Chebyshev Subsets in Smooth Normed Linear Spaces

PDF Version Also Available for Download.

Description

This paper is a study of the relation between smoothness of the norm on a normed linear space and the property that every Chebyshev subset is convex. Every normed linear space of finite dimension, having a smooth norm, has the property that every Chebyshev subset is convex. In the second chapter two properties of the norm, uniform Gateaux differentiability and uniform Frechet differentiability where the latter implies the former, are given and are shown to be equivalent to smoothness of the norm in spaces of finite dimension. In the third chapter it is shown that every reflexive normed linear space ... continued below

Physical Description

iii, 69 leaves

Creation Information

Svrcek, Frank J. December 1974.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Chair

Committee Member

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Svrcek, Frank J.

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

This paper is a study of the relation between smoothness of the norm on a normed linear space and the property that every Chebyshev subset is convex. Every normed linear space of finite dimension, having a smooth norm, has the property that every Chebyshev subset is convex. In the second chapter two properties of the norm, uniform Gateaux differentiability and uniform Frechet differentiability where the latter implies the former, are given and are shown to be equivalent to smoothness of the norm in spaces of finite dimension. In the third chapter it is shown that every reflexive normed linear space having a uniformly Gateaux differentiable norm has the property that every weakly closed Chebyshev subset, with non-empty weak interior that is norm-wise dense in the subset, is convex.

Physical Description

iii, 69 leaves

Subjects

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • December 1974

Added to The UNT Digital Library

  • June 24, 2015, 9:39 a.m.

Description Last Updated

  • Aug. 12, 2016, 2:13 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 13

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Svrcek, Frank J. Chebyshev Subsets in Smooth Normed Linear Spaces, thesis, December 1974; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc663499/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .