An Investigation of the Icing and Heated-air De-icing Characteristics of the R-2600-13 Induction System

One of 5,164 reports in the series: NACA Research Memorandums available on this site.

PDF Version Also Available for Download.

Description

A laboratory investigation was made on a Holley 1685-HB carburetor mounted on an R-2600-13 supercharger assembly to determine the icing characteristics and the heated-air de-icing requirements of this portion of the B-25D airplane induction system. Icing has been found to be most prevalent at relatively small throttle openings and, consequently, all runs were made at simulated 60-percent normal rated power condition. Icing characteristics were determined during a series of 15-minute runs over a range of inlet-air conditions. For the de-icing investigation severe impact ice was allowed to form in the induction system and the time required for the recovery of ... continued below

Creation Information

Chapman, Gilbert E. November 11, 1946.

Context

This report is part of the collection entitled: National Advisory Committee for Aeronautics Collection and one other and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 135 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Originator

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Titles

  • Main Title: An Investigation of the Icing and Heated-air De-icing Characteristics of the R-2600-13 Induction System
  • Series Title: NACA Research Memorandums

Description

A laboratory investigation was made on a Holley 1685-HB carburetor mounted on an R-2600-13 supercharger assembly to determine the icing characteristics and the heated-air de-icing requirements of this portion of the B-25D airplane induction system. Icing has been found to be most prevalent at relatively small throttle openings and, consequently, all runs were made at simulated 60-percent normal rated power condition. Icing characteristics were determined during a series of 15-minute runs over a range of inlet-air conditions. For the de-icing investigation severe impact ice was allowed to form in the induction system and the time required for the recovery of 95 percent of the maximum possible air flow at the original throttle setting was then determined for a range of wet-bulb temperatures. Results of these runs showed that ice on the walls of the carburetor adapter and on the rim of the impeller-shroud portion of the supercharger diffuser plate did not affect engine operation at 60-percent normal rated power. Ice that adversely affected the air flow and the fuel-air ratio was formed only on the central web of the carburetor and then only when the inlet air was saturated or contained free moisture in excess of saturation. No serious ice formations were observed at inlet-air temperatures above 66 0 F or with an inlet-air enthalpy greater than 34 Btu per pound. The maximum temperature at. which any trace of icing could be detected was 1110 F with a relative humidity of approximately 28 percent, The air-flow recovery time for emergency de-icing was 0.3 minute for.an enthalpy of 35 Btu per pound or wet-bulb temperature of 68 0 F. Further increase in enthalpy and wet-bulb temperature above these values resulted in very slight improvement in recovery time. The fuel-air ratio restored by a 5-Minute application of heated air was approximately 7 percent less than the initial value for cold-air conditions.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • URL: http://hdl.handle.net/2060/20090026508 External Link
  • Report No.: NACA-RM-E6K11
  • Center for AeroSpace Information Number: 20090026508
  • Archival Resource Key: ark:/67531/metadc65552

Collections

This report is part of the following collections of related materials.

National Advisory Committee for Aeronautics Collection

The National Advisory Committee for Aeronautics (NACA) was a U.S. federal agency founded on March 3, 1915 to undertake, promote, and institutionalize aeronautical research. On October 1, 1958 the agency was dissolved, and its assets and personnel transferred to the newly created National Aeronautics and Space Administration (NASA).

Technical Report Archive and Image Library

This selection of materials from the Technical Report Archive and Image Library (TRAIL) includes hard-to-find reports published by various government agencies. The technical publications contain reports, images, and technical descriptions of research performed for U.S. government agencies. Topics range from mining, desalination, and radiation to broader physics, biology, and chemistry studies. Some reports include maps, foldouts, blueprints, and other oversize materials.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 11, 1946

Added to The UNT Digital Library

  • Nov. 17, 2011, 5:13 p.m.

Description Last Updated

  • Jan. 31, 2017, 12:57 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 135

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Chapman, Gilbert E. An Investigation of the Icing and Heated-air De-icing Characteristics of the R-2600-13 Induction System, report, November 11, 1946; (digital.library.unt.edu/ark:/67531/metadc65552/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.