. If - E D there exists c E D such that = c, sox y y
x = cy, x E (y), and (x)c(y). Also, if Y E D, (y)c (x).

x
Second, assume if x,y E D, either (x)c(y) or (y)c(x).

If A., and B are ideals in D and A B, there exists x E A

such that x j B. For any y E B, if y = 0, then y E A. If

y 0, (x)c(y) or (y)c (x). If (x)c (y), x E (y), and

x E B which contradicts x ( B. If (y)c(x), y E (x), and

y E A. So BcA.

Finally, assume that for any ideals AB in R either

AcB or BcA. Then, if x C K, if x = 0, then x , ED. If

x 0, x = where a,b E D and a 0, and b 0. Then

(a)c (b), a.E (b), so a = bc for some c E D. Therefore

X = a bc = c and x ,E D. If (b)c(a), h ED, s0 E D.b b a x

Theorem 2.13: If D is a domain with 1 0, A is an

ideal in D, and (b) is a principal ideal in D, such that

(b)DA then there exists an ideal C in D such that

A = (b)c.
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Proof: Let

C = {cE DIc(b)cA} A:(b).

If c EC, and rE D, for any r'ED,c[r t b]jE c(b), c[r'b] EA,

r[c[rlb]] E A, and rc[r'b] E A, so rc(b)cA, and rc ,E C.

If c1 ,c2 C C, for any r. CD, c lrb] ,E A, and c2 [rb]E A.

So, [c -c2 ][rb] E A, [c -c2 ](b)cA, and c1 - c2 E C. There-

fore C is an ideal in D.

If x ,E (b)C, there exist c1 ,...,cn E C and r1 ,...,rn E D

n
such that x = ZI r bc. For each i = 1,...,n, r.b E (b),

i=11

so cr b E c(b), and c (b)cA since c. EC. So, c.r.b = a.
1 11i

for some a E A, and xE CA. Therefore (b)CcA.

If x E A, since AC(b), x = rb for some r E D. For

any y E r(b) there exists rt E D such that

y = r[r'b] = rbr' = xr',

and since x.E A, y E A, and r(b)cA. So, r ,E C, and x.E (b)C.

Therefore A = (b)C.

Theorem 2.14: Let P be a proper prime ideal in a valu-

ation ring D.

1) If Q is P primary and x E D\P then Q = Q.(x).

2) The finite product of P primary ideals in D is

a P primary ideal. And, if P / P2 then the only P primary

ideals of D are powers of P.

3) The intersection of all P primary ideals, of D is

a prime ideal of D, and, there are no prime ideals of D

properly between it and P.

mom
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Proof: For 1) assume Q is P primary and x E D\P.

Either (x)cQ or Qc(x). If (x)cQ, x ,E P since QcP

which contradicts x E D\P. Therefore Qc(x) and for any

q E Q, q .E (x), so q = ax for some a E D. If a Q since

Q is P primary and ax E Q, xE P which again contradicts

x E D\P. So, a EQ, and ax E Q-(x), qE Q-(x), and

QcQ-(x). Also Q-(x)cQ, so Q = Q-(x).

For 2), if Q and Q2 are both P primary in D,

Q-Q2  lcP. And, if p E P there exist positive integers

M, and n such that p Cm E Q, and pn E Q2- So pmpn E Q Q2'
m+n nand p E Q1.Q2 . If ab C Q1-Q2 , and b j P, ab = F x y

i=l

for some xl,x2P...xn CE and y1 ,y2 ''''yn E Q2 . In the

proof of part 1) of this theorem it was shown that we could

write each x. as q b where qliC Q, and each y. as

q2, ib where q2 CiE Q2 ' So,

n
ab= ,q .bq .b

i=l 1,i 2,i

n
a = b(F q q2,i

i=l

and a E Ql-Q2 . Therefore Ql-Q2 is P primary. By simple

induction the product of any finite number of P primary

ideals in D is P primary.

Also, if Q is a P primary ideal in D, we claim there

exists a positive integer m such that Pm 4 Q If Pm~)Q for
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00 CO

every m, Qc C1 Pk, denote fl Pk by P*. Then P* is prime and

P*cp 2< P, and since P* is prime and Qc P*, Qc P*, and we

get the contradiction

P = i/Q cP*<P.

So there exist m such that PMDQ, and Pm+1tQ. We

m m m mwill showQ=P . IfQ P , QP and there exists x E P

such that x | Q. So (x)c[Q, and Qc(x). Therefore there

exists an ideal B in D such that (x)B = Q. Since (x)BcQ,

and (x)cfQ, BcP. So Q = (x)BcPmP= PM+1 which contradicts

Q Pm+l m

For 3) if P is the only P primary ideal in D there is

nothing to prove. If there exists a P primary ideal Q of D

such that Q P let {Qa~aEr be the set of all P primary

ideals of D with an apporpriate index set r. Since for any

positive integer n, Qn is P primary,

CO

CiaEQac5 fln
n=1

We want to show that if A and B are ideals in D such

that VB >A then BDAn. If, BOcA for every natural number n,
Co Co

and B CflAn. Since nAn is prime we get the contradiction
n=l n=l

AV<v c A AncA.
n=l

Then for any a E r, since P (O), - = P >Q, so

Qa Qn for some n, and QD nD Qn. Therefore
n=1

4 

-- -rririiw
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C0

aEr = n=QnQand is prime in D. If there exists P', a
n=1

prime ideal of D such that fl <P' < P, there exist

x .E P\P'. For any positive integer n, xn f P' so (xn) P,

and P'c(xn) So,PC n (Xn). There exists y E P'\na Q.
n=1 r

So, y E [ (xn). For some m,xm E Q. For any positive in-
n=1

teger k

00

A (X) C(x"%1) (xm)Q C:Qk
n=1

so

A (x,)n c n
n=1 n=l

and y E no ra which contradicts y X r~a. So there is

no prime ideal of D properly between o Er~ a and P.

Definition 2.5: If v is a valuation on a field K,

with value group G, and if Dv is the valuation ring of v,

1) v and Dv are of rank n if and only if G has rank n,

and

2) v and Dv are discrete if and only if G is cyclic.

Theorem 2.15: Let v be a valuation on a field K. Let

G be its value group, and let Dv be its valuation ring.

Then, there exists a one-to-one corresponsdence between the

isolated subgroups of G and the proper prime ideals of Dv.

Proof: If H is any isolated subgroup of G, let

lP(H) = {x E D Iv(x) >h for any h E H}.

Clearly P is well defined.
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For any a,b E p(H), for any hE H,

v (a -b) min (v (a), v(-b)) min (v (a) ,v (b) ) > h.

So, (a-b) ,E $(h). For any a E 4(h) and r ED , for any h E H,

v(ar) = v(a) + v(r) > h,

since v(a) > h and v(r) 0. Therefore arE $(H), and $(H)

is an ideal in Dv.

If a,b E Dv\ $(H), since a j k(H) there exists h E H

such that v(a)sh. Since a E Dv, v(a)0. So v(a) , E H.

Similarly v(b) E H, so v(a) + v(b) E H, and v(ab) E H. Also,

v(ab)sv(ab), so v(ab) q (H), and i(H) is prime in D .

If H and H' are isolated subgroups of G such that

$(H) = $(H') for any x E H, if xO, and x 4 H' we claim

x > h' for every h'E H'. If not, Oxs hI for some h'EH',

and therefore we get the contradiction x .E H. There

exists k ,E K such that v(k) = x. So k .E $(H'), k E iP(H)

and we get the contradiction x = v(k) >x since x E H.

So x ,EH'. And if x < 0, -x0, and -x EH, so using the

same proof as we used above we get -x E H' and x E H1.

Therefore HcH'. Similarly H'cH, so H = H' and $ is one-

to-one.

To get 4 is onto, let p be any prime ideal in Dv. Let

S = {gE Gj-v(p) <g<v(p) for every p E P}.

We want to show that if a,b E S such that a O, and b O,

a + b E S. To prove this, a =v(x) and b = v(y) for some

x,y E Dv* Since v(x) = a <v(p) for every p E S, x . P.
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Similarly y q P. So, xy ,E D \P. For any p E P we claimv

E D If -, D E D , and pD. E D which givesxy V* xy v p vp v

the contradiction xy ,E P. So, v(---)O, and since x Dxy p v

- is not a unit in Dv, so v( ) >0. It follows thatxy xy

v (p) -(v (x)+v(y)) >0,

v(p) - (a+b) > 0,

and

v(p) > (a+b) > 0 > -v(p).

So a+b E S.

Next, we want to show that if x,y C G, |x-yfs fx| + Jyl.
If x - y 0, fx-y = x-y. Also, xs 1xf, and -ys -y| = fy|,

so

Ix~yjI = x - y jxI + |IyJ.
If x- y< 0, jx-y = y- x, so as before

Ix - y y - x51yfI+ fIx| = |x| +J| yJ.

For any a,b E S, clearly |a|,IbI E S, so .af + I b+ I E S.

For any p E P,

0s ja-bj f af + I bJ <v(p),

so a - b E S, and S is a subgroup of G.

If a,b E G such that a E S, and 0s bs a, and b fi S,
there exists p E P such that -v(p)>b or bav(p). If

-v(p) b , we already know v(p) > 0 since p E Dv, and p is

not a unit in Dv, so we get the contradiction

bs-v(p) <0sb.

-

-
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If b v(p), a.bv(p) which contradicts a <v(p), since a E S.

Therefore S is an isolated subgroup of G.

If x El P, if x Dv, x p(S) since $(S)cD. If

x E Dv we claim v(x) E S. If not, there exists p E P such

that -v(p)>-v(x) or v(p)sv(x) , if -v(p)-v(x). Since x E DV'

v(x)-0, and since p E D and p is not a unit in D., v(p) >00,

which leads to the contradiction -v(p) < 0 and -v(p) v(x) >0.

If v(p) v(x),

0sv(x) - v(p) = v( )
p

so - E Dv, and p- E P which gives the contradiction x E P.p p
So v(x) E S, and since v(x)sv(x), x (S). Therefore

(S) CP.

For any x E Dv, if x E P and x f $(S), since x f(S)

there exists s E S such that v(x)ss. Since s ,E S we get

the contradiction v(x) >s. Therefore Pc (S), and P = $(5),

so $ is onto.

Theorem 2.16: If D is a valuation ring in a field K,

and D is not a field, then D has rank one and is discrete

if and only if D is Noetherian.

Proof: If D has rank one and is discrete, and if G 1 {0},

there exists g E G such that g 0 and

G = {ngInE II = {n(-g)In EI}.

Without loss of generality we can assume g> 0. We claim

that if m,n E I then ng>mg if and only if n>m. To show

this, if ng mg, and n < m, since -ng = -ng, ng -ng !mg -ng
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which gives the contradiction 0 (m-n)g, and since g > 0,

(m-n)g > 0. If nam, mg = mg, and g > 0 so (n-m)g0, and

mg + (n-m)g 0 + mg

and

ng-2mg.

If A is an ideal of D such that A y 0, and A D, pick

any a E A such that a ! 0. Then a is not a unit, and

v(a) = ng for some n,E I. Since ng = v(a) >0 = og, ne0.

If r ,E A such that r 4 (a) we claim v(r) <v(a). If

v(r) v(a), v(r) - v(a)>0, v(-)0, -rE D, and a- E (a),a a a
which leads to the contradiction r E (a).

Let

S = {gbI b, E Ilsbs n - 1, and there

exists a E A such that v(a) = gb}.

Then

S = {gblgb2 ,.. . ,gb }

for some k E I, and 1s<9sn-1. Choose a,a2,...,a' EA such

that

v(a1) = gb1 ,v(a2 ) = gb2 ,...,v(acP) = g(b9P).

We claim

(aa2,...,a.,a) = A.

Clearly

If x E A, if x E(a), x, E ,a). If x, +(a), since

x is not a unit,

< v(x) < v(a) = nx,
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so v(x) = gbm for some mC I, 1sm A, and v(x) = v(a )

x m

We claim - E D. If not, v <-) <0, vCx) - v(a ) <0
mam m

which leads to the contradiction v(x) <v(aM).

xm

Thus a --. E (a ), so x E (a), and x E (a...a.,a).ma m m -1m

Therefore A = (a1,... ,a.,a).

If G = {0}, v(k) = 0 for every k E K such that k 0,

and D = K which contradicts D is not a field. Therefore

D is Noetherian.

If D is Noetherian let M be the maximal ideal in D.

Since D is not a field, and M is the set of nonunits in D,

M / (0). Since D is Noetherian, M is finitely generated,

and since D is a valuation ring M is principal. So there

exists a E D such that M = (a). Since a is not a unit

v(a) > 0.

For any g E G such that g :O, if g = 0 then g = 0.v(a).

If g> 0 there exists x E D such that v(x) = g. Since

v(x) = g >0, x is not a unit in D, so xE M. There exists

x1 E D such that x=ax . If x is a unit

g = v(x) = v(ax1 ) = v(a) +v(x1 ) = v(a).

If x1 is not a unit, x1 E M, and there exists x2 E D such

that x1 = ax2. If x2 isaunit

g = v(x) v(a X2) = v(a) +v(a) +v(x2 ) = 2v(a).

If x2 is not a unit, x 2 E M, so x2 = ax3 for some x3 E D.
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We want to show that for some natural number n, xn is

a unit. If not, there are infinitely many nonunits xn.

We claim x, (x). If xE (x), x, = xy for some y E D,

x = ax1 = axy, so 1 = ay which contradicts a is not a unit.

Therefore (x 1)c(x), so (x) < (x1). Similarly (x1) < (X2)'
and

(x) < (x 1 ) < (x2) < ...

is an infinitely ascending chain of ideals in D which con-

tradicts D is Noetherian.

Therefore g = nv(a) for some positive integer n. If

g' E G such that g' < 0, -gt - 0, so -g' = mv(a) for some

natural number n, and g' = -mv(a). Also for any n E I,

nv(a) E G by simple induction from the fact v(a) C G. There-

fore G is cyclic and D is discrete.

Let S be any nonzero isolated subgroup of G. Let

d = v(a) as defined above. Then G = (k). There exists s E S

such that s 0. Without loss of generality we can assume

s > 0. Also, s = mk for some m ,E I.

We claim m> 0. If m 0, if m = 0 we get the contra-

diction s = mk = 0. If m< 0 since Z> 0 we get the contra-

diction s = mZ< 0.

Since m-l, s = m9d 9 > 0 and therefore 9, E S. Since

S is closed under addition by simple induction n ,E S for

every positive integer n. Since S has inverses, -nk C S for

every positive integer n. Since S is a subgroup of G,
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0 E S. Therefore G = (X) = S, and G is of rank one, so D

is of rank one.

Definition 2.6: If D is a domain with quotient field K,

an element a ,E K is almost integral over D is and only if

there exists an element d E D such that d A 0 and danE D

for every natural number n. Also D is completely integrally

closed if and only if D = D* where D* is called the complete

integral closure of D, and

D*= {aE Kja is almost integral over D}.

Theorem 2.17: If Dv is a valuation ring which is not

a field, then Dv is completely integrally closed if and only

if Dv has rank one.

Proof: If Dv has rank one, clearly DvC-Dv*. If

a E Dv* there exists d E Dv such that danE Dv for every

natural number n. If a D, E D, and we claim there exists

a positive integer m, such that d q ([ ]m). If not,

d E a ([I]n), so d E ()n which is prime. And since
n=l n=1a

- is not a unit in Dv this leads to

(0) < f (-)n< D
n=l a v

which contradicts Dv has rank one.

But, this leads to the contradiction d q ([I]m), and

since d= [- mdamd E ([-] ). Therefore a E Dv, and Dv* = Dv.
xv v v

A g
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If Dv is completely integrally closed, let S be a

nonzero isolated subgroup of G. There exists s E S such

that s > 0. So, -s < 0 and there exists k E K such that

-s = v(k), so k E D . Therefore k is not almost integral

over Dv.

For any d E Dv there exists a positive integer nd such

that

dkndf Dv, so V(dknd) < 0,

n
v(d) + v(k d) < 0,

v(d) + ndv(k) < 0,

v(d) + nd [-s] < 0,

and

0:v(d)< nds.

Since s E S, nds E S, and therefore v(d)

For any g ,E G either g0 or -g-O.0

for some a E D . Therefore g.E S. If -g

-g E S, and therefore g E S. So, S =G

and Dv has rank one.

E S.

If g0, g = v(a)

20, similarly

G has rank one,
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