REPORT No. 450

THE CALCULATION OF TAKE-OFF RUN

By WALTER S. DIEHL, Lt. Comdr. (C. C.), U. S. N.
Bureau of Aeronautics, Navy Department
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
NAVY BUILDING, WASHINGTON, D. C.

(An independent Government establishment, created by act of Congress approved March 3, 1915, for the supervision and direction of the scientific study of the problems of flight. Its membership was increased to 15 by act approved March 2, 1929 (Public, No. 908, 70th Congress). It consists of members who are appointed by the President, all of whom serve as such without compensation.)

JOSEPH S. AMES, Ph. D., Chairman,
President, Johns Hopkins University, Baltimore, Md.
DAVID W. TAYLOR, D. Eng., Vice Chairman,
Washington, D. C.
CHARLES G. ABBOT, Sc. D.,
Secretary, Smithsonian Institution, Washington, D. C.

ARTHUR B. COOK, Captain, United States Navy,
Assistant Chief, Bureau of Aeronautics, Navy Department, Washington, D. C.
WILLIAM F. DURAND, Ph. D.,
Professor Emeritus of Mechanical Engineering, Stanford University, California.
BENJAMIN D. FOULOS, Major General, United States Army,
Chief of Air Corps, War Department, Washington, D. C.
HARRY F. GUGGENHEIM, M. A.,
The American Ambassador, Habana, Cuba.
CHARLES A. LINDBERGH, LL. D.,
New York City.
WILLIAM P. MACCRACKEN, Jr., Ph. B.,
Washington, D. C.
CHARLES F. MARVIN, M. E.,
Chief, United States Weather Bureau, Washington, D. C.
WILLIAM A. MOFFETT, Rear Admiral, United States Navy,
Chief, Bureau of Aeronautics, Navy Department, Washington, D. C.
HENRY C. PRATT, Brigadier General, United States Army,
Chief, Material Division, Air Corps, Wright Field, Dayton, Ohio.
EDWARD P. WARNER, M. S.,
Editor "Aviation," New York City.
ORVILLE WRIGHT, Sc. D.,
Dayton, Ohio.

GEORGE W. LEWIS, Director of Aeronautical Research.
JOHN F. VICTORY, Secretary.
HENRY J. E. REID, Engineer in Charge, Langley Memorial Aeronautical Laboratory, Langley Field, Va.
JOHN J. IDE, Technical Assistant in Europe, Paris, France.

EXECUTIVE COMMITTEE
JOSEPH S. AMES, Chairman.
DAVID W. TAYLOR, Vice Chairman.

CHARLES G. ABBOT.
ARTHUR B. COOK.
BENJAMIN D. FOULOS.
CHARLES A. LINDBERGH.
WILLIAM P. MACCRACKEN, Jr.

JOHN F. VICTORY, Secretary.
THE CALCULATION OF TAKE-OFF RUN

By Walter S. Diehl

SUMMARY

A comparatively simple method of calculating length of take-off run is developed from the assumption of a linear variation in net accelerating force with air speed and it is shown that the error involved is negligible. The run formula is reduced to

$$ S = \frac{KV^2}{T_W} $$

Where \(V_1 \) is the take-off speed, \(T_1 \) is the initial net accelerating force, \(W \) is the gross weight and \(K \), a coefficient depending only on the ratio of initial to final net accelerating force. Detailed instructions are given for application of the formula and for the calculation of all factors involved.

INTRODUCTION

Exact calculations may be made for the distance run during the take-off of a landplane if sufficient data are available on propeller, engine, and airplane characteristics, and if some assumption is made regarding the pilot's technique. The calculations are necessarily laborious since the relations are such that step-by-step integration is required. In most cases lack of exact data on power plant and airplane prevents an exact calculation even if such were desired, while for all practical purposes a close approximation is all that is needed.

A number of formulas and methods have been proposed and used extensively in the past for calculating take-off runs. Most of these methods are based on average thrusts obtainable with the power plants formerly in use, and under favorable conditions gave satisfactory results. However, the advent of high performance has brought about changes in propeller design, for example, that greatly affect the take-off run so that a complete revision is required to accommodate the new variables.

The present study is concerned with the development of a method suitable for routine take-off calculations in the Bureau of Aeronautics of the Navy Department. Such a method, to be satisfactory, was required to be reasonably simple without neglecting any important variable. The method derived in this report has been in use long enough to justify consider-

ABLE CONFIDENCE IN ITS VALIDITY. ALL ATTEMPTS TO OBTAIN A MORE SIMPLE METHOD HAVE RESULTED IN UNSATISFACTORY RELIABILITY. WHILE THE METHOD HERE PRESENTED IS INTENDED AS A PRACTICAL APPROXIMATION TO A DIFFICULT PROBLEM, IT IS HIGHLY PROBABLE THAT GREATER ACCURACY WOULD HAVE NO SIGNIFICANCE IN VIEW OF LACK OF DEFINITE KNOWLEDGE REGARDING BASIC DATA.

UNLESS OTHERWISE SPECIFIED THE TAKE-OFF RUN IS TO BE THE RUN REQUIRED TO ATTAIN A GIVEN AIR SPEED IN A CALM; LB.-FT.-SEC. UNITS WILL BE USED.

GENERAL CALCULATION OF TAKE-OFF RUN

The major forces acting on the airplane during take-off are thrust, air drag, and friction drag. In the simplest case, at constant angle of attack, the air drag will vary as the square of the air speed and the friction drag will vary with the load on the wheels. The net accelerating force will then be the difference between the thrust and the total drag as indicated on Figure 1.

For convenience, the forces may be reduced to unit values by dividing each by the gross weight.

In general the take-off may be considered to consist of three stages: A short initial period during which the tail is raised to normal position, a relatively long
period of acceleration at a substantially constant angle of attack and a short period during which the angle is increased for take-off. It is possible for the third stage to be partially or wholly suppressed, depending on the airplane characteristics and pilot's efforts. If a definite sequence be assumed, the corresponding curves for air drag and friction drag may be determined. The variation of thrust with air speed may be calculated from engine and propeller test data. The normal tendency is for the thrust to decrease slightly with increase in speed and with a substantially linear relation, as indicated on Figure 1. In some cases, however, the thrust may remain constant, or even increase with air speed.

Assuming that the thrust and the drag are known as a function of air speed, the calculation of take-off run is made as illustrated by Figure 2 and Table I. The spacing between the ordinates. It is usually given in the form

\[A = \frac{1}{2} (y_1 + y_2 + y_3 + \ldots + y_n) \Delta X \]

where \(y_1, y_2, y_3, \ldots, y_n \) are the ordinates of the curve equally spaced at the distance \(\Delta X \) apart.

EQUATION FOR TAKE-OFF RUN

An extended analysis of calculated take-off runs in comparison with observed runs leads to the following conclusions:

1. The effects of thrust variation, gross weight, take-off air speed, and wind speed predominate to such an extent that in practice all other variables may be neglected.
2. The effect of normal variations in power is so great that considerable latitude is allowable in simplifying assumptions.
3. The effect of thrust variation from the static condition to take-off is of such primary importance that proper allowance must be made for the propeller characteristics.
4. The effects of wind speed and actual take-off speed are best handled in the form of corrections to the run required to attain stalling speed in a calm.

The most promising method of simplifying the calculations appears to be the assumption that the net accelerating force varies linearly with air speed as indicated on Figure 3. The calculations of Table II, based on this assumption, shows a run of 448.8 feet, as compared with 439.3 feet obtained in Table I. This is an error of less than 2.2 per cent, for what may be considered an average case. Such an error is entirely negligible in comparison with the uncertainty in power or propeller characteristics, and the variation in piloting.
THE CALCULATION OF TAKE-OFF RUN

With the assumption of a linear variation in net accelerating force the relations are as shown on Figure 3. The thrust per pound varies from \(T_s/W \) at the start, \(T_s \) being the static thrust, to \(T_f/W \) at take-off, \(T_f \) being the thrust at take-off speed \(V \). The total drag per unit weight varies from \(\mu - f/W \) at the start to \(\mu - f/W \) at the take off. The net accelerating force per unit weight at the start is

\[
\frac{T_i}{W} = \frac{T_s}{W} - \mu
\]

The net accelerating force at take-off is

\[
\frac{T_f}{W} = \frac{T_f}{W} - \mu
\]

Since the net accelerating force varies linearly with air speed it follows that

\[
\frac{T_i}{W} = \frac{T_s}{W} \left(1 - K \frac{V}{V_s} \right)
\]

where \((1 - K)\) is the ratio of the final to the initial accelerating force. That is,

\[
(1 - K) = \frac{T_f}{T_i} \quad \text{or} \quad K = \frac{T_i}{T_f}.
\]

The resulting equation of motion is

\[
\frac{dV}{dt} = g F \frac{T_i}{W} - g \frac{T_i}{W} \left(1 - K \frac{V}{V_s} \right)
\]

or

\[
\frac{V}{W} \frac{dV}{dt} = g \frac{T_i}{W} dS
\]

Integrating this gives

\[
S = \frac{1}{g} \left(\frac{T_i}{W} \right) \left[- \frac{V}{K} \frac{V_s}{V_s} - \left(\frac{V_s}{K} \right)^2 \log \left(1 - K \frac{V_s}{V} \right) \right]
\]

For take-off at speed \(V_s \) equation (8) reduces to

\[
S = \frac{V_s^2}{g W} \left[\frac{1}{K} \left(1 - \frac{1}{K} \log (1 - K) \right) \right]
\]

The term within the brackets on the right hand side of equation (9) depends only on the ratio of the final net thrust to the initial net thrust \(T_f/T_i \). Hence we may write

\[
S_v = K_v \frac{V_s}{T_i}
\]

where \(S_v \) is the total run to attain the speed \(V_s \) in a calm and

\[
K_v = \frac{1}{g} \frac{1}{K} \left(1 - \frac{1}{K} \log (1 - K) \right)
\]

Calculated values of \(K_v \) are given in Table III and plotted on Figure 4.

In order to use equation (10), the static thrust and the thrust at take-off speed must be known. Methods for calculating the thrust will be given.

TIME REQUIRED FOR TAKE-OFF

In some cases the time required for take-off is of importance. This may be obtained from equation (6) written in the form

\[
\frac{dV}{dt} = g \frac{T_i}{W} dt
\]

or

\[
\frac{V}{W} \frac{dV}{dt} = g \frac{T_i}{W} dS
\]

Integrating this gives

\[
S = \frac{1}{g} \left(\frac{T_i}{W} \right) \left[- \frac{V}{K} \frac{V_s}{V_s} - \left(\frac{V_s}{K} \right)^2 \log \left(1 - K \frac{V_s}{V} \right) \right]
\]

For time to take-off speed \(V = V_s \), this becomes

\[
t = -\frac{V_s}{g \left(\frac{T_i}{W} \right)} \log \left(1 - K \frac{V_s}{V} \right)
\]

As in equation (9), the term in the brackets depends only on the ratio of the net thrusts. Hence

\[
t_v = \frac{K_v \frac{V_s}{W}}{T_i}
\]
where \(t \) is the time in seconds to attain the take-off speed \(V_t \) (in ft./sec.) in a calm and \(K_t = \frac{1}{gK} \log (1 - K) \).

The initial net accelerating force per unit weight is defined by equation (3)

\[
\frac{T_i}{W} = \frac{T_s}{W} - \mu
\]

In reference 4 it is shown that the static thrust may be calculated by the equation

\[
T_s = \frac{K_{f_0} \times b \times hp}{r \times p \times m \times D}
\]

The static thrust coefficient \(K_{f_0} \) may be plotted as a function of blade angle at 0.75 \(R \) as in Figure 6.

Since it is common practice to adjust or read the blade angle at a given station regardless of the propeller diameter, a correction must be applied to obtain the setting at 0.75 \(R \). Figure 7 gives the correction \(\Delta \theta \) to convert the blade angle at the 42-inch station to the corresponding value at 0.75 \(R \). The 42-inch station is 75 per cent of 56 inches, so that the correction is zero for a diameter of 9 feet 4 inches. For diameters less than 9.33 feet the 0.75 \(R \) station will therefore lie inboard of the 42-inch station and consequently will have greater blade angles, i.e., \(\Delta \theta \) is positive. For diameters greater than 9.33 feet the 0.75 \(R \) station blade setting will be less than at the 42-inch station, i.e., \(\Delta \theta \) is negative.

Calculations for \(K_t \) are given in Table III and \(K_t \) is plotted as a function of the ratio \(T_s/T_i \) on Figure 5.
The calculation of take-off run

\(K_T \) may also be plotted against the \(V/nD \) for maximum efficiency as in Figure 8. In design studies it is probably more convenient to use \(V/nD \) than blade angle. Under normal conditions the two methods give identical results, but in general the blade angle is slightly preferable owing to the practice of setting the pitch instead of changing diameter to obtain the desired revolutions.

The coefficient of traction \(\mu \) must be selected according to ground conditions. It varies from about 0.02 for a smooth surface such as a concrete runway or a flight deck to as much as 0.30 for a sandy surface. In the absence of exact data, the following values may be used:

- Smooth deck or hard surface \(\mu = 0.02 \)
- Good field, hard turf \(\mu = 0.04 \)
- Average field, short grass \(\mu = 0.05 \)
- Average field, long grass \(\mu = 0.10 \)
- Soft ground, gravel or sand \(\mu = 0.10 \) to 0.30

FINAL NET ACCELERATING FORCE

The final net accelerating force per unit weight is defined by equation (4)

\[
T_f = T_r - \frac{D}{L},
\]

where \(T_r \) is the thrust at take-off speed and \(D/L \) is the ratio of drag to lift.

\(T_r \) may be obtained from the thrust horsepower at take-off speed \(V_0 \) by the use of Figure 9, which is a plot of \(\text{t.hp}/\text{t.hp}_m \) against \(V/V_m \). The thrust horsepower at take-off speed is the product of the maximum \(\text{t.hp} \) by the ratio \(\text{t.hp}/\text{t.hp}_m \) from the curve, or

\[
\text{t.hp} = \text{t.hp}_m \times \frac{\text{t.hp}}{\text{t.hp}_m}
\]

The corresponding thrust is given by

\[
T_r = \frac{550 \times \text{t.hp}}{V_{f.p.s}}
\]

The value of \(D/L \) may be taken as the reciprocal of the maximum value of \(L/D \) for the airplane, which is usually known. Figure 10 is a plot of \((L/D)_{max} \) as a function of aspect ratio and total parasite coefficient

EFFECT OF WIND ON TAKE-OFF RUN

While the effect of wind may be obtained directly from the integrated equations of motion, it is always
more convenient to apply a correction to the run in a calm. Analysis of a series of take-off runs under various assumed conditions shows that a single curve (fig. 11) is sufficient to give the correction factor. In Figure 11 the ratio of the run S_w in a wind V_w to the run S_o in a calm is plotted against the ratio of wind speed V_w to the take-off speed V_o. When the run in a calm is known, the run in any wind is

$$S_w = S_o \times \frac{S_o}{S_w}$$ \hspace{1cm} (17)

the value of S_w/S_o being read from Figure 11 for the value of V_w/V_o corresponding to the desired V_w.

EFFECT OF CHANGES IN WEIGHT AND TAKE-OFF SPEED

The effect of a change in weight is to change both the take-off coefficient K_r and the take-off speed V_o. Since W/W_o is assumed constant

$$\frac{S_t}{S_o} = F \left(\frac{W}{W_o} \right)^2$$ \hspace{1cm} (18)

where F is a correction factor to allow for the variation in K_r. Figure 12 gives F as a function of W/W_o and T_f/T_t. It will be noted that for small changes in weight (\pm 25 per cent) and for normal values of T_f/T_t (i.e., 0.60 to 1.00) the value of F may be taken as unity for most purposes, the average error probably being of the order of 3 per cent.

When the stalling speed is varied, with weight held constant, there will be a slight change in the ratio T_f/T_t and a corresponding change in K_r. In general these changes are negligible so that for all practical purposes

$$\frac{S_t}{S_o} = \left(\frac{V_o}{V_o} \right)^2$$ \hspace{1cm} (19)

INSTRUCTIONS FOR CALCULATION OF TAKE-OFF RUN

In general the use of equation (10) requires the following steps:

1. Obtain the static thrust coefficient K_{r_o} from Figure 6 or Figure 8 and calculate the static thrust T_o using equation (14);
2. Divide the static thrust by the gross weight, and subtract the proper value of the coefficient of traction μ to obtain the initial net accelerating force per unit weight T/W (equation (3));
3. Calculate the thrust available at take-off speed T_o using the method described above, equations (15) and (16) with Figure 9, and divide T_o by the gross weight;
4. Calculate or estimate the maximum L/D of the airplane (using Figure 10, if necessary) and subtract the reciprocal from T_o/W to obtain the final net accelerating force per unit weight T_f/W (equation (4));
5. Take the ratio of T_f/T_t and read the corresponding value of the take-off coefficient K_r from Figure 4.
6. Calculate the take-off run in a calm, using this value of K_r with equation (10);
7. Apply corrections as required; for wind using equation (17) with Figure 11, or for a different gross weight using equation (18) with Figure 12.

An example of a calculation for take-off run, showing method of tabulating work, is given in Table IV.
REFERENCES

TABLE I
CALCULATED TAKE-OFF RUN USING NET ACCELERATING FORCE SHOWN ON FIGURE 2

<table>
<thead>
<tr>
<th>Air speed</th>
<th>Net accelerating force</th>
<th>Acceleration</th>
<th>v</th>
<th>s</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ft./sec.</td>
<td>ft./sec.</td>
<td>ft./sec.</td>
<td>ft.</td>
<td>ft.</td>
<td>ft.</td>
</tr>
<tr>
<td>10</td>
<td>0.435</td>
<td>14.15</td>
<td>0.435</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.420</td>
<td>15.30</td>
<td>1.43</td>
<td>2.85</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.405</td>
<td>15.92</td>
<td>2.25</td>
<td>4.25</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0.390</td>
<td>16.02</td>
<td>3.25</td>
<td>6.50</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.375</td>
<td>16.55</td>
<td>4.25</td>
<td>9.75</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>0.360</td>
<td>17.07</td>
<td>5.25</td>
<td>13.00</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>0.355</td>
<td>17.59</td>
<td>6.25</td>
<td>16.25</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0.350</td>
<td>18.11</td>
<td>7.25</td>
<td>20.50</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0.345</td>
<td>18.63</td>
<td>8.25</td>
<td>24.75</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.340</td>
<td>19.15</td>
<td>9.25</td>
<td>29.00</td>
<td></td>
</tr>
</tbody>
</table>

TABLE II
CALCULATED TAKE-OFF RUN USING ASSUMED LINEAR NET ACCELERATING FORCE SHOWN ON FIGURE 3

<table>
<thead>
<tr>
<th>Air speed</th>
<th>Net accelerating force</th>
<th>Acceleration</th>
<th>v</th>
<th>s</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ft./sec.</td>
<td>ft./sec.</td>
<td>ft./sec.</td>
<td>ft.</td>
<td>ft.</td>
<td>ft.</td>
</tr>
<tr>
<td>10</td>
<td>0.420</td>
<td>15.00</td>
<td>0.420</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.405</td>
<td>15.30</td>
<td>1.43</td>
<td>2.85</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.390</td>
<td>15.60</td>
<td>2.25</td>
<td>4.25</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0.375</td>
<td>15.82</td>
<td>3.25</td>
<td>6.50</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.360</td>
<td>16.02</td>
<td>4.25</td>
<td>9.75</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>0.345</td>
<td>16.30</td>
<td>5.25</td>
<td>13.00</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>0.330</td>
<td>16.59</td>
<td>6.25</td>
<td>16.25</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0.315</td>
<td>16.88</td>
<td>7.25</td>
<td>20.50</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0.300</td>
<td>17.17</td>
<td>8.25</td>
<td>24.75</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.285</td>
<td>17.46</td>
<td>9.25</td>
<td>29.00</td>
<td></td>
</tr>
</tbody>
</table>

Figure 12.—Effect of weight on take-off run S = P (W/W)

\[
\text{Ratio, } \frac{W}{W_0}
\]
EXAMPLE OF CALCULATIONS FOR TAKE-OFF RUN

TABLE III
CALCULATION FOR K, AND K_1

<table>
<thead>
<tr>
<th>$\frac{T}{T_1}$</th>
<th>K</th>
<th>$\log(1-K)$</th>
<th>$\frac{\log(1-K)}{K^3}$</th>
<th>$\frac{1}{K}$</th>
<th>$\frac{F}{B}$</th>
<th>$\frac{K_1}{F}$</th>
<th>$-\log(1-K)$</th>
<th>$\frac{-\log(1-K)}{K}$</th>
<th>$\frac{-\log(1-K)}{B}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.30</td>
<td>-0.30</td>
<td>0.202314</td>
<td>2.91519</td>
<td>-5.3333</td>
<td>-0.4187</td>
<td>0.01900</td>
<td>0.8745</td>
<td>0.02718</td>
<td></td>
</tr>
<tr>
<td>1.30</td>
<td>-0.30</td>
<td>0.197211</td>
<td>4.53036</td>
<td>-5.0000</td>
<td>-0.4416</td>
<td>0.01874</td>
<td>0.8116</td>
<td>0.02633</td>
<td></td>
</tr>
<tr>
<td>1.10</td>
<td>-0.10</td>
<td>0.066510</td>
<td>9.53329</td>
<td>-10.0000</td>
<td>-0.4938</td>
<td>0.01456</td>
<td>0.7531</td>
<td>0.02522</td>
<td></td>
</tr>
<tr>
<td>1.05</td>
<td>-0.05</td>
<td>0.046700</td>
<td>19.51060</td>
<td>-20.0000</td>
<td>-0.4694</td>
<td>0.01504</td>
<td>0.7198</td>
<td>0.02433</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>0.00</td>
<td>0.000000</td>
<td>20.41360</td>
<td>-20.0000</td>
<td>-0.5173</td>
<td>0.01600</td>
<td>0.6259</td>
<td>0.02319</td>
<td></td>
</tr>
<tr>
<td>0.95</td>
<td>+0.05</td>
<td>-0.01295</td>
<td>30.51732</td>
<td>-20.0000</td>
<td>-0.4109</td>
<td>0.01666</td>
<td>0.6058</td>
<td>0.02275</td>
<td></td>
</tr>
<tr>
<td>0.90</td>
<td>+0.10</td>
<td>-0.03293</td>
<td>10.30203</td>
<td>-10.0000</td>
<td>-0.5390</td>
<td>0.01666</td>
<td>0.6138</td>
<td>0.02230</td>
<td></td>
</tr>
<tr>
<td>0.85</td>
<td>+0.15</td>
<td>-0.05191</td>
<td>-7.29803</td>
<td>6.59067</td>
<td>-0.5630</td>
<td>0.01729</td>
<td>0.5835</td>
<td>0.02185</td>
<td></td>
</tr>
<tr>
<td>0.80</td>
<td>+0.20</td>
<td>-0.06834</td>
<td>-5.78387</td>
<td>6.59067</td>
<td>-0.5789</td>
<td>0.01785</td>
<td>0.5528</td>
<td>0.02138</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>+0.25</td>
<td>-0.08276</td>
<td>-4.02092</td>
<td>4.00000</td>
<td>-0.5951</td>
<td>0.01874</td>
<td>0.5217</td>
<td>0.02093</td>
<td></td>
</tr>
<tr>
<td>0.70</td>
<td>+0.30</td>
<td>-0.09578</td>
<td>-3.06083</td>
<td>3.00000</td>
<td>-0.6102</td>
<td>0.01967</td>
<td>0.4906</td>
<td>0.02053</td>
<td></td>
</tr>
<tr>
<td>0.60</td>
<td>+0.40</td>
<td>-0.13085</td>
<td>2.19256</td>
<td>2.00000</td>
<td>-0.6213</td>
<td>0.02058</td>
<td>0.4600</td>
<td>0.01956</td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>+0.50</td>
<td>-0.16117</td>
<td>2.77279</td>
<td>2.00000</td>
<td>-0.6259</td>
<td>0.02058</td>
<td>0.4400</td>
<td>0.01955</td>
<td></td>
</tr>
<tr>
<td>0.40</td>
<td>+0.60</td>
<td>-0.19151</td>
<td>2.54235</td>
<td>1.00000</td>
<td>-0.6281</td>
<td>0.02058</td>
<td>0.4200</td>
<td>0.01954</td>
<td></td>
</tr>
<tr>
<td>0.30</td>
<td>+0.70</td>
<td>-1.203071</td>
<td>2.45708</td>
<td>0.66667</td>
<td>-0.6301</td>
<td>0.02058</td>
<td>0.4000</td>
<td>0.01953</td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>+0.80</td>
<td>-1.600438</td>
<td>2.51476</td>
<td>0.83333</td>
<td>-0.6322</td>
<td>0.02058</td>
<td>0.3800</td>
<td>0.01952</td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>+0.90</td>
<td>-2.302583</td>
<td>2.84269</td>
<td>1.11111</td>
<td>-0.6344</td>
<td>0.02058</td>
<td>0.3600</td>
<td>0.01951</td>
<td></td>
</tr>
</tbody>
</table>

TABLE IV
EXAMPLE OF CALCULATIONS FOR TAKE-OFF RUN

<table>
<thead>
<tr>
<th>Airplane type</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biplane</td>
<td></td>
</tr>
<tr>
<td>Gross weight W lb.</td>
<td>9,000</td>
</tr>
<tr>
<td>b, h/p/l, r.p.m</td>
<td>400/1900</td>
</tr>
<tr>
<td>Wing area S ft.2</td>
<td>250</td>
</tr>
<tr>
<td>Wing loading W/S lb./sq. ft.</td>
<td>12.00</td>
</tr>
<tr>
<td>Wing section</td>
<td>Clark Y</td>
</tr>
<tr>
<td>Maximum lift coefficient C_L_∞</td>
<td>1.50</td>
</tr>
<tr>
<td>Stalling speed V_s, ft./sec.</td>
<td>82</td>
</tr>
<tr>
<td>Maximum speed V_m, ft./sec.</td>
<td>220</td>
</tr>
<tr>
<td>Propeller diameter D, ft.</td>
<td>9.00</td>
</tr>
<tr>
<td>$\frac{2\pi D}{\mu}$</td>
<td>320</td>
</tr>
<tr>
<td>$\frac{2\pi D}{\mu}$</td>
<td>-0.90</td>
</tr>
<tr>
<td>Propeller blade setting 42° E</td>
<td>20.0°</td>
</tr>
<tr>
<td>Propeller blade setting 52° E_2</td>
<td>20.0°</td>
</tr>
<tr>
<td>Propeller blade section, or design</td>
<td>normal</td>
</tr>
<tr>
<td>Static thrust coefficient K_{r}</td>
<td>80,000</td>
</tr>
<tr>
<td>Static thrust $T_s = K_{\text{r}} \times b$.hp.</td>
<td>1,240</td>
</tr>
<tr>
<td>$T_s = \frac{K_{\text{r}}}{\text{r.p.m.}} \times D$</td>
<td>418</td>
</tr>
</tbody>
</table>

TABLE IV
EXAMPLE OF CALCULATIONS FOR TAKE-OFF RUN—Continued

<table>
<thead>
<tr>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_s = \frac{K_{\text{r}}}{\text{r.p.m.}} \times D$</td>
</tr>
</tbody>
</table>

Remarks

- Equation (3).
- Figure 2.
- Figure 4.
- Equation (10).
- Equation (11).
- Equation (12).
- From Figure 9.
- Equation (15).
- Equation (16).
- See Figure 6.
- Figure 8.
- Equation (14).
- Equation (13).
- From Figure 11.
- Equation (17).