379

NG|
Mo, jG7S

AN INTERPRETER FOR THE BASIC
PROGRAMMING LANGUAGE

THESIS

Presented to the Graduate Council of the
North Texas State University in Partial

Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

By

Min-Jye S. Chang, B. 8.
Denton, Texas

Mayl 19 ?5

Chang, Min~Jdye 3., An Interpreter for the Basic

Programming Language. UNaster of Science (Computer Sciences),
May, 1975, 82 pp., 3 tables, 8 illustrations, 14 appendices,

bibliography, 12 titles.

In this thesis, the first chapter provides the general
description of this interpreter. The second chapter con-
tains a formal definition of the syntax of BASIC along with
an introduction to the semantics., The third chapter contains
the design of data structure. The fourth chapter contains
the description of algorithms along with stages for testing
the interpreter and the design of debug output.

The stages and actlions are represented internally to
the computer in tabular forms. For statement parsing
working syntax equations are established. They serve as
standards for the conversion of source statements into
object pseudocodes, As the statement is parsed for legal
form, pseudocodes for this statement are created., For
pseudocode execution, pseudocodes are represented internally

to the computer in tabular forms.

TABLE OF CONTENTS

Page

LIST OF TABLES. . v v v v v v v v v e e v o v oo .V

LIST OF ILLUSTRATIONS . . v . v v 4 v v v v v u v . . vi

LIST OF APPENDICES. « v v v v v v v v v v v e e s v, Lvii
Chapter

I. INTROBUCTION. « L |

Definition of the Problem
Purpose of the Study
Procdedure

Limitation and Future Work
Organization

II. & DE$CRIPTION OF BASIC. v v v v . .. 6

Formal Specification

Formal Grammar

Hierarchy of Language

Backus Normal Form

Definition of the Source Language, BASIC

III . DATA STRUCTURE‘ L] * * L . L) * * » L] L] L L] * * + [25

SOURCE

ATOMS

ERRORES, ERROREP, and ERROREE
Symbol List

Line Number List

Pseudocode List

IMAGE

IVQ INTERPRETER * 4 L]] . + L} a . L] " * * * + . L] (] . 41

Lexical Analysis
Parsing
Execution
Listing

Debug Output
Testing

V. CONCLUSION. L[] - L] L] L L] L] - . L] * L] - L] - L4 L] * 63

APPENDICES,
BIBLIOGRAPHY,

*

iv

LIST OF TABLES

Table Page
I. List of Atoms. &+ .+ 4 v v v v v v v v v v v e . . L27-28
IT. Pseudocode List. . . . « &+ + v « v « v v v « v v <35=39
III, Debug CQuiput « . « v v v 4 v « v v o v v e 0 . .. 61

Figure
1,
2.

LIST OF ILLUSTRATIONS

Interpreter 3ystem Flow. . . . ,

Atom Layout., .
Symbol Node, v v v & v v v . . .
Line Number Node , . .
Pseudocode Node, « . . .

Finite~dtate Machine for Lexical
Parsing Block Chart.

Executing Block Chart, . ., . . .

vi

+ L] . 4 4

L L I T

Analysis,

Page
.26
29
31
32
33
43
47
58

Appendix
I.
IT.

ITI.
Iv,

VI,
VII.
VIII.
IX.
X,
XI.
XITI.
XITI.
XIV.

Reserved Words of BASIC .

Backus Normal Form of This BASIC
Programming Language.

Trace
Trace
Trace
Trace
Trace

Trace

Level

LIST OF APPENDICES

Level
Level
Level
Level

Level

1 of SCANNER,
1 of PARSER .
1 of EXECUTE.
2 of SCANNER.
2 of PARSER .
2 of EXECUTE.

*

+

*

*

+

.

Source and Execution Listing of

Source
Source
Source
sSource

Source

and Executicn
and Execution
and Execution
and Execution

and Executlon

Listing
Listing
Listing
Listing

Listing

vii

L] * L] a . * . L)

* L * & L * L3 L]

Test Program 1.
Test Program 2.
Test Program 3.
Test Program &,
Test Program 5.

Test Program 6.

Page

73

CHAPTER I
INTRODUCTION

This thesis is an application of the top~down trans-
lator (3) to the interpretation of a modified version
of the BASIC (6) programming language.

The BASIC programming language was chosen as the
target language because, although it is a relatively
simple language, it is complex enough to display many of the
quality and implementation difficulties of more gdvanced
high-level languages.

This interpreter is written in PL/1 (5) to be executed
on the IBM/360 computer.

This interpreter is organized as four different
segments, each of which makes a pass over some form of the
source. The four segments are lexical analysis, parsing,
executing, and listing., A main program calls each segment,

which is implemented as a separate PL/1 procedure,

Definition of the Problem
Gries (3) used the term "interpreter" for a program
which performs two functions:
1. Translate a source program written in the
source language (BASIC in this application)

inte a pseudocode.

2. Execute (interpret, simulate) the program
in this pséudocode.

The first part of the interpreter is like the first
part of a multi-pass compiler. The main difference between
an interpreter and a compiler is that the former executes
the pseudocode and the latter eventually transforms the
pseudocode into machine code,

The pseudocode into which a source language is
translated should be designed to make the execution
proper as efficient as possible,

A pseudocode representation could be interpreted as
the machine language of some pseudocomputer,

A computer and associated routines that behave as
such a pseudocomputer are referved to as an interpreter

. of the corresponding pseudocode.

Purpose of the Study
This interpreter is designed with the following
purposes

1. To explore the design of an inter-
preter for a batch processing
environment. '

2. To build efficient tools in the
interpreter for correcting and

detecting errors,

Procedure

The first step in preparation for this interpreter
was library research, including readings related to the
translator, BASIC and PL/1l programming languages, and
the Job Control Language (4).

Donevan (2) has stated the general probiem of designing
software., Listed below are six steps in the design of thisg
interpreter:

1. Specify the problem.

2, Specify data structure.

3. Define format of data structure.

4, Specify algorithm.

5. Look for modularity (i.e., capability of a
complex program to be subdivided into
independent more simple programming units),

6. Repeat 1 through 5 on modules.

Limitation and Puture Work
The BASIC matrix commands preceded by "MAT" are not
included in this interpreter., These commands may be added
in the future,
One feasible method is to create new pseudocodes

representing different matrix operations.

Organization
This thesis is organized into five chapters. The

first chapter provides the general description of this

intrepreter. The second chapter contains a formal
definition of the syntax of BASIC along with an intro-
duction to the semantics, The third chapter contains
the design of data structure. The fourth chapter con-
tains the description of algorithms used in this
interpreter. Also contained in Chapter Four are stages.
for testing this interpreter and the design of debug
output. The fifth chapter contains the conclusions
drawn from analysis of this work.

The program can be examined by obtaining report
number NTCSCI74001 entitled rAn Interpreter for the
BASIC Programming Language" from the Department of

Computer Sciences at North Texas State University. (1).

1.

2.

CHAPTER BIBLIOGRAPHY

Chang, Min-Jye S., "An Interpreter for the BaSIC Program=- -
ing Language,” Department of Computer Sciences,
North Texas State University, Denton, Texas 1974,

Donovan, John J., Systems Programming, New York,
McGraw~Hill Book Company, 1972

Gries, David, Compiler Construction for Digital
Computers, New York, John Wiley & Sons, Inc.,

1971.

International Business Machines, IBM Systems 360

Operating Systemss Job Control Language
Reference, Form No. GC28-6704-2,

International Business Machines, IBN System 360 PL/1
Reference Manual, Form No. C28«8201-0.

Smith, Robert E,, Discovering BASIC, New York,

International Timesharing Corporation, 1970.

CHAPTER II
A DESCRIPTION OF BASIC

This chapter defines the syntax of the BASIC programming
language based on the descriptions of Smith (%),

Before going into the description of BASIC, it is
useful to analyze some of the probléms in formally defining

a language (2),

Formal Specification

A language may be thought of as a set of sentences
with well~defined structures (2). The set of rules speci-
fying valid constructions of a language is its syntax., The
syntax of & language describes its forn.

A language called a meta~language is employed to
explain a language called an object language. A meta-
language is a system of definitions of symbols and rules for
théir combination. Symbols of the object langusge are called
terminal symbols., Symbols of g meta-language that denote
strings in the object language are called nonterminal symbols,

The most elementary object in a formal language is g
symbel. Symbols are concatenated to form strings, which may
or may not belong to the language,. Generally, a language
does not include all possible strings on its alphabet (2),

Only certain strings are valid sentences in the language.

Formal Gfammar

The symbols which are in the object sentence when
generation of the sentence is completed are referred to as
terminal symbols. Those symbols which only appear in the
intermediate steps are referred to as nonterminal symbols,
One nonterminal symbol, the starting symbol, is distinguighed
as the source sentence symbol with which the generation
process begins.(2).

The process of generation of object language from source
language consists of applying, at each step, any one of the
set of rewriting rules or productions (2). A production is
a string transformation rule having a left~hand side that is
a pattern to match a substring (possibly all) of the string
to be transformed, and a right-hand side that indicates a
replacement for the matched portion of the string. This pro-
cess transforms the string into a new string; the process
stops when there is no production that can be applied or when
the siring consists solely of terminal symbolsQ

It is important to realize that any substring of the
current string may be replaced by an applicable production
and that only that part of the string matched by the left-
hand side of the production is affected. Productions can
totally replace substrings, or they may merely rearrange
the symbols of the matched substring.

Abramson (1) defined a sentence as a sentential form
containing only terminal symbols. A sentential form is any

string which can be derived from the starting symbol,

Hierarchy of Language

The definition of production allows for a wide variety
of string transformations. Certain restrictions on the
form of productions give grammars producing subelasses of
the class of formal languages. Noam Chomsky (2) has
constructed a system of four language types that classify
some languages according to such restrictions.

The most general type of grammar imposeé no restriections
on the productions. In particular, productions that eli-
minate symbols are permitted., This allows the intermediate
strings to expand and contract. A grammar without
restrictions is called a type 0 grammar.

The simplest restriction which produces a strictly
smaller class of languages is to require the right-hand side
of every production to have at least as many.symbols as the
left-hand side, A grammar with this restriction is called
a type 1 or noncontracting context-sensitive grammar,

If the left-hand side of the production is restricted
to a single nonterminal symbol, its application cannot be
dependent on the context in which the symbol occurs. Gram-
mars with thig restriction (and nonblank right~hand strings)
are called type 2, context~free or simple phrase-structure
grammars,

A third type of restriction on productions restricts
the number of terminal and nonterminal symbols that each

step can create. When, at most, one nonterminal symbol is

used in both the right-hand and left~hand sides of a pro-
duction, the production is said to be linear,

Each of the above restrictions includes those above
it. These types form a hierarchy. No type 3 grammar can
generate the language defined by type 2 grammar. Similarly,
no type 2 grammar can generate the language defined by type
1 grammar., Finally, type 1 is a striet subset of type 0.
The BASIC in this interpreter is defined as a type 2

language.

| Backus Normal Form

The metalanguage used in describing BASIC is Backusg-
Naur Form or Backus Normal Form (4). Terminal symbols
represent themselves. Nonterminal symbols are enclosed
in meta brackets. " " and v *, The symbol "ss=v is read
"is composed of" and is used to'separate the defined sym-
bol on the left of a producfion from the definition of
the right. The symbol » » ig read worw and is used to

separate alternate definitions in a production.

Definition of the Source Language, BASIC
The BASIC (Beginner's All Purpose Symbolic Instruction
Code) was originally developed at Dartmouth College, New
Hampshire, under the direction of Professor J.G. Kemeny (1).
The source language grammar adopted here is similar to
the definition of BASIC by Smith (5). Some of the data

structure meanings or execution~time actions of the various

10

BASIC statements were not unambiguously described by
Kemeny (1}, The interpretations which have been placed on
such statements in this interpreter may have caused some
discrepancies between this implementation and the original

Dartmouth implementation,

Letters, Digits, Special Charscters
The twenty-six letters of the English alphabet are

used in constructing variables and in strings which may
appear as commenis or as messages in printed output,

Digits, just as letters, are used in forming variables
and strings, In addition, they are used to form numbers
and statement line numbers., There are ten digits, They are
“lv, 2, e3w, whe, wSe, e, wPe, wBn, wQn, and wgw,

There are fifteen special characters, They are » =,

" v, v and "?v, They are used in forming strings.

Variables

"Variables” are names for a dual roles; +to represent
in the source language the names of numerical values and at
the same time, names of the computer cells where thesge
numbers are located at execution time. A source=-language
variable of BASIC identifies an execution-time datg struc-
ture of a fullword of storage (3) of the IBM/360 computer.
The value of a variable may change during the execution of

a BASIC program,.

11

A source-language variable must conform to certain
rules:

1. One to twenty characters may be used for
any varisble.

2. A variable may contain letters and digits.

3. A variable must begin with a letter,

4. A variable must not be a regserved word,

A reserved word ig a source-language word that looks
like a variable but which has special significance to this
interprater,

Examples,--The following are examples of source-
language variables:

1. 4

2. BR234

3. ABCDEFGHIJKLMNOPQ
4, A1B2

5. B234p

Numbers
Numbers are used in the source~language as constants
in expressions and in the lists of numbers used by the
DATASTATEMENT,
Exampleg.~-~The following are examples of numbers:
1. 234
2. 5.89
3. b5.99

12

Operations

The execution time sequence of operations is generally
in the same order as from the source~language reading from

left to right, except for the following precedence of

operations:
Priority 1
~ Prefix minus
+ Prefix plus
Priority 2
¥% Exponentiate
Priority 3
/ Divide
¥ Multiply
Priority 4

- Infix minus
+ Infix plus
To override this normal order of execution precedence,
parentheses are inserted around the source eXpression that
is to be evaluated first st execution.
Example.-~The following are examples of complex ex-
pressions with operations: |
1. 5410/ 5% 2% 3 . ¢
Eirst find exponent value 5+10/5%8-6

Next, divide 542%8-6
Next, multiply 5416~6
Last, add and subtract i5.

13

2, (2-1)*%5/542
First, find value of »2=1v 1#5/542

Next, multiply 5/5+2

Next, divide 142

Last, add 3
Relations

Six relations are available for test purposes., They

are:
Equal to =
Not equal to =
Less than <
Greater than >
Less than or equal to {=
Greater than or equal to > =

Exgmples,~-~The following are examples of relations:
1. IF A = 4 THEN 123
2. TIF ABCD > (X~Y9¥¥2) THEN 321
An alternate source~language form of "not equaln
sometimes used is "¢ *; this form is not used in the

present work.

READSTATENMENT
The READSTATENMENT is used to assign a specific numer-
ical value to a simple or subscripted variable, The

numerical value must have been previously assigned by g

DATASTATEMENT,

14

Zxampleg.~-The following are examples of READSTATEMENTS s
1. 10 READ X
2, 20 READ Y,Z,AB

DATASTATENENT
The DATASTATEMENT provides storage ares for data. A

declarative statement may be used to introduce signed
numerical data into a BASIC program and may appear anywhere
in a BASIC program.

One may think of all the DATASTATEMENTs in a pProgram
as being assigned to a data bank. When the program is run,
the first READSTATEMENT uses the first number in the data
bank.

The replacement of data actually occurs at the time of
execution, One must be careful to make sure that there are
sufficient data and that they are in the proper order.

Examples.--The following are examples of DATASTATEMENTS

1. 10 DATA 45, 20
2, 20 DATA 20, 40
30 READ XY, WY ‘
In the second example, the variable XY is assigned a

value of 20 and the variable WY is assigned a value of 40,

PRINTSTATEMENT

The PRINTSTATEMENT is used for outputting data. The
PRINTSTATEMENT may be used for printing the value of a
variable or computation, for printing a heading, or simply

for skipping a line.

15

Zach line is divided horizontially into five twenty-
character zones. When only one value is printed, it isg
placed in zone 1. When more than one value is printed, the
secord is placed in zone 2, the third in zone 3, ete. If
more than five values are printed, the first five are placed
in the five zones in order. The sixth value is printed on
the next line in zone 1, the seventh in zone 2, ete. It is
also possible to print messages in a manner similar to the
formatting of values,

Examples.~-The following are examples of PRINTSTATEMENTSs;:

1. 10 PRINT rX=r, X

2. 20 PRINT X+Y#%2, ABC, DD

3. 30 PRINT +PAY RATE', *HOURS', ' GROSS' , * NET'
The symbol "+ is used in pairs to represent strings

which are printed in the program output but is not part of it.

The LETSTATEMENT is the principal computational state-
ment in a BASIC program,.

The "=" sign in BASIC is not a mathematical equal sign;
it means "replaced by-, Therefore, this statement is inter-
preted to mean, "The value of the arithmetic expression on
the right of the "replaced by sign replaces the value of
the variable on the left,

Examples.--The following are examples of LETSTATEMENTS

1. 10 LET N = N +1
2, 20 LET X 3
3. 30 LET R = A + B 63

it

it

16

The first example results in the value 1 being added
to the value N in storage. The new sum replaces the ori-
ginal value of N.

The second example causes the number 3 to be stored in
the location assigned for the variable X.

In the third example the value of B is added to the
value of A and 63 is subtracted from the sum. The final

value is stored in the location assigned to R,

BOTOSTATENENT

The simplest BASIC statement for altering the sequence
of execution is the GOTOSTATEMENT.

Example.~-The following is an example of a GOTOSTATENMENT ¢

1. 10 @OTO 100
100 «wmmm=

In the above example, 10 and 100 represent line numbers;

line numbers identify source statements and are composed of

positive numbers with five or less digits,

NSTATEMEN
The ONSTATEMENT permits transfer of control to one of

a group of statements, with the particular one chosen during
the run on the basis of results computed in the execution of
the program. The statement is of the form

In ON expressién THEN 1ni, 1n2, In3, = « = =

where the "expression" is any valid BASIC expression and the

17

subscripts on the line numbers of statements in the program
indicate their sequence in the ONSTATEMENT. Executions of
this statement causes statement Ini to be executed next,
where i 1s the integer value of the expression. The
"expression® in the ONSTATEMENT must produce a result of
at least 1 and no more than the number of line-number labels
contained in the statement.
Examples.~-The following are examples of ONSTATENENTS:
1. 80 ON A+B THEN 100, 110, 120, 130, 140
2. 33 ON X-Y+2 THEN 10, 360, 44, 60
In the first example, if the expression has a value of
4, control is transferred to statement number 130 when the
statement is executed,
In the second example, the expression "X-Y+2" must pro-
duce at execution an integer value in the range 1 to &, If
outside this range, execution continues with the next in-

line statement.

- IFSTATEMENT
The IFSTATEMENT permits one to make the transfer of

control depending on the results of a computation, the com-
parisén of expressions. Such a statement, called a
conditional transfer statement, transfers control only if a
certain condition is met. The GOTOSTATEMENT is called an
unconditional transfer statement, since it always transfers

control,

18

Examples.--The following are examples of IFSTATEMENTS:

1. 10 IF X 10 THEN 200

il

2, 20 IF X = A%20 THEN 80

In the first example, if the value of X at execution
ig equal to 10, transfer program control to line number 200,
If not, execution continues with the next in-line statement.

In the second example, if the value of X is equal to
the value of "A*20", transfer control to line number 80.
IF not, execute the next in-line statement.

In this interpreter, six relations are available for

IFSTATENENT. Please refer to "Relations®.

FORSTATEMENT and NEXTSTATEMENT

Looping, one of the most important techniques in
programming (6), makes it possible to perform the same
calculation on more than one set of data. A loop consists
of the repetition of a section of a program, substituting
new data each time, so that each pass through the loop is
different from the preceding one.

The combination of the FORSTATEMENT and NEXTSTATEMENT
is the most powerful two-instruction set in the BASIC lan-
guage. The loop starts with the FORSTATEMENT and ends with
the NEXTSTATEMENT (inclusive),

The general format of the FORSTATEMENT isg

In FOR variable = a T0 b STEP ¢
where the "variable" is the index, va» is the initial value

of the index, "b" is the terminal value of the index, and

19

"c" is the value by which the index is modified for each

pass., The values of “a", "b", and *c* may be any valid

expressions,

A few rules which apply to the FORSTATEMENT are:

1.

2,

3.

5

Every FORSTATENMENT must have an associated
NEXTSTATEMENT which names the same “variabler,
FORSTATEMENT and NEXTSTATEMENT form a pair.
The number of BASIC statements that may
appear betwaén the FORSTATEMENT and
NEXTSTATEMENT is unlimited,

Transfer out of a loop can be accomplised
by using an IFSTATEMENT or a GOTOSTATEMENT,
but transfer back into the leop is not
correct,

FORSTATEMENTS may be nested; that ig, an
inner loop may be completely contained
within an outer loop, _

The STEP ¢ may be omitted if »cr is under-
stood to be 1. |

The general form of the NEXTSTATEMENT is

In NEXT variable,

Examples.-~The following are examples of FORSTATEMENT
and NEXTSTATEMENT pairs:

1.

10 FOR N = 1 TO 100 STEP 1

A

—— -~

90 NEXT N

20

2. 20 FORI =1T02
30 FORJ =170 2

LT ¥

-

70 NEXT J ~
81 NEXT I |

GOSUBSTATEVENT and RETURNSTATEMENT

A subroutine is essentially an independent program,

but 1t is written in such a way that it can be executed
only when called by another program (6). Subroutines are
used at execution to perform tasks thit are needed on more
than one occasion, A subroutine call can be written at
any place in a program. A main program may call upen a
subroutine to perform a certain operation., A subroutine
may be called any number of times, and reentry to the main
program at the proper point is automatically controlled

by the calling program. However in this implementation

of the interpreter, a subroutine may not directly or
indirectly call itself.

A subroutine in BASIC may consist of any number of
sﬁatements; but its last one must be g RETURNSTATEMENT ,
The subroutine calling statement iz the GOSUBSTATEMENT,

A subroutine can also call another subroutine,

Examples.,--The following are examples of GOSUBSTATENENTS :
and RETURNSTATEMENTs

21

1. 10 GOSUB 20

.

20 —men-

v -

40 RETURN
2. 21 CGOSUB 30

e

30 =mme-

140 GOSUB 50

40 RETURN

50 wmmm-

60 RETURN
DIMSTATEMENT:

The source DIMSTATEMENT assighs names to vectors and
arrays and specifies the object data structure, i,e., how
many storage locations are to be reserved for them,

In the storage allocation, vectors amd arrays will be
allocated contiguous locations in the data area and are
placed in an ascending order.

Examples.--The following are examples of DINMSTATEMENTa:

1. DIM A(2,2)
2, DIM B(6)

The first example assigns A as the name of an array which
requires four storage locations: A(1,1), A(1,2), A(2,1) and
A(2,2).

22

The second example assigns B as the name of a veotor
which requires six storage locations: B(1), B(2), B(3),

B(&¥), B(5), and B(6).

DEFSTAT NT

The general form of the\user~defined function is

In DEF FNa(v) = expression
where “a" is any letter of the alphzbet, "v* is a varisble
and "expression® is an expression that uses the variable
"y,

The user-defined function is useful when a particular
one-statement computation is required at several different
points in a progranm,

fxamples.-~The following are examples of DEFSTATEMENTS;

1. 10 DEF FNA(X) = X -~ 4 «+ 5 - X %% 2
2, 20 DEF FNB(Y) =Y /Y ~l 42 -y ¢

STOPSTATEMERT
The STOPSTATEMENT is used to terminate the execution of

& program,

ENDSTATEMENT
The final statement in each BASIC program must be the
ENDSTATEVENT, It tells the interpreter the source program

is complete, and if executed it stops the execution.

Built-in Functions
The BASIC language has nine built-in functions in this

interpreter., They are

SIN(X)
cos (X)
TAN(X)
ATN(X)
EXP(X)
ABS(X)

LOG(X)

SQR(X)
INT(X)

23

Sine of X

Cosine of X
Tangent of X
Arctangent of X
Exponentistion, RS
Absolute value of X
Natural logarithm of X
Sgquare root of X |
integer part of the
value of X (the sign

of X remains unchanged)

1.

2,

CHAPTER BIBLIOGRAPHY

Abramson, Harvey, Theory and Application of a Bottom-Up

Syntax-Directed Translator, New York, Academic Fress
Inc. ' 1973 .

Donovan, John J., Systems Programming, New York, McGraw-
Hill Book Company, 1972,

International Business Machines, IBN Systems 360 PL/1
Reference Manual, Form No. €28-8201-0.

Naur, Peter and others, "Revised Report on the Algorithmic

Language, Algol 60, Programming Systems and
Languages, edited by Saul Rosen, New York, McGraw-

Hill Book Company, 1967,

Smith, Roberi E., Discovering BA$IC, New York, Interna-
tional Timesharing Corporation, 1970.

Spencer, D.D., A Guide to BASIC Programmings A Time-

sharing language, the United States of America,
Addison-Wesley Publishing Company, Ine.,, 1970.

2k

CHAPTER III
DATA STRUCTURE

In this chapter the data bases and their formats
for this interpreter are depicted in detail.. Figure 1
shows the manner in which the various data bases are

used. (1).

SOURCE
SOURCE is an external file built by the SCANNER and
is used as an input to the LISTER. It contains a copy of

the BASIC source program,

ATOMS

ATOMS 18 an external file built by the SCAKNER and is
used ae# an input to the PARSER. The entries in the file
ATOMS are numbers which identify a certain atom-type followed
by a variable which may point to an entry in the symbol list
or in the line number list, The atom~type may also be
followed by a value of NULL (a special PL/1 value) or by a
number representing the trace level for the PARSER or the
SCANNER,

Table I lists the various atom-types along with their

respective operands, if any. Figure 2 shows the three types

of entries,

25

BASIC
program

ERRORES { SCANNER)

26

Optional
Debug
J{ERROREH

Symbol

List

PARSER

EXECUTE

ERROREE

INAGE

Listing
‘—-‘\\\\s__

Fig. 1--Interpreter System Flow

SOURC

ATOM

Debug

Line Number

Identifier

Constant

Edit

Left Paren
Right Paren
Comma

Bar

Dollar

Plus

Minus
Multiply
Divide

Less Than

Greater Than

Fqual
Not
IF

CN

TO

29

TABLE I
LIST OF ATOMS
OPERAND

Trace level for the PARSER
and the EXECUTE.

Pointer to the entry in the
line number list.

Pointer to the symbol list
en‘tI‘y-

Fointer to the symbol list
entry,

Pointer to the symbol list
entry.

TABLE I-=-Continued
ATOM OPERAND

DIM
END
FOR
LET
REM
DATA
GOTO
NEXT
READ
STEP
STOP
THEN
GOSUB
PRINT
RETURN

cos
TAN
ATN
EXP
ABS
LOG
SAR
INT
DEF

29

atom~type number pointer |

atom-type number pointer

atom=-type number

Fig. 2=--Atom layout

ERRORES, ERRQREP, and ERRCREE

ERRORES, ERROREP, and ERROREE are external files built
by the SCANNER, the PARSER and the EXECUTE respectively.
All the files contain the error messages generated during
processing of the BASIC program. All the files are merged
into the output listing produced by the LISTER. Each entry
in these files consists of a line number on which the error
occurred and up to one hundred characters of text describing

the error.

Symbol List

The symbol list is a simply linked list. The nodes
of the list are dynamically allocated as they are needed.
Each node contains eight fields, Figure 3 shows the lay-
out of a node. 4 node ilg variable in size since the
NAME field is variable in size,

The field called CHAIN always points to the next entry
in the symbol list., The last entry in the symbol list has
a CHAIN value of NULL, a special PL/1 value.

30

The field called TYPE is an integer value which indi-
cates the node type. TYPE has different sets of values
for each segment of this interpreter, The node .types
built by the 3CANNER are

1. Identifier,
2. Constant,
3. Edit. |
The node types recognized by the PARSER are:
i. Subscripted variable,
2. Simple variable,
3. Constant
4, Function
5. Edit
6. Dummy variable.
The node types recognized by the EXECUTE are
1. Subscripted variable
2., BSimple variable
3. Constant.

The field called LOC is filled in by the PARSER and
the EXECUTE, The PARSER fills the LOC when parsing a
user-defined function. When the node is the type of user-
defined function, the LOC is a pointer to an entry in the
line number list. When the node is the type of dummy vari-
able, the LOC is a pointer %o a simple variable where the
value of the dummy variable is stored. The EXECUTE sets

the LOC during storage allocations.

31

The field called LNGH is filled in when the node is
allocated. It contains the number which is the length of

the NAME field in characters.

CHAIN TYPE

LoC LNGHﬂ

ROW COLUMN DIM
NAVE

Fig, 3--3ymbol Node

The field called ROW is filled in by the PARSER., TI#
points to an entry in the symbol list where the row value
is stored.

The field called COLUMN is filled in by the PARSER, I%
points to an entry in the symbol list where the column value
is stored,

The field called DIM is filled in by the EXECUTE., It
contains the number of elements in an array. K

The field called NANE is filled in when the node is
allocated. It contains an identifier which names an
array, a simple variable, an edit, a defined function or
a constant.

Nodes are allocated by the SCANNER and the PARSER. The

SCANNER. builds nodes for every identifier, edit and constant

32

found in the BASIC program. The PARSER builds nodes for
temporaries. The PARSER also builds nodes for function

values and dummy variable values,

Line Number List
The line number list is a one-way linked 1list. The
nodes of the list are dynamically allocated as they are
needed. Each node contains four fields. A node is vari-
able in size since the NAMEL field is variable in size,

Figure 4 shows the node layout in the line number list,

CHAINL THCD

LRGHL

NAMEL

Fig. 4--Line number node

The field called CHAINL is always a pointer to the
next entry in the line number list., The last entry in
the line number list has a CHAINL value of NULL, =a special
PL/1 value,

The field called THCD is a pointer to an entry in the
pseudocode list, It iz used to transfer the program con-
trol when executing the pseudocode,

The field called LNGHL is filled in when the node is
allocated. It contains a value which is the length of the
NAMEL field in characters.

33

The field called NAMEL is filled in when the node is
allocated. It contains a line number which names a source

gstatement,

Pseudocode List

The pseudocode list is nemed LOGTAC in this interpreter.
LOGTAC is a simply linked list built by the PARSER and is
used as an input to the EXECUTE. It is the internal repre-
sentation for the BASIC programming language. The entries
in the pseudocode list are numbers which identify the
pseudocode type optionally followed by one to three pointers
or numbers. Figure 5 shows the five types of entries in the

paseudocode list.

code chaint

code number chaint

code pointer | chaint

code pointer | pointer thaint

code pointer | pointer pointer chaint

Fig. S5--Pseudocode node

The field called CHEENT always points to the next entry

in the pseudocode list,

34

Table 2 defines the various codes and lists their
respective operands, if any. Pointer operands point to
the entries in the symbol list or in the line number list,
A code defining an action on a pointer actually means the
action applied to the entity defined by the symbol list

entry or line number list entry pointed by the pointer,

IMAGE
IMAGE is an external file built by the EXECUTE and is
used as an input to the LISTER. The entries in the file
IMAGE are numbers which identify a certain output action
followed by a variable whieh may point to an entry in the
symbol list or point to a value in the storage. The output
action may also be followed by a value of NULL (a special
PL/1 value),
The three output actions are:
1. SKIP : Skip to a new line.
2. OUTo s Output the value of a variable or constant.
3. OUT1 ; Output messages,

TABLE II

PSEUDOCODE

35

CODE
ATN

EXFP

ABS

LoG

SQR

INT

OFERAND AND CODE DEFINITION
P1, P2

Pl is the real argument passed
to built-in function ATN and
the result is stored in P2.
PL, P2

P1 is the real argument passed
to built-in function EXP and
the result is stored in p2,
P1, P2

Pl is the real argument passed
to built-in function ABRS and
the result is stored in P2.
P1, P2

Pl is the real argument passged
to built-in function L0OG and
the result is stored in P2,
Pl, P2

Pl is the real argument passed
to-built-in function SQK and
the result is stored in p2.
P1l, P2

Pl is the real argument passed
to built-in function INT and

the result is stored in P2.

36

TABLE II--Continued

CCODE OPERAND AND CODE DEFINITION
QUTO Pl
OUTPUT P1 (number),
ouTr1 F1
OUTPUT P1 (Character).
STOPCD No operand.
Stop execution.
SUBTRACT Pl, P2, P3
Subtract Pl by P2 and store
the result in P3,
EXPONENTIATION P1, P2, P3
Exponentiate Pl by P2 and
store the result in P3,
SIN Pl, P2
P1 is the real argument passed
to built-in function SIN and
the result is stored in p2,
cos Pl, P2
P1 is the real argument passed
to built~-in function COS and
the result is stored in p2.
TAN P1, P2
Pl is the real argument passed
to built-in function TAN and
the result is stored in P2z,

CODE
EXIT

GO

GOIF-FALSE

IN

INDX

MOV

NEGATE

COMPARE-GT

37

TABLE II--Continued

OFERAND AND CODE DEFINITION
P1

Exit asfunction by returning
the function value, Pi.

Pl

Branch to P1,

P1l, P2

If P1 is false, branchk to P2;
otherwise, execute the next
code,

P1

Input P1.

P1, P2, P3

Calculate the address of Pt
subscripted by P2, and store
the resulting address in P3.
P1, P2

love PI to P2.

P1, P2

Negate Pl and store the
result in p2,

P1, P2, P3

If Pl is greater than P2, P3
is set to true; otherwise,

P3 is set to false.

CODE
COMPARE-LE

COMPARE-LT

DODIVIDE

DOTINES

ENTER

END-TAC

GDEBUG

38

TABLE II-~Continued

OFERAND AND CODE DEFINITION
Pi, P2, P3

If P1 is less than or equal
to P2, P3 is set to true;
otherwise, P3 is set as false.
P1, P2, P3

If Pl,is less than P2, P3
is set to true; otherwise,
P3 is set to false.

P1, P2, P3

Divide P1 by P2 and store the
result in P3.

P1, P2, P3

NMultiply P1 by P2 and store
the result in P3.

P1, P2

Enter a function by storing
the return address at Pi,
the funciion exit, and the
argument value at P2, the
dummy argument.

No operands.

Indicates end of internal
representation,

Number.

Set the EXECUTE trace level.,

CCDE
GLNNO

ADD

CALL

COMPARE-EQ

COMPARE~GE

39

TABLE II-=Continued

OFERAND AND CODE DEFINITION
Number,

Sets a new line number,

Fl, P2, P3

Add P1 to P2 and store the
result in P3,

P1, P2, P3

The function, P1 1s invoked,
the real argument is stored
in P2 and the returned value
is stored in P3,

Pl, P2, P3

If Pl is equal to P2, P3 is
set to true; otherwise, P3
is set to false,

Pl, P2, P3

If P1 is greater than or
equal to P2, P3 is set to
true; otherwise, P3 is set

to false,

CHAPTER RIBLIOGRAPHY

1. Donovan, John J., Systems Programming, New York, MeGraw-
Hill Book Company, 1972,

4o

CHAPTER IV

INTERPRETER

Lexical Analysis

The segment concerned with lexical analysis of the

source is implemented as an independently complied procedure

called SCANNER. Reasons for separating lexical from syn-

tactical analysis are discussed below (2)i

1.

5.

A large portion of compile-time is spent in
scanning characters. Separation allows sole
concentration on reducing this time.

The syntax of symbols can be described by
very simple grammars., Separating scanning
from syntax recognition makes it possible to
develop efficient parsing techniques.

Since the SCANNER returns a symbol instead

of a character, the syntax analyzer actually
gets more information about what to do at
each step.

Development of high-level languages requires
attention to both lexical and syntactic
properties,

Se?aration makes it possible to write one

syntactic analyzer and several scanners

41

42

which are simpler and easier to write, Each
scanner translates the symbols into the same

internal form used by the syntactic analyzer,

Problenm

The problem of lexical analysis is to recognize certain
strings as basic elements. The basic elements are placed

into the symbol list ot the line hAumber list, As other seg-

ments recognize the uge and meaning of the elements, further

information is entered into these lists,

Data Structure
The input to the SCANNER is the BASIC source program,
The BASIC program is on punched cards.
The outputs produced by the SCANNER are;
1. The symbol list,

2, The line number list

3. SOURCE
4, ATOMS
5. ERRORES

6. Optional debut listing.

Algorithm .
The SCANNER procedure is an implementation of a finite-
state machine (2} which breaks the source input into atoms
and builds a symbol list and a line number list in the process.,
A state diagram for the finite-state machine is shown in

Figure 6.

43

(START K

| OTHER
CLEAR, ADD, NEXT

DIGIT

CLEAR, ADD, NEXT

LEmmRR

CLEAR, ADD, NEX®

TOR

ADD, NEXT

IDENT

CLEAR, ADD, NEAT

CLEAR, ADD, NEXT

QUTPUT
CONSTANE

QTHER

TDENTIFEER

OUTPUT
DELINMITUER
_VERTTCAL BAR /o)
CLEAR, ADD, MNE EDIT L.
» ADD, OUTBUT
EDIT
CEPT_BA
ADD, NEXT
Lspice
NEXT

Pig, 6-~Finite-state machine for lexical analysis

Ly

The 256 possible character codes are broken into classes
using a translate-table. There are seven different character
classes,

The finite-state machine simulation is done in the usual
manner with two tables. One table which defines the next
state function, and one table which defines the action asso~
ciated with each state transition.

There are six different states in the finite-state machinej
that is, START state, CONSTANT state, IDENTIFIER state,
OPERATOR state, DELIMITER state and EDIT state.

In the lexical analysis comments are discarded since

they have no effect on the processing of the program,

Parsing

The parsing seégment is implemented as an independently
compiled procedure called PARSER,

The parsing segment is an application of the top~down
parsing (2) in this interpreter. Gauthier.(i)i defined the
term "top-down parsing” as a procedure that creates goals
and subgoals in attempting to relate a statement to its syn-
tax environment.

The method of recursive descent (2) is used. The PARSER
has one recurzive procedure for each nonterminal symbol which
parses phrases for the nonterminal symbol, The procedure is
told where in the program to begin looking for a phrase (2)
for the nonterminsl symbol; hence it is goal oriented or pre-

dictive. The procedure finds its phrase by comparing the

bs

source program at the point indicated by a cursor with right
parts of rules for the nonterminal symbol, calling other

procedures to recognize subgoals when necessary,.

Problem

The problem in the parsing segment is to recognize the
phrases and interpret the meaning of the constructions.

This process is known as syntax analysis., The PARSER
also notes syntactic errors and assures some sort of recov~
ery so that the interpreter can continue to leok for other

syntactic errors which were originally in the source.

Data Structure
The input to the PARSER is an external file called

ATOMS,
The output produced by the PARSER are:
1. Pseudocode list
2., ERROREP
3. Optional debug listing.
The symbol list and line number ligt are used to support

the syntactic analysis,

Algorithm
In general the PARSER segment, when called by the system,
converis statements in the BASIC program to the internal repre-
sentation and enters them in the pseudocode list, Atom by

atom and statement by statement, a BASIC program ils parsed.

46

Fundamentally the parsing segment is comprised of
PROGRAM=-HEAD and PROGRAM#TAIZ. PROGRAM~-HEAD is responsible
for parsing DEFSTATEMENT and DIMSTATEMENT, PROGRAM~TAIL is
regponsible for parsing the other BASIC statements,

PROGRAM-HEAD has two main slaves. They are DEFINED-
FUNCIION and DIM-STATEMENT. ‘'These three control programs
as well as their service routines produce the appropriate
pseuvdocodes and insert them in the pseudocode list for the
DEFSTATEMENT and DIMSTATEMENT,

FROGRANM~TAIL consists of PROGRAM-MAIN and PROGRAN-
CONTROLLER, PROGRAN-CONTROLLER is written as a recursive
program. PROGRAM~-MAIN is designed teo drive the PROGRAN-
CONTROLLER. When called, PROGRAM~CONTROLLER passes control
to one of its fourteen slaves. These fourteen programs as
well as thelr service routines are in charge of creating
the appropriate pseudocodes. The block chart is shown in

Figure 7,

DATASTATENENT gnd READSTATEMENT

In processing the DATASTATENMENT, no pseudocode is pro=~
duced. For each signed number appearing in the DATASTATEMENT,
an entry is created in a linked list called DATA-INPUT. The
DATA-INPUT is arranged on a first-in~first-out basis,

In processing the READSTATEMENT requests are made to the
DATA-INPUT. For each simple or subscripted vafiable in the
READSTATEMENT, a set of two pseudocodes is created, They
are IN and MOV,

PROGRAM~
HEAD

| svmbol List|

Line No, List |

ATOMS File

DEFINED-
FUNCTION

DIki=
STATENMENT

PARSER
MAIN

b7

IF~STATEMENT

ON-STATEMENT

FOR-STATEMENT

PROGRAM=-
TATL LET =STATEMENT
- i
PRINT -3TATENMENT
Sggg;égg&}i} NAT A ?qmnmwmm\zm

GOTO~STATEMENT

. - TEMNEN

NEXT~-STATEMENT

r *r

STOP=-STATEMENT

RETURN~STATEMENT

, END-STATENMENT .

Fig. 7=-~-Parsing Block Chart

48

Example.--The following is an example of the DATASTAYE~
VENT and READSTATEMENT.
10 DATA 10, 25, 39
38 READ X, Y, Z
After parsing these two statements, three entries were
created in the DATA-INPUT list., Three sets of IN and MOV

internal representation were added to the pseudocode list,

PRINTSTATEVMENT

The BASIC of this interpreter provides for five zones
of twenty characters each pér line. Listed below are pseudo~
codes associated with the PRINTSTATENENT
1. SKIP¢ Skip te a new line
2. OUT0s+ OQutput the value of a variable
3. 0UTl: Output heading or label messages.
Examples.-~The following are examples of PRINTSTATEMENTS s
1, 10 PRINT
2, 30 PRINT 'X= ', X
In the first example, SKIP is the only pseudocode to be
created in the parsing segment. In the second example, two
entries are produced in the pseudocode list. The are oUT1

and CUTOC,

ETSTATEMENT
The LETSTATEMENT is the assignment statement in the
BASIC programming language.
Listed below are pseudocodes associated with the

LETSTATEMENT 4

kg

1. ADD
2, SUBTRACT
3. DOTIMES
4, DODIVIDE
5, EXPONENTIATION
6. NEGATE
7. CALL
Elements involved in the LETSTATEMENT are constant, sim-
ple variables, subscripted variables and defined functions.
It is slower to analyze and interpret subscripted variables
than simple variables. Each subscripted variable needs three
extra pseudocodes., They are SUBTRACT, DOTIMES and ADD.
Examples.--The following are examples of LETSTATEMENT s 4
1. 10 LET XYZ = 10
2, 20 LET X =Y - Z 4 FNA(2) % 4 / 2
In the first example, MOV is the only internal represen-
tation created in the pseudocode list. In the second example,
"FNA" is assumed to be the name of a defined funection in a
BASIC program. Six pseudocodes are produced in the pseudo=~
code list. They are SUBTRACT, CALL, DOTIMES, DODIVIDE, ADD
and MOV,

oT EMENT
In processing the GOTOSTATEMENT, the "GQn internal repre-
sentation is produced in the pseudocode list. In this internal
representation there is a pointer to an entry in the pseudocode

list, to which the program is supposed to transfer the control.

50

The GOTO-STATEMENT routine fetches this pointer in the line

number list and uses it as the operand of the "GO~ pseudocode.

QNSTATEMENT
When processing the ONSTATEMENT, the ON=-STATEMENT routine

will create an index variable and set its initial value to 1,
Pseudocodes associated with the ONSTATEMENT are:

1. ADD

2. SUBTRACT

3. DOTIMES

4%, DODIVIDE
5. EXPONENTIATION
6. COMPARE-EQ
7. GOIF-TRUE
8, MOV
1
1. ON X THEN 10,20
2. ON X+Y THEN 100, 200, 300

In the first example six entires were created in the

pseudocode list. They are MOV, COMPARE-EQ, GOIF~TRUE, ADD,
COMPARE-EQ, and GOIF-TRUE. In the second example, pseudocodes
created in the pseudocode list are MOV, COMPARE-EQ, GOIF-TRUE,
ADD, COMPARE-EQ, GOIF-TRUE, ADD, COMPARE-EQ and GOIF-TRUE.

IFSTATENENT
The IFSTATEMENT may be used to conditionally alter the

execution flow of a BASIC program. An IFSTATEMENT has the formi

51

In IF expressionl relation expression2 THEN 1nil

InZ2 ~===-

Inl ===

The effect of the IFSTATEMENT is to transfer control
from the current statement to the statement numbered 1ni,
If the relation:is-satisfied, the program contrel is trans-
ferred to statement 1nl, Otherwise, statement In2 will take
over program control.

Pseudocodes are first generated to compute the values
of expressionl and expression2 regpectively., One of the
following pseudocodes is then generated:

1. COMPARE-EQ
2. CONMPARE~GE
3. COMPARE=-GT
4, COMPARE-LE
5. COMPARE-LT
6. COMPARE-NEQ

Finally, the pseudocode *GOIF~TRUE" is added to the
pseudocode list,

Zxamples.--The following are examples of IFSTATEMENT s 4

1, 10 IF X+Y = X*Y THEN 100
2. 20 IF X/Y*%2 = X=Y%2 THEN 200

In the first example four entries are created in the
pseudocode list. They are ADD, DOTIMES, COMPARE-EQ and GOIF-
TRUE. In the second example, pseudocodes generated in the
pseudocode list are EXPONENTIATION, DORIVIDE, DOTIMES, SUB-
TRACT, COMPARE-EQ and GOIF-TRUE,

52

FORSTATENENT and NEXTSTATEMENT

The FORSTATEMENT and the NEXTSTATEMENT are used in pairs
to govern the repeated execution of several BASIC statements,
When processing the FORSTATENMENT, the FOR-STATEMENT first
initializes the index variable. It then stacks the index
variable, increment value, final value and the line number
of the first statement following the FORSTATEMENT. An index
variable is basic to the control at execution. At each
execution~time iteration of the FOR range the index variable
is updated by an increment value. Iteration continues until
the index variable reaches its final value. At that time
execution drops down through the NEXTSTATEMENT .

When processing the NEXTSTATEMENT, the NEXT-STATENENT
routine first unstacks the index variable, increment value,
final value and the line number of the first statement
following the pzired FORSTATENMENT, It then updates the
indéx variable and examines the value of the index variable
againgt the final wvalue.

To check for proper program sequence, the PARSER keeps
a counter, Whenever a FORSTATENENT is encountered, this
counter is incremented by one. It is decremented by one
for a NEXTSTATENENY., At the completion of nesting pairs of
FORSTATEMENTS and KEXTSTATEMENTs, the counter is expected to

have the value of zero.

Examples.--The following are examples of FORSTATEMENTs
and NEXTSTATEMENTSs:

53

1. 10 FOR X = 2 70 8 STEP 2
20 LET Y=Y + 2 + 4
30 NEXT X
2, 40 FOGR Y = 1 TO 10 STEP 5
50 FOR Z = 1 TO 10 STEP 5
60 LET XYZ (Yy2) = Y +:2
70 NEXT Z
80 NEXT Y
In the first example, X is the index variable., Its
initisl value is assigned to be two. The increment value
is two and the final value is four. Six entries are
created in the pseudocode list. They are MOV, ADD, ADD,
MoV, CGMPARE*LE and GOIF-TRUE,
In the second example pseudocodes generated in the
pseudocode list are MOV, MOV, ADD, SUBTRACT, DOTIMES, ADD,
MOV, CONMPARE-IE, GOIF-TRUE, COMPARE-LE and GOIF-TRUE,

GOSUBSTATEMENT and RETURNSTATEMENT

Parameterless subroutines are allowed in BASIC programs
through-the GOSUBSTATEMENT and the RETURNSTATEMENT .

in order to allow the negting of pairs of the GOSUBSTATE~-
MENTS and the RETURNSTATEMENTS, a linked list calied RETURN-
STACK is used to save the return addresses on a lagt-in-
first-out basis,

When processing the GOSUBSTATEMENT, the GOSUB=-STATEMENT

routine pushes down the return address, When processing

54

the RETURNSTATEMENT, the RETURN-STATEMENT routine pops

up the return address.

Examples.=~The following are examples of the
GOSUBSTATENMENTs and RETURNSTATEVMENTs:
1, 10 GOSUB 100
20 meme-
100 ~==m=
200 RETURN
2. 10 GOSUB 100
20 mem=-
100 GOSUB 200
101 ==~w-
105 RETURN
200 =====
300 RETURN
In the first example, the RETURN~STACK has only one
return address. Statement 100 stacks it and statement 200
unstacks it. In the second example, the RETURN~-STACK contains
two return addresses. When executing the statement 300, the

return address popped up by the RETURN~STATEMENT routine is

line number 101,

DIMSTATEMENT
When processing the DINSTATEMENT, the DIN~STATEMENT rou-

tine identifies the source~language names of vectors and

55

arrays. It also saves the values of row parameters and

column parameters.

D [MENT

When processing the DEFSTATEMENT, the DEF~STATEMENT
routine identifies the name of the defined function and the
name of the dummy variable. The first psuedocode created
by the DEF-STATEMENT is ENTER. The last pseudocode created
by the DEF-STATEMENT is EXIT. Control transfer and argu-
ment replacement in function call are performed by
pseudocode CALL and ENTER., The result is passed back through
the EXIT pseudocode.

STOoPS MENT
When processing the STOPSTATEMENT, the STOP~STATEMENT

routine generates the pseudocode STOPRCD.

ENDSTATENENT

When processing the ENDSTATEVMENT, no pseudocode ig
created in the pseudocode list, In this interpreter, as
soon as the ENDSTATEMEM! is encountered, the program control

is transferred back to the main control program.

Execution
The execution segment is implemented as an independently
compiled procedure called EXECUTE. EXECUTE consists of two
major activities: storage allocation and pseudocode exe-

cution,

56

Problem

The problem in the execution segment is to reserve the
proper amounts of storage required by the BASIC program. Once
the interpreter has created the pseudocode list and reserved
the proper amounts of storage, it may start to execute the

pseudocode list,

Data Structure
The input to the EXECUTE is the pseudocode list. The

pseudocode list is a one-way linked list built by the parsing
segment.,
The outputs produced by the EXECUTE are:
1, IMAGE: It is a one-way linked list used 28
an input to the LISTER.
2. ERROREE.
3. Opticnal debug listing,
The symbol list and line number list support the execution

segment, Their addresses are passed as external addresses.

Algorithm
When called by the main program, EXECUTE starts to

assign storages and execute pseudocodes.

Storage allocation is performed by scanning the symbol
list and reserving the appropriate amount of storage for
each constant, simple variable and subscripted variable,
Similarly, storage is assigned for the temporary locations

that will contain intermediate results.

57

It is the responsibility of EXECUTE to maintain the
pseudocode execution sequence. In order to carry out the
execution in the correct sequence, EXECUTE must keep track
of where it is in processing the pseudocode list. To this
end, a pointer called P3W is used to hold the next pseudo-
code to be executed. As pseudocode is processed, the PSW
is advanced to the next pseudocode, This segment may be

summarized in block chart form as shown in Figure 8.

Listing
The listing segmentation is implemented as an indepen=~

dently compiled procedure called LISTER.

Problem

The problem in the listing segment is to produce a
source listing with line numbers. Error messages from other

segmentations are merged into the source listing.

Data Structure
The inputs to the LISTER are:
1. SOURCE
2. ERRORES
3. ERROREP
4. ERROREE
5. INAGE

The output produced by the EXECUTE is the source
listing.

Symbol List.]

Line No. List

LOGTAC

EXECUTE
MAIN

Fig., 8--BExecuting Block Chart

COVPARE-TE

COUPARE-TT

CONMPARE-NEQ

|__DODIVIDE

__DOTINES

ENTER

EXIT

| EXPONENTIATION
GO

GQIE-TRUE

IN

LNDX

MoV

~—DEGATE

QLT

—2LQPCD

L.GULL

SUBTRACT

SIN

Cas

TAN

AL

P

AB3

LOG

SOR

INT

58

59

Algorithm
The inputs are processed by the LISTER in the following
order: SOURCE, ERRORES, ERROREP, ERROREE and IMAGE,

Debug Output

SCANNER, PARSER and EXECUTE generat e a debug
listing when requested. The debug output options are con-
trolled from the source input stream. The options can be
turned on and off at any point during execution with single
source cards. There are several levels of debug output that
can be selected,

Table III shows the output for each level. Samples of

debug outputs are shown in Appendix C.

Testing
This interpreter was tested in several stages. The
stages were (3):

1, Stage 1--SCANNER output was hand-checked
using the debug output,

2. Stage 2~--PARSER output was hand~checked using
the debug output. The PARSER and
the SCANNER were integrated for this
stage.

3. B3Tage 3--EXECUTE output was hand-checked
using the debug output, EXECUTE was
integrated with PARSER and SCANNER

for this stage,

60

k., Stage 4--LISTER output was hand-checked
using the debug output., LISTER
was integrated with PARSER, =
SCANNER, and ZXECUTE for this
stage.

Test programs for stage 1 through 3 were designed to
test the interpreter rather than go into execution, The
programs were designed to test each major feature of the
interpreter on a statement by statement basis. Prograns
for stage 4 were designed to produce output that could be
interpreted as correct or incorrect depending on whether
or not the interpretation had been correct. Samples of

testing programs are shown in Appendixes 9-14,

PHASE

SCANNER

PARSER

EXECUTE

61

TABLE IIIX

DEBUG OUTPUT

ouUTPUT

None
Source, Errors, Atonms

Source, Errors, Atonms,
Detailed trace of finite-
state machine

None

Source, Errors, Pseudo-
code

source, Pseudocode, Atoms,
Detailed subroutine trace
of PARSER

None

Execution sequence of
pseudocode

Execution sequence of
pseudocode, wvalue of
location before and
after execution.

62

CHAPTER BIBLIOGRAPHY

1. Gauthier, Ponta, Designing Systems Programs, New Jersey,
Prentice-Hall, Inec., 1970,

2. Gries, David, Compiler Construction for Digit Computers,
New York, John Wiley & Sons, Inc., 1971.

3« Isaacson, Portia, A Compiler for This Programming
Language, Department of Computer Sciences, North
Texas State University, Denton, Texas, 1971
(unpublished).,

CHAPTER V
CONCLUSION

For this BASIC translator, an interpretive approach was
selected., Rather than translating the socurce statement to
directly executable computer machine code, the statement is
interpreted in obvject pseudocodes. Some particular advan-
tages for the interpretive method are (1)

1. Easier alteration to a running program.

2. Reduetion in object code size, especially

when data type checking is involved.

3. Creater diagnostic capability,

4%, Easier portability of object programs.
Its disadvantages can be slowness due to software decoding of
pseudocodes and repetitive interpretation of unchanging ele-
ments, But even the slowness of execution is not a
disadvantage for program development, where compikle time
greatly exceeds execution time--it is only a disadvantage
for production programs.

Repeated attempts with various algorithms proved that
the best approach is to divide characters into groups. In
this lexical analysis six groups are devised. Class T
represents the twenty-six characters of the English alpha-

bet. Class II represents the digits zero through nine while

63

6l

the operators are assigned to the third class, Classes &,
5 and 6 represent delimiters, blank, and quotation mark
respectively.

This allows quick adaptation to finite-machine simula-
tion; hence, the process requires less time. Alsoy,the
number of data bases is reduced. To accomplish this, the
terminal and identifier tables are combine# with the
resulting table having a pointer that points to either the
symbol table or line number table. The line number table
acts as the bridge within the statements of the program
and allows for continuous execution of the pseudocode list.
These adaptations decrease the amount of storage required.

Through the careful design of pseudocodes and elimina-
tion of the use of unnecessary repetitions of the pseudocode,
the interpreter is made more efficient and effective. The
storage space for the pseudocode list is reduced, thus
reducing the execution time.

The interpreter is also equipped to detect and correct
minor errors before continuing execution, Alg0,.in order to
facilitate program debugging, an optional trace listing is
made accessible to the programmer. This debug output facil=
itates detection and correction of these errors.

In conclusion, no major problems are encountered in
building the interpreter and an even more efficient one
seems possible threough further adaptations of the interpreter

presented,

CHAPTER BIBLIQGRAPHY

1. Broadbent, J.K., rlicroprogramming and System

Architecture," The Computer Journal (Volume 17
Number 1), 1973.

65

APPENDIX I

RESERVED WORDS

iF¥ REW
ON SIN
TO SQR
ABS TAN
ATN DATA
Cos GOTO
DEF NEXT
DINM READ
END STEP
EXP STOP
FOR THEN
INT GOSUB
LET PRINT
LOG RETURN

66

APPENDIX II

BACKUS NORNAL FORN OF THIS BASIC PROGRANMING LANGUAGE

<BASIC PROGRAMD tiz CPROGRAM—EAUDCPRGGH AM=TATL>CTECMINAL ST
l(PFGGRAK-TAIL><IthH{NAL 57>

 <PEUGRAM-HEAD> t:=<REN STDCDEF ST>CDIM STHICREM STH>CDEF STO{CFEM ST>CDIM STy

I <DEF ST><DIM ST>ICDEF ST>IKDIM ST
CFUNCYION VA”IABLE) 232 FNCLETTER>IFENCSDIGITS . -
CIEF ST> f:=<LINE NUMBER><CALANK» DEFCBLANKICFUNCTION VﬁR'AB!E><'EFT PAPEN>
<SIMPLE VARIABLEDCRIGHT PARENDCEQUAL SIGMNOCEXPTIESSINND
SBain 572 22zCLINE KUMBEPD (AL ANK2 QTMCBLARK>COTMENST I |LTST> |
SULMENSION LISTS> zi=<DIMENSTUNY [KDIMENSION LISTICCOMMASCDIMENSIOND
CUOLMENSIUNY t3=<STMPLE VARTAJLEDCLEFT PARENDCINTEGERDCCUMMADCRYGHT PAPEN>

CTERMINAL ST1> :i=<END §$T>
CPRAGGRAM TATLY> 22 ={STATEMENT X CPROGE AM TATL><STATEMENTD
CSTATEMENT> 3:=CLET STOICREAD ST2I<DATA STOICPRINT STOCBATD STOCON 5Ty
CTF STOICFOR STHISNEXTY ST>l<DIM
<1F ST)I(FGQ ST>ICNERY ST>i<G05u8 ST>I<RFTURN ST>1CSTOP ST
. <REM ST>
CLINE NUMBERY ixCDIGITXICLINE NUMBERCDTGITY
SnEM ST ::=<LINE NUMBER><BLAKK> REMCBLAP KD MESSAGE >
CLET ST> 1i=CLINE AUMBERICBLANKO VAT TABLEDCEQUAL ST GNI<EXPRESSIOND
(EkPRESSIQN) 1aedMULTIPLY FACTORMFCPREFTX DPXCEXPRESSIOND .
CEXPRESSTON>CLOd PRICRITYOCMULTERPLY FACTOR> C
CHYLTIIPLY FACTORD? _$:=<MULTIPLY FACTYURICHIGH PRICRY TYRCINVILUTION FACTORY
CIHVOLUTION FACTOR>
CPREFLIX UP> :1=<PLUS SIGNOICAINUS SIGNY
CHIGH PRIDRIEY? 2:1=<CASTERISK SISN>IKSLASH SIGN> .
<LOW PRIORITYD 13e<PLUS SIGHN2 [CHINUS SIGHY
CINVOLUTEON FACTOHR> 131={TERMM JCTERMDCASTERISK SIGN>CASTERISK STGNOCTERM
<TERMD =KL ONSTANTI <VARTABLE>| CFUNCTION PEFX]<EXPRESSIONY
CVARTABLE> f3=<SIMPLE VARTIABLEXICDIMENSIEN VARTABLE>
KDIMENSIUN VARTABLED> ::=(SIMPLE VARIABLEDCLEFT PAREMICEXPRESSIONICODMMAS
o o CEXPRESSIUIUN><RIGHT PAREND>
J<SIMPLE VARIABLESCLEFT PAREH)(FXPRESS!P&><FIGHT PAREY>
<S5IMPLE VAKIABLE> :==<LETTER>I<L&TTEP><LLTTFPDIGIT>

SALPHABET> ::=<LETTE&>I<UIQIT>

<CONSTANTY 23=<NUMBER>

CHUMBERY 33=<INTEGERD ISDECIMALY

CINTEGER> 33=<DIGIT>ICINTEGERCOIGIT>

COECIMALY $t=<{IMNTEGERICPERIJO>CINTEGERD [<PERIDDICINTEGER Y

<Biollx s:=0liizi3l4l5)airigiy

CSIGNZ 1i3<PLUS SIGM>[CMINUS 374343

SEURCTION REF> 1r=CFUNCTION JA#RC>KLEFT PARENDCEXPIESSIMNICRTGHT DAREND

CEUNCTION NAMEY 2 r=<BUILT=IN FUNLTIOND IKUSER FUNCT 1M

CUSER FURCTIOND :=<FURNCTION VARTABLED

<BULLE~i FUNCTION> @ o=SINICISITANIATNIEXPIABSILIGISQP | INTY

CSLGNED NUMBER2 :3sCSToh><CONSTANTXISCONSTANTY '

<DATA LIST> $2=<SIGNED WUMBER>{<DATA LISTOCCOMMADCSTGHED NJMBER)

CUATA ST> 33=<CLINE NUMBERDCBLANKPDATACRLANK>COATA LIST>

€G2Ta ST> f:=CLINE NUMBET >CBLANKIGOTLKBL ANKDCLINE NUMAESY

<LIHE NUMBER LISTD :i=aCLINE JUMBERDICLINEG NUMBEF LTSTOICCOMMADCLINE NUMBER>

CON BTx ti=dLINE NUMBERICBLANA JNCBL ANKSCEXPRESETION> CBL ANKY THEN
CGSBLANRZCLINE NUMBER] 3T>

€7

VCSIMPLE VARTABLEXSLEFT. PAEEN)(INTE§§E>SCQ“ﬂA><iﬂTEGER><9}GHT PAREN>

APPENDIX II--~Continued

CHASUE 5T> fi=CLINE NUMBER>CHLAIKDGNSUBCHLAN KDCLINE NUMBER>
<RETURN sr> t1=C¢LINE Nuussa><BLaux>PFTUFw

TCBLANKICLINE NUMBERD
<BIULEAN EXPRESSION> "=<EXPRESSIGN><PELAT!SH)(EXPGESS!ON)
CRELATION> 3= =l>=1<=1>1<f~=
CCFGR OSTY f1=CLINE NUMBERMCBLANKIFIRCAL ANKDCSIMPLE VARTABLE>CEQUAL S*GN>
e KEXPUESSINN>CALANKATICBLANKI<EXPUESSIIHISBLANKZSTER .

CBLANKDCEXPRESSIUND

CNEXT ST> ti=<LINE NUMBER)(ELAﬂA>NExr<BLANK><S!MPLE VAT ABLE>
CSI0P ST> s3=<LINE NUMBERXCBLANKXSTOP. R e
CEND STY> 1:=<¢LTNE NUMBFR>CBLANK>END
SYARTABLE LISTY $:xCVAPVABLEX | SYARTABLE LISTO>CCMNUMAYCYAT TABLED
CREAD §T» sis<LINE NUMBERDCUL ANKXAEADCBLANKY CYARTABLE LIST>
CPRINT LIST> pim<PRINT ITENDISPRINT LISTICCOMMARCPR[NT TTEM)
CPUINT ITEMD 33adEDITX{CEXPRESSIOND
CERLTY> :31a<BARDICMESSAGEY | <BAR> ..
<MESSAGE> .:=<CHARACTEP)|<%E:SAJE><CHA#ACTER>
CCHARACTERY 11=<LETTERD (<KDY GIT»ILKSPECTAL CHARACTERD
<PRINT. ST» ti=CLINE NUMAEASCHLANKDPR INT CRLANKICPRINT LIST>
CLETYERD z:=AIBICIOIEIFIGIHIIGiKELIMINIOIPLGIRISITIUIVIWIXIYIZ
<SPECIAL CHARACTERY t2z+|—1x[/[= 0 I<t> vl] i t<BLANK>ISI?
CPLUS SEGNY S53¥ i e e
<HMINUS SIGN> tti= .

<EQUAL SIGN> @

=
CLEFT PARENY> $:=
CRIGHT PAREN> =32
CASTERISK SIGN> i=x

_SSLASH SIGN> 3=/ e
CPERICDY s:i=,

SCUMMAY (2=,

U b o1

H

68

TRACE 1LEVEL 1 OF SCANNER

WRATEs
WRITEC
aRiTEe
WlTed
WRITEC
wrkITE Z
wHiTEY
wRiTEZ
it
hikiTes
WuTEL
whaTby
whi Tt
wniTkC
wRiTES
whliTEG
WRITEZ
wklTEZ
MRITEL
WRITEL
WRITES
wHiTEZ
wRiTowy
WRITES
ashifcd
wailel
wWhiTts
wilTeG
rRITEZ
wilTeEu
WRifce
wnilee
WRITEU
wRIfEe
wRITEY
WRITEZ
whilc i
WRITEL
WRITEZ
WKiTey
BRITE:
whiTES
WriTEC
wn TG
wWhiltd
ité
WRITE3 AluM
whiToe ATCM
RRITEG ATLM
103 oTLP

WEETES ATCHM
RAELTEZ ATuM
Lue
BRITES
ariled
BRITEC
anwlTEs
WkITEC
slfTby
wrITbw

AfLM
AT M
ATUN
ATCM
ATLM
ATCHM
ATCM
ATLHK
ATCNM
ATunM
AT M
ATUM
ATuM
ATuiM
ATL M
ATCH
ATEM
ATEM
AT
ATUM
ATLM
ATLM
ATCH
ATiM
ATCM
ATLN
AT M
AT(HM
ATLM
ATLHM
ATUM
ATLH
ATLM
AlLM
ATcM
Alud
ATCH
ATLM
BICH
ATLM
ATCHM
AT M
ATiL M
ATLKM
ATLM

ATLM
ATCHM
ATLM
ATLM
ATUN
Al H
ATL M

APPENDIX III

Cirba
COMSTENT
RIGHT_FAFEN
CCMMA
ICENTIFRER
LEFT_PEREN
COMSTAMNY
CCMpa
CUNSTERT
RIGHT_FAREM
Clppa ‘
ILEMNTIFTIER
LEFT_FAKEN
COASTAMY
CCMMA
CCASTAME
RIGFT_FAREMN
CC¥Ma
ICENTIFIER
LEFI_FIREN
CONSTAMT
{ixpEa
CCASTAMY
RIGHT FAREN
CCkKa
ICENTEFIER
LEFT_FAREM
CLNSTANT
COMEA
COMSTEMY
FIGHT_ FAFREA
LCrNa
ICEMTDFIER
LEFT_FARER
CORSTAMND
COMpa
CONSTANT
RIGFT_FLREN
COppa
ICEMNVIFIER
LEFT_F2REM
CEASTANT
ClMMa
COASTIAMY
RIGFT_PELREM

GLSLE 104

LINE_MNUFEER
GCsus
COMRSTEMY

LINE_MUMNEER
Sigp

FLR 4 = 1 TC 2

LINE_MLMRER
FCR
ICENTIFIER
EQUAL
CONSTAMT

Tc

COASTENT

69

ice

. G4

143

1C4

GLNAC
SiubCh
GLINC

Muy

GLINNC

My

cuhhC
SUBTRALT
LulIFES
Abb

LvuX

Ly

GuhihC

MUY

GLiAC
SUBTRACY
LCTINES
Aub

itvukX
SuBiRACT
wLIIFES
Aul

X
ASLBTRALCT
ULeTINMES
ACL

ihUX
suBTRACT
ULuTINMES
ALl

Iho X
CuYIMES
ALl

MUY

(U N, T8
CGMPARE_LT
Aul

wliF_ TRLE
whhh{
LLMPARE_LT
Aly

GulF_ TRLE
GLivNE
CLMFPERE_LY
ALD
LiF_TRUE
GLANC

G

Buihl

Gy

wihNL
Gihh
SKIF
GihAL
341 F

LuTi

CuTl
whNNC
SKLP

iNDX

APPENDIX IV

TRACE LEVEL 1 OF PARSER

[EVE

LG+
1
-]

i
51
i
isld
Falg
v

g
iCo

i
Lol
i
1519
is2v
¢
i
Ts<i
T3¢
.

i
{825
T34
A

K
i$2>
T42é
d
$A%
sCs
1s2d8
ida
®

[
1429
LGy
J

J
339
Wi
i

-1
(431
G551
Jdés
(W
Lgy
Ce4
ued

gz
vilsl)

eil. 2}
Céd

R
—
[¥=]

G B oan 2B P e oy e P e e L N R
L]
fatd
e

70

T$l7
T3l8
Tl
$Cs

T$i9
T$20
Tsl9
S

1821
Ts22
Tsll
$CS

T$23
1824
Ts23
$AS

13825
1826
T825
Y-]

T$21
Ts24

7§29

T$30

Ts31

$Cs

LCTTIMES
ALL

InuX

Muv
CLhil
mov
GLNNC
SUBTRACT
CGTIMES
ALl

InUX
SUSTRACY
CLTIMES
ALU

EnDX
SVBTRACT
BLTINES
Aul

iOX
SUBTRACT
UuTIPES
ALu

INGN
LLTI¥ES
ALU

N
whihhC
COMFARE_ LY
Auu

COLE_TRLE

APPENDIX V

TRACE LEVEL 1 OF EXECUTE

isl?

Tald

i0o

197

Tsl9

T$20

fsll

Ts22

1423

7824

T$25

rs2¢

$AS
$Cs
7528

‘e

[$29

71

T1$17

$Cs

%25
$B6s%
Ts27

$Cs

147

K29}

Ysi7

191 4

T5l9
T$20
T$l9
$Cs

Ts2l
T$22
Ts2l
C

1523
324
Ts23
$AS

T$25
1526
1825
$8%

T$27

Ts28

7329

APPENDIX VI

TRACE LEVEL

LINE = 10

LIKE = L0

WRIYEZ ATOM LEFT_PAREN

LINE = 10

LINE = 10

WRITEQ ATOM TOENTIFIER X
LINE = 1o

LINE = LG

Wnl1TE2 ATOM PLUS

LINE = 10

LINE = 10

WRITEG ATGM CONSTAMY 1
LINE = L0

LINE = id

WEITEZ ATOM RIGHT_PAREN

LINE = 10

20 DEF FNBILYY = Y*&2 +2+Y+]
WRITE3 ATOM LINE_NUVBER 20
LINE = 20

LIKRE = 20

LINE = 20

LINE = 20

LINE = 20

LINE = 20

WHIFEZ ATUM DEF

LINE = 20

LINE = 20

LINE = 29

LINE = 20

LINE = 20

WRITEQ ATUM TOFNTIFIER FNB
LINE = 24

LINE = Py

WRITEZ ATOM LEFT_PAREN

LiINE = 20

LINE = 20

WRITEQ ATOM TDENTIFIEP Y
LINE = 20

LINE = 20

WRITEZ ATOUM RIGHT_PAREN

LINE = 20

LINE = 20

LINE = 240

WRITEZ ATOM EQUAL

LINE = 20

LINE = 20

LINE = 20

WRITEQ ATOM TDENTIFIER Y
LINE = 20

LINE = 20

WRETEZ ATUM MULTIPLY

LINE = 20

LINE = 20

WRITEZ ATOM MULTIPLY

LINE = 20

LiNE = 20

WRITEQ ATGM CORSTANTY 2
LINE = 20

LikE = 20

LINE = 20

2 OF SCANNER

STATE =

STATE

STATE
STATE

STATE =

ITATE

STATE
STATE

STATE
STATE

STATE

STATE
STATE
STATE
STATE
STATE
STATE

STATF
sTATE
STATE
STATE
STATE

STATE
STATE

STATE
STATE

STATE
STATE

STATE
STATE
STATE

STATE
STATYE
STATE

S3TATE
STATE

STATE
STATE

STATE
STATE

STATE =

STATE
STATE

#

1

p—

B P N = e e

M B P e e

[g

w o - - A F o

e

COLUMN_TYPE
COLUMN_TYPE

COLUMN_TYPE
COLUMN_TYPF

COLUMN_TYPE
COLUMN_TFYPE

COLUMN_TYPE
COLUMN_TYPE

COLUMN_TYPE
COLUMN_TYPE

COLUMN_TYPE

COLUMN_TYPE
COLUMN_TYPE
COLUSMN_TYPE
COLUMN_TYPE
COLUMN_TYPE
COLUMN_TYPE

COLUMN_TYPF
COLUMN_TYPE
COLUMN_TYPE
COLUMN_TYPE
COLUMN_TYPE

COLUMN_TYPE
COLUMN_TYPE

COLUMN_TYPE
COLUMN_TYPE

COLUMN_TYPE
COLUMN_TYPE

COLUMN_TYPE
COLUMN_TYPE
COLUMN_TYPE

CNLUMN_TYPE
COLUMN_TYPE
COLUMN_TYPE

COLUMN_TYPE
CRLUMN_TYPE

COLUMN_TYPE
COLUMN_TYPE

COLUMN_TYPE
COLUMN_TYPE

COLUMN_TYPE
COLUMN_TYPE
COLGAN_TYPE

1

H MW R’

B ou H H ¥.noH L | || ¢t N L3 A B R K B

L h

o0 ou

AT b e W0 W Vo

- Fo N e]

o

o

W WG

Mo VI

ATON =
ATCM =

ATOM
ATOM

ATOM
ATCM

ATIM

]

ATCM =

ATOM

ATOM =

ATOM

ATOM
ATIM
ATOM
ATOM
ATCM

ATOM

ATOM
ATOH
ATOM
ATOM
ATOM

CATDM

ATOM

ATOM
ATOM

ATOM
ATCM

ATOM
ATOM
ATOM

ATOM
ATOH
ATOM

ATCM
ATOM

ATCM
ATOM

ATOM
ATOM

AT(M
ATOM
ATOM

w i R oW

. 5 2 " »

H " oH K]

i

[0 13

H

L}

o0
20

BE
DEF

DEF
DEF

FN
FNB

FNQ

B M

* =

[a)

+ PooDa

TRACE LEVEL 2 OF PARSER

PREFIX_S1GN
ATOM_IS
ATOM_I5
ATOM_I5
NEXTATOM

ADu

EXIY
FLUSH

GLNNOD
NEXTATOM
ATOM_15§

CATOM_IS

PROGRAM_TAIL
PARSING_MAIN

 PARSING_CUNTROLLER

ATOM_15
ATOM_ 1S
ATOM_LS
ATOM_IS
NEXTATOM
LEY_STATEMENT
GOAL
NEXTATOM
ATOM_ TS
NEXTATUM
EXPRESSION
TERM
PRICRITY
PREFIX_SIGN
ATOM_ IS5
ATOK_I5
ATOM_IS

NEXTATOM

ATOM_IS
NEXTA TOM
EXPRESSION
TERM
PRIGRITY
PREFIX_SIGN
AYOM_LS
ATON_IS
ATOM_IS
NEXTATCOM
ATOM_IS
NEXTATOM
: CALL
ATOM_1S
NEXTATOM
TERM
PRICRITY
PREF1X_SIGN
ATOM_1S
ATOM_LS
ATGH_IS
NEXTATOM
ATOM_IS
NEXTATGM
EXPRESSION
TERM
PRIGRITY

APPENDIX VII

CONSTANT
813
T$le
LINE_NUMBER
40
LINE_NUMBER

LET

TRENTIFTER

EQUAL

IDENTIFIER
LEFT_PAREN

CONSTANT

RIGHY _PAREN
10

PLUS

IDENTIFIER

LEFT_PAREN

73

Té14

T$15

SUBTRACT
8EFQRE
AFTER

ADD
BEFGRE
AFTER

DUTLMES
BEFPORE
AFTER

EXIT
CALL,
GLNNO
ENTER
EXPONENTIATION
BEFORE
AFTER
400
BEFORE
AFTER
ADO
BEFORE
AFTER
ADD
BEFORE
AFTER
EXIT
ADD
BEFQRE
AFTER
CALL
GLNNG
ENTER
OOTTIMES
BEFORE
AFTE®R
DOTIMES
HEFORE
AFTER
anuiviDe

BEFORE
AFYER

APPENDIX VIII

FHASDIA
22000000E+00
2+000000E+00

FNASDA
24000000€+00
24000 000F +00

T+l
L« 00000 0E+00
1+ 0Q000Q0CE+QD

[$3
20
20
FNBSDA
FNBSOA
24559999E400
24559999400
T$4
5455 3593E400
6655 3593IE4+00
T$5
8+533593E400
8+5%3593E+00
T$6
leliL359E401
LellL359E+01
Ts7
T$15
3+ 000000E400
34 00000CE+00
30
30
FNCSDA
FNCSDA
He 95500C0E+0 1
d+950000E+01
3
3. C00000E+00
3.000000E D0
Ts9

24686 T99€407
20646 T99E+02

74

TRACE LEVEL 2 OF EXECUTE-

1
L. GO0000E+00
1.000000E+00

1
1. 000000E+0
1 00 GIGUE+00

142
31000000800
3. 000000E+00

2456

2
2+ H)0000E+0Q0
2+ G00000E+00

2
2000000E+00
2,000000E+00

FNBSDA
2e359999E400
24559999E+00

1
L« 00G000E+00D
1.000000E+00

T$16
1«21 1359E+01
1,2113598+01

89.56

3
3. J0C000E+00
3.000000E+00

FNCSDA
84 9560C0FE+01
B«956000E+01

2

 2.000000E+00

2« Q00C00F +00

131
0. COGGOOECDD
1. 000000E+0

182
0s DOODDVE +00
1, 0000 00F + 00

B2
0s GOO0O0ESOO
3.000000E+00

T$le

T$4
0s 0N0000E+00
42 5%53593E¢00

T35
Oe 0Q0Q000E+ 00
8.553593E400

786
Qs OGO000E+0D
lel11359E£+01

Ts$7
Ue DOB000E+00
1¢211359E401

T$17
0. 000000E+00
le 511359€401

T418

43
0 000000E«00
2« 6BSTIFE+02

T$9
0. 00Q000E+00
2o 6BHTIFERO2

T$10
0s 00GOOOES00
le 343400E+02

APPENDIX IX

SQURCE AND EXECUTION LISTING OF TEST PROGRAM 1

NErAR I HERHL o TRt ER S EME
NURTH TFMAS STATE UNIVERS(FY
BASIC INTERPRETER SOURCE STATEMENT

» . GAYE 1 74710719
3 S =2, P = 2, G = 23 : /
100 REM TEST LETSTATEMENT TINE & 18150252
102 LET X =2.56+4eT8/2+24 TH%2
56 LET Ysmw—t=(48]2/242,76/%) b4+ 2246404 8~104 581
58 LET ZsX/26YRX~656452/4+6,98
59 LET LaXe¥e{X+Y)R(XoL)+2Z-(X Y1) 4oy5%k2-8, 581, 2
60 LET Me-{{(X¢Y)={X-Y+Z-L)¢ (Z+LLI=YeX)/2-5)/2
Q09 LET N 3 5+2¢L-3-3%545%82/2
62 PRINT [VALUE OF X|,iVALUE OF Yi,lVALUE OF ZI
64 ORINT X,V L :

621 PRINT

500 PRINT :

620 PRINT [VALUE OF LI.IVALUE OF Mi,IVALUE OF NI
§22 PRINTY LN

77 STOP
18 END
VALUE OF X VALUE OF ¥ - VALUE OF
162239996401 . 1.025999€+01 ~24 544 T780E+ 01
VALUE OF L VALUE OF M VALUE OF N
7. 629492E+02 ~24003368£4+02 24 500000€+ 00

75

e e W W e DR

RN -SAC WL Y S VO Nl I VIR S

O W

APPENDIX X

SOURCE AND EXECUTION LISTING OF TEST PROGRANM 2

OLPAKVMELT OF COMPUTER SCLENCE
NORTH TEXAS STATE UNIVERSITY
BASIC INTERPRETER SODURCE STATEMENT
DATE :
TIME

? S =2y P =24 6= 2%
100 REM TEST JINSTATEMENT AND READSTATEMENT

T4710/19
16156347

188 CATA 1-213!405|6v7|3v9v0'l|21394|5r6s713v990’iabt?;Sr#o&v?gB;lO

500 READ X
991 IF X = LJ THEN 250
609 ON X THEN 10420930+40450460+470,480,90
5 LET ZERD = IFRD + 1
& GaT9 540
10 LET ONE = ONE ¢ L
11 GOTO 500
20 LET TWd = TWD + 1
21 GOT2 500
30 LET THREE =. THREE + 1L
3l GUTY 500
40 LET FJUR = FCUR + 1
&1 5010 500
50 LEY FIVE = FIVE + 1
-1 GQTY 500
60 LET SEX = SIX + 1
41 GOT3 5060
70 LEY SEVEN = SEVEN ¢+ 1
71 G210 500
80 LET EIGHT = EIGHY + |
81 GOTI 53300
90 LET NINE = NINE + 1
9} GOTa 500

250 PRINT {4 3F ZERDI, |4 OF ONE[, 14 OF THOl 14 OF THREE},{# OF Fourl

251 PRINT ZERDONE,TU, THREE.FOUR
252 PRINT

g88 PRINT |# OF FIVE| .14 OF SIX!,1# OF SEVEMI, 14 OF EIGHT|.l# OF NINE}

300 PRINT FIVE+SI X, SEVENs EIGHT ¢NINE
301 STOP
400 END i
4 OF IERD % OF ONE ¥ TF TWO 4 OF THREE
25 00000 0E +00 1, 000000E +00 25 C0G00DE« 0D 2. 000000E+00
¥ CF FIVE % OF SiA ¢ OF SEVEN # OF EIGHT
3,00C00GE+00 44 QD0ONCE+00 3, G000 O0FE (0 3, 0000 G0E+00
kY
4 NF FOUR
34 GOGGH0E+ 20
§ OF RINME
3, GOGOOOELCO

76

(S22 e

G o A ok ow R L R e Mo

IS

fo - O %

APPENDIX XI

SQURCE AND EXECUTION LISTING OF TEST PROGRAM 3

7

100

25
26
27
28
30
15
16

R

-300

38
39
40
41
50
52
54
55
&0
62

- 80

DEPAR TMENT OF COMPUTER SCIENCE
MORTH TEXAS STATE UNTVERSYTY
BASIC INTERPREYER SOURCE STATEMENT

S = 2y, P ox 2y 6w 2
RE4 TEST IFSTATEMENY

LET X 2 4%/ Z2=-5%T+10~

DATE ¢ 74/10/19
AND GOTCSTATEMENT TIME 1 i8:158112

2*32

LEY ¥ = -4+ 6-T02202/2)020%2

IF X ~x ¥ THEN 15
PRINT {HAVE EXECUTED
1F ¥Y>% THEN L7

PRINT |HAVE EXECUTEDR
GOTO 23

PRINT [HAVE EXECUTED
If XY THEN 40 .
PRINT JHAVE EXECUYED
1F ¥»=X THEN 50
PRINT |HAVE EXECUTED
1Ff X<=Y THEN 38
PRINT [HAVE EXECUTED

281
21
301
41§
1001

391

IF Xe24yex2 = X¥2+Y6x2 THEN 60

PRINT [HAVE EXECUTED
S$Tgp

PRINT [HAVE EXECUTED
GOGTY 54

END

621
521

HAYE
HAVE
HAVE
HAVE
HAVE
HAVE
HAVE
HAVE

EXECUTED 27
EXECUTED 24

TEXECUTED 30

EXECUTED 300
EXECUTED 4}

EXECUTED 39

EXECUTED 52
EXECUTED 62

77

APPENDIX XII

SOURCE AND EXECUTION LISTING OF TEST PROGRAM &4

NERAR TMENT GF CIHEOTFR SCTENCE
CNORTH O FENAS STATE UNIVERSIIY
BASIC INTERPRETER SOURCE STATEMENT

DATE & T4710
oul 27 S =2, P = 2, 6= 2 - TIME : 1T401:
002 100 REM TEST GOSUSSTATEMENT AND RETURNSTATEMENT
003 106 DATA 45456955487+ 100428
004 50 GOSUB 400 :

005 54 PRINT IVALUE OF Xi,IVALUE OF Yi, [VALUE OF Z|

006 506 PREINT KoYyl

007 60 STOP

008 400 READ X

- 039 401 GOSUB 500

0i0 402 RETURN

oLl 500 READ Y

012 501 GOSUB 600

0i3 504 RETURN

014 600 READ ¢

015 605 RETURN

016 700 END
VALUE OF X VALUE OF Y VALUE OF 2
44 45600CE+0L 5.587000E+01 1. 002800E+02

78

APPENDIX XIII

SOURCE AND EXECUTION LISTING FOR TEST PROGRAM §

DEPARTMENT CF COMPLTER SCIENCE
NORTH FEXAS STATE UNIVERSITY
dASIC INTERPRETER SOURCE STATEMENY

it S = de ¥ o= ke W=)3 . ’
16 REM TesT UEFSTATEMENT _ DRVE . taiddrie
1C DEF FNALAL = UX-11% {(X+1) TINE = 2028029

&C CEF FNBLYJ = Y®¥2 e24Y4]

3C CEF FHCAZ) = I%3 + 3%2/7 +241+]

4¢ LEF L = FNAL2I+FAB(2.56)¢FRC{B9e56)

SC LET M = FNA(Ll63)*FNB{2CaFOI*ENCE56.85)

ECO LET N = FNA(FAB(ENCIZ2))E + FNE{FRALFNCIL21))

15C FRINT. IVALUE CF Ll ivALUE EF R|yiVALUE OF Ni

T4C PRINT LeMoN

102 PRINT

EQL PRINT JVALUE CF FNA(2e1)1siVALUE OF FNBI3)), IVALUE OF FNC({2)
EC2Z PRINT FNA{ZaL)oFNBL3),FNCE2)

GCC PRIM

GC1 LET X1 3 4,5

§C0z LEI ¥l » §a1

Q10 PRINT FVALUE CF XL1eYLl{i,IYALUE OF XL-¥il, VALUE OF Xlevli
SZ0 PRINT, XieV1oXL-Y1,X1wY1

13C s10p

116 EMNC
VALLE CF L) YALUE CF N VALUE OF N
5aSE253ZE¢(2 2o 844175E+(5 Be3590S4E+ 04
VALLE CF Fi2idel) VALUE OF FihBL3} VALUE QF FNC(2}
34 (SSSTESLC 1499999E+C1 - 1:4000CUE+Q1L
¥ALLE CF Xisvl VALUE CF Xli-Yi VALUE OF XLl2Yl

1.C2CECCESCH ~1e 200QCQOE+CC Ze 504955E+ 01

79

R L

APPENDIX XIV

SQURCE AND EXECUTIDN LISTING FOR TEST PROGRAM 6

DEPARTMENT OF COMPUTER SCIENCE
NORTH TEXAS STATE UNEIVERSITY

BASIC INTERPRETER SOURCE STATEMENY ~ DATE 3 74710719
‘ YIME 20:32:50

(X S 1y P= 1y G= 13§
1CC REM TEST FORSTATEMENT, ﬁEXTSTﬂ!ENENT.RERDSTATLWINrwGQ‘A;TATEMENT
GLE CIM Aldv2)s81202):81242)
110 LATA 243093512021 30514069547
100 REAL ALLe LY oALLp 20002 ll s AL2e2)vBlE o b oB Lol sBUZs LY BEL02)
16 GCSUY iua
IGs STCP
104 FCR I = ¢ 10 ¢
1 ECR 4 = L JC 2
G87 LEY C4ledd = O
1€ FCR & a § IC 2
107 LEY Clivdd = Cllod) ¢ AlLI K} #8E(K,)
18 AEXT K
1€9 AEXT 4
C5C AMEXT }
€5) GCSUB 29
(9C REILRN :
C24 HEN PRINT MATRIX C
Ce% PRIMY
C2T PRINT JCUlsidielCtlo2id
€28 PRINT ClLlel}loCllv2)
$29 FRIMI
€35 PRINT ICLZ2000]y ICR2Ze2 M)
C4G FRINT Ci24113,0(242)

Ci5 RETLRN
C4h ENC
Cl141) Clis2)
1.E2CC00E+01 2.409999E+01
TFI3Y CLze2d
341755STE+C1 49 249998E+01

80

BIBLIOGRAPHY

Books

Abramson, Harvey, Iheory and Application of a Bottom-Up
Syntax-Directed Translator, New York, Academic Press

Inc., 1973.

Donovan, John J., Systems Programming, New York, lcGraw-
Hill Book Co., 1972,

Gauthier, Ponto, Designing Systems Programs, New Jersey,
Prentice~Hall, Inec., 1970.

Gries, David, Compiler Construction for Digital Computers,
New York, John Wiley & Sons, Inc., 1971.

International Business Machines, IBN Systems 360 Operating

Svstems: Job Control Langugge Reference, Form No,
GCZBn%?O&-Z.

international Business lachines, IBM System 360 PL/1
Reference Manual, Form No. G28-8201-0.

Naur, Peter and others, "Revised Report on the Algorithmic

Langua ge, Algol 60," Programming Svstems and Languages,
edited by Saul Rosen, New York, MeGraw-Hill Book
Company, 1967.

Smith, Robert E., Discovering BASIC, New York, International
Timesharing Corporation, 1970,

Spencer, D,D., A Guide to BASIC Prosramming: A Time-Sharing
Lanmuw ge, the United State of America, Addison-Wesley
Publishing Company, Inc., 1970.

Article

Broadbent, J.K.,, "Microprogramming and System Architecture,«
ihe Computer Journsl (Volume 17 Number 1), 1973,

81

82

Unpublished Material

Chang, ¥Min-Jey S., "An.Interpreter for the BASIC Programming
Language," Department of Computer Sciences, North
Texas State University, Denton, Texas 1974,

Isaacson, Portia, £ Compiler for this Programming Language,
Department of Computer 3Sciences, North Texas State
University, Denton, Texas 1971.

