NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

SPECIAL REPORT 3-B

METHOD OF DETERMINING THE WEIGHS OF
THE MOST IMPORTANT SIMPLE GIRDER

By J. Cassens

Zeitschrift für Flugtechnik und Motorluftschiffahrt
Vol. 22, No. 15, August 14, 1931
Verlag von R. Oldenbourg, München und Berlin

Washington
December, 1931
METHOD OF DETERMINING THE WEIGHTS OF
THE MOST IMPORTANT SIMPLE GIRDERS*

By J. Cassens

This paper presents a series of tables for the
simple and more common types of girders; similar to
the tables given in handbooks under the heading "Strength
of Materials," for determining the moments, deflections,
etc., of simple beams. Instead of the uniform cross sec-
tion there assumed, the formulas given here apply only to
girders of "uniform strength," i.e., it is assumed that
a girder is so dimensioned that a given load subjects it
to a uniform stress throughout its whole length. This
principle is particularly applicable to very strong struc-
tures. Girders of uniform strength are the lightest
girders conceivable, because any girder, all of whose
members are stressed to the limit, can not be surpassed
by a lighter girder, if the two girders have the same
form. The weight \(G \) of a member of length \(l \), cross
section \(F \) and specific gravity \(\gamma \) is:

\[
G = F l \gamma
\]
(1)

Instead of this it is also possible to write

\[
G = S l \frac{\gamma}{\sigma_e}
\]
(2)

if the member carries the load \(S \) and is dimensioned
according to the stress \(\sigma_e \). With a given static arrange-
ment and a given load, \(S \), \(l \) and \(\gamma \) can be very ac-
curately determined for any member. The attainable stress
\(\sigma_e \) in tension members is easily determined. However,
when stability problems arise, e.g., buckling, and tilt-
ing phenomena, (and they can be avoided in hardly any stat-
ic arrangements), it is often difficult to obtain a suf-
ciently accurate value of \(\sigma_e \) for estimating the weight.
In a simple framework, for which the assumption of pin
joints is permissible, there are only tension and com-
pression members. For the latter it is then necessary
to determine only the value of \(\sigma_e \). This is best accom-
plished by ascertaining the values of the forces occurring

*"Gewichtsermittlung der wichtigsten einfachen Träger."
Zeitschrift für Flugtechnik und Motorluftschifffahrt (pub-
lished by R. Oldenbourg, Munich and Berlin), August 14,
1951, pp. 458-463.
in the members. In the table, therefore, general data
are given regarding the magnitudes of the forces before
every weight. It would be impracticable to determine
the force and dimensions of every compression member and
therefrom to calculate the value of \(\sigma_e \). It fully suf-
fices to test a few samples of each type of compression
members and from them find the mean value of \(\sigma_e \) for each
type. Where such determinations must be made often, it
is very practical, for certain sections (e.g., tubes
with a fixed wall-thickness ratio), to plot the attain-
able stress \(\sigma_e \) against \(\sqrt{\frac{P}{l}} \). Such graphs will save
much work.

There is the same relation between the general
formula for the force in a member and the corresponding
weight formula as between a differential and an integral.
The expression for the force in the member is multiplied
by \(\frac{\gamma}{\sigma_e} \) and \(l \) according to equation (3), which gives
the weight of any member in the framework. Instead of
the infinitely small quantity \(dx \), we work, in cases
1 to 8 with a finite quantity, namely the length of
the member, i.e., with \(a \) for the chords, with \(d \) for
the diagonals, and with \(h \) for the vertical members.
Hence we use no integral formulas, but derive the sums
of series. In case 1, the series of the upper-chord
weights reads:

\[
P \frac{a}{h} \frac{\gamma}{\sigma_e} a \left(1 + 2 + 3 + \ldots + (n - 1) \right)
\]

The sum of the series is \(\frac{(n - 1)n}{2} \). The series of the
lower-chord weights reads:

\[
P \frac{a}{h} \frac{\gamma}{\sigma_e} a \left(1 + 2 + 3 + \ldots + n \right)
\]

The sum of this series is \(\frac{n(n + 1)}{2} \). This yields

\[
P \frac{l}{h} \frac{\gamma}{\sigma_e} a \cdot \frac{n^2 - 1 + n + 1}{2} = P l \frac{\gamma}{\sigma_e} \frac{l}{h}
\]

In cases 2 and 3 the summation is very similarly made
with respect to the details. In case 4 (chord weight)
summations of the following series have to be made:

\[
\frac{Q}{2} \frac{a}{h} \frac{\gamma}{\sigma_e} a \left[1^2 + 2^2 + 3^2 + \ldots + (n - 1)^2 \right]
\]

* H. Wagner: Remarks on Airplane Struts and Girders under
Compressive and Bending Stresses. Index Valves. Z.F.I.,
and
\[
\frac{n}{2} \cdot \frac{a}{h} \cdot \frac{\gamma}{\sigma_e} \cdot \frac{a}{n} \left[1^2 + 2^2 + 3^2 + \ldots + n^2 \right]
\]
The sums of the series are:
\[
\frac{(n - 1)}{6} n(2n - 1) \quad \text{and} \quad \frac{n(n + 1)}{6} (2n + 1)
\]

The given weight formula is obtained by slight changes. It is not necessary to give the series for the web members. It needs only to be noted that their order is always 1 less than that of the chords. Case 5 yields the following series:
\[
\frac{n}{2} \cdot \frac{a}{h} \cdot \frac{\gamma}{\sigma_e} \cdot \frac{a}{n^2} \left[1^3 + 2^3 + 3^3 + \ldots + (n - 1)^3 \right]
\]
and
\[
\frac{n}{2} \cdot \frac{a}{h} \cdot \frac{\gamma}{\sigma_e} \cdot \frac{a}{n^3} \left[1^3 + 2^3 + 3^3 + \ldots + n^3 \right]
\]
Their sums are:
\[
\left[\frac{(n - 1)}{2} n^2 \right] \quad \text{and} \quad \left[\frac{n(n + 1)}{2} \right]^2
\]

In case 8 the series for the upper-chord weights is
\[
G \left(\frac{1}{2} \right) = \sum \left(\frac{B^0 - 1 + B^1 - 1 + \ldots + B^{n-1} - 1}{B - 1} \right)
\]

\[
\sum \left(\frac{B^0 - 1 + B^1 - 1 + \ldots + B^{n-1} - 1}{B - 1} \right)
\]

We now write:
\[
B - 1 = \frac{\tan \theta}{\tan \phi} = \frac{\Delta h}{h_0} a_1
\]

When it is remembered that
\[
l = \sum a_k = a_1 \frac{B^n - 1}{B - 1}
\]

from
\[
B - 1 = \frac{\Delta h}{h_0} a_1
\]

we obtain
\[
B - 1 = \frac{\Delta h}{h_0} \frac{B^n - 1}{B - 1}
\]
Hence
\[B^n - 1 = \frac{h_n - h_0}{h_0} = \frac{h^n}{h_0} - 1 \]

Consequently
\[B^n = \frac{h_n}{h_0} \text{ and } n = \frac{\log \frac{h_n}{h_0}}{\log B} \]

These simplifications yield
\[G(OG) = \rho \frac{l}{\Delta h} \frac{\gamma}{\epsilon} t \left(1 - n \frac{a_t}{t} \right) \]

The weight of the lower chord is similarly obtained.

The weight of the diagonal members is constant, as in case 1. It can be easily demonstrated that the length of the diagonal members increases in the same ratio (from \(d \) to \(d_n \)) as their load decreases. The same is true of the vertical members.

The great advantage of integration over summation of the series is illustrated by cases 9, 10, and 11.

For the upper-chord weight in case 9, we have the expression:
\[G(OG) = \pi \frac{\gamma}{\epsilon} \int \frac{x}{t} \frac{dx}{h_0 + \Delta h t} \]

Division of the integrand yields:
\[\frac{x}{t} \frac{dx}{h_0 + \Delta h t} = \frac{1}{h_0} \frac{x}{\Delta h} \frac{dx}{t} + \frac{1}{\Delta h} \]
\[= \frac{dx}{\Delta h} \left[1 - \frac{l h_0}{\Delta h} - \frac{1}{x + \frac{l h_0}{\Delta h}} \right] \]
Then

\[G(OG) = \frac{1}{\Delta h} \frac{\gamma}{\sigma_e} \left[\int_0^1 dx - \frac{1}{\Delta h} \int_0^1 \frac{dx}{x + \frac{l h_o}{\Delta h}} \right] \]

\[= \frac{1}{\Delta h} \frac{\gamma}{\sigma_e} \left\{ l - \frac{l h_o}{\Delta h} \left[\ln \left(1 + \frac{l h_o}{\Delta h} \right) - \ln \frac{l h_o}{\Delta h} \right] \right\} \]

\[= \frac{1}{\Delta h} \frac{\gamma}{\sigma_e} \left[l - \frac{h_o}{\Delta h} \ln \frac{h_o}{h_o} \right] \]

The weight of the lower chord is similarly obtained.

If it were now desired to determine whether this formula with the assumption that \(h_o = h_n \), i.e., with uniform depth of girder, would yield the same value as the formula in case 1, we would arrive at the indeterminate value \(\infty \). Likewise the last formula in case 9, for only a slight difference in depth, i.e., when \(\Delta h \) is small with respect to \(h_n \), would yield a numerical value which could not be accurately calculated with the slide rule. This difficulty is overcome by another investigation of the integrand, which is developed in an infinite series:

\[\frac{x}{l} \frac{dx}{h_o + \Delta h x} = \]

\[= \frac{x}{h_o} \frac{dx}{l} \left(1 - \frac{x}{\mathcal{C}} + \left(\frac{x}{\mathcal{C}} \right)^2 - \left(\frac{x}{\mathcal{C}} \right)^3 + \left(\frac{x}{\mathcal{C}} \right)^4 - + \ldots \right) \]

in which \(\mathcal{C} = \frac{l h_o}{\Delta h} \)

The integration of the separate terms, in which \(x \) occurs only in the numerator, offers no further difficulty and, with slight modifications, leads to the second formula of case 9. A test shows that this formula for a uniform depth \(h_n = h_o \) agrees with the formula in case 1.

It is unnecessary to carry the derivations of cases 10 and 11 further, since they follow the same course as those already given. Moreover, all the best mathematical textbooks used by engineers give detailed examples of such problems.
To enable a better understanding of cases 12 and 13, I am adding Figures 1 to 3 which refer particularly to case 13. It only remains to explain the overhanging end of the beam. (Case 4.) Figure 2 represents a special case where the force with upper-chord OX does not change its sign in the inner panel. If OX intersects the zero axis, it does so at two points, which can be calculated with the aid of x_2 and x_3. (See second column of tables. "The integration limits for G_0 and G_u".) If, however, x_2 and x_3 yield imaginary, negative or otherwise useless values, O_X retains its sign between A and B. There are then only two integration limits: the lower, $x = l (1 - \varepsilon)$; the upper, $x = l$.

The lower-chord force U_X can change its sign only once, namely at x_4. If this value is negative or greater than l, U_X retains the sign between A and B. The integration limits are then the same as for O_X.

For the special case, where both the lower and the upper chord weights retain their signs in the inner panel, the whole chord weight, including the overhang is given in the column "Remarks" for case 13. The bracketed expression is plotted against ε in Figure 4.

The solid-line portions of the curves are strictly correct. The portions to the left of the line C-C appear quite different because the lower-chord force intersects the zero axis. The portions to the right of the line D-D are given quite a different course by the intersection of the lower-chord force.

Case 12 may be considered as a special variation of case 13, in which the depth of the strut foot under A, namely a, becomes infinity ($a = \infty$). In practice this means that, for $h/a = 0.1$ or less, the considerably more troublesome computation work of case 13 can be saved and the values of case 12 can be used instead. The bracketed chord values of case 12 are plotted in Figure 5 against $\varepsilon = l_1/l$.

For shearing-force weights, it does not matter whether case 12 or 13 is used. The coefficients are plotted against $\varepsilon = l_1/l$ in Figure 6.

Lastly, the nondimensional or absolute coefficients of the strut weight $G(S)$ might be plotted similarly to Figures 4 to 6. It is omitted here, because the strut is generally subjected to compressive forces and the reader, in selecting the best supporting point B, must
consider the variability of σ_e, which is often hardly possible. It can only be remarked that the smallest coefficient is 2 at a strut inclination of 45°, when $\epsilon = \eta$.

In determining the most favorable a, the fact was disregarded, that, with increasing a, the attainable stress σ_e in the compression chord might be greatly diminished. If necessary, this point should be especially investigated.

Translation by Dwight M. Hiner, National Advisory Committee for Aeronautics.
<table>
<thead>
<tr>
<th>Case</th>
<th>Load case</th>
<th>Both chords</th>
<th>Diagonals</th>
<th>Vert'1 members</th>
<th>Whole girder</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Support</td>
<td>Forces:Up'chord</td>
<td>Forces:V<sub>k</sub></td>
<td>Forces:V<sub>k</sub></td>
<td>Weights:G<sup>(b)</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notation</td>
<td>O<sub>k</sub>:O<sub>k</sub></td>
<td>O<sub>k</sub>:O<sub>k</sub></td>
<td>O<sub>k</sub>:O<sub>k</sub></td>
<td>O<sub>k</sub>:O<sub>k</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower chord:U<sub>k</sub>:U<sub>k</sub></td>
<td>Lower chord:U<sub>k</sub>:U<sub>k</sub></td>
<td>Lower chord:U<sub>k</sub>:U<sub>k</sub></td>
<td>Lower chord:U<sub>k</sub>:U<sub>k</sub></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cantilever truss</td>
<td>Single load</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>O<sub>k</sub> + P<sub>a</sub> · h - k</td>
<td>O<sub>k</sub> + P<sub>a</sub> · h - k</td>
<td>P<sub>k</sub> + P<sub>a</sub> · h - k</td>
<td>V<sub>k</sub> = - P</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D<sub>k</sub> = ± P<sub>a</sub> · h</td>
<td>D<sub>k</sub> = ± P<sub>a</sub> · h</td>
<td>D<sub>k</sub> = ± P<sub>a</sub> · h</td>
<td>V<sub>k</sub> = ± P</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G<sup>o</sup> = P<sub>a</sub> · h</td>
<td>G<sup>o</sup> = P<sub>a</sub> · h</td>
<td>G<sup>o</sup> = P<sub>a</sub> · h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G<sup>o</sup> = P<sub>a</sub> · h</td>
<td>G<sup>o</sup> = P<sub>a</sub> · h</td>
<td>G<sup>o</sup> = P<sub>a</sub> · h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G<sup>o</sup> = P<sub>a</sub> · h</td>
<td>G<sup>o</sup> = P<sub>a</sub> · h</td>
<td>G<sup>o</sup> = P<sub>a</sub> · h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>K-Truss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>O<sub>k</sub> - P<sub>a</sub> · h - k</td>
<td>O<sub>k</sub> - P<sub>a</sub> · h - k</td>
<td>P<sub>k</sub> - P<sub>a</sub> · h - k</td>
<td>V<sub>k</sub> = ± P</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D<sub>k</sub> = ± P<sub>a</sub> · h</td>
<td>D<sub>k</sub> = ± P<sub>a</sub> · h</td>
<td>D<sub>k</sub> = ± P<sub>a</sub> · h</td>
<td>V<sub>k</sub> = ± P</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G<sup>o</sup> = P<sub>a</sub> · h</td>
<td>G<sup>o</sup> = P<sub>a</sub> · h</td>
<td>G<sup>o</sup> = P<sub>a</sub> · h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G<sup>o</sup> = P<sub>a</sub> · h</td>
<td>G<sup>o</sup> = P<sub>a</sub> · h</td>
<td>G<sup>o</sup> = P<sub>a</sub> · h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G<sup>o</sup> = P<sub>a</sub> · h</td>
<td>G<sup>o</sup> = P<sub>a</sub> · h</td>
<td>G<sup>o</sup> = P<sub>a</sub> · h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Uniformly distributed load</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>O<sub>k</sub> = Q<sub>a</sub> · (k-1)</td>
<td>O<sub>k</sub> = Q<sub>a</sub> · (k-1)</td>
<td>P<sub>k</sub> = P<sub>k</sub> · (k-1)</td>
<td>V<sub>k</sub> = ± P</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>U<sub>k</sub> = Q<sub>a</sub> · k</td>
<td>U<sub>k</sub> = Q<sub>a</sub> · k</td>
<td>U<sub>k</sub> = Q<sub>a</sub> · k</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D<sub>k</sub> = ± Q<sub>a</sub> · k</td>
<td>D<sub>k</sub> = ± Q<sub>a</sub> · k</td>
<td>D<sub>k</sub> = ± Q<sub>a</sub> · k</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G<sup>o</sup> = Q<sub>a</sub> · k</td>
<td>G<sup>o</sup> = Q<sub>a</sub> · k</td>
<td>G<sup>o</sup> = Q<sub>a</sub> · k</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G<sup>o</sup> = Q<sub>a</sub> · k</td>
<td>G<sup>o</sup> = Q<sub>a</sub> · k</td>
<td>G<sup>o</sup> = Q<sub>a</sub> · k</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G<sup>o</sup> = Q<sub>a</sub> · k</td>
<td>G<sup>o</sup> = Q<sub>a</sub> · k</td>
<td>G<sup>o</sup> = Q<sub>a</sub> · k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Distributed load</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>O<sub>k</sub> = Q<sub>a</sub> · (k-1)</td>
<td>O<sub>k</sub> = Q<sub>a</sub> · (k-1)</td>
<td>P<sub>k</sub> = P<sub>k</sub> · (k-1)</td>
<td>V<sub>k</sub> = ± P</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>U<sub>k</sub> = Q<sub>a</sub> · k</td>
<td>U<sub>k</sub> = Q<sub>a</sub> · k</td>
<td>U<sub>k</sub> = Q<sub>a</sub> · k</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D<sub>k</sub> = ± Q<sub>a</sub> · k</td>
<td>D<sub>k</sub> = ± Q<sub>a</sub> · k</td>
<td>D<sub>k</sub> = ± Q<sub>a</sub> · k</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G<sup>o</sup> = Q<sub>a</sub> · k</td>
<td>G<sup>o</sup> = Q<sub>a</sub> · k</td>
<td>G<sup>o</sup> = Q<sub>a</sub> · k</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G<sup>o</sup> = Q<sub>a</sub> · k</td>
<td>G<sup>o</sup> = Q<sub>a</sub> · k</td>
<td>G<sup>o</sup> = Q<sub>a</sub> · k</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G<sup>o</sup> = Q<sub>a</sub> · k</td>
<td>G<sup>o</sup> = Q<sub>a</sub> · k</td>
<td>G<sup>o</sup> = Q<sub>a</sub> · k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Distributed load</td>
<td>varying directly</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>as the distance from one end</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>O<sub>k</sub> = Q<sub>a</sub> · (k-1)</td>
<td>O<sub>k</sub> = Q<sub>a</sub> · (k-1)</td>
<td>P<sub>k</sub> = P<sub>k</sub> · (k-1)</td>
<td>V<sub>k</sub> = ± P</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>U<sub>k</sub> = Q<sub>a</sub> · k</td>
<td>U<sub>k</sub> = Q<sub>a</sub> · k</td>
<td>U<sub>k</sub> = Q<sub>a</sub> · k</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D<sub>k</sub> = ± Q<sub>a</sub> · k</td>
<td>D<sub>k</sub> = ± Q<sub>a</sub> · k</td>
<td>D<sub>k</sub> = ± Q<sub>a</sub> · k</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G<sup>o</sup> = Q<sub>a</sub> · k</td>
<td>G<sup>o</sup> = Q<sub>a</sub> · k</td>
<td>G<sup>o</sup> = Q<sub>a</sub> · k</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G<sup>o</sup> = Q<sub>a</sub> · k</td>
<td>G<sup>o</sup> = Q<sub>a</sub> · k</td>
<td>G<sup>o</sup> = Q<sub>a</sub> · k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case</td>
<td>Load case</td>
<td>Support Notation</td>
<td>Both chords Forces: O_k chord $O_k:O_x$</td>
<td>Diagonals Forces: D_k</td>
<td>Vert'1 members Forces: W_k</td>
<td>Whole girder Weights: G</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>------------------</td>
<td>---------------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>6</td>
<td>Truss on two supports. Uniformly distributed load</td>
<td>$O_k = Q \cdot a \cdot \frac{k - 1}{n}$</td>
<td>$V_k = + Q \cdot a \cdot \frac{k - 1}{n}$</td>
<td>$D_k = + Q \cdot \frac{a}{h}$</td>
<td>$V_k = - Q \cdot a \cdot \frac{k - 1}{n}$</td>
<td>$G = \frac{1}{a} \cdot \frac{1}{h} \cdot \left(\frac{1}{n} \cdot \frac{1}{2} \cdot \frac{1}{1} \cdot \frac{1}{n} \right) + \frac{a}{\epsilon} \cdot \frac{1}{h} + \frac{a}{h}$</td>
</tr>
<tr>
<td>7</td>
<td>Truss on two supports. Single load.</td>
<td>$O_k = p \cdot l \cdot a \cdot \frac{i}{h}$</td>
<td>$V_k = + p \cdot l \cdot a \cdot \frac{i}{h}$</td>
<td>$D_k = p \cdot l \cdot a \cdot \frac{i}{h}$</td>
<td>$V_k = - p \cdot l \cdot a \cdot \frac{i}{h}$</td>
<td>$G = p \cdot l \cdot a \cdot \frac{i}{h} \cdot \left(\frac{1}{n} \cdot \frac{1}{2} \cdot \frac{1}{1} \cdot \frac{1}{n} \right) + \frac{a}{\epsilon} \cdot \frac{1}{h} + \frac{a}{h}$</td>
</tr>
<tr>
<td>8</td>
<td>Inclined chords. Single load.</td>
<td>$O_k = p \cdot l \cdot a \cdot \frac{i}{h}$</td>
<td>$V_k = + p \cdot l \cdot a \cdot \frac{i}{h}$</td>
<td>$D_k = p \cdot l \cdot a \cdot \frac{i}{h}$</td>
<td>$V_k = - p \cdot l \cdot a \cdot \frac{i}{h}$</td>
<td>$G = p \cdot l \cdot a \cdot \frac{i}{h} \cdot \left(\frac{1}{n} \cdot \frac{1}{2} \cdot \frac{1}{1} \cdot \frac{1}{n} \right) + \frac{a}{\epsilon} \cdot \frac{1}{h} + \frac{a}{h}$</td>
</tr>
<tr>
<td>Case</td>
<td>Load case</td>
<td>Support Notation</td>
<td>Both chords Forces:</td>
<td>Diagonals Forces:</td>
<td>Vert'1 members Forces:</td>
<td>Other shear bracing Forces:</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>9</td>
<td>Plate girder. Inclined chords. Single load.</td>
<td></td>
<td>$O_x = \pm P \cdot l \cdot \frac{x}{l} \cdot \frac{1}{h_x}$</td>
<td>$G^{(1)} = P \cdot l \cdot \frac{1}{a_x} \cdot \frac{1}{l} \cdot \frac{1}{h_x} \cdot \frac{1}{h_x} \cdot \ln(h_x)$</td>
<td>$G^{(1)} = P \cdot l \cdot \frac{1}{a_x} \cdot \frac{1}{l} \cdot \frac{1}{h_x} \cdot \frac{1}{h_x} \cdot \ln(h_x)$</td>
<td>$G^{(1)} = P \cdot l \cdot \frac{1}{a_x} \cdot \frac{1}{l} \cdot \frac{1}{h_x} \cdot \frac{1}{h_x} \cdot \ln(h_x)$</td>
</tr>
<tr>
<td>10</td>
<td>Plate girder. Inclined chords. Uniformly distributed load.</td>
<td></td>
<td>$O_x = \frac{Q \cdot l}{l} \cdot \frac{1}{l} \cdot \frac{1}{h_x}$</td>
<td>$G^{(1)} = \frac{Q \cdot l}{l} \cdot \frac{1}{a_x} \cdot \frac{1}{l} \cdot \frac{1}{h_x} \cdot \frac{1}{h_x} \cdot \ln(h_x)$</td>
<td>$G^{(1)} = \frac{Q \cdot l}{l} \cdot \frac{1}{a_x} \cdot \frac{1}{l} \cdot \frac{1}{h_x} \cdot \frac{1}{h_x} \cdot \ln(h_x)$</td>
<td>$G^{(1)} = \frac{Q \cdot l}{l} \cdot \frac{1}{a_x} \cdot \frac{1}{l} \cdot \frac{1}{h_x} \cdot \frac{1}{h_x} \cdot \ln(h_x)$</td>
</tr>
<tr>
<td>11</td>
<td>Plate girder. Inclined chords. Distributed load varying directly as the distance from one end.</td>
<td></td>
<td>$O_x = \frac{Q \cdot l}{l} \cdot \frac{1}{l} \cdot \frac{1}{h_x}$</td>
<td>$G^{(1)} = \frac{Q \cdot l}{l} \cdot \frac{1}{a_x} \cdot \frac{1}{l} \cdot \frac{1}{h_x} \cdot \frac{1}{h_x} \cdot \ln(h_x)$</td>
<td>$G^{(1)} = \frac{Q \cdot l}{l} \cdot \frac{1}{a_x} \cdot \frac{1}{l} \cdot \frac{1}{h_x} \cdot \frac{1}{h_x} \cdot \ln(h_x)$</td>
<td>$G^{(1)} = \frac{Q \cdot l}{l} \cdot \frac{1}{a_x} \cdot \frac{1}{l} \cdot \frac{1}{h_x} \cdot \frac{1}{h_x} \cdot \ln(h_x)$</td>
</tr>
<tr>
<td>Case</td>
<td>Load case</td>
<td>Support</td>
<td>Notation</td>
<td>Both chords</td>
<td>Diagonals</td>
<td>Vert’l members</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------</td>
</tr>
<tr>
<td>12</td>
<td>Cantilever on two supports. Uniformly distributed load.</td>
<td>Support “B” movable</td>
<td></td>
<td>Overhang (z = \frac{Q \cdot l \cdot x}{2 \cdot l \cdot h})</td>
<td>For a trussed girder as in case 1. Overhang (v = \frac{Q \cdot l \cdot (k - 1) \cdot 2}{n \cdot h \cdot l})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>For (\varepsilon < 0.5): (G_{\varepsilon} = \frac{Q \cdot l \cdot \gamma}{2 \cdot \theta_x \cdot a})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(f'(x) = 2 \left(2 \cdot e \cdot \frac{1}{x} \cdot \frac{a}{h} - \frac{1}{x} \right))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Braced cantilever. Uniformly distributed load. Support “B” movable</td>
<td>Integration limits for (O_0) and (G_u) (z = l - (1 - \varepsilon))</td>
<td></td>
<td>Overhang (z = \frac{Q \cdot l \cdot x}{2 \cdot l \cdot h})</td>
<td>For a trussed girder the figures under 12 apply.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inner panel (U_0 = \frac{Q \cdot l \cdot h \cdot \gamma}{2 \cdot \theta_x \cdot a})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(U_x = \frac{Q \cdot l \cdot h \cdot \gamma}{2 \cdot \theta_x \cdot a})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(C = \frac{1}{\theta_x \cdot \gamma} \cdot \frac{l}{\gamma})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Weight of overhang (G_{\varepsilon} = \frac{Q \cdot l \cdot \gamma}{2 \cdot \theta_x \cdot a} \cdot \frac{1}{\gamma} + \frac{1}{\gamma} \cdot \left(\frac{1}{\gamma} - \varepsilon \right))</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Weight of upper chord (G_{\varepsilon} = \frac{Q \cdot l \cdot \gamma}{2 \cdot \theta_x \cdot a} \cdot \frac{1}{\gamma} \cdot \frac{M_{z_1} + M_{z_2} + M_{z_3}}{\gamma})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(M = \frac{h \cdot e}{2 \cdot a} \cdot \frac{1}{\gamma} \cdot \frac{e}{3} \cdot \frac{\gamma}{3} + \frac{1}{\gamma} \cdot \frac{e}{3} \cdot \frac{1}{\gamma} \cdot \frac{1}{3})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Weight of lower chord (G_{\varepsilon} = \frac{Q \cdot l \cdot \gamma}{2 \cdot \theta_x \cdot a} \cdot \frac{1}{\gamma} \cdot \frac{N_{z_1} + N_{z_2} + N_{z_3}}{\gamma})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(N = \frac{h \cdot e}{2 \cdot a} \cdot \frac{1}{\gamma} \cdot \frac{1}{3} \cdot \frac{\gamma}{3} + \frac{1}{\gamma} \cdot \frac{1}{3} \cdot \frac{\gamma}{3})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inner panel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1 System and load diagram

Fig. 2 Force distribution in upper flange

Fig. 3 Force distribution in lower flange

Fig. 4 To be noted under Case 13
Fig. 5
Chord-weight coefficient in Case 12

\[f''(\epsilon) = 2 \left(\frac{1}{3} - \frac{\epsilon}{2} \right) \]

\[f'(\epsilon) = 2 \left(3 + \frac{2}{\epsilon^2} - \frac{\epsilon}{2} - \frac{4}{\epsilon} - \frac{1}{3\epsilon^3} \right) \]

Fig. 6
Coefficients of shear bracing weights in Case 12

\[F''(\epsilon) = 2 (1-\epsilon)^2 \]

\[F'(\epsilon) = 2 \left[(1-\epsilon)^2 + \frac{(1-0.5)}{\epsilon} \right] \]