
Alt

AN INTERPRETER FOR THE BASIC

PROGRAMMING LANGUAGE

THESIS

Presented to the Graduate Council of the

North Texas State University in Partial

Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

By

Min-Jye S. Chang, B. S.

Denton, Texas

May, 1975

Chang, iin-Jye S., 4 AIntereter for the Basic

Programming Language, Master of Science (Computer Sciences),

ay, 1975, 82 pp., 3 tables, 8 illustrations, 14 appendices,

bibliography, 12 titles.

In this thesis, the first chapter provides the general

description of this interpreter. The second chapter con-

tains a formal definition of the syntax of BASIC along with

an introduction to the semantics. The third chapter contains

the design of data structure. The fourth chapter contains

the description of algorithms along with stages for testing

the interpreter and the design of debug output.

The stages and actions-are represented internally to

the computer in tabular forms. For statement parsing

working syntax equations are established. They serve as

standards for the conversion of source statements into

object pseudocodes. As the statement is parsed for legal

form, pseudocodes for this statement are created. For

pseudocode execution, pseudocodes are represented internally

to the computer in tabular forms.

TABLE OF CONTENTS

LIST OF TABLES. Page

LIS T OF ILLUSTRATIONS , , , 9 , , 9 9 9 9 9 Vi

LIST OF APPENDICES, , . , *vii

Chapter

I. INTRODUCTION , . . . I

Definition of the Problem
Purpose of the Study
Prodedure
Limitation and Future Work
Organization

II, A DESCRIPTION OF BASIC. 6

Formal Specification
Formal Grammar
Hierarchy of Language
Backus Normal Form
Definition of the Source Language, BASIC

III. DATA STRUCTURE. 25

SOURCE
ATOMS
ERRORES, ERROREP, and ERROREE
Symbol List
Line Number List
Pseudocode List
IMAGE

IV. INTERPRETER 4 . -
. . - . . - 41

Lexical Analysis
Parsing
Execution
Listing
Debug Output
Testing

V. CONCLUSION-, -------... 63

lii

Bage
APPENDICES.* 6

BIBLIOGRAPHY.,

iv

LIST OF TABLES

Table Page

I. List of Atoms.27-28

II. Pseudocode List. , . . *35-39
III. Debug Output * . * . 61

V

LIST OF ILLUSTRATIONS

Figure

1. Interpreter System Flow.

2. Atom Layout. * . . .

3. Symbol Node,

4. Line Number Node. - .-.. *.*, .

5. Pseudocode Node. , . . ,

6. Finite-state Machine for Lexical Analysis.

7, Parsing Block Chart.* . . ,#,0.#

8. Executing Block Chart, . . - . . . -.-#-#

Page

. . . .,

* , . 9

. . . .

. , . .,

. . 0 .

. . . ,*

26

29

31

32

33

43

47

- a # . 58

vi

LIST OF APPENDICES

Appendix

I. Reserved Words of'BASIC.

II. Backus Normal Form of This BASIC
Programming Language.

III. Trace Level 1 of SCANNER.

IV* Trace Level1 of'PARSER. . *

V. Trace Level I of EXECUTE.

VI. Trace Level 2 of'SCANNER.

VII. Trace Level 2 of PARSER

VIII. Trace Level 2 of EXECUTE. * . . .

IX. Source and Execution Listing of Test Program 1.

X. Source and Execution Listing of Test Program 2.

XI. Source and Execution Listing of Test Program 3.

XII. Source and Execution Listing of Test Program 4.

XIII. Source and Execution Listing of Test Program 5.
XIV. Source and Execution Listing of Test Program 6.

vii

Page

66

* 67

69

70

* 71

* 72

73

. 74

. 75

* 76

* 77

78

* 79

80

CHAPTER I

INTRODUCTION

This thesis is an application of the top-down trans-

lator (3) to the interpretation of a modified version

of the BASIC (6) programming language.

The BASIC programming language was chosen as the

target language because, although it is a relatively

simple language, it is complex enough to display many of the

quality and implementation difficulties of more advanced

high-level languages.

This interpreter is written in PL/1 6) to be executed

on the IBIV/360 computer,

This interpreter is organized as four different

segments, each of which makes a pass over some form of the

source, The four segments are lexical analysis, parsing,

executing, and listing, A main program calls each segment,

which is implemented as a separate PL/I procedure,

Definition of the Problem

Gries (3) used the term "interpreter" for a program

which performs two functions,

I. Translate a source program written in the

source language (BASIC in this application)

into a pseudocode.

I

2

2. Execute (interpret, simulate) the program

in this pseudocode.

The first part of the interpreter is like the first

part of a multi-pass compiler. The main difference between

an interpreter and a compiler is that the former executes

the pseudocode and the latter eventually transforms the

pseudocode into machine code,

The pseudocode into which a source language is

translated should be designed to make the execution

proper as efficient as possible.

A pseudocode representation could be interpreted as

the machine language of some pseudocomputer.

A computer and associated routines that behave as

such a pseudocomputer are referred to as an interpreter

of the corresponding pseudocode.

Purpose of the Study

This interpreter is designed with the following

purposes:

1. To explore the design of an inter-

preter for a batch processing

environment.

2. To build efficient tools in the

interpreter for correcting and

detecting errors.

:3

Procedure

The first step in preparation for this interpreter

was library research, including readings related to the

translator, BASIC and PL/1 programming languages, and

the Job Control Language (4).

Donovan (2) has stated the general problem of designing

software. Listed below are six steps in the design of this

interpreters

1. Specify the problem.

2. Specify data structure.

3, Define format of data structure.

4. Specify algorithm.

5. Look for modularity (i.e., capability of a

complex program to be subdivided into

independent more simple programming units).

6. Repeat 1 through 5 on modules.

Limitation and Future Work

The BASIC matrix commands preceded by "MAT", are not

included in this interpreter, These commands may be added

in the future,

One feasible method is to create new pseudocodes

representing different matrix operations.

Organization

This thesis is organized into five chapters, The

first chapter provides the general description of this

4

intrepreter. The second chapter contains a formal

definition of the syntax of BASIC along with an intro-m

duction to the semantics. The third chapter contains

the design of data structure. The fourth chapter con-

tains the description of algorithms used in this

interpreter. Also contained in Chapter Four are stages

for testing this interpreter and the design of debug

output. The fifth chapter contains the conclusions

drawn from analysis of this work,

The program can be examined by obtaining report

number NTCSCI74001 entitled "An Interpreter for the

BASIC Programming Language" from the Department of

Computer Sciences at North Texas State University, (1).

CHAPTER BIBLIOGRAPHY

1. Chang, Min-Jye S., "An Interpreter for the BASIC Program-
ing Language," Department of Computer Sciences,
North Texas State University, Denton, Texas 1974,

2. Donovan, John J., yfltems Programning, New York,
4cGraw-Hill Book Company, 1972

3. Gries, David, Cpompiler Construction for fDjiQl
CoMputers, New York, John Wiley & Sons, Inc.,
1971.

4, International Business Machines, IBI systems 360
Onerat naSystemst aJob Control angugge
Reference, Form No. GC28-6704-2.

5. International Business Machines, IBM system 360 PLO/I
Reference Vnual, Form No. C28-8201-o,

6. Smith, Robert E., Qscovering BASIC, New York,
International Timesharing Corporation, 1970.

CHAPTER II

A DESCRIPTION OF BASIC

This chapter defines the syntax of the BASIC programming

language based on the descriptions of Smith (5).

Before going into the description of BASIC, it is

useful to analyze some of the problems in formally defining

a language (2),

Formal Specification

A language may be thought of as a set of sentences

with well-defined structures (2). The set of rules speci-

fying valid constructions of a language is its syntax, The

syntax of a language describes its form.

A language called a meta-language is employed to

explain a language called an object language. A meta-

language is a system of definitions of symbols and rules for

their combination. Symbols of the object language are called

terminal symbols. Symbols of a meta-language that denote

strings in the object language are called nonterminal symbols.

The most elementary object in a formal language is a

symbol. Symbols are concatenated to form strings, which may

or may not belong to the language. Generally, a language

does not include all possible strings on its alphabet (2).

Only certain strings are valid sentences in the language,

6

7

Formal Grammar

The symbols which are in the object sentence when

generation of the sentence is completed are referred to as

terminal symbols. Those symbols which only appear in the

intermediate steps are referred to as nonterminal symbols.

One nonterminal symbol, the starting symbol, is distinguished

as the source sentence symbol with which the generation

process begins (2).

The process of generation of object language from source

language consists of applying, at each step, any one of the

set of rewriting rules or productions (2). A production is

a string transformation rule having a left-hand side that is

a pattern to match a substring (possibly all) of the string

to be transformed, and a right-hand side that indicates a

replacement for the matched portion of the string. This pro-

cess transforms the string into a new string; the process

stops when there is no production that can be applied or when

the string consists solely of terminal symbols.

It is important to realize that any substring of the

current string may be replaced by an applicable production

and that only that part of the string matched by the left-

hand side of the production is affected, Productions can

totally replace substrings, or they may merely rearrange

the symbols of the matched substring.

Abramson (1) defined a sentence as a sentential form

containing only terminal symbols, A sentential form is any
string which can be derive d from the starting symbol.

8

Hierarchy of Language

The definition of production allows for a wide variety

of string transformations. Certain restrictions on the

form of productions give grammars producing subclasses of

the class of formal languages. Noam Chomsky (2) has

constructed a system of four language types that classify

some languages according to such restrictions.

The most general type of grammar imposes no restrictions

on the productions. In particular, productions that eli-

minate symbols are permitted. This allows the intermediate

strings to expand and contract. A grammar without

restrictions is called a type 0 grammar.

The simplest restriction which produces a strictly

smaller class of languages is to require the right-hand side

of every production to have at least as many symbols as the

left-hand side. A grammar with this restriction is called

a type I or noncontracting context-sensitive grammar.

If the left-hand side of the production is restricted

to a single nonterminal symbol, its application cannot be

dependent on the context in which the symbol occurs. Gram-

mars with this restriction (and nonblank right-hand strings)

are called type 2, context-free or simple phrase-structure

grammars,

A third type of restriction on productions restricts

the number of terminal and nonterminal symbols that each

step can create, When, at most, one nonterminal symbol is

9

used in both the right-hand and left-hand sides of a pro-

duction, the production is said to be linear.

Each of the above restrictions includes those above

it. These types form a hierarchy. No type 3 grammar can

generate the language defined by type 2 grammar. Similarly,

no type 2 grammar can generate the language defined by type

1 grammar. Finally, type 1 is a strict subset of type 0.

The BASIC in this interpreter is defined as a type 2

language.

Backus Normal Form

The metalanguage used in describing BASIC is Backus-

Naur Form or Backus Normal Form (4). Terminal symbols

represent themselves. Nonterminal symbols are enclosed

in meta brackets, " and " ". The symbol "g,=" is read
'"is composed of" and is used to separate the defined sym-

bol on the left of a production from the definition of

the right. The symbol " " is read "or" and is used to

separate alternate definitions in a production.

Definition of the Source Language, BASIC

The BASIC (Beginner's All Purpose Symbolic Instruction

Code) was originally developed at Dartmouth College, New

Hampshire, under the direction of Professor J.G. Kemeny (1).

The source language grammar adopted here is similar to

the definition of BASIC by Smith (5). Some of the data

structure meanings or execution-time actions of the various

10

BASIC statements were not unambiguously described by

Kemeny (1). The interpretations which have been placed on

such statements in this interpreter may have caused some

discrepancies between this implementation and the original

Dartmouth implementation.

letters, js, pecial character

The twenty-six letters of the English alphabet are

used in constructing variables and in strings which may

appear as comments or as messages in printed output.

Digits, just as letters, are used in forming variables

and strings. In addition, they are used to form numbers

and statement line numbers, There are ten digits. They are

"1" , "2" t, o3o, f " , "5I, "6"P, 7 o, #8", "9" , and # .Ql.

There are fifteen special characters. They are ,

t", " and "?". They are used in forming strings.

XQariables

"Variables" are names for a dual roles to represent

in the source language the names of numerical values and at

the same time, names of the computer cells where these

numbers are located at execution time. A source-language

variable of BASIC identifies an execution-time data struc-

ture of a fullword of storage (3) of the IBM/360 computer.

The value of a variable may change during the execution of

a BASIC program.

11

A source-language variable must conform to certain

rules,

1. One to twenty characters may be used for

any variable.

2. A variable may contain letters and digits.

3. A variable must begin with a letter.

4. A variable must not be a reserved word,

A reserved word is a source-language word that looks

like a variable but which has special significance to this

interpreter.

Examples.--The following are examples of source-

language variables,

1. A

2. B234

3, ABCDEFGHIJKLMNOPQ

4. AIB2

5v B234P

Numbers

Numbers are used in the source-language as constants

in expressions and in the lists of numbers used by the

DATASTATEMENT.

ExarmpLes.--The following are examples of numbers,

1. 234

2, 5.89

3. 45.99

12

Operations

The execution time sequence of operations is generally

in the same order as from the source-language reading from

left to right, except for the following precedence of

operations:

Priority 1

- Prefix minus

+ Prefix plus

Priority 2

** Exponentiate

Priority 3

/ Divide

* Multiply

Priority 4

- Infix minus

+ Inf ix plus

To override this normal order of execution precedence,

parentheses are inserted around the source expression that

is to be evaluated first at execution.

ExaMple.--The following are examples of complex ex-

pressions with operations,

1. 5 + 10 / 5 * 2 ** 3 - 6

First find exponent value 5+10/5*8-6

jejf, divide 5+2*8-6

Next, multiply 5+16-6

Lsj, add and subtract 15

13

2. (2-1) * 5 / 5 + 2

First, find value of "2-1" 1*5/5+2

exi, multiply 5/5+2

QNext, divide 1+2

Last, add 3

Relations

Six relations are available for test purposes. They

areas

Equal to

Not equal to

Less than

Greater than

Less than or equal to <=

Greater than or equal to >=

Examples.--The following are examples of relations,

1. IF A = 4 THEN 123

2. IF ABCD > (X-Y9**2) THEN 321

An alternate source-language form of "not equal"

sometimes used is "0"; this form is not used in the

present work.

QEALDATE1ENT

The READSTATEMENT is used to assign a specific numer-

ical value to a simple or subscripted variable. The

numerical value must have been previously assigned by a

DATASTATEMENT.

14

Examples.--The following are examples of READSTATEMENTs*

1. 10 READ X

2. 20 READ Y,Z,AB

PATASTATEMENT

The DATASTATEMENT provides storage area for data. A

declarative statement may be used to introduce signed

numeric al data into a BASIC program and may appear anywhere

in a BASIC program.

One may think of all the DATASTATEYIENTs in a program

as being assigned to a data bank. When the program is run,

the first READSTATEMENT uses the first number in the data

bank.

The replacement of data actually occurs at the time of

execution. One must be careful to make sure that there are

sufficient data and that they are in the proper order.

ExamplUQ.--The following are examples of DATASTATEiMENTss

1, 10 DATA 45, 20

2. 20 DATA 20, 40

30 READ XY, WY

In the second example, the variable XY is assigned a

value of 20 and the variable WY is assigned a value of 40.

-RINTTATEMENT

The PRINTSTATEMENT is used for outputting data. The

PRINTSTATEMENT may be used for printing the value of a

variable or computation, for printing a heading, or simply

for skipping a line.

15

Each line is divided horizontially into five twenty-

character zones. When only one value is printed, it is

placed in zone 1. When more than one value is printed, the

secorri is placed in zone 2, the third in zone 3, etc. If

more than five values are printed, the first five are placed

in the five zones in order. The sixth value is printed on

the next line in zone 1, the seventh in zone 2, etc. It is

also possible to print messages in a manner similar to the

formatting of values.

ExanmRles.--The following are examples of PRINTSTATEMENTss

1. 10 PRINT '9X=', X

2. 20 PRINT X+Y**2#, ABC, DD

3. 30 PRINT 'PAY RATE', 'HOURS', 'GROSS', 'NET'

The symbol "'" is used in pairs to represent strings

which are printed in the program output but is not part of it.

LETST.ATENT

The LETSTATEMiENT is the principal computational state-

ment in a BASIC program.

The "=" sign in BASIC is not a mathematical equal sign;

it means "replaced by". Therefore, this statement is inter-

preted to mean, "The value of the arithmetic expression on

the right of the "replaced by" sign replaces the value of

the variable on the left.

Examples.--The following are examples of LETSTATEENTss

1. 10 LET N = N +1

2. 20 LET X = 3

3. 30 LET R = A + B -63

16

The first example results in the value I being added

to the value N in storage. The new sum replaces the ori-

ginal value of N.

The second example causes the number 3 to be stored in

the location assigned for the variable X.

In the third example the value of B is added to the

value of A and 63 is subtracted from the sum. The final

value is stored in the location assigned to R,

QT.STATEMENT

The simplest BASIC statement for altering the sequence

of execution is the GOTOSTATEMENT.

UExaMpe.--The following is an example of a GOTOSTATEMENTs

1. 10 GOTO 100

100 ..-..-

In the above example, 10 and 100 represent line numbers;

line numbers identify source statements and are composed of

positive numbers with five or less digits.

ONSTA&TEMENT

The ONSTATEIENT permits transfer of control to one of

a group of statements, with the particular one chosen during

the run on the basis of results computed in the execution of

the program. The statement is of the form

In ON expression THEN lni, ln2, ln3, - - a

where the "expression" is any valid BASIC expression and the

17

subscripts on the line numbers of statements in the program

indicate their sequence in the ONSTATEMENT. Executions of

this statement causes statement lni to be executed next,

where i is the integer value of the expression. The

"expression" in the ONSTATEMENT must produce a result of

at least I and no more than the number of line-number labels

contained in the statement,

Examples.--The following are examples of ONSTATEMENTs:

1. 80 ON A+B THEN 100, 110, 120, 130, 140

2. 33 ON X-Y+2 THEN 10, 360, 44, 6o

In the first example, if the expression has a value of

4, control is transferred to statement number 130 when the

statement is executed.

In the second example, the expression "X-Y+2" must pro-

duce at execution an integer value in the range I to 4, If

outside this range, execution continues with the next in-

line statement,

IFTATE=NT

The IFSTATEMENT permits one to make the transfer of

control depending on the results of a computation, the com-

parisbn of expressions. Such a statement, called a

conditional transfer statement, transfers control only if a

certain condition is met. The GOTOSTATEMENT is called an

unconditional transfer statement, since it always transfers

control,

18

Exampje.--The following are examples of IFSTATEMENTss

1. 10 IF X=10 THEN 200

2. 20 IF X =A*20 THEN 80

In the first example, if the value of X at execution

is equal to 10, transfer program control to line number 200.

If not, execution continues with the next in-line statement.

In the second example, if the value of X is equal to

the value of "A*20"v, transfer control to line number 80.

If not, execute the next in-line statement.

In this interpreter, six relations are available for

IFSTATEUENT. Please refer to "Relations",

ORSTATEMENT and NEXTLATEiENT

Looping, one of the most important techniques in

programming (6), makes it possible to perform the same

calculation on more than one set of data. A loop consists

of the repetition of a section of a program, substituting

new data each time, so that each pass through the loop is

different from the preceding one,

The combination of the FORSTATEMENT and NEXTSTATEMENT

is the most powerful two-instruction set in the BASIC lan-

guage. The loop starts with the FORSTATEMENT and ends with

the NEXTSTATEMENT (inclusive).

The general format of the FORSTATEMENT is

ln FOR variable = a TO b STEP c

where the "variable" is the index, "a" is the initial value

of the index, "b" is the terminal value of the index, and

19

"c" is the value by which the index is modified for each

pass. The values of "a", "b", and "c" may be any valid

expressions.

A few rules which apply to the FORSTATEMENT areas

1. Every FORSTATEIENT must have an associated

NEXTSTATEMENT which names the same "variable".

FORSTATEMENT and NEXTSTATEMENT form a pair.

2. The number of BASIC statements that may

appear between the FORSTATEMENT and

NEXTSTATEMENT is unlimited.

3. Transfer out of a loop can be accomplised

by using an IFSTATEMENT or a GOTOSTATENENT,

but transfer back into the loop is not

correct,

4. FORSTATEMENTs may be nested; that is, an

inner loop may be completely contained

within an outer loop.

5, The STEP c may be omitted if "c" is under-

stood to be 1.

The general form of the NEXTSTATEMENT is

ln NEXT variable.

xamppjs.--The following are examples of FORSTATEMENT

and NEXTSTATEWENT pairs

1. 10 FOR N = 1 TO 100 STEPlI

90 NEXT N

20

2. 20 FORI= 1 TO 2

30 FOR J = I TO 2

70 NEXT J

81 NEXT I

2SUBhTATEQENT and RETURNSTATEMENT

A subroutine is essentially an independent program,

but it is written in such a way that it can be executed

only when called by another program (6). Subroutines are

used at execution to perform tasks that are needed on more

than one occasion. A subroutine call can be written at

any place in a program. A main program may call upon a

subroutine to perform a certain operation. A subroutine

may be called any number of times, and reentry to the main

program at the proper point is automatically controlled

by the calling program. However in this implementation

of the interpreter, a subroutine may not directly or

indirectly call itself.

A subroutine in BASIC may consist of any number of

statements, but its last one must be a RETURNSTATEMENT,

The subroutine calling statement is the GOSUBSTATEENT.

A subroutine can also call another subroutine,

amles.--The following are examples of GOSUBSTATEMENTs

and RETURNSTATEMENTst

21

1. 10 GOSUB 20

20 -----

40 RETURN

2. 21 GOSUB 30

30 -----

140 GOSUB 50

40 RETURN

50 -- -

60 RETURN

DIMSTATEPIENT

The source DIMSTATEMENT assigns names to vectors and

arrays and specifies the object data structure, i.e., how

many storage locations are to be reserved for them.

In the storage allocation, vectors and arrays will be

allocated contiguous locations in the data area and are

placed in an ascending order.

Examples.--The following are examples of DIMSTATENIENTst

1. DIM A(2,2)

2. DIM B(6)

The first example assigns A as the name of an array which

requires four storage locations: A(1,1), A(1,2), A(2,1) and

A(2,2).

22

The second example assigns B as the name of a vector

which requires six storage locations: B(i), B(2), B(3),

B(4), B(5), and B(6).

DEFSTATEM ENT

The general form of the user-defined function is

ln DEF FNa(v) = expression

where "a" is any letter of the alphabet, "vt is avariable

and "expression" is an expression that uses the variable

The user-defined function is useful when a particular

one-statement computation is required at several different

points in a program.

Examples.--The following are examples of DEFSTATEMENTs:

1. 10 DEF FNA(X)=X- 4 + 5 - X**2

2. 20 DEF FNB(Y) =Y Y - 4 + 2 Y * 6

STOPSTATEMENT

The STOPSTATEMENT is used to terminate the execution of

a program.

ENDSTATEMENT

The final statement in each BASIC program must be the

ENDSTATEENT. It tells the interpreter the source program

is complete, and if executed it stops the execution,

Built-in Functions

The BASIC language has nine built-in functions in this

interpreter. They are

23

1. SIN(X) Sine of X

2, COS(X) Cosine of X

3. TAN(X) Tangent of X

4. ATN(X) Arctangent of X

5. EXP(X) Exponentiation, eX

6. ABS(X) Absolute value of X

7. LOG(X) Natural logarithm of X

8. SQR(X) Square root of X

9. INT(X) Integer part of the

value of X (the sign

of X remains unchanged)

CHAPTER BIBLIOGRAPHY

1. Abramson, Harvey, Theorp nd Application of a Bottm-Up
MtQ rected Tran lator, New York, Academic Press

Inc., 1973.

2. Donovan, John J., systems Programming, New York, McGraw-
Hill Book Company, 1972,

3. International Business Machines, IBM lystems_60 tLZ
Reference Manual, Form No. C28-8201-0.

4. Naur, Peter and others, "Revised Report on the Algorithmic
Language. Algol 60," Programmin ye an
Languages, edited by Saul Rosen, New York, McGraw-
Hill Book Company, 1967.

5. Smith, Robert E., Discoverin* B1SIC, New York, Interna-
tional Timesharing Corporation, 1970.

6. Spencer, D.D., A Guide to BASIC moraimina A Time-
Shpring Language, the United States of America,Addison-Wesley Publishing Company, Inc., 1970.

24

CHAPTER III

DATA STRUCTURE

In this chapter the data bases and their formats

for this interpreter are depicted in detail.: Figure 1

shows the manner in which the various data bases are

used (1).

SOURCE

SOURCE is an external file built by the SCANNER and

is used as an input to the LISTER. It contains a copy of

the BASIC source program.

ATOMS

ATOMS is an external file built by the SCANNER and is

used as an input to the PARSER. The entries in the file

ATOMS are numbers which identify a certain atom-type followed

by a variable which may point to an entry in the symbol list

or in the line number list. The atom-type may also be

followed by a value of NULL (a special PL/1 value) or by a

number representing the trace level for the PARSER or the

SCANNER.

Table I lists the various atom-types along with their

respective operands, if any. Figure 2 shows the three types

of entries.

25

26

ERROREA,

RROREE

loommommomERRORE

Opt
Di

BASIC

program

-EANNER

ionalt

ebug ATOMS Symbol

tput Lis

PARSER

Pseudocod

Li st

EXECUTE

IMAGE

LISTER

Listing

Fig. 1--Interpreter System Flow

LJ

ine
umber

I

S 0URC

i

ATOM

Debug

Line Number

Identifier

Constant

Edit

Left Paren

Right Paren

Comma

Bar

Dollar

Plus

Minus

Multiply

Divide

Less Than

Greater Than

Equal

Not

IF

ON

TO

TABLE I

LIST OF ATOMS

OPERAND

Trace level for the PARSER
and the EXECUTE.

Pointer to the entry in the
line number list.

Pointer to the symbol list
entry.

Pointer to the symbol list
entry.

Pointer to the symbol list
entry.

TABLE I--Continued

ATOP OPERAND

DIM

END

FOR

LET

REM

DATA

GOTO

NEXT

READ

STEP

STOP

THEN

GOSUB

PRINT

RETURN

SIN

Cos

TAN

ATN

EXP

ABS

LOG

SQR

INT

DEF

atom-type number pointer

atom-type number pointer

atom-type number

Fig. 2--Atom layout

ERRORES, ERROREP, and ERROREE

ERRORES, ERROREP, and ERROREE are external files built

by the SCANNER, the PARSER and the EXECUTE respectively.

All the files contain the error messages generated during

processing of the BASIC program. All the files are merged

into the output listing produced by the LISTER. Each entry

in these files consists of a line number on which the error

occurred and up to one hundred characters of text describing

the error.

Symbol List

The symbol list is a simply linked list. The nodes

of the list are dynamically allocated as they are needed.

Each node contains eight fields, Figure 3 shows the lay-

out of a node. A node is variable in size since the

NAME field is variable in size.

The field called CHAIN always points to the next entry

in the symbol list. The last entry in the symbol list has

a CHAIN value of NULL, a special PL/1 value.

;0

The field called TYPE is an integer value which indi-

cates the node type. TYPE has different sets of values

for each segment of this interpreter, The node .types

built by the SCANNER are

1. Identifier,

2. Constant,

3. Edit.

The node types recognized by the PARSER are-

1. Subscripted variable,

2. Simple variable,

3. Constant

4. Function

5. Edit

6. Dummy variable.

The node types recognized by the EXECUT E are

1. Subscripted variable

2. Simple variable

3. Constant.

The field called LOC is filled in by the PARSER and

the EXECUTE. The PARSER fills the LOC when parsing a

user-defined function. When the node is the type of user-

defined function, the LOC is a pointer to an entry in the

line number list, When the node is the type of dummy vari-

able, the LOC is a pointer to a simple variable where the

value of the dummy variable is stored. The EXECUTE sets

the LOC during storage allocations,

31

The field called LNGH is filled in when the node is

allocated. It contains the number which is the length of

the NAME field in characters.

CHAIN TYPE

LOC LNGH

ROW COLUMN DIN.

NAME

Fig. 3--Symbol Node

The field called ROW is filled in by the PARSER. It

points to an entry in the symbol list where the row value

is stored.

The field called COLUMN is filled in by the PARSER. It

points to an entry in the symbol list where the column value

is stored.

The field called DIM is filled in by the EXECUTE. It

contains the number of elements in an array.

The field called NAME is filled in when the node is

allocated. It contains an identifier which names an

array, a simple variable, an edit, a defined function or

a constant.

Nodes are allocated by the SCANNER and the PARSER. The

SCANNER builds nodes for every identifier, edit and constant

32

found in the BASIC program. The PARSER builds nodes for

temporaries. The PARSER also builds nodes for function

values and dummy variable values.

Line Number List

The line number list is a one-way linked list. The

nodes of the list are dynamically allocated as they are

needed. Each node contains four fields. A node is vari-

able in size since the NAMEL field is variable in size.

Figure 4 shows the node layout in the line number list,

CHAINL THCD

LNGHL

NAIVEL

Fig. 4--Line number node

The field called CHAINL is always a pointer to the

next entry in the line number list. The last entry in

the line number list has a CHAINL value of NULL, a special

PL/1 value,

The field called THCD is a pointer to an entry in the

pseudocode list, It is used to transfer the program con-

trol when executing the pseudocode,

The field called LNGHL is filled in when the node is

allocated. It contains a value which is the length of the

NAMEL field in characters.

33

The field called NA EL is filled in when the node is

allocated. It contains a line number which names a source

statement.

Pseudocode List

The pseudocode list is named LOGTAC in this interpreter.

LOGTAC is a simply linked list built by the PARSER and is

used as an input to the EXECUTE. It is the internal repre-

sentation for the BASIC programming language. The entries

in the pseudocode list are numbers which identify the

pseudocode type optionally followed by one to three pointers

or numbers. Figure 5 shows the five types of entries in the

pseudocode list.

code chaint

cede number chaint

code pointer chaint

code pointer pointer dhaint
-_ ,,- -

code pointer pointer pointer chaint

Fig. 5--Pseudocode node

The field called g-NT always points to the next entry

in the pseudocode list.

Table 2 defines the various codes and lists their

respective operands, if any. Pointer operands point to

the entries in the symbol list or in the line number list.

A code defining an action on a pointer actually means the

action applied to the entity defined by the symbol list

entry or line number list entry pointed by the pointer.

IWIAGE

IAGE is an external file built by the EXECUTE and is

used as an input to the LISTER. The entries in the file

IMAGE are numbers which identify a certain output action

followed by a variable which may point to an entry in the

symbol list or point to a value in the storage. The output

action may also be followed by a value of NULL (a special

PL/1 value).

The three output actions areas

1. SKIP a Skip to a new line.

2. OUT O Output the value of a variable or constant.

3. OUT1 a Output messages.

34

35

TABLE II

PSEUDOCODE

CODE OPERAND AND CODE DEFINITION

ATN P1, P2

P1 is the real argument passed

to built-in function ATN and

the result is stored in P2.

EXP P1, P2

P1 is the real argument passed

to built-in function EXP and

the result is stored in P2.

ABS P1, P2

P1 is the real argument passed

to built-in function ABS and

the result is stored in P2.

LOG P1, P2

P1 is the real argument passed

to built-in function LOG and

the result is stored in P2.

SQR Pt, P2

P1 is the real argument passed

to built-in function SQR and

the result is stored in P2.

INT P1, P2

P1 is the real argument passed

to built-in function INT and

the result is stored in P2.

36

CODE

OUTO

OUT I

STOPCD

SUBTRACT

EXPONENTIATION

SIN

COS

TAN

TABLE II--Qpntijued

OPERAND AND CODE DEFINITION

Pi

OUTPUT PI (number),

Pi

OUTPUT PI (Character).

No operand.

Stop execution.

P1, P2, P3

Subtract P1 by P2 and store

the result in P3.

P1, P2, P3

Exponentiate P1 by P2 and

store the result in P3.

P1, P2

P1 is the real argument passed

to built-in function SIN and

the result is stored in P2.

P1, P2

P1 is the real argument passed

to built-in function COS and

the result is stored in P2.

P1, P2

P1 is the real argument passed

to built-in function TAN and

the result is stored in P2.

37

TABLE II--Continued

OPERAND AND CODE DEFINITION

Pi

Exit a function by returning

the function value, P1.

GO

GOIF-FALSE

IN

INDX

tOYv

P1

Branch to P1.

P1, P2

If P1 is false, branch to P2;

otherwise, execute the next

code,

P1

Input P1.

Pl, P2, P3

Calculate the address of P1

subscripted by P2, and store

the resulting address in P3,

P1, P2

Move PI to P2.

P1, P2

Negate P1 and store the

result in P2.

P1, P2, P3

If P1 is greater than P2, P3

is set to true; otherwise,

P3 is set to false.

NEGATE

COMPARE-GT

CODE

EXIT

38

CODE

COMPARE-LE

COMPARE-LT

DODIVIDE

DOTIMES

ENTER

END-TAC

GDEBUG

TABLE II--Qnued

OPERAND AND CODE DEFINITION

P1, P2, P3

If PI is less than or equal

to P2, P3 is set to true;

otherwise, P3 is set as false.

P1, P2, P3

If Pls less than P2, P3

is set to true; otherwise,

P3 is set to false.

P1, P2, P3

Divide P1 by P2 and store the

result in P3.

P1, P2, P3

Multiply P1 by P2 and store

the result in P3.

P1, P2

Enter a function by storing

the return address at P1,

the function exit, and the

argument value at P2, the

dummy argument.

No operands.

Indicates end of internal

representation.

Number.

Set the EXECUTE trace level.

39

CODE

GLNNO

ADD

CALL

COMPARE-EQ

COMPARE-GE

TABLE II--Continued

OPERAND AND CODE DEFINITION

Number.

Sets a new line number.

P1, P2, P3

Add P1 to P2 and store the

result in P3.

P1, P2, P3

The function, PI is invoked,

the real argument is stored

in P2 and the returned value

is stored in P3.

P1, P2, P3

If P1 is equal to P2, P3 is

set to true; otherwise, P3

is set to false,

P1, P2, P3

If Pi is greater than or

equal to P2, P3 is set to

true; otherwise, P3 is set

to false,

CHAPTER BIBLIOGRAPHY

1. Donovan, John J., ytems rorammin , New York, McGraw-
Hill Book Company, 1972.

40

CHAPTER IV

INTERPRETER

Lexical Analysis

The segment concerned with lexical analysis of the

source is implemented as an independently complied procedure

called SCANNER. Reasons for separating lexical from syn-

tactical analysis are discussed below (2)s

1. A large portion of compile-time is spent in

scanning characters. Separation allows sole

concentration on reducing this time.

2. The syntax of symbols can be described by

very simple grammars. Separating scanning

from syntax recognition makes it possible to

develop efficient parsing techniques.

3. Since the SCANNER returns a symbol instead

of a character, the syntax analyzer actually

gets more information about what to do at

each step.

4. Development of high-level languages requires

attention to both lexical and syntactic

properties.

5. Separation makes it possible to write one

syntactic analyzer and several scanners

which are simpler and easier to write. Each

scanner translates the symbols into the same

internal form used by the syntactic analyzer.

Problem

The problem of lexical analysis is to recognize certain

strings as basic elements. The basic elements are placed

into the symbol list or the line number list. As other seg-

ments recognize the use and meaning of the elements, further

information is entered into these lists.

fata Structure

The input to the SCANNER is the BASIC source program.

The BASIC program is on punched cards.

The outputs produced by the SCANNER are,

1. The symbol list,

2. The line number list

3. SOURCE

4. ATOMS,

5. ERRORES

6. Optional debut listing.

Algorithm ;

The SCANNER procedure is an implementation of a finite-
state machine (2) which breaks the source input into atoms
and builds a symbol list and a line number list in the process.
A state diagram for the finite-state machine is shown in

Figure 6.

43

D4GM SPACE
OTE OT START 6OTU
CLEAR, ADD, NEXT 1 C, EOT

CLiAR, ADD Ell I E
IGT-CONST 0u-

NADD, NEXT OUTPUT

CONSTANT

OTDIGIT

AD, NEXT

TF.TERIDENT nUTHER

CLEAR, ADD, NEX T3 IDENTIF[ER

LETTER. IGT

ADDXNEXT

EA RTO_-n X OPERA OUTPUi
CLEAt A~s ZXTOPERATMl

nELIITERDELIM

CLEAR, ADDt NEXT OUTPUT

DELIMIM R

i4BPT~r~j. RAREDIT AR

CLEAR, ADD, NEX OUTPUT

EDIT

ANY EXCEPT QBA"

ADD, NEXT

NEXT

Fig. 6--Finite-state machine for
lexical analysis

44

The 256 possible character codes are broken into classes

using a translate-table, There are seven different character

classes.

The finite-state machine simulation is done in the usual

manner with two tables. One table which defines the next

state function, and one table which defines the action asso-

ciated with each state transition.

There are six different states in the finite-state machine;

that is, START state, CONSTANT state, IDENTIFIER state,

OPERATOR state, DELIMITER state and EDIT state.

In the lexical analysis comments are discarded since

they have no effect on the processing of the program,

Parsing

The parsing segment is implemented as an independently

compiled procedure called PARSER,

The parsing segment is an application of the top-down

parsing (2) in this interpreter. Gauthier i()i defined the

term "top-down parsing" as a procedure that creates goals

and subgoals in attempting to relate a statement to its syn-

tax environment,

The method of recursive descent (2) is used, The PARSER

has one recursive procedure for each nonterminal symbol which

parses phrases for the nonterminal symbol. The procedure is

told where in the program to begin looking for a phrase (2)

for the nonterminal symbol; hence it is goal oriented or pre-

dictive. The procedure finds its phrase by comparing the

45

source program at the point indicated by a cursor with right

parts of rules for the nonterminal symbol, calling other

procedures to recognize subgoals when necessary.

Problem

The problem in the parsing segment is to recognize the

phrases and interpret the meaning of the constructions.

This process is known as syntax analysis. The PARSER

also notes syntactic errors and assures some sort of recov-

ery so that the interpreter can continue to look for other

syntactic errors which were originally in the source.

Da-t. Structure

The input to the PARSER is an external file called

ATOMS.

The output produced by the PARSER areas

1. Pseudocode list

2. ERROREP

3. Optional debug listing.

The symbol list and line number list are used to support

the syntactic analysis.

Algorithm

In general the PARSER segment, when called by the system,

converts statements in the BASIC program to the internal repre-

sentation and enters them in the pseudocode list. Atom by

atom and statement by statement, a BASIC program is parsed.

46

Fundamentally the parsing segment is comprised of

PROGRAM-HEAD and PROGRAM-TAIL. PROGRAM-HEAD is responsible

for parsing DEFSTATEMENT and DIMSTATEM1ENT. PROGRAM-TAIL is

responsible for parsing the other BASIC statements.

PROGRAV4-HEAD has two main slaves. They are DEFINED-

FUNCTION and DIM-STATEMENT. These three control programs

as well as their service routines produce the appropriate

pseudocodes and insert them in the pseudocode list for the

DEFSTATEMENT and DIMSTATEMENT.

PROGRAM-TAIL consists of PROGRAM-MAIN and PROGRAM-

CONTROLLER. PROGRAM-CONTROLLER is written as a recursive

program. PROGRAM-MAIN is designed to drive the PROGRAM-

CONTROLLER. When called, PROGRAM-CONTROLLER passes control

to one of its fourteen slaves. These fourteen programs as

well as their service routines are in charge of creating

the appropriate pseudocodes. The block chart is shown in

Figure 7.

ATA26TATEMENT And READSTATEENT

In processing the DATASTATEMENT, no pseudocode is pro-

duced. For each signed number appearing in the DATASTATEMENT,

an entry is created in a linked list called DATA-INPUT. The

DATA-INPUT is arranged on a first-in-first-out basis.

In processing the READSTATEMENT requests are made to the

DATA-INPUT. For each simple or subscripted variable in the

READSTATEMENT, a set of two pseudocodes is created. They

are IN and MOV.

Line No.-Ls

ATOMS File

PROGRAM-- PARSER

HEAD 'MAIN

DEFINED- PROGRAM-

FUNCTION
TAIL

DIY-

STATEfENT

PARSING-
ONTROLLER

Fig. 7--Parsing Block

IF-STATEMLNT

ON-STATEMENT

FOR-STATEMENT

T-STATEMENT

READ-STATFMENT

PRINT-STATEMENT

hA!A -wq!AT JIM-

GOTO-STATEMENT

rTLSTT i ,~.t~~

NEXT-STATEMENT

RAM-sTATEMENT

-TOPSTATEMENT

END-STATEMENT

Chart

47

G US TS "A TE~MENT

RETURN-STATEMENT

mwmmwmm

moxwnwww

48

Exmple.--The following is an example of the DATASTATE-

MENT and READSTATEMENT.

10 DATA 10, 25, 39

38 READ X, Y, Z

After parsing these two statements, three entries were

created in the DATA-INPUT list. Three sets of IN and MOV

internal representation were added to the pseudocode list,

PRjINTaTATEAMENT,

The BASIC of this interpreter provides for five zones

of twenty characters each per line. Listed below are pseudo-

codes associated with the PRINTSTATEMENT

1. SKIPs Skip to a new line

2. OUTO : Output the value of a variable

3. OUTI: Output heading or label messages.

ExaMples.--The following are examples of PRINTSTATEMENTs:

1. 10 PRINT

2. 30 PRINT 'X= ', X

In the first example, SKIP is the only pseudocode to be

created in the parsing segment. In the second example, two

entries are produced in the pseudocode list. The are OUTI

and OUTO,

LETSTATEMENT

The LETSTATEMENT is the assignment statement in the

BASIC programming language.

Listed below are pseudocodes associated with the

LETSTATEENT:

49

1. ADD

2. SUBTRACT

3. DOTIES

4. DODIVIDE

5. EXPONENTIATION

6. NEGATE

7. CALL

Elements involved in the LETSTATEMENT are constant, sim-

ple variables, subscripted variables and defined functions.

It is slower to analyze and interpret subscripted variables

than simple variables, Each subscripted variable needs three

extra pseudocodes. They are SUBTRACT, DOTIMES and ADD.

Examples.--The following are examples of LETSTATEMENTss

1. 10 LET XYZ = 10

2. 20 LET X = Y - Z + FNA(2)* 4 / 2

In the first example, MOV is the only internal represen-

tation created in the pseudocode list. In the second example,

"FNA" is assumed to be the name of a defined function in a

BASIC program. Six pseudocodes are produced in the pseudo-

code list. They are SUBTRACT, CALL, DOTIY[ES, DODIVIDE, ADD

and MOV.

QTOTATEMENT

In processing the GOTOSTATEMENT, the "GO" internal repre-

sentation is produced in the pseudocode list. In this internal

representation there is a pointer to an entry in the pseudocode

list, to which the program is supposed to transfer the control.

50

The GOTO-STATEMENT routine fetches this pointer in the line

number list and uses it as the operand of the "GO" pseudocode.

2NSTATEMENT

When processing the ONSTATEMENT, the ON-STATEMENT routine

will create an index variable and set its initial value to 1,

Pseudocodes associated with the ONSTATEMENT areas

1. ADD

2. SUBTRACT

3. DOTIMES

4. DODIVIDE

5. EXPONENTIATION

6. COMPARE-EQ

7. GOIF-TRUE

8. MOV

Examples.--The following are examples of ONSTATEvENTs,

1. ON X THEN 10,20

2. ON X+Y THEN 100, 200, 300

In the first example six entires were created in the

pseudocode list. They are MOV, COMPARE-EQ, GOIF-TRUE, ADD,

COMPARE-EQ, and GOIF-TRUE. In the second example, pseudocodes

created in the pseudocode list are MOV, COMPARE-EQ, GOIF-TRU ,

ADD, COMPARE-EQ, GOIF-TRUE, ADD, COMPARE-EQ and GOIF-TRUE.

IFSTATEr4ENT

The IFSTATEMENT may be used to conditionally alter the

execution flow of a BASIC program. An IFSTATEXENT has the form,

51

ln IF expression relation expression2 THEN lnl

In2 -----

lnl --

The effect of the IFSTATEYXENT is to transfer control

from the current statement to the statement numbered lnl,

If the relation dissatisfied, the program control is trans-

ferred to statement lni. Otherwise, statement In2 will take

over program control.

Pseudocodes are first generated to compute the values

of expression and expression respectively. One of the

following pseudocodes is then generated,

1. COMPARE-EQ

2. COMPARE-GE

3. CO1VPARE-GT

4. COMPARE-LE

5. COMPARE-LIT

6. COMPARE-NEQ

Finally, the pseudocode "GOIF-TRUE" is added to the

pseudocode list.

Examples.--The following are examples of IFSTATEMENTs,

1. 10 IF X+Y = X*Y THEN 100

2. 20 IF X/Y**2 = X-Y*2 THEN 200

In the first example four entries are created in the

pseudocode list. They are ADD, DOTIMES, COMPARE-EQ and GOIF-

TRUE. In the second example, pseudocodes generated in the

pseudocode list are EXPONENTIATION, DODIVIDE, DOTIMES, SUB-

TRACT, COUPARE-EQ and GOIF-TRUE,

52

FORSTATEENT ;n_d LNEXTSTATEMENT

The FORSTATEMENT and the NEXTSTATEMENT are used in pairs

to govern the repeated execution of several BASIC statements.

When processing the FORSTATEMENT, the FOR-STATEMENT first

initializes the index variable. It then stacks the index

variable, increment value, final value and the line number

of the first statement following the FORSTATEMENT. An index

variable is basic to the control at execution. At each

executionrtime iteration of the FOR range the index variable

is updated by an increment value. Iteration continues until

the index variable reaches its final value. At that time

execution drops down through the NEXTSTATEMENT.

When processing the NEXTSTATEMENT, the NEXT-STATEMENT

routine first unstacks the index variable, increment value,

final value and the line number of the first statement

following the paired FORSTATE ENT. It then updates the

index variable and examines the value of the index variable

against the final value.

To check. for proper program sequence, the PARSER keeps

a counter. Whenever a FORSTATEMENT is encountered, this

counter is incremented by one. It is decremented by one

for a NEXTSTATEIVEN , At the completion of nesting pairs of

FORST AThEMENTs and NEXTSTATEMENTs, the counter is expected to

have the value of zero.

Examples.--The following are examples of FORSTATENIENTs

and NEXTSTATENIENTs:

53

1. 10 FOR X=2 TO8 STEP 2

20 LET Y= Y + 2 + 4

30 NEXT X

2. 40 FOR Y =1TO10 STEP 5

50 FORZ= 1 TO 10 STEP 5

6o LET XYZ (YZ) = Y + Z

70 NEXT Z

80 NEXT Y

In the first example, X is the index variable. Its

initial value is assigned to be two. The increment value

is two and the final value is four. Six entries are

created in the pseudocode list. They are MOV, ADD, ADD,

IOV, COMPARE-LE and GOIF-TRUE.

In the second example pseudocodes generated in the

pseudocode list are MOV, MOV, ADD, SUBTRACT, DOTIMES, ADD,

MOV, COMPARE-LE, GOIF-TRUE, COMPARE-LE and GOIF-TRUE.

GSUB STTEENT andE ATEEN

Parameterless subroutines are allowed in BASIC programs

through the GOSUBSTATEMENT and the RETURNSTATEMENT.

In order to allow the nesting of pairs of the GOSUBSTATE-

MENTs and the RETURNSTATEMENTs, a linked list called RETURN-

STACK is used to save the return addresses on a last-in-

first-out basis.

When processing the GOSUBSTATEMENT, the GOSUB-STATEMENT

routine p u s h e s down the return address, When processing

54

the REPURNSTATEMENT, the RETURN-STATE ENT routine pops

up the return address.

Examples.--The following are examples of the

GOSUBSTATEMENTs and RETURNSTATEMENTss

1. 10 GOSUB 100

20 -----

100 -----

200 RETURN

2. 10 GOSUB 100

20 -----

100 GOSUB 200

101-----

105 RETURN

200 -----

300 RET URN

In the first example, the RETURN-STACK has only one

return address. Statement 100 stacks it and statement 200

unstacks it. In the second example, the RETURN-STACK contains

two return addresses. When executing the statement 300, the

return address popped up by the RETURN-STATEMENT routine is

line number 101.

DIMSTATEMENT

When processing the DIMSTATE ENT, the DIM-STATEMENT rou-

tine identifies the source-language names of vectors and

55

arrays. It also saves the values of row parameters and

column parameters.

DEFSTATEMENT

When processing the DEFSTATEMENT, the DEF-STATEMENT

routine identifies the name of the defined function and the

name of the dummy variable. The first psuedocode created

by the DEF-STATEMENT is ENTER. The last pseudocode created

by the DEF-STATEMENT is EXIT. Control transfer and argu-

ment replacement in function call are performed by

pseudocode CALL and ENTER. The result is passed back through

the EXIT pseudocode,

gTOPSTATEMENT

When processing the STOPSTATEMENT, the STOP-STATENIENT

routine g e n e r a t e s the pseudocode STOPCD.

ENDSTAT&&ENT

When processing the ENDSTATEMENT, no pseudocode is

created in the pseudocode list. In this interpreter, as

soon as the ENDSTATEMENT is encountered, the program control

is transferred back to the main control program.

Execution

The execution segment is implemented as an independently

compiled procedure called EXECUTE. EXECUTE consists of two

major activities: storage allocation and pseudocode exe-

cution.

56

Prolm

The problem in the execution segment is to reserve the

proper amounts of storage reqred by the BASIC program. Once

the interpreter has created the pseudocode list and reserved

the proper amounts of storage, it may start to execute the

pseudocode list,

Data Structure

The input to the EXECUTE is the pseudocode list. The

pseudocode list is a one-way linked list built by the parsing

segment,

The outputs produced by the EXECUTE areas

1. IMIAGE: It is a one-way linked list used as

an input to the LISTER,

2. ERROREE.

3. Optional debug listing.

The symbol list and line number list support the execution

segment. Their addresses are passed as external addresses.

Algor~ithm

When called by the main program, EXECUTE starts to

assign storages and execute pseudocodes.

Storage allocation is performed by scanning the symbol

list and reserving the appropriate amount of storage for

each constant, simple variable and subscripted variable.

Similarly, storage is assigned for the temporary locations

that will contain intermediate results.

57

It is the responsibility of EXECUTE to maintain the

pseudocode execution sequence. In order to carry out the

execution in the correct sequence, EXECUTE must keep track

of where it is in processing the pseudocode list, To this

end, a pointer called PSW is used to hold the next pseudo-

code to be executed. As pseudocode is processed, the PSW

is advanced to the next pseudocode. This segment may be

summarized in block chart form as shown in Figure 8.

Listing

The listing segmentation is implemented as an indepen-

dently compiled procedure called LISTER,

Problem

The problem in the listing segment is to produce a

source listing with line numbers. Error messages from other

segmentations are merged into the source listing.

fl tjruclture

The inputs to the LISTER areas

1. SOURCE

2. ERRORES

3, ERROREP

4. ERROREE

5. IMAGE

The output produced by the EXECUTE is the source

listing.

Smbo1 Li-st
Line No. List

LOG

EXECUTE
MVA I N

PSW

END-TAC
GDEBUG

GLNNO
SKIP

CALL

COPARE-EQ
COPARE-GE

I C OIIPAREnGP
COMPA RE-LE
COMPARIE-LT
COMPA RE-EG
DODIVIDE
DOTI JES
E T ER
EYTR

EXPONENTA TION
GO
G0IF-PALSE

IF

INDX
MOV

TNA

ATIN

LOUT

IN

Fig. 8--Executing Block Chart

58

59

Algorithm

The inputs are processed by the LISTER in the following

order: SOURCE, ERRORES, ERROREP, ERROREE and IMAGE.

Debug Output

SCANNER, PARSER and EXECUTE ge n e r a t e a debug

listing when requested. The debug output options are con-

trolled from the source input stream. The options can be

turned on and off at any point during execution with single

source cards. There are several levels of debug output that

can be selected,

Table III shows the output for each level. Samples of

debug outputs are shown in Appendix C.

Testing

This interpreter was tested in several stages. The

stages were (3):

1. Stage 1--SCANNER output was hand-checked

using the debug output.

2. Stage 2--PARSER output was hand-checked using

the debug output. The PARSER and

the SCANNER were integrated for this

stage.

3. Stage 3--EXECUTE output was hand-checked

using the debug output, EXECUTE was

integrated with PARSER and SCANNER

for this stage.

60

4. Stage 4--LISTER output was hand-checked

using the debug output. LISTER

was integrated with PARSER,

SCANNER, and EXECUTE for this

stage.

Test programs for stage 1 through 3 were designed to

test the interpreter rather than go into execution. The

programs were designed to test each major feature of the

interpreter on a statement by statement basis. Programs

for stage 4 were designed to produce output that could be

interpreted as correct or incorrect depending on whether

or not the interpretation had been correct. Samples of

testing programs are shown in Appendixes 9-14.

61

TABLE III

DEBUG OUTPUT

PHASE LEVEL OUTPUT

SCANNER C None

1 Source, Errors, Atoms

2 Source, Errors, Atoms,
Detailed trace of finite-
state machine

PARSER 0 None

1 Source, Errors, Pseudo-
code

2 Source, Pseudocode, Atoms,
Detailed subroutine trace
of PARSER

EXECUTE 0 None

1 Execution sequence of
pseudocode

2 Execution sequence of
pseudocode, value of
location before and
after execution.

62

CHAPTER BIBLIOGRAPHY

1. Gauthier, Ponto, QDesignin Systems Programs, New Jersey,
Prentice-Hall, Inc., 1970.

2. Gries, David, Compiler Construction for Digit Comuters,
New York, John Wiley & Sons, Inc., 1971.

3, Isaacson, Portia, A QoMpiler for This Pro a mming
language, Department of Computer Sciences, North
Texas State University, Denton, Texas, 1971
(unpublished).

CHAPTER V

CONCLUSION

For this BASIC translator, an interpretive approach was

selected, Rather than translating the source statement to

directly executable computer machine code, the statement is

interpreted in object pseudocodes. Some particular advan-

tages for the interpretive method are (1)

1. Easier alteration to a running program.

2. Reduction in object code size, especially

when data type checking is involved,

3. Greater diagnostic capability.

4. Easier portability of object programs.

Its disadvantages can be slowness due to software decoding of

pseudocodes and repetitive interpretation of unchanging ele-

ments. But even the slowness of execution is not a

disadvantage for program development, where compile time

greatly exceeds execution time--it is only a disadvantage

for production programs.

Repeated attempts with various algorithms proved that

the best approach is to divide characters into groups. In

this lexical analysis six groups are devised. Class I

represents the twenty-six characters of the English alpha-

bet. Class II represents the digits zero through nine while

63

64

the operators are assigned to the third class. Classes 4,

5 and 6 represent delimiters, blank, and quotation mark

respectively.

This allows quick adaptation to finite-machine simula-

tion; hence, the process requires less time. Also, the

number of data bases is reduced, To accomplish this, the

terminal and identifier tables are combined with the

insulting table having a pointer that points to either the

symbol table or line number table. The line number table

acts as the bridge within the statements of the program

and allows for continuous execution of the pseudocode list.

These adaptations decrease the amount of storage required.

Through the careful design of pseudocodes and elimina-

tion of the use of unnecessary repetitions of the pseudocode,

the interpreter is made more efficient and effective. The

storage space for the pseudocode list is reduced, thus

reducing the execution time.

The interpreter is also equipped to detect and correct

minor errors before continuing execution. Also, 4n order to

facilitate program debugging, an optional trace listing is

made accessible to the programmer. This debug output facil-

itates detection and correction of these errors.

In conclusion, no major problems are encountered in

building the interpreter and an even more efficient one

seems possible through further adaptations of the interpreter

presented.

CHAPTER BIBLIOGRAPHY

1. Broadbent, J.K., "Microprogramming and System
Architecture," 'The Cpjuter Jourl (Volume 17
Number 1), 1973.

65

APPENDIX I

RESERVED WORDS

IF REt

ON SIN

TO SQR

ABS TAN

ATN DATA

Cos GOTO

DEF NEXT

DIM READ

END STEP

EXp STOP

FOR THEN

INT GOSUB

LET PRINT

LOG RETURN

APPENDIX II

BACKUS NORMAL FORM OF THIS BASIC PROGRANlING LANGUAGE

<A SIC PROGRAM> ::= <PR ,GR AM-iEA><PrOCGfAM-ITAtL><TFrCMINAL ST>
_A<PP0GRAM-TAIL><TEtlINAL, 1ST>

<PRJGRAM-HEAD> ::=(PEM ST><0EF St><DIM ST><R0EM ST><DEF ST>I<0EM ST><D!M ST>
()EF ST><DIM ST>I<DEF ST>I<DIM ST>

CFMNC II ON AR I A8E>: =f(T EiT >LFNK<DG T>
<i)EF ST> ::=(Lt NE NUMBE ><LA. AK>DF<BL AMK><FUNCTI N4 VA R!ABL E><LFFT PPEN>

<SIMPLE VARIABLE><RIGHT PAEN><EQUAL SiGl><EXPlESSI'!N>
<UiiP T> ::=<L1 E AUMBE >(LA MM i3LA K TMENS!N L$iT>
ULMENSIi14 LIST> ::L<DIMEN iN>j<DiMENSJN IIST><CflMMA><DIME'ISIVN>
01'MENSIUN> ::=<SIMPLE VAR! 3LE><LEFT PAPE,><INTEGEP ><CCMMA><R'GHT PARENT>

___ <SI MPLE VAPRIA8LE><L EFT PARRN>< GT H TPAN>
<TERMINAL ST> ::=<END ST>
<P&JGRAM TAI L> ::=<STAITEMENT>I<Pf0GVFAM TA IL><STATEMENT>
STATEMENTN >D::<L ET ST> I<RE AJ S;> I<0ATA S I> I PF 14T ST> I GIT(" $T>)I<N S T>

<IF ST>K<FOR ST>I<NEXT ST>I<DIM
<IF ST>1<FO; ST>1<NEXT ST>1<GOSUS ST>l<RFTURN ST>1<STOP ST>I
<REM ST>

,L INE N4UMdE R> :**=<DIGI T> I<L IAE NJM0EP><n!GJ T>
< LM ST> ::=<LINE NUMBER><3LANK> rEM<BLAK><MESSAGE>
<LT ST> ::=<(ItEMMBLR><BLAN4K><VA1A8Lt><EQUAL S! GN><E XPREsSSIcN>
<EXPRESSION> ::u<MULTIPLY FACTUR><PREFTX rP><EXPRESSI-N>1

<EXPRESS1ON><LJ4 PR0RITY><MULTIPLY FACToR>
<Mt4JLTIP_.Y fACTfCR>. :=<MULTI PLY F ACT R><HIGH PRIORTY><INV'LU TICON FACTOP>I,

<(pViLJrIJ4 FACTOR>
(P.'EFIX UP> ::=<PLUS S)GN>l<'NUS SIGN>
(HjGB Pfkj' Y> ::<ASTERISK -SIN>1<SLASH SIGN>
<LOW PRIORITY> ::<PLUS SIGN>I<(4INUS SIGN>
'lNVOLUTION FACTOR> ::=<TERM>l<TERM><ASTERISK SIGN><ASTEqISK SIGN><TERM>

<TktM>_::z<CONSIANT>1<VARtAtLE>l1FUNCT ON . EF>1<EXPN ESS!N>
(VARIABLE> ::=<SIMPLE VARIA3LE>l<IMENSl(N VARIABLE>
(DIMENSION VARIABLE> ::=<SiPLE VARIABLE><LEFT PARE><EXPR ESSION><COMMA>

- EXPRESS j N><RjGHT AP EN>
1<S!MPLE VARTABLE><LEFT PAREN><FXPRESSIWN><PIGHT PAPE'>

<SIMPLE VAkIABLE> ::=<LETTER>1<LETTEP><LETTEPDIG!T>
(fTTI~lOjj> ::=<ALP14A8ET>1<LETTt..GI T>.ALP4A8.> -
(ALPHAdET> ::=<LETTER>1<UIGIT>
<CONSTANT> ::=<NUMBER>
C;NV Jd R.::=< INTEGER>[DECIAAL>
<CNTEGER> : =<0GIT>1<INTEGEk><IGIT>
L)ECIMAL> ::=<INTEGER><PERIIIJ><NTEGEP>I<PERIOD><INTEGFR>

<Qlj_'LtA : x0_1_1 1213.14 1516 171319
< SIGN> *Q:szPLUS SIGV>j<MINUS Sii'">
(FU 4 UIN RE-> ::=<FUNC TN JAAME><LEFT PARE><EX FSSVT N><R'GHT APEN>
K. C' T0 NAME> :=<8UILT-.N FU iQT ><VSE FUNCl 0.>
C SEk FUNCTION> ::=<FUNCTION VA IABLE>
<dUILT-IN FUNCTION> ::=SINICJSITANIATNIEXPIABSIL3GI1SQ 1!NT

<1LNEDhy BER >: :=< CiN><C QA..T A T> <C GN ST AN T>
<4 A t IST> : SIGNEDN E C NUBE > <DATA LlIST><COMMA><ST GUJf) NjM3Ec>
DATA ST> ::=<LINE NUMB E><BLAN>DA T A<L ANK><CA TA Li ST>

'.2 IcT : =(I' E. NUME 3 ><L4,.>Gf T1<BL 4tK><L)E NJM F>
IE uER LIST> ::-=<L NJ 4JMd E <L NENUMBE L. I ST><CMA><INE .NUMBER>

<1'4-N ST> :=(L Nr NF R><CL A'>RBLL >K'>ANK<><3EXPR E S S1 ><bL A JK> THEN
05-AIWK ML t N 13 R L ST>

67

APPENDIX II--Continued

<(SUB ST> ::=<LINE NUM3EAR><6L4AK(>Gf SUB<3 LAt K><LINE NUMBER>
<RETURN ST> ::=<LINE NUMBER><8LA4K>PETUFW

(FJI12lU=<(LEE NV1M f E<L AdK>I F BL ANK><WQTL E A N EKXPfkS$1M><(LAt K>TH EN
<BLANK><LINE NUMBER>

<8JULJEAN EXPRESSION> :: =<EXPRESSION><PEL4TT'N>(EX P ESS!0N>
<k EATJON>:: >==><1
<FAR ST> ::=<LINE NUMBER><ILANK>FR<RLANK><SIMPLE VAq7ABLE><EQUAL S'GN>

5-X PR .S I N>,< 8L 41> T-J-BL.AN K> < E X P E.S IT NBL ANO3E
<8LANK><E XPRE S SlUN>

(NEXT ST> ::(<LINE NUM8ER><dLANK>NEXT<BLANK><SIMPLE VAPIABLE>
(Sfl2f-IDil1A(LNE AURER(t AD>&TOP

<ENU ST> :**=<LINE NUMBFR><d LAAK>END
(VAR ABLE L IST> ::w<VAP! ALE>l <VARALE LIST><Cl.4MA><VA!i AflLE>
(EAQ 5 > :0:<LINE NUMBER><t3LA1K> LAD(<LANK><VAR IA1LE LIST>
(PRINT LIST> ::*<PRINT tTEM>l<PR14T LIST><CfMMA><PPINT ITEM>
(P'INT ITEM> ::1<EDlT><EXPRESSIO>

J Ljj :=<B(AR >1 <ME$ A E> 1<1A R>-
(MESSAGE> : =<CHARA CT EP >I C.E SVSE><CHA . AC TER>
<.CHARACTER> ::=<LETTER>1<D' IT>I<SPECIAt CHARACTER>
<PklN T ST> ::=<LINE. NUM >.AitK>P? IN(BLA4K><Pr T .ST> S
<LETTER> :: AIBICtUIEIFIGHi LijIKILIMINIOIPIQIRISI TIUIVIWIXtYlZ
(SPECIAL CHARACTER> ::=+I-</1 (I(>I'II I<BLANKII?
(PLUS SIGN> ::z+
(MINUS SIGN>
(EQUAL SIGN> ::=

<tFT PARE > :
<RIGHT PAREN> ::=)
(ASTERISK SIGN> ::=*

<PERID> ::=
<CUMMA> :=

68

APPENDIX III

TRACE LEVEL I OF SCANNER

bkATEk
RiFL O

*A ITEc

MITt2

MkRi TtC~i I Tti
.fkiTE2

halTkt
hkA TE2

akTEZ

MitflTE 2

wRITEL

hi STE2

hRITku
whi 112

I I E L

WARITk t
hf1I E2

haTEd

WRI TL(

WM'.it2

k LTl?.
M L U2

ivRI Tk u
Wait L

loop ORIT k

AILM
Ah.M

ATCM

A 16-1M
ATCM

A 11$4
ATCM
ATLM

AIEM
ATCM

ATCM
AICM

AILM

AIIM
AILM

A IL M

ATCM

AILM
ATC 1

AILMATLM
AI(14

AlLM4

A TIM
ATUM
AIIM

AluM

AIILM
ATIMAIC.M
ATCM

A It

AIIMATCL

ATLM
12 G 68 04
WRI Tk3 A ILM L INE. LPE ES
hAITte ATCM GCSU3

hA14T AILM CINSTANI
I0.U TCP

UAITE3 AILM LINE..OEEP
6FITEZ AT. SICP

Q4 f k I = 1 TC 2
mR IIt ATIM LINEhLeEP
oklft2 ATCM FCF
*RlITE AILM ICEhTIFIE F
*Klft2 ATCM ECUAL
hITEC AIIM CCNSTANI

*AITI k A ILM IC
iWlt4 AILM CC SIAh1

69

2

A

2

I

A

2

2

8

I

I

8

I

2.

8

2

CCI'SIANI
RIGhT. FAFE

ICEhTIFIER
LEFT.PAIEN

CC ItSIAi I

CC1'ditA

RIGFT.FAPEh

ICENIlFIER
LLF. FAREN

CCtSTANd
CCMMA
CChS1A t
RIGIT.FAREN
CCPA
ICENTIf IEA
LEFl.fAAEh
CChSTAINT
CC14'A
CCNSTIANT
R IGF .PAREh
CC 1 1'A
ICETIFIER
LEFI...FAPEN
CONSTANT
CCMA
CNSTIANI
P IGilT-FAFE
LCIM0A

Ict1i-]IER
L k F T.F A IFtIt
ICNSIANI
CCMPA
CChSIAhI
RIGIT. FAlE
CCI'MA
ICENIIFIEP'
L EF TL.FANE

CCMPACC STAKT

CtIGS1ANI
R4 I GI- L. PA PEN

I

I

2

8

2

2

1C2

ic/s

APPENDIX IV

TRACE LEVEL 1 OF PARSER

SI4.PCDt LNNC

GLNtNC

utiRACT L T$17
6IEI 2 T$18

Atoi. I idTS1T
LAUX ' 15T3 $05
IV Lv 0 C

MLJV K

SUOTRACT LT$19
CCTIPES T$19 2 T$20

AU 1$2 1T$19
iux .T$19 $$

Suo]PACT 1 T$21
uu11ES rszi 2 TZ$2
AW; is2 JT$21

INUXT$21 C

SLbIPACT 1 1$13
ULTIES T2 2 1524

ALLU 52' K T$23
INUX A T153 A

bijbIALTAK 1 T$25
ULTIMES 1$2: 2 T$26

A1 i524 JT25
INUX d T$25 5$
Lt,1 ES iA& 8 T1$27
ALU *Sc T$27 152d
Mcv 1$28 c

LCMPARE.LT K 2 1$29
AoUK K
ij10-Ik0k 1$29 10
kA~NNE kc
LuMPAE-LT J 2 T$30
AUu i

6WlF-TAE1534.) 991
GL- ,NC50
COPMRLE- 01 2 T$31
ALI1 1
LCIF.TRLE ($31 105
GLINC 051
GU

U.NAL 424

SKIP
GLUC 021
sAlP
cull . A,1)
Cull (1,2)
jLNNC cid
SKIP
INX L C

70

APPENDIX V

TRACE LEVEL 1 OF EXECUTE

ULTIPES [$17 2 rla

ALL T*18 iT51T7

Ihu X C T$17 $C

Mev 0 C

MV K

3LtdNC 10

S5BCRACT I T$19

CCTIPES r$19 2 T$20

ALU T$20 T$19

bux L 1$19 C

SudItRACT I L T$l

Lut TIES TI21 2 T$22

AU Ts22J TS21

INax T$21 C

SublPACT I $23

OCTIVES ($23 2 T$24

AGO T524 K T$23

INOX A T$23 A

SuiTPACt K T$25

waT$ES T$25 2 T526

ALU rS2o T$25

iLNX d 1$25 $Bs

LLTIPES A$ T$27

ALU sC$ 4T$27 28

I$V T428 SC$

4LNh C i08

LCMFARE.LI K 2 T$29

AuK I K

GO(f-T$LL ($29 107
71

APPENDIX VI

TRACE LEVEL 2 OF SCANNER

LINE 10
LINE a 10
WRITE ATOM LEFT-PAREN
LINE 10
LINE 10
WRITE ATOM I0ENTIFIER X

LINE a 10
LINE a 10
WKITE2 ATOM PLUS
LINE = 10
LINE 8 10
WRITE AT)M CONSTANT I
LINE= 10
LINE = 10
4RITE2 ATOM RTGTPAREN
LINE 10
20 DEF FNB(Y) = Y**2 *2+Y+1
WRITE3 ATOM LINE-NUFBER 20
LINE - 20
LINE 8 20
LINE a 20
LINE 20
LINE 20
LINE - 20
WRITE2 ATLM OFF
LINE = 20
LINE a 20
LINE 20
LINE 20
LINE 20
WRITE ATOM IDENTIFIFP FN6
LINE = 2

LINE = 20
WRITE ATOM LEFTPAPEN
LINE 20
LINE = 20
WkITEO ATOM IDENTIFIEP y
LINE = 20
LINE = 20
WRITE2 ATOM RIGHTPAPEN
LINE 8 20
LINE = 20
LINE = 20
WRITE2 ATOM EQUAL
LINE 8 20
LINE 8 20
LINE 8 20
WRITE ATOM IDENTIFIER Y
LINE = 20
LINE 20
WRITE2 ATCM MULTIPLY
LINE = 20
LINE 8 20
WRITE2 ATOM MULTIPLY
LINE = 20
LINE = 20
WRITE ATOM CONSTANT 2
LINE = 20
LINE = 20
LINE 8 20

72

STATE 8 = COLUMN.TYPE =
STATE = 5 COLUMN.TYPE =

STATE x 1 COLUMN.TYPE *
STATE = 2 COLUMN.TYPF

SIATE 8 = COLUMN-TYPE
STATE x 4 COLUMN3TYPE 8

STATE a 1 COLUMN-TYPE =
STATE = 3 COLUMN.TYPE 8

STATE a
STATE =

STATE a

STATE
STATE
STATE
STATE
STATE
STATE

STATE
TATE

STATE
STATE
STATE

*

*

3

*

a

U

U

U

STATE
STATE =

STATE 8

STATE U

STATE =
STATE 8

STATE
STATE
iTATE

STATE
STATE
STATE

=

U

8

STATE 8

STATE 8

STATE 8

STATE =

STATE =
STATE =

STATE
STATE
STATE

1
5

1

1
1
1
2
2
2

I
1
2
2
2

I
5

1
2

1
5

1
I
4

I
1
2

COLUMN-TYPE =
COLUMN-TYPE =

COLUMN-TYPE =

COLUMN-TYPE
COLUMN-TYPE
COLUMNTYPE
COLUMN-TYPE
COLUMN-TYPE
COLUMN.TYPE

COLUMNJTYPF
COLUMN-TYPE
COLUMN.JTYPE
COLUMNTYPE
COLUMN.TYPE

=

*

8

*

=

U

COLUMNTYPE 8

COLUMNTYPE =

COLUMN.TYPE 8

COLUMN.TYPE 8

COLUMN-TYPE
COLUMNTYPE

COLUMN-TYPE
COLUMN.TYPE 8

COLUMN-TYPE =

COLUMNTYPE
COLUMN-TYPE
COLUMN-TYPE

8

1 COLUMNTYPE =
4 COLUMN-TYPE =

1 COLUMN-TYPE =
4 COLUMNTYPE

I COLUMNTYPE =
3 COLUMNTYPE =

I
I
4

COLUMN-TYPE
COLUMNTYPE
C 01AN-TYPE

4 ATOM
I ATOM

I ATOM
3 ATOM

3
2

2
4

4
5

5

5
5
I
I
1

5
'3
I
I
1
4

ATOM = X
ATOM +

ATOM =
ATOM 8 j

A TOM
A TOM

ATOM

A TOM
ATOM
ATOM
ATOM
ATOM
ATOM,

A TOM
ATOM
ATOM
ATOM
A TOM

=1
8)

8)1

=

=
=

*

8

2

2

2

S

20
20
20
D
DE
DEF

DEF
DEF
F
FN
FNB

4 ATOM 8NB

1 ATOM 8 4

1 ATOM= 4
4 ATOM Y

4 ATOM=Y
5 ATCM 8I

5
3
5

5
1
3

3
3

3
2

2
5

5
3
2

A TOM
A TOM
ATOM

ATOM
A TOM
ATOM

=

S

S

S

=S

Y

ATOM Y
ATOM = *

ATOM 8 *
ATOM *

ATOM
ATOM

ATOM
ATOM
ATOM

*

2

2

+

=
=

=
=
=

=
=
=

APPENDIX VII

TRACE LEVEL 2 OF PARSER

PREFIX-SIGN
ATOM.J S
ATOMJI S
ATOM.IS
NEXTATOM

ADO
EXI T

FLUSH
GLNNQ

NEX TA TOM
ATOMS
ATOM-IS
PROGRAM.TAIL
PAR SINGMAIN
PARSING.CONTROLLER
ATOM-IS
ATOM-5 S
ATOMIC S
ATOM-IS
NEXTATOM
LET.STATEMENT
GOAL
NEXTATOM
AtOMt S
NEXTATCM
EXPRESSION
TERM
PRIORITY
PREFIX.SIGN
ATOM.! S
ATOMIC S
ATOM-I S
NEX TA TOM
ATOMIC S
NEXTATOM
EXPRESSION
TERM
PRIORITY
PREFIX-SIGN
ATOM.I S
ATOM.IS
ATOM.I S
NEX TA TOM
AtOM-IS
NEXTATOM

CALL
ATOM-IS
NEXTATOM
TERM
PRIORITY
PREF IX.SIGN
ATOM-IS
ATOM-IS
ATOM-IS
NEXTATOM
ATJM-IS
NEXTAT GM
EXPRESSION
TERM
PRIORITY

CON STANT
TM3
T$14

L I4ENUMBER
40

L INE.NUMBER

LET

I)ENTIFIER

F. QJAL

IDENTIFIER

LEFT..PAREN

CONSTANT

RIGHT-PAREN
10

PLUS

IDENTIFIER

LEFLTPAREN

73

TS 14

2 TS15

I

APPENDIX VIII

TRACE LEVEL 2 OF EXECUTE

FNA$DA
2.000000E+00
2.OOOOE+00

FNA$OA
2*00000OE+00
2.000 000 + 0

t1*'
1.000000OE+00
I. OOOOOE+00

20

1
1.0000OOE+00
1.00OOOOF+0

1
1*000000E+00
1. 0000)OOU+0o

S$2
3.OOOOOE00
3.000000E+00

2056

Isi
0.000000E+00
1.0000000E+00

T $2
0.000000E+00
3. OOOOOOFEth)

I $3
0. 0000 00E400
3.000000E+00

T$16

20

FNB$DA

EXPONENTTATION
BEFORE
AFTER

ADA)
BEFORE
AFTER

AOD
BEFORE
AFTER

ADD
BEFORE
AFTER

EXIT

ADD
BEFORE
AFTER

CALL

GLNNO

ENTER

DOTI MES
BEFORE
AFTEP

00TIMES
BEFORE
AFrF*

00 IVIDE
BEFORE
AFTER

FN4$A
2. 559999E+00
2.559999E+00

T$4
6.553593E+00
6.553593E+00

T$5
8.53593E+00
8.553593E+00

T$6
1.111359E+01
1.111359E+0L

'$7

T$15
3.000000E+00
3.000000 E+00

30

2
2.000000E+00
2 .OOOOOOE+00

2
2.OOOOOOE+00
2.OOOOOOE+00

FNB$DA
2.559999E+00
2.559999E+00

1
1.000000E+00
1.000000E+00

T$16
1.211359E+01
1.211359E+01

89.56

T$4
0.OOOOOOE+00
6.553593E+00

T$5
0.000000E+00
8.553593E+00

T$6
0.000000E+00
1.111359E+01

TS7
0.OOOOOOE+00
1.211359E+01

T$17
0.000000E+00
1. 51 1359E+O

T$18

30

FNC$OA

FNCSDA
8.956000E+01
d.956000E+0 1

3
3.COOOOE+00
3.OOOOOE+00

T$9
2.6 799E+02
2.6 79 E+02

74

3
3. 00000E+00
3. 00 OO0E+00

FNC$DA
8, 956000E+01
8,956000E+01

2
2.OOOOOOE+00
2.OOOOOOE +00

T$8
0.OOOOOOE+00
2. 686799E+02

T $9
0. OOOOOOE+00
2.686799E+02

T$10
0. OOOOOOE+00
1. 343400E+02

SUaTRACT
BEFORE
AFTEP

ADD
BEFORE
AF TFR

t)J 14(s
BEFORE
AFtER

EXI T

CALL_

GLNNO

ENTER

r$3

APPENDIX IX

SOURCE AND EXECUTION LISTING OF TEST PROGRAM I

I IrVA t 1' I fr N 1 1tP it t MN t
NORMtH rXA5 ';1 A Ir.' N Iyrfs I y

6AW I NTWWFA. R 00RCE StAttmi-Nt

100
102
56
58
59
60
909
62
64
621
500
620
622
77
78

S = 2, P 2, G 2;1 TE 14/10/19
REM TEST LETSTATEMENT
LET X =2.56+4.78/2+2.7**2
LET Ya --- +-(4*(2/2*2.76/4))+(22.6*0.8-10.58)
LET Z=X/2+Y*X-656.52/4+6.98
LIE T LaX+Y+t X+Y) * (X-1I +Z-(X+Y+ Z)+4.5**2-8. 5*l. 2
LET V=-(((X+Y)-(X-Y+Z-L)+(Z+L+L)-Y+X)/2-5)/2
LET N z 5+2+1-3-3*5+5**2/2
PRI'IT IVALUE OF XIIVALUE OF Y1I1VALUE OF Zi
PRINT XY*Z
PRINT
PRINT
PRINT VALUE OF L IIVALUE (F MI, I VALUE OF NI
PRINT L,4,N
STOP
END

VALUE OF X
l.223999E+1

VALUE OF L
2.629442t+02

VALUE OF Y
1. 025999E+01

VALUE OF M
-2. 003368E+02

VALUE OF Z
-2. 544780E+ 01

VALUE OF N
2. 500000E+00

75

-

APPENDIX X

SOURCE AND EXECUTION LISTING OF TEST PROGRAM 2

OLPAkVMENT OF COMPUTER SCIENCE
NORTH TEXAS STATE UNIVERSITY

BASIC INTERPRETER SOURCE STATEMENT
DATE 74fl0/19
TIME 16:56:47

?? S = 2, P 2, G 2;
100 REM TEST STATEMENT AND READSTATEMENT
188 CATA 1,,3,4,5,6,7,8,9,0,1,2,3,4,5,6,T,8,9,0,1,6,9,5,4,6,,8,10
500 READ X
991 IF X 10 THEN 250
609 ON X THE4 10,20,30,40,50,60,70,80,90
5 LET ZERO ZFRO + 1
6 GOTS 500
10 LET ONE ONE + I

1 11 GOTO 500
20 LET TWO TWO + 1
21 GOT3 500
30 LET THREE = THREE + L
31 GOTS 500
40 LET FJUR FCUR + I
41 GOTO 500

1 50 LET FIVE = FIVE + I
J 51 GOTO 500

60 LET SIX 2 SIX + 1
) 61 GOTO 500

70 LET SEVEN = SEVEN + I
71 GOTO 500

3 80 LET EIGHT = EIGHT + 1
81 GOT) 500
90 LET NINE NINE + 1
91 GOTO 503

1 250 PRINT 1* 3F ZEPQII OF ONElI# OF TWOI I F THEP,4 SF FOUR
251 PRINT ZERO ,0NE, TWO, THREE,FOUR
252 PRINT

i 888 PRINT 1 #F FIVEII0 OF SIXII1 OF SEVENII OF EIGHTI,4 OF NI

1 300 PRINT FIVE,S!XSEVENEIGHTNINE
301 STOP

3 400 END

4 OF ZERO
2oOOOOOOE+00

CF FIVE
3.000000E+00

4 OF ONE
3.,0000 ODE+00

4 OF SIX
4.OOOOOOE+00

OF TWO
2* 000000E+ 00

0 OF SEVEN
3.000000E+00

N OF THREE
2a OOOOOE+00

0 OF EIGHT
30000000E+00

OF FOUR
3.000000E+DO

SOF NINE.
34000003E+00

76

NEI

kI

APPENDIX XI

SOURCE AND EXECUTION LISTING OF TEST PROGRAM 3

DEPARTMENT OF COMPUTER SCIENCE
NORTH TEXAS STATE UNIVERSITY

BASIC INTERPRETER SOURCE STATEMENT

?? $ 4, 1' 2, G 2;
100 RF4 TEST IFSTATFMENl AND GOTOSTATFEENT
25 LFT X
26 LET Y
27 IF X , Y THEN 15
28 PRINT HAVE EXECUTED 281
30 IF Y>X ThIEN 17
15 PRINT HAVE EXECUTED 271
16 GOTO 28
17 PRINT HAVE EXECUTED 301
300 IF X<Y THEN 40
38 PRINT IHAVE EXECUTED 411
39 IF Y> X THEN 50
40 PRINT HAVE EXECUTED 3001
41 IF X<=Y THEN 38
50 PRINT HAVE EXECUTED 391
52 IF X*Z+Y**2 z X*2+Y**2 THEN 60
54 PRINT HAVE EXECUTED 621
55 STOP
60 PRINT HAVE EXECUTED 521
62 GOTO 54
80 END

DATE 3 74/10/19
TIME * 16*58212

EXECUTED 21
EXECUTED 28
EXECUTED 30
EXECUTED 300
EXECUTED 41
EXECUTED 34
EXECUTED 52
EXECUTED 62

)

)
3

I

HAVE
HAVE
HAVE
HAVE
HAVE
HAVE
HAVE
HAVE

77

APPENDIX XII

SOURCE AND EXECUTION LISTING OF TEST PROGRA, 4

I1U*PARfMtNl1& (JMPOT)Ft S I AWCt

NOW tW 575 5UN105 11EV

?? 7
100
104
50
54
56
60
400
401
402
500
501
504
600
605
700

DAtE 114110
S = 2, P = 2, G = 2; TIME t 11t01
REM TEST GOSUBSTATE4ENT AND RETURNSTATEMENT
DATA 44.56,55.8T, 100.28
GOSUB 400
PRINT IVALUE OF XIIVALUE OF Yl VALUE OF ZI
PRIVT X*Y9Z
STOP
READ X
GOSUB 500
RETURN
READ Y
GOSUB 600
RETURN
READ Z
RETUA
END

VALUE OF X
4.45600CE+ O1

VALUE OF Y
5.587000E+01

VALUE OF Z
1.002800E+02

78

001
002
003
004
005
006
001
008
009
010
OLI
012
013
014
015
016

APPENDIX XIII

SOURCE AND EXECUTION LISTING FOR TEST PROGRAM 5

DEPARTMENT CF COMPUTER SCIENCE
NORTH TEXAS STATE UNIVERSITY

6ASIC INTERPRETER SOURCt STATEM NT

S % 1. T = 1 (. t - I:
REo Ii-s tJEFSIATMENT
DEF FNA(A) = (X-11* (X+L)
DEF FNB(tI = Y**2 2+Y+I
CEF FNCiL) L *3 +*3*Z/2 +2*Z*
LEI L FNA(2)+F8(2.56)+FNCl89.5b)
LEI M F4A(1.63)*FN8(2C.96)*FNC(56,85)
LET N z FNA(FNB(FNC(2))) + FNE(FNA(FNC(2))
FRINI. IVALUE CF LIIVALUE CF PIIVALUE OF Ni
PRINT LeMN
PRINT
PRINT IVALUE CF FNA(2.1)1#IVALUE OF FNB(3)I,
PFINI FNA(2.l),FNB(3),FhC(2)
PRINT
LEI Al a *.5
LEi V u 5.1
PRINT IVALUE OF X1+YLIIVALUE OF XL-YIIIVAL
PRi;NT XI+VLXI-YLXI*YI
E1)P

Eh~C

I'At r * tt1

VALUE OF FNC(21

UE OF XI*Yli

VALLE CF L
5.S62532E+C2

VALLE CF FNA(2.11
3.4CSSS7E*CC

VALLE CF XL*Yl
1.C2CCCCE+Cl1

VALUE CF M
2.844179E+C5

VALUE OF FNB(31
1.499999E+C

VALUE CF XI-YI
-1.200000E+C C

VALUE OF N
8.359094E+04

VALUE OF FNC(2)
1.4000COE+01

VALUE OF XI*YI
2.549S9E+01

79

1(0
IC

30
IC4c
5C
e Co
75C
144C
102
tol
EC2
9co
scl

910
S20
13C
110

APPENDIX XIV

SOURCE AND EXECUTION LISTING FOR TEST PROGRAM 6

DEPARTMENT CF COMPUTER SCIENCE
NORTH TEXAS STATE UNIVERSITY

BASIC INTERPRETER SOURCE STATEMENT

??

SCC
110
101

104
103
1C4

1(6

c57
CIC

1071
1(8
C29

C5C

C27
C24
C35
C27
28

C29
35

C40
C15
"4

DATE : 14/10/19
TIME 20:32:56

S 1, P :1, G I
REM 1E STFORSTATEMENTNEXTSTATEMENTLEADSTATEMENit IATAzATEMENT
CIO A(2.2h98(2121,C12#2)
LATA ,,4*52.2,3.5,4.6,5.7

GCSUd 144
STCU
FCR I t 10 2
FCR 4 ' A. TC 2
LEI (,lJ) 0
FCp K i IC 2
LET Ctl#J) C(IJI + A(ItK) *8(K$J)
NEXT K
NEXT J
NET I
GCSUe 025
RE I LRN
REP PRINT MATRIX C
PRINT
PRIAT IC(hT 1) IlC(1,2)l
PRIh7 CU1t1)C(1#2)

PRINT 1C(2,1)1. IC(2.2)
PRINT C(2,i)*C(2,2)
REILRN

C(1,11I
IOE 2CCOCE *AC I

C(2,1)C3.2917 P +0

C(1,2)
2.409999E+01

C(2#2)
4.249998E+01

80

BIBLIOGRAPHY

Books

Abramson, Harvey, Thory and Aplication of a Bottom-U
cyntax-Directed Translator, New York, Academic Press
Inc., 1973.

Donovan, John J., Systems Programming, New York, IcGraw-
Hill Book Co., 1972.

Gauthier, Ponto, Designin Sxtems ProEgrams, New Jersey,
Prentice-Hall, Inc., 1970.

Gries, David, Com.jler Construction for Digital Coputers,
New York, John Wiley &Sons, Inc., 1971s

International Business Machines, IBS systemss 20 Operating
Ssvtemss Job Contr Lanu Rge f Qerence Form No.
GC28-6704-2.

International Business Machines, jfB System .60 iL/1
LetQrena2 MAnul, Form No. 026-8201-0.

Naur, Peter and others, "Revised Report on the Algorithmic
Language. Algol 60," Programming Sfstems and Laguaes,
edited by Saul Rosen, New York, McGraw-Hill Book
Company, 1967.

Smith, Robert E., Dis2Y1ing BASIC, New York, International
Timesharing Corporation, 1970.

Spencer, D. D. , A Guide to BASIC Programming A Time-Sharig
n the United State of America, Addison-Wesley

Publishing Company, Inc., 1970o

Article

Broadbent, J.K., "Microprogramming and System Architecture,.
The Computer Journal (Volume 17 Number 1), 1973o

81

Unpublished Material

Chang, Min-Jey S., "An Interpreter for the BASIC Programming
Language," Department of Computer Sciences, North
Texas State University, Denton, Texas 1974.

Isaacson, Portia, Copler .for this Propgramin Languae,
Department of Computer Sciences, North Texas State
University, Denton, Texas 1971.

