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SUMMARY.

The folIowing paper, prepared for the National Advisory Committee for Aeronautics,
contains those results of the theory of wings and of wing sectiom which are of immediate
practical value. They are proven and demonstrated by the use of the simple conceptions of
“ kinetic energy” and ‘(momentum” only, familiar to every engineer; and not by introducing
“ isogonaI transformations” and ‘(vortices,” which Iatter mathematical methods are not
essential to the theory and better are used only in papers intended for mathematicians and
special experts.
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L TEE COMPLEX POTENJL4L 3?~”CTION.

1. I have shown in the paper, reference 1, how each air flow, considered as a whole,
possesses as characteristic quantities a kinetic energy and a momentum necessary to create it.
Many technically important flows can be created by a distribution of pressure and they then
have a “velocity potential” which equals this pressure distribution divided by the density
of the fluid with the sign reversed. It is further explained in the paper referred to how the
superposition of several ‘(potential flolm” gives a potential How again.

The characteristic differential equation for the velocity potential @ -was shown to be

m , Z)’@ a%
~zz L ~y,+~=o (Lagrange’s equation)

w-here z, y, and z are the coordinates referred to axes mutually at right angles to each other.
The velocity components in the directions of these axes are

b~ b+. a~.
‘&=&;‘=$’ ‘=2G

I assume in this paper the reader to be familiar with paper reference 11 or with the fundamental
things contained therein.

2. The configurations of velocity to be superposed for the investigation of the elementary
technicaI problems of flight are of the most simple type. It will appem that it is sufficient to
study two-dimensional flows only, in spite of the fact, that all actual problems arise in th.ree-
dimensional space. It is therefore a happy circumstance tha~ there is a method for the study
of two-dimensional aerodynamic potential flows which is much more convenient for the investi-
gation of any potential flow than the method used in reference I for three-dimensional flow.
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The method is more convenient on account of the greater simplicity of the problem, there
being one coordinate and one component of velocity less than with the three-dimensional flow.
But the two-dimensional potential is still a function of two variables and ifi represents a distri-
bution of ~elocity equivalent to a pair of functions of two variables. By means of introducing
the potential a great simplification of the problem has been accomplished, reducing the nunlber
of functions to one. This simplification can no-w be carried on by also reducing the number
of variables to one, leaving only one function of one variable to be considered. This very
remarkable reduction is accomplished by the use of complex numbers.

The advantage of having to do with one function of one variable only is so great, and
moreover this function in practical cases becomes so much simpler than any of the func~ions
which it represents, that it pays to get acquainted with this method even if the student has
never occupied himself with complex numbers before. The matter is simple and can be
explained in a few words.

.

The ordinary or real numbers, ~, are considered to be the special case of more general
expressions (z+ ig) in which y happens to be zero. If y is not zero, such an expression is
called a complex number. x is its real part, {Y is its imaginary part and consists of the product
of y, any real or ordinary number, and the quantity i, which is the solution of

2=-1; i.e., i=-JZ

The complex number (x+ {v) can be supposed to represent the point of the plane with the
coordinates Y and y, and that may be in this paragraph the interpretation of a complex num-
ber. So far, the system would be a sort of -rector symbolism, which indeed it is. The real
part a is the component of a vector in the direction of the real z-axis, and the factor y of the
imaginary part iy is the component of the vector in the y-direction. The complex numbers
dif?er, however, from vector analysis by the peculiar fact that it is not necessary to learn any
new sort of algebra or analysis for this vector system. On the contrary, all ruhx of calculation
valid for ordinary numbers are also valid for complex numbers without any change what.soe~er.

The addition of two or more complex numbers is accomplished by adding the real parts
and imaginary parts separately.

(Z+iy) + (Z’+ ’iy’) = (Z+z’) i-i(y+y’)

This amounts to the same process as the superposition of two forces or other vectors, ‘I%e
multiplication is accomplished by multiplying each part of the one factor by each part of the
other factor and adding the products obtained. The produci of two real factors is real of
course. The product of one real factor and one imaginary factor is imaginary, as appears
plausible. The product of ‘i x { k taken as – 1, and hence the product of two imaginary parts
is real again. Hence- the product of two complex numbers is in general a complex number
again

(2+ iy) (8’ +iy’) = (Kc’ –yy’) +i(zy’ +$ ’2”/).

There is now one, as I may say, trick, which the studeni has to know in order to get the
advantage of the use of complex numbers. That is the introduction of polar coordinates. The
distance of the point (z,y) from the origin (0,0) is called R and the angle between the positive
real axis and the radius vector from the origin to the point is called q, so that x = i? cos p;
y=R SiIl q. MuItiply now

(Rl cos p, +i ~1 sin (a,) (R2 COSp, i-i R, Sill y,).
The rewdt is

R1R2 cos ~, cos Y, – R1R2 sin PI sin p,+ i(R1R2 C6Sp, sin p,+ Rll?z sin p, cos P,)

or, otherwise written
R,R2 rCOS(q, + p,) +i s~ (P, + $%)]
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That is: The radius 1? of the product is the product of the radii l?, and R, of the two factors,
the angle ~ of the product is the sum of the angles ~, and ~, of the two factors. Further, as
is VnJI known, we may write

Z= RCCOSY+; SiIl ff)=R @i

where e denotes the base of the natural logarithms.

As a pm-ticuhm case

This is Moivre’s formula.
I proceed now to expIain why these complex numbers can be used for the representation of a

two-dimensional potential flow. This follows from the fact that a function of the complex Rum-
bers, that is in general a compIex number again different at each point of the plane, can be treated
exactly like the ordinary real function of one read -wwiable, given by the same mathematical
expression. In particular it can be dif?ierentiated at each point and has then one detite differ-
ential quotient, the same as the ordinary function of one variable of the same form. The
process of differentiation of a complex function is indeterminate, in “so far as the independent
variable (z+ iy) m.n be increased by an eIement (dz + idy) in very difIerent ways, viz, in
different directions. The differential quotient is, as ordinarily, the quotient of the increase of
the function divided by the increase of the independent variable. One can speak of a dMer-
ential quotienfi at each point only if the value results the same in whatever direction of (dz -Fi@)
the differential quotient is obtained. It has to be the same, in particular, when d.z or dy is zero.

The funchion to be differentiated maybe

F’ (z+ ’i@=12 (2-, L/)+ iT(x,‘y)

where both R and T are real functions of z and y. The diflerentiat.ion gives

These two expressions must give identical results and hence
parts and both the imaginary parts are equal:

are equal. That & both the real

Differentiating these equations with respect to dx and d-y

or again

Hence, it appears that the real part as welI as the imabgjnary”part of any analytical complex
. function compIies with equation (1) for the potential of an aerodynamic flow, and hence can be

such a potential. If the real part is this potential, I shall caJ.Ithe complex function the “pot-en-
tia] function” of the flow. It is not practical, however, to split the potential function in order
to find the potential and to compute the veIocity from the potential. The advantage of ha~~
only one -mriable wouId then be lost. It is not the potential that is used for the computation
of the v-elocity, but instead of it the potential function directly. 11 is easy to fmd the velocity
directly from the potential function. Dift’erentiat e E’(x -Fiy) = F(z). It is seen that

dF(z) ak .a T
dz ‘%+%%
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But it was shown before that
bT t)R
‘= ‘~-–ax

Hence
dF(z) bR . tiR
zr=z–~~

The velocity has the components ~ and ~f. Written as a complex vector, it would be ~~+i ~.

It appears therefore:
Any analytical function F(z) can be used for th=represenlation of a potential flow. The

potential of this flow is the real part of this potential function, and its differential quotient $~)

called the “velocity function, ” represents the velocity at each point ‘t turned upside. down. )~
That means that the component of the velocity in the direction of the real axis is given directly

by the real part of the velocity function $& and the component of the velocity at right angles to

the real axis is equal to the reversed imaginary part of ~. The absolute magnit ?Ldeof the ve-

locity is equal to the absolute magnitude of ~“

& I proceed now to the series of two-dimensional flows which are of chief importance for
the solution of the aerodynamic problems in practicel They stand in relation to the straight
line. The privileged position of the straight line rests on the fact that both the front view and

\

the CEOSSsectio~ of a monoplane are approxi-
mately described by a straight line. The difhrent

/

types of flow to be discussed in thk section have
in common th~t at the two ends of a straight
line, but nowhere else, the velocity may become
infiiite. fit infinity it is zero. “l’his- suggests

——
the potential function ~/z’ – 1 which has discon-
tinuities at the points + i only, but it does not
giYe the -velocity zero at infinity,

F=~–z

gives rise to an infinite velocity at the points
z = k 1 which maybe regarded as the ends of the
straight line, ancl in addition the velocity be-
comes zero at infinity. J% closer examination
shows that indeed the potential function

FIQ l.—Transve~seflow,producedby a moving straight line.
F=i(z– >= (2)

represents the flow. produced by the straight line extending between the points z= &1, moving
transversely in the direction of the negative imaginary axis with the -velocity 1 in the fluid other-
wise at rest. For its velocity function is

giving for points on the line a transverse velocity – 1. This flow maybe called “ transverse flow.”
The velocity potential at the points of the line, i. e:, for y = O is ~1 – z’. ThN gives the kinetic
energy of the flow (half the integral of the product of potential, density and normal velocity
component, taken around the line (reference 1)).
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J
y=;.~ “ —>fl —X2 dx=%r

2
(3)

—1

giving an apparent mass of the straight line moving trans~ersely equ.d to the mass of the hid
displaced by a circle over the straight line as diameter. This reminds us of the apparent
additional mass of the circle itself, which is the same (ref. 1, sec. 6). It can be proved that
the additional mass of any ellipse moving at right an@ to a main axis is equal to the mass of
the fluid displaced b-y a circIe over this mafi axis as diameter (reference 6).

The flow around the straight line just discussed can be considered as a speciaI case of a
series of more general flows, represented by the potential function

F=i(z–@–3)’ (4)

where n is any positive integer. n= 1 gives the transverse flow considered before. For n
differeni from 1 the component of the transverse velocity along the straight &e is no longer
constant, but variable and given by a simple, law. Ehch a flow, therefore, can not be produced
by a riggd straight line moving, but by a flexible Jine, be~o straight at the beginning and in the
process of distorting itself.

It is helpfuI to introduce as an auxiliary variable the angle 3 defied by z= cos & Then
the potential function is

where 8 is, of course,

where now ~ is real.

F=i (COS n~–~ sin n~) =~ e–~~

complex. The potentiaI alo~~ the line is

@=sin 71(3

The velocity function is

giving at points along the Iine the transverse component

and the longitudinal component

This becomes infinite at the two

n sin n~
qJ= —

sin 8

n cos 77.8
q,)=—

sin 8

(cos 728– i sin ni?)

ends. The kinetic energy of the flow is

(5)

(6)

(7)

(8)

This impulse is given b-y the integral

pJ @&r

to be taken along both sides of the straight lines, since the velocity potential times p represents
the impulsive pressure necessary to create the flow. This inteagal becomes

J

.a-
sin n~ sin J d;

v

for the nth term. This is zero except for n = I.

By the superposition of several or infinitely many of the flows of the series discussed

F=i[A, (zLJz~-1) +J42(Z-JZ2–j)2+. . .+&(z-\/z’-~)n], (9)

with arbitrary intensity, infinitely many more complic~t ed ffowe around the straight line can be
described. There is eve~ no potential flow of the described kind around the straight line existing

.—
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wh~ch can not be obtained by such superposition. T_hekinetic energy of the flow obtained by
superposition stands in a very simple relation to the kinetic energy of the single flows which rela-
tion by no means is self-evident. It is the sum of them. This follows from the computation of
the kinetic energy by integrating the product of the transverse component of velocity and the
poientia~ along the line. This kinetic energy is

.

But the integral

(lo)

(11)
JU

is zero if m and n are different integers. For integrating two times partially gives the same
integral again, multiplied by (rfi/n)’. In the same way it can be’ proved that

f“ cos n~ cos m.8d~= o (n# m) (12)
Jo

Only the squares in-integral (10) contribute to the energy and each of them gives just the kinetic
energy of its single term (equ~tion (8)).

It may happen that the distribution of the potential @ along the line is given, and the flow
determined by this distribution is to be expressed as the sum of ffows (equation (9)). The
condition is, for points on the line, a known function-of ~ is given,

@= A,sin8+A, sin2~+. . .+.A. sinn8+. . . (13)

and the coefficients A are to be determined. The right-hand side of equation (13) is called a
Fourier’s series, and it is proved in the textbooks that the coefficients A can always be deter-
mined as to conform to the condition if @ has reasonable values. At the ends ?i= O or T, hence @
has to be zero there as then all sines are zero.

Otherwise expressed equation (4) gives enough different types of flow to approximate by
means of superposition any reasonable distribution of the potential over a line, with any exact-
ness desired. This being understo-od, it is easy to show how the coefficients A can be found.

Integrate

J
= (Al sin 8+A2 sin% . . .) sin na da

o

.4ccording to equation (11) all integraIs become zero with the exception of ‘

These &alues may be introduced into equation (9), and thus the potential function F is
determined.

Another problem of even greater practical importance is to determhe the potential func-
tions, equation (4), which superposed give a desired distribution of the transverse component
of velocity. The condition is now

(15)

That means, now, u sin 8, a hewn function, is to be expanded into a Fourier’s series

usin8=Bl sin8+Bzsin2~+. . .+ Bnsinn~ (16)
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The l?’s maybe determined by m equation like (14), and then the A’s maybe deduced, since

.4%= B./n (16a)

This is always possibIe if the -reIocity component is fin.ifiealong the line. These values may then
be introduced in equation (!3).

The value of the potentiaI function Fas give~ by series (13) with the values of Ax substituted
from (16) may be transformed into a definite titegraI which sometimes is more conwnien~ for
tipplication. Let UObe a function of the coordinate ZO, a point OD the line joining z= – 1 and
z= +1, and let ~(z, z,) be a function to be determined so that

J

+1

F= _, fk, %) . ‘% . dzo

I have found that thie is satisfied by making

and

The
tion

this leads to a physical Merpretation of UO.
Hence, the velocity function

~, =d_F=

J
‘+’ quo &,

dz _l dz

potential fmction and the veIocity function
of functions due to “elementary flows.”

CIf
f (.s,z,) UOdz, and to the -relocity function ~u, dz,

where the plus sign is to be take~ for points on
the positive side of the line, and the negati~e sign
for those on the opposite side. In this &men-
tary flow? then, the velocity is paraIleI to the Iine
at all points of the line excepting the point ZO,
being directed away from this point on the

(17)

are both thought of, then, as being the summa-
&n eIement gives rise to a potential function

FIG. 2.—FIow around a stitight line created by one eIemmt of the
*g wtiom

positive side of the line and toward it on the other side. For points close to Zo,

from which the vaIue of the velocity of the flow mzy be deduced, If a srfialZ circIe is drawn
around the point Zo, it is seen that there is a flow out from the point Z. of amount U. d.za per sec-
ond on the positive side and an inflow of an equal amount on the other side; so that thie is
equivalent to there being a transverse velocity UOat points along the e~ement dzO, positive on
one side, negative o~ the other. The total flow around the Iine due tof(z , z,) u, dz, is ilktrated
in Figure 2.

Substitmtingg the value of .j in F’

—
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Therefore, for any point on the real axis, the transverse velocity is u, and the longitudinal
velocity

J 4

.—
‘+’ 1 UOdzo 1 – 2,’

‘u,=+ –
-1 T 2—ZQ I–22

Or, interchanging symbols, writing 2 for z, and vice versa

For a point near the edge on

—
Or, substituting ~2e = Sill &@~

For the discussion of the
there is one flow which needs

tbe positive side, write z,= 1 – e

ve@e = - —.;% J:’ “@

vedg~ = — -=h.es:’u’zl$=

(19) .

(19a)

elements of the wing theory, in addition to the flows mentioned,
a discussion of its own. This is given by the potential function

F= A, sin–l 2 (20)

The velocity function of this flow is

“ ‘*-

FIG. 3.—Circulationflow around&straightline.

I. shall call this flow “ circulation flow” as it
represents a circulation of the air around the
line. The transverse component of the velocity
at points along the line is identically zero.

The circulation flow does not quite fit- in
with the other ones represent ed by equation
(4), because the potential functiion (20) is a
mukiple valued one, the values aL any one
point differing by % or multiples thereof. All
this indicates that the flow is a poien~ial flow,
it is tsue, but it does not conform to the condi-
tion of a potential flow -when considered as in
equation (4).

This is in accordance with the physical
consideration, that it is impossible to produce
thk flow by an impulsive pressure over the
straight line. such a pressure would not pe.-
form any mechanical work, as the transverse

components of velocity at points along the liie are zero. The kinetic energy of t.J>isflow, on
the other hand, is irdinite, and hence this flow can not even be completely realized, Siill it
plays the most important part in aerodynamics.

The best way to understand this flow and its physical meaning is to suppose the limz to be
elongated at one end, out to infinity. On the one side the potential may be cm.sidercd zero.
Then it is constant and will be equal to 27 on the other side. The transverse velocity component
is finite. Hence the flow can be produced by a constant impulsive pressure di.flerence along
this line extending from the edge z= 1 to infinity. This pressure difference makes the fluid
circulate around the original straight linez the pressure along the line itself being given by tbe
potential function (20) and not performing any work.



ELEMENTS OF Wll?G SECYIYON THEORY AND WING THEORY. 149

A pressure d_Herence along an intinite line does never actually occur. .$t least t does not
occur simultaneously alo~m the whole line. A very similar tJ@, however, occurs very often
which has the same effect. That is a constant momentum be~u transferred to the air at
r~ght an@s to an infinite straight line at one point only, but the point tramil.@ along the line,
so that the final effect is the same as if it had occurred simultaneoudy. This is the fundamental
case of an airplane fly@ along that in6.niteIy Io~~ line. During the unit of time it may cover
the length V and transfer to the air the momentum L, equaI to the lift of the airpIane. Then
the impuke of the force, per uniti of length of the line, is L/V, and hence the potential difference is

~. That makes AO in equation (20) AO=g~~. If the airplane has traveled lo~~” enough,

the flow in the neighborhood of the w@, or rather one term of the flow, is described by the
circulation flow, provided that the airplane is tmo-dimensional, that is, has an in.thit e span.

The -relocit y at the end of the -w@ z= +1 due to this circulation flow

F= A, sin-l .2,

where .

is

AO=~,zTpv
(21)

()

L
(Zla)K@= + ,=o=gzp T (sin a)f=o

II. T13EORY OF MIVG E$ECYHON.

4. The investigation of the air flow around w-& is of great practica~ importance in view
of the predominance of heavier-than-air craft. It is necessary to divide this problem into tw-o
part~, the consideration of the cross section of one or several -wings in a tvo-dimensional flow,
and the in-restigatio~ of the remaining effect. This chapter is de~ot.ed to the fist question.

MI wings in practice have a more or less rounded Iead&~ edge, a sharp trailing edge and
the section is rather elongated, be~~ as iirst approximation described by a straight line. The
application of the aerodynamic flows around a straight line for the ~vestigation of the flow
around a wing section suggests itself. 1 ha~e show-n in section (3) how the potential How
around a straight line is determined, for insta~ce, from the transverse components of velocity
along this line. Only one Lype of flow, tihe circulation flow, is excepted. This flO~ does not
possess any transverse components at the points of the line and hence can be superposed on a
potential ffox of any magnitude without interfering -with the condition of trans~erse -relocity.
1. have shown, on the other hand, that it is justt this circulation flow not determined so far,
which gives rise to the chief quantity, the Mt. It is, therefore, necessary to find some additional
method for determin@ the magnitude of the circuIatiort flow.

This magnitude of the circulation flow is physically determined by the facb that the air
is -rixous, no matter how s~~htly viscous it is. The additional condition governing the magnit-
ude of the circulation flow can be expressed without any reference to the viscosity and was
done so in a wiry simple -way by Kutta. The condition is very pIausible, too. Kutfia’s condition
simply states that the air does not flow with infinite velocity at the sharp, rear edge of
the W@ section. On the contrary, the circulation flow assumes such strength that the air
leaves the section exactly at its rear edge flowingI there alo~~ the section para.lleI to its mean
direction. The wing as it -were acts as a device forcing the air to lea-re the wing flo-whg in a
particular direction.

consider, for instance, the wing section which consists merely of a straight line of the length 2.
The angle of attack maybe a. The flow produced by this line moving with the velocity F is
hhen represented by the potential function

F’=Vsin CZ. ie–ai

.+.

which gives a constant transverse component of velocity along the ting, as shown in equation
(6) for n= 1. The real axis is para.lleI to the straight line, its origin is at the center of the line.
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‘Ike infinite longitudinal velocity at the rear end is

1
—vSin a. -

(ml 8)J=0

The angle of attack may now be assumed to be small and I change slightly the way of
representing the flow, turning the real axis of coordinates into the direction of motion. Instead
of referring the ffow to the line really representing the wing section I consider the straight line
between z= -&1, which differs only slightly from the wing a~d is parallel to the motion. The
transverse components of the flow relative to this line are approximately equal to the transverse
velocity relative to. ihe wing section ai the nearest point and iheref ore constant again and equal
to V sin ct. Therefore, this way of proceeding leads to the same flow as the ‘more exact way
before. It also gives the same infinite velocity at the reax end.

This velocity determines the gagnitude of the circulation flow

F= A, sin-l z (21)

by the condition that the sum of their infinite velocities at the edge is zero.

and hence A,= V sin cr. The lift is therefore

L=%r ~72p Sin o!.

The lift coefficient, defined by (1=
L

—, since the chord =2, is theref orel
s V’ $

O.= % sin a, or approximately .2% (22)
and

where L’ denotes the area of the wing,
The representation of the flow just employed is approximately correct and gives the same

resulL as the exact method. This new method now can be generalized so that the lift of any wing
section, other than a straight line, can be computed in the same way, too. T~e section can be
replaced with respect to the aerodynamic effect by a mean curve, situated in the middle between
the upper and lower curves of the section and having at all points the same mean direction as
the portion of the wing section represented by it. The ordinates of this mean wing curve may

‘~ This direction canbe f, the abscissa x, so that the direction of the curve at each point is ~z.

be considered as the local angle of attack of the wing, identifying the sine and tangent of the
angle, with the angle itself. Accordingly it is variable along the section. Since the velocity of
the air relative to the wing is approximately equal to the -relocit.y of flight, the component at

“d~ As before, the infinite velocity at the rear edge is to be found.right angles to ~he z-axis is ~.

lt is, according to equation (19a)

Fs,,=oJ:l;;,/zdx (24)
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At the rear edge x=1. The mean apparent angle of attack, that is the angle of attack of the
straight line giving the same lifi as }he wing section, is found by the condition that this infinite

Vsina
value must be the same as that deduced for a straight line; viz, - —. Hence, replacing

sin a
sina bya

~=-:J:g&. 1e@h=2 “-” “ - ’25)

(25a)
.

This formula holds true for any small angle of iattack of the section. The integral can now

be transformed into one cent aining the coordinate : rather than the inclination $: of the wing

curve, provided that the trafing edge is situated at the z-axis, that is, if ~ is zero at the end

‘f dx as a factorx= +1. This transformation is performed by partial integration, eonsider&~ ~

to be integrated. It results
1

J

+ dxt~f=—
(1 –x) >[-

length =2
T –1

@6)

(26a)

The important formula (26) gives the mean apparent angle of attack directly from the
coordinates of the shape of the wing section. The mean height g of the section has to be tit e-
grated along the chord after havirg been multiplied by a function of the distance from the
leading edge, the same for all wing sections. This integration can always be performed, whether
the section be given by an analytical expression, graphically or by a table of the coordinates.
IQ the Iat ter case a numerical integration can be performed by means of Table H, taken from
reference 4. The figures in the fist column give the distance from the leadicg edge iQ per cent
of the chord. The second cohmm of figures gives facfiors for each of these positions. The
height g of the mean cu.rre of the section o~er its chord, measured in tit of the chord terms,
is to be multiplied by the factors, and alI products so obtained are to be added. The sum gives
the appare.ut angle of attack in debmees.

5. The Iiffi of a wing section as computed in section (4) is caused by the circulation flow
swymmetrical with respect to the straight line representing the TV@. Hence the pressure creat-
ing this lift is located symmetrically to the w@, its center of pressure is at 50 per cent of the
chord, it produces no moment with respect to the middle of the ~~. This lift is the entire
lift produced by the wing It is not, however, the entire resultant air force. The remaining
aerodynamic flow in general exerts a resultant moment (couple of forces) and this moment
removes the center of pressure from if,s positio~ at 50 per cent.

If the wing section is a straight line of the Iength 2, its apparent transverse mass is m, M
seen in section [4). The longgtudi,ual mass is zero. Hence, according to reference 1, the result-
ant moment is

X= T’ ~ r sin.% length= 2 (27)

3f- T’ ~ 2 w length= 2 (28)

Both the exact and the appro.x.imate expression gi-re the constant center of pressure 25 per cent
of the chord from the leading edge, as results by dividing the moment by the I.ifti(23).

The straight sectiom comidered have a constant center of pressure, indepe~dent of the angle
of attack. The center of pressure does not travel. This is appro.ximately true also for symmet-
rical sections with equal upper and lower curves, where the center of pressure is also at 25
per cent. If, however, the upper and lower curves are different and hence the mean section

~~~ol—~~11
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curve is uo longer a straight line, the potential flow produced at the angle of attack zero of the
chord not only gives rise to the circulation flow and thus indirectly to a lift, but also creates a
moment of its own, It is simple to compute this moment- from the pofiential flow, which is
represented in equation (9) as a superposition of the flows, equation (4).

The longitudinal velocity relative to the line is, according to equation (7),

v= –
(

A
)1%-% v:?+ - “ “ +’4”n ;:6”8 + “

AS the section is supposed to be only slightly curved, ~~ is always small, so are, therefore, the

coefficients A ~ -when compared to ~, so that they may be neglected when added to it. The
pressure at each point along the line, according to reference 1, is

The present object is the computation of the result.ant moment. When really forming the
square of the bracket i~ the last expression, the ierm with ~z indicates a constant pressure and
does not give any resultant moment. The squares of the other terms are too small and can be
neglected: The~e remains only the pressure:

(
p= –PF Al&c ;+A,

giving the resultant moment about the origin

2 Cos26
S. *....... )

M=2 Vp
S(

‘A
)“%-;+ A’2E? “ “ “ “ “ c0s6sb8d6’ ‘a

since the density of lift is twice the density of pressure, the pressure being equal and opposite
on both sides of the wing. But according to (12)

J
“COSn8 cos M d6= O (12)

if m and n are different integers. Hence there remains only one term. The resultant moment is

M=ZP VA,;

Al was found according to equation (14) by means of the integra~

A=2?’”d~.
1; J/%s1n2*da

Hence the moment is

or, expressed by x

u=2pv2~’$@dx

By the same method as used with integral (25) this integral can be transformed into

(29)

(30)
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It has been shown thd for a chord of Iength 2, the center of pressure has a lever arm ~ and the

lift is F’2~ . $’ra . Z, giving a moment V’pra; so that an angle of attack corresponds to a

moment V’pra. Consequently the resultant moment k the same as if the a@e of attack is
increased by the ar@e

(31)

(32)

It is readily seen that this a.ngle is zero for sections with section curves equal in front and
in rear. Hence such sections have the center of pressure 50 per cent at the angle of attack zero
of the mean curve, that is, for the lift. (24) produced by the shape of the section onIy. The
additional Iift produced at any other an@e of attack of the chord and equal to the lift as produced
by the straight line at that angle of attack has, the center of pressure at 25 per cent. Hence a
travel of the center of pressure takes place toward the leadQ edge -when the angle of attack is
increased, a.pproae~~ the point 25 per cent without ever reaching it. The same thing happens
for other sections with the usual shape. At the angle of attack zero of the chord the lift pro-
duced was seen to be 2~V’pa’, i. e., from (26)

and the moment, see equation (30),

(30)

giving the center of pressure a~ the distance from the middle

The lift produced by the angle of attack of the chord, equation (23) as before has the center of
pressure 25 per cent. The travel of the center of pressure can easily be obtained from this
statement. The momerk about. the point 25 per cent is independent of the angle of attack.

The center of pressure in ordinary notation at the angle of attack zero is

The computation of the mean apparent angle of attack with respect to the moment is done in
the same -way as that of the angle with respect to the lift. Table II, givw the coefficients for
numericaI integration, by means of two ordinates only, to be used as the other figures in TabIe H.
The tlnal sum is the mean apparent a@e in degrees.

6. The problem of two or even more wing sections, combined to a biplane or muItiplane and
surrounded by a two-dimensional flom can be treated in the same way as the single wimg section.
The two sections determine by their slope at each point a distribution of trans-rerse velocity
components alo~~ parallel lines. The distribution determines a potential flow with a result ark
moment. According to Kutta’s condition of finite -relocit y near the two rear edges, the potential
flow in its turn determines a circulation flow giving rise to a Iift and moment. The physical
aspect of the question offers noth@ new, it is a purely mathematical problem.
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This mathematical problem has not yet been solYecl in this extension. I have attacked
the problem within a more narrow scope (reference 4). The method followed by me amounts to
the following considerations:

llquation (13) represents different types of flow around one straight line, consisting in a
motion of the air in the vicinity of the straight line only. hTovvthe motion of the ffows with high
order n is more concentrated in the immediate neighborhood of the straight line than the flows
of low order n. The transverse velocity components along the line, determining the flow, change
their sign (n – 1) times along the line. With large n, positive and negative components follow each
other in succession very rapidIy so that their effect is neutralized even at a moderate distance.

Hence the types of flow of high order n around each of a Fair of lines will practically be the
same as if each line is single. Tlie flows of high order do not interfere with those of a second line
in the vicinity even if the distance of this second line is only moderate. It will chiefly be the
types of flow of low order, the circulation flow z= O, the transverse flow n =1, or it may be the
next type n = f? which dif?ier distinctly whether the wing is single or in the vicinity of a second
wing. Accordingly, I computed only the flows of the order n= O and n= 1, the circulation flow
and the transverse flow for the biplane and used the other flows as found for the single section.

The results are particularly interesting for biplanes with equal and parallel wings without
stagger. Their lift is always diminished when compared with the sum of the Iifts produced by
the two wings when single. The interference is not always the same. If the sum of the angle
of attack and the mean apparent angle of attack with respect-to the moment is zero, or other-
wise expressed, at the angle of attack where the center of pressure is at 50 per cent, it is par-
ticularly small. The lift produced at the angle of attack zero is diminished ordy about half m
much as the remaining part of the lift produced by an increase of this angle of attack.

This second part of the lift does not have its point of application exactly at 25 per cent of
the chord, although its center of pressure is constant, too. This latter is quite generally valid for
any two-dimensional flow. At any angle of attack zero arbitrarily chosen, the configuration of
wing sections produces a certain lift acting at a certain center. The increase of the angle of
attack produces another lift-acting at another fixed point. Hence the moment around this
second center of pressure does not depend on the angle of attack; and the center of pressure at
any angle of attack can easily be computed if the two centers of pressures and the two parts of
the lift are known.

The restitant moment of the unstaggered biplane consisting of portions of equal and
parallel straight lines is again proportional to the apparent transverse mass, as the lorigitwlinal
mass is zero (reference 1). This mass is of use for -the considerations of the next chapter, too.
Therefore, I -ivish to make some remarks concerning its ~agnitude. If t:he two straight lines are
very close together, the flow around them is the same as around a line of finite thickness and is
almost the same as around one straight line. Its apparent mass is the same, too, but in addition
there is the mass of tie air inclosed in the space between the two lines and practically moving
with them, Hence the mass is approximately

l)(b; +h)p

where b is the length of the lines and h.their distance apart, if the distance h of
For zreat distance, on the other hand, the flow around each of the lines is

the lines is small.
undisturbed, the

apparent mass is twice that of the flow around each line if single. It is therefore

$2%2; p

For intermediate cases the apparent mass has to be computed. Particulars on this computa-
tion are given in reference 4. Table 1 gives the ratio of the apparent mass of a pair of lines to

that of one singIe Iine for different values of ~0 This ratio, of course, is always between 1 and 2.
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These few remarks on the theory of biplane sections seem to be suflic;ent in this treatise
on the elements of wing theory. The student will find full information on the subject in my
paper on biplanes, reference 4. The remarks laid down here, I hope, will assist him in under-
standing the leading principles of the method there employed.

III. AERODYNAMIC I&mUCX’ION.

7. The last chapter does not gi-re correct information on the aerodynamic wing forces,
since the flow in ~ertical longitudinal planes was supposed to be two-dimensional. The. vertical
layers of air parallel to the motion were supposed to remain plane and para.lle~ and only the
distortion of the two other planes at right angles to it -was investigated. This is a VT incom-
plete and arbitrary proceeding, for the vertical longitudinal layers do not remain plane, as
little as any other layers remain plane. It is therefore necessary to complete the investigation
and to assume now another set of layers, paralIeI to the lift, to remain plane, thus studying
the distortion of the vertical longitudinal layers. A.ccordipgly, I will now assume thai all
vertical layers of air at right angjes to the motion remain plane and paralIel, so that the a=
only moves at right angles to the direction of fIight. Hence, I have now to consider tKo-
dimensional transverse vertical flows. This consideratio~, it will appear, gives sufiic.ient
information on the motion of the air at large, whereas the preceding in_restigation gives infor-
mation on the conditions of ffow in the vicinity of the wing. Both, the longitudinal two-
dimensional flow studied before and the two-dimensional flow to be studied presently, possess
Yertical components of ~elocity. Both flows and in particular these -rertical components
are to be superposed, and thus one can determine the &al aerodynamic pressures and resuhmt
forces.

The transverse vertical layer of air is at rest originally. The -wings, fist approaching it,
then passing through it and at. last. leaving it. behind them, gradually buildup a two-dimensional
Bow in each la~er. The distribution of impulse creating this flow is identical with the distri-
bution of the hft over the longitudinal projection of the wings. It is immaterial for the flmd
effect whether all portions of the wings at every moment have transferred the same fraction
of the momentum to a partictiar layer or not. The iinal effect and hence the a~erage efiect
is the same as if they always have. They actually ha~e if all wings are arranged in one tmms-
verse phme-that is, if the airplane is not staggered. It maybe assumed at present that at
each moment each layer has received the same frzction of the impulse from every portion of
the wings and it follows then that the shape of the configuration of the two-dimensional flow
is always the same and that it is built up gradually by increasing its maggtude while not
chanatig its shape, beginning with the maagoitude zero at, a great distance in front of the wing
and having obtained its final magnitude at a great distance behind the -wings.

The potential of the lid two-dimensional flow long after the wings have passed through
the layer is easy to find, for the impulsive pressure creating it is Imown aIong the longitudinal
projection of the wings. It is identical with the distribution of the lif~ over this projection,
acting as Iong as the airplane stays in the layei. This is the unit of time, if the thiclmess of
the layer is equal to the velocity of flight. Hence the potential di.fterence along the longi-
tudinal projection of the wings is equal to the density of the Iift along this projection divided
by the product of the density of air and the velocity of fLight, since the velocity potential is
equaI to the impulse of the pressure creating the fiow, divided by the density. h general the
longitudinal projections of the wings can be considered as lines. The density of lift per unit
length of these lines is then equal to the difference of pressure on both sides, and hence the
density of the lift is proportional to the ditlerence of the potential on both sides. T& state-
ment determines completely the final twodimensionaI flow- in the transverse vertical layer,
and nothing remains unknomn if the distribution of the lift over the wings is given. The
actual determination of the flow is then a purely mathematical process.
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For the present purpose, however, not the final transverse flow but the vertical flow at the
moment of the passage of the wings is of interest. It is this flow that k to be superposed on
the longitudinal flow in order to determine the actual air forces. It has already been men-
tioned that this flow can be supposed to differ from the final flow in maatitude only. It
remains therefore only to find the ratio of momentum already transferred while the wing passes
through the layer, to the momentum finally to be imparied.

The fraction ~ seems to me more plausible than any other fraction. The effect of the
wing on the layer is the same at equal distances from the layer, whether in front or back of it
and this would involve the factor ~. It-is not necessary, however, to have recourse to a mere
assumption in this question, however plausible it may be. It can.be proved that the assump-
tion of ~ is the only one which does not lead to a contradiction with the general principles of
mechanics. I proceed at once to demonstrate e this.

If the transverse flow in the plane of the wings is found, only the vertical component down-
ward u’, called the induced downwash, is used for the computation. This downwash can be
positive or negative, but in general is positive, %ch downwash in the neighborhood of a
portion of wing changes the motion of the air surrounding the wing portion relative to it. The
induced downwash is always small when compared with the velocity of fight, Hence, its
superposition on the velocity of flight at right angles to it does not materially change the mag-
nitude of the relative motion between the wing and the air in its vicinity. It changes, however,
the direction of this relative velocity, which is no longer parallel to the path of the wing but
inchned toward the path by the angle whose tangent is u’/ 1? This has two important
consequences.

The flow produced and hence the air force no longer correspond to the angle of attack be-
tween the wing and the path of flight but to the angle gi~en by the motion of the wing relative
to the surrounding portion of the air. In most casw the angle of attack is decreased and the
effective angle of attack, smaller than the geometric angle of attack between path and wing,
determines now the flow and the air forces. Hence, the lift- in general is smaller than would
be expected from the geometric angle of attack. The angle of attack in the preceding chapt,er
on the wing section is not identical with the geometric a@e betwee~ the chord and the direc-
tion of flight but with the effective angle of. attack, smaller in general, as there is an induced
downwash motion in the vicinity of the wing. Therefore the geometrical angle of attack is
decreased by

r
%=$ (34)

That is not all. The lift is not only decreased but its direction is changed, too. It is PO
longer at right angles to the path of flight, but to the relative motion between wing and adjacent
portion of air. It is generally turned backward through an angle equal to the induced angle
of attack. The turning backward of the lift by itself does not materially change the magnit-
ude of the Iif$ as the angle is always small; the vertical component of the lift remains almost
the same, but the effective angIe of attack has to be decreased. In addition to this the air force
has now a component in the direction of the motion. The wing experiences an “induced”
drag, in addition to the chag caused by the viscosity of the air, not discussed in this paper,
and the induced drag is often much larger than the viscous drag. The density of the induced

drag is d~ ‘u’~ where dL is the density of lift, as can be directly seen from IIgure 4,

dD4= dL ; (35)

The existence of a drag could have been anticipated, as there must be a source of energy
for the creation of the transverse flow under consideration. The final kinetic energy of this
flow in a layer of thickness F’ is

s
;dLu
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and this energy is to be delivered by the wing per unit of time, as during this unit of time
another layer has been putt into motion in the way discussed. On the other hand the energy
delivered by the wings is the integral over tihe drag multiplied by the velocity, that is, J c?L u’.

4

From which follows immediately u’ =~ W, and it is thus confirmed that the transverse flow

is only hzdf formed when the wings are passing through the vertical layer.
8. The problem is thus solved in general if the shape of the wings and the distribution

of lift over the wings is known. Before passing to special wing arrangements and distributions
of lift, in particukr to the simple monoplane, there is one general problem to be discussed.
The longitudinal projection of the wings being given, as well as the entire lift, the induced
drag depends on the distribution of the lift o~er the projection. The drag is desired to be as
smalI as possible. The question arises, What k the distribution of lift giving the smallest
induced drag ! The import ante of this question is at once obvious.

The entire Iift and the entire induced drag of the wings are found again as important
characteristics of the tinal transverse flow, discussed in the last section. The resultant lift
is equal to the resultant vertical momentum of thie flow for the thickness of the layer equal
to the velocity T, and the induced drag is equal to the kinetic energy in the same layer divided
by F. The problem is therefore to find such a two-dimensional flow produced by impulsive
pressure over the longitudinal projection of the wings as possesses a given magnitude of the
vertical momentum, and the kinetic energy of which ie a minimum.

It is suilicient for elementary questions to consider only arrangements of wing symmetrical
with respect to a vertical longitudinal plane, giving moreover horizontal Lines in the longitudinal
projections. The results are- valid fo~ all conditions (reference
solution. The momentum of several flows superposed on eae.h
other is the sum of their single momenta. The flow is of the de-
sired kind if the superposition of any otherflowtith the resultant
vertical momentum zero increases the kinetic energy of the flow.

The velocity of the superposed flow can be assumed to be
small, for instance, so that its own kinetic energy, containing the
square of the velocity, can be neglected. The impulsive pressure
along the projection of the wings necessary to create the super-
posed flow acts along a path determin ed by the magnitude of the
do-mm-ash at the same points. The increase of kinetic energy is

where .f @ &c=O.

Fm. 4.—DiagTamshotig the creatiou of the
rndueeddrag.

It ‘is readily seen that the&t expression can be identically zero for any distribution of the
potential @ restricted by the second condition only if the downvvash u’ is constant over the
entire projection of the wings. Only then a transfer of a portion of lift from one point to another
with smalIer dowmvash is impossible, whereas this proceeding in all other cases would lead to a
diminution of the induced drag. It is thus demonstrated:

The induced drag is a minimum, if the transverse two-dimensional flow- has a constant
vertical cmmponent of velocity along the entire projection of the wings.

For wings .,-without stagger it follows then that the induced angle of attack u’/ V is
constant over all wings.

The magnitude of the minimum induced drag of a system of wings is easily found from the
apparent mass pK of their longitudinal projection in the two-dimensional transverse flow.
For the verticaI momentum equal to the Iift is u V PK= L where u is the constant downwash
of the final Bow. This gives

L
‘= Vplz
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The induced drag is equal to the kinetic energy divided by
,

Di=u’ ;K

It follows therefore th~t the minimum induced drag is
.

D+= ‘2
~vz$K

and the constant or at least average induced angle of attack is

tit L
Cq=—=

v /jV2 ;-K

K is a constant area determined by the longitudinal projection

.4ERoNAumcs.

(36)

(37)

of the wings. It is the area of
the air in the two-dimensional flow having a mass equal to the apparent mass of the projection
of the lVill&..

The results (36) and (37) show that the minimum induced drag can be obtained from the
consideration that the lift is produced by constantly accelerating a certain mass of air dowmvard
from the state of rest. The apparent mass accelerated downward is at best equal to the apparent
mass of the longitudinal projection of the airplane in a layer of air passed by the airplane in the
unit of time.

In practical applications the actual induced drag can be supposed to be equal to the mini-
mum induced drag, and the average induced angle of attack equal to (37). It is, of course,
slightly different;- but the difference is not-great as can be expected since no function changes
its value much in the neighborhood of its minimum.

I proceed now to the application of the general theory of induction to the case of the mono-
plane withoyt dihedraI angle, giving in longitudinal projection a straight line of the length b.
Consider first the distribution of lif t for the minimum induced drag. It is characterized by the
transverse potential flow with constant vertical velocity component along this straight line.
This flow has repeatedly occurred in the earlier parts of this paper. For the length 2 of the line,
it is the transverse flow given by equation (2) or by equation
function for the length b is

‘=A4W97
giving the constant vertical velocity component along the line

u=Al~
b ‘-

(4) and n= 1. The potential

(38]

The density of the lift per unit length of the span is equal to the potential difference of the final
flow on both sides of the line, multiplied by T7P.

2=’%Rf8=2Alv’sin’=4t?” (39)

where cos 8=?. Plotted against the span, the density of lift per unit length of the span is

represented by half an ellipse, the multiple of sin 8 being plotted against cos 6. The lift there-
fore is said to be elliptically distributed.

.$&
A,-—

Vmrb
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The apparent mass of the line with the lengt.h b according to equation (3) is equal to

pll=b’ ~ p

Hence, with this distribution of lift., the minimum induced drag is, according to equation (36)

(40)

and the constant induced a@e of attack according to equation (37) is

The demity of lift (39) per unit length of the span together with the chord c, different in generaI
along the span, and with equation (22) determines the effective angle of attack at each point,
including the apparent mean angle of at tac.k of the section. k~amely, from equation (39),

.-
dL

(42)

The geometric angle of attack is greater by the constant induced angle of attack, and hence

(43)

Equation (4o) indicates the importance of a sticiently large span in order to obtain a small
induced drag.

.Any distribution of lift ~ over the span other than the elliptical distribution is Iess simple

to in-restigabe, as then Lhe induced downwash is variable. The distribution of lift gives directly
the distribution of the potential difference a.lo~~ the tsvo-dimemiona.1 wing projection.

The transverse two-dimensional flow can now be obtained by superposition of types of flow

given ~y equation (4) with z=?, as now the length of the line is not 2 but 6. The condition

that the superposition of such flows gives the required pot entia-1 difference, viz,

dL

;N= &=@n6+A2sh 128+ . . . +Am sin 7?.6+ (45)

Hence, the distribution of the deneiiy of lift., divided by 2 VP is to be expanded into a Fourier’s
series. The induced angle of attack results then, according to equation (15),

ai=b-r~ti-a (~, sin8+2~2sin 23+ . . +nAn sinn3+, . . .) (46)


