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THEORETICAL ANALYSIS OF STATIONARY POTENTIAL

FLOWS AND BOljl!DAIIYLAYERS AT HIGH SPEED*

I& K. Oswatit~ch and K. Wie@ardt

The present report consists of two parts. The first part
deals with the two-dimensional.stationary flow in the presence
of local supez’soniczones. A numerical.method of inte~ation
of the equaticxaof gas dynamics is developed. 12roceedingfrom
solutions at Ereat distance from the body the flow pattern is
calculated step by step. Accordingly linerelqted body form is
obtained at the end of th~ calculation.

The second part treats the rektiormhip between the dio-
placemcmt thickness CT lannnnr and turbulent boundary layers
and the pi-esszlredistribution at hi@ spe~ds. The stability
of the boundary layer is investigated,‘raaultingin basic
differences in the behavior of subsonic a]:dsupersonic flows.
Lastly, the decitiiveimportance of the boundary layer for the
pressure distribution, particularly for thin profiles, is demon-
strated.

PART I

NOTATION

p

P

T

K’

n
n =-.”&.-

K -1

pressure

density

absolute temperature

ratio of speoific heats

*“Theo:etischeUntersuchunSen tiberatation&e Potentialstrhmungen
und @en~schichten bei hohen Geschwindi!?l.eiten.” Lilienthal-
Gesellschaft fti Luftfahrtforschung Ber~cht S 13/1.Teil, pp,7-24.

-..-.. ——.— -. .———



coefficient of friction

NACA ~No. Q@

velocity vector

magnitude of velociw

velocity components

velocity potential

velocity of sound

critical velocity of sound

Mach numler .

stream density

Reynolds number of the displacement thictiess

boundary-layer thickness

displacement thickness

momentum thickness

stream filament section

radius of curvatuzzeof the Btream line

normal to the stream line

maximw bump elevation

related radius of curvature

Subscript o refers to the conditions in the free-stream region,
subscript a to the outer fkw, subscriyt w to the wall. Subscript
m refers to the chamber or drum values in the phase quantities and in
the velocity to the highest obtainable ve.lue. The quantities of state
In part I are ~de dinen~ionJ-es3hy the ~h~ber q-~antitiesand the
velocities by the highest veloci~ obtair~ble.
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PART I

1. lJOTESON THE CEAPJ?Oi’ERISTICSOF COMPRESSI13U PGTENTIAL FLOWS

The equation of gac dynamics is derived by means of the ener~y
equation rather than the aciiahaticequation as cusbomary. A simple
formula is obtained fo~ the stream dens~ty which is valid in a wide
rango about the critical velocity of sound. By applying this formula
a simplifi~d equation of gas dynamics 5.s derived which in the tran-
sition zone from SU-DSOniCto supersonic, for small velocity components
v, describes the prccesses very accurately. Lastly, the problem of
flow around a cylindrical body, symmetrical in two directjonsj is
analyzed. It is found that, from n certain flow velocjty on, located
above the critical velocity, no ma..:iummvelocity can occur at the
point of maximum body thickness.

In the description of a ~~s flow the mo:t ~;eneralcase invol’ves
six unkmo”m funl:tionsjnamely, the three componontd of the velocity
and the three phase quan~~ties of the gasj the pressure p, the
density p, and the absolut~ tempcra~u.rc T. The equation of state
of the gas permits the teu.peratureto be expressed in ‘termsof the
press-tireand den~:ity,th’1.sleavln: five unknown fmct:ons for the
calculation of i~hichthe I,hreeEuler ~quations and the continuity
equation are avail.:bld, For the uiss’n~ eql~ak~.oni-tis customary
to use the adiabatic c~l.rve~c~e~.im:nat;ethe prcssur’eand density from
the e~uation anu so arrive at an eyuaiion between the vcloc!ty com–
ponente, that is, the so.-calledequation cf gas dynamics. However,
it appears to be unknown that I’orth~ clerivationof the equation of
gas dynamics the acsuwption of the adjatiatici~ not ncces$ary at all,
but that the u30 of the enerfl~.ytheorem itself is sufficient. This
derivation is briefly carried out in the fo.llowin~jwhile having
recou~se to the vector method,

Pressure, ciensity,end tempe~at’.meare made nondimensional by
the corresponding “chamber quantities” Pm, ~m, Tm; that is, the
quantities of state at velocjty O, and all orcurrins velocities
and v~locity components by the maxjmm obtainable veloclt~, that
isj the velocity at pressure O. With ~ denoting the velocity
vector, c the specific heat at conskmt prcssnrej and R the
ratio of t~e,specific heats this maxjnmm vclocjty is

pIO
Ym2 =pcy%=p+~

Ml —.— —
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The equation of energy of en ideal gas In stationary flow has
expressed nm-mmsionally - the following simple form

ana the corresponding continuity condition reads

(1.1)

(1.2)

The oft repeated quantity

‘=*
has a physical
of a molecule.

The Euler

significance; it Sndicates the degrees of freedom
For air n = 5 is very exact.

equation is then written as

(1.3)

The quantity xn enters the equation through the nondimensional
notation.

Pressure and density are eliminated by forming the gradient of
the energy equ8tio%thus o~taining

O=grad E2+ ~grad p + (X2 - 1) $ grad p

Scalar multiplioa’tion%y y and.application of (1.’2)and (1.3)
gives the equation of gas dynamics

(1 - W2) div Y + ny grad 52 .0 (1.4)

This equation is written here in a form where the veq.ocityof souril
is already eliminated and only the flow velocity H_,selfis present.
We will use this equation in the next section.

For an insight into the notential flow properties i.nthe speed.
range of Ma = 1 the just derived equation is much too complicated.
‘Sothe processes in a flow filament are analyzed, uneteady variations
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and friction processes excluded so that adiabatic changes of state
can be ags~ea,
between velocity
represented as a

It i~ known that

‘Theener~ equation (1.1) then affords a connection
and density, and the stream density wp can he “
function of the velocity w:

e(v) ==(3W= W(I - #)d2 (1.5)

this function reaches a maxtmum at the point where
the velocity is exactly equal to the velocity of sound. This
particular point is Generally denoted as the critical speed of
sound C*. With f as the section of a flow fikment the continuity
equaticn reads fe = const. The syeed C* ~s therefore characterized
ly the fact,that a flow filament for Lhis value & w reaches a
S?Milbi3~pCSSi-Dlecross section. ~?~~ w> c+ as for w< c* the
flow filament section is greatel’.

Less familiar is the smallness of the stream density changes
e

over a.very ~ubstantifilopeed range. To hd~Lcak it -= ‘s
represented for x = 1.40” h Vce ran~e of 0.5c* <w< l.~c* in
fi~ure 10 Q1.~~~~tity~% denotes tkle value of e for w = c~, tl.e
same applies to the derivatives o! (3. This characteristic of the
stream density j.s of decisive si@ficance for the effect of the
boundary layer cm ihe flow, a,swill be shown eisewhere.

Consider the function C in the vicinity of the maximum
developed aud s5Gnjfy it~ derivative with e*w, ~-x~r~jj etc. Now
it is found that the parabola

(1.6)

i$ already sufficiently accurate for a wide speed ranSe. This
approximation is indicated by dashes in fig>ure1. The calculation
for the coefficient of the qqadraiic term gives the simp~e result

1 C* ‘*WW K+]. n-l-l—.
2

~. . - -— . - ——
2 n

(1.6)

The equation (1.5) serves in good stead for the derivation of a
simplified dynamic gas equation for two-dimensional flows on the
limiting assumptions that the y component of velocity W,
signified by v, is smQl co~lparedtc the velocit~rof sound ~n~cthat
u, the x con.ponentof the velocity, does not d~ffer too much
from the velocit~~of ~ound. The stream density -tipcan be
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replaced by up = 6(u) and
applying the same omissions
with the factor v for the
written as

NACA mNO. JJ89

the equation of continuity (1.2) on
as effected with respect to the terms
derivation of the Prandtl law, can be

The coefficient of
%
~ depends only on u; it is simply a dif-

ferent method of expres~in~ the well”known quantity 1 - Ma2.
Assuming, aside from the smallness of v, that ~Qu can.be

regarded as constant results in the .Prandtl-Zl?.uert,maW?y.
If this coefficient were p.lo~tedagainst u in the vicinity of
the sonic velocity,it would show that it can assume negative as
well as positive values and at u = c+ is equal to zero. So
the premise of constancy of this ~~anbity can no longer be main–
tained, especially since the derivative Ou changes signs at
sonic velocity, as Jeen fvom figure 1. The variations of ~ on -

the other hand are no more weighty than the variations of the
entire coefficient anywhere in the range of not too high subsonic
speeds. Thus in support of Prandtlts law ~- can very well be

put equal to this quantity in the i’re-stream region, but not for

(3U● This equantity is computed by (1.6) and gives

The subscript o denotes the quantities in the fi”ee-streainregion.
Using the notation

(1.7)

gives for ;*< 1 and ~ ~1 the simplified equation of gas dynamics
.,

(1.7)

U can be positive and negative. Here also the introduction of
a velocity potential is accompanied, although in simp~lifiedform,
by the undei-sire.blechange of the equation from the elliptical
to the hyperbolic type. To secure solutions which have supersonic
zones by an analytical method it is advisable to find solutions of
(1.7), because it combines the simplifying assumption of small v
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with a very accurate description of the processes in tilecritical
sonic speed range. ‘Ibiswa~ the reason for the brief derivation
of the equation.

The fact that the flow filament section has a minimum at the
critical speed may, under certain circumstances, have very
characteristic consequences for the ve.!.ocitydistribution at the
appearance of supersonic zones on bodies, as will be demomtrated
for the case of two-dimensional fiow past a body that is symmetrical
about two ?nutua.llyperpendicular axes. The flow direction is to
be along one body axis, ‘thatis, the al~~leof abtack equal to zero.

The flow is to be adl.abaticand irrotational, the latter
characteristic being expressed by

(1.8)

where K is the noiml to the titresniineand Y its radius of
curvature. The sign for N is so chocen thct it is positive when
the ncnmal points out from the radi~s of curvature. Equation (1.8)
holds exactiy far all two-dimensionalpotential
continuity condition in the form,

6f . Ccnsta.nt

and the f:-eedomfrom rotatian (1.8) the flow is
The ori~in of the coo~dinate system x ~nd y
center of the body, axis x itimaie coi~cident
direction (fig. 2) 3nd tho e.?eoor ucsil..lv~y

flow~.- By the”

The cy~Linci~ic~lbody is vitiue.lizeda::being exposed to a flow
velocity which :eads to the formation of a supersonic zone near
the thickest pai’tof the bed-yand it is assumed that in every
stream filament the maxim-onvelocity is zeached at the point
.x= o, an assum~iion which certain-lyshould be fulfilied i’or
suhsor.ic~lows. A poin’~on the y-.axiflwjth supersonic speed
must have a maximm strosm ?ikzment width, a point with s~bsonic
speedza minimum of stream filement widtl;. In the supersonic
region the curvature of the streamlines on the positive portion
of the y- axis must dec%ea~e less ~apici.iythan on concentric
circles, in the subsonic zone the strewu line curvature must
decrease more rapidly then for concentric circles. Hence no.
great error is introduced when in the viciniti~of the point on
the y– axis where sonic velocity is reached, the streemlineu are
replaced by concentric circles, and it will not lead us far astray
when th?.sis assumed up to a value of y equal to twice the
distance from the cylinder of the point with the crjtical sonic
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velocity c*. After the streamline curvatures are e,pprox5matsly
known the velocity distribution on the y–axis ,inthjs zone is
completely defined by (1.8). If the pjece which the body cute off
from the y–axis is denoted by H and the radius of curvature of
the profile on the y–axis by R, its velocity distribution is

R

*=x -H+y (1.9)

According to (1.6) it may be stated that the volume of’flow throu@
a section of the y-axis is then greater than on an identical
section of the free stream, if at a ..a;ti(ula: .oin-tthe inequalj.ty

Uo<u< 2C+-U0

is fulfilled. Since the velocity distribution for x = O 5.s
defined by (1.9) up to the constant UJ,=H,it also is the
difference in through fl~w ‘mlume fcr y> H in the free-stream
regjon add on the y-axis. It may now be asked at what value of the
constants the absolute amount of this through ?’,owli?ference reack.es
its highest possible value and the answer is found in the fairly
accurate equation

‘y=H
= PC* - U. (1.ga)

that is, that the stream density on the y—axis must nowhere be
less than in the free stream. For a simple picture it is imagined
that (1.9) with the constaznt(1.9a) is a,ppl.icc.bleL~pto the attain-
ment of speed U. and that from this y value on, the constant
flow velocity prevails. This break may occur at the value y = y.
for which the equation reads

u -H=,&&]= U. for+

As near the body more can flow by than on a strip of equal width
in the free--streanregion, because of the increase in density, we
must proceed from the cylinder only as far as the free stream 5.s
displaced. The result is therefore a highest possible value of H,
denoted by %x, which is given by the equation

Y-TOrQo%ax = v (9 -@o) dy

Y=%ax

(1.10)
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The integrand is givenby (1.6), (1.9).,(1.9a), H is to be replaced
.by ~px, since u is equal to w on the y—axfs. The evaluation-----
of (1.1.0)gives the following relation

Hmax—.
R

between flow velocity and

TABLE I

‘o 0.70

I

]0.75 0.80 0.85. 0.90 0.95 1.00
c*

L
h

0.053 0.026 I()*013 ().0059 ,0.0020 0.0004 0,
!

The extension of the speed by piece~ at y = y. unquestionably
introduces an error; but it csn only cal.mea shift in ~ax, while

not chan~in,gthe exi3tence of such a va:l.ue.In the subsonic zone a
streamline may be re.<erded’asa bwnp S@ the ~esi.dualrise in
ttiouph flow vol’mw i!.ueto in.cr=asain ‘?elocltycoqmt~d by an approxi-
mation process that applies in tilesubsonic range. The result then
is a finite variation of the integral in (1.10) and a correspondingly
dif’feren~

%ax” Tinepossibility of a sp~ed increase in y direction
in the subsonic region must be re$ect,ei,as it would invalidate the
present considerations. Hence it is seen that the assumption cannot
be applied to all boiiiesand :herefore th9 followin? principle:

To each flow velocity Uo, there corresponds a definite ratio

Hux/R. If the ratio H/R exceeds this lflmitforabodysymmet-

rical in two mutually perpendicular directions and lying along the
flow direction, there is no flow f’orwhich velocj.tymaximums tailbe
reached cn the entire ,y—axis.

It must be expected thab the maximum speeds on the y—axfs
disappear only in tha supersonic range. But since it cannot be
assumed that velocity maximums in the supersonic range disappear
on c,part of the y~axis while a veloci~y maximum appears on the
body, we are led to the following ~rtnciple.

From a definite value of H/R on, fox bodie~ and flow directions
of the described t.y-jpe,there is no flow at which a speed maximum with
locel supersonic zone is reached at the noint of maximum thickness
of the b&ly.

A boundary point for these s~cific values of H/R is given
in table 1.

In the subsonic zone this principle has no analogy.
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NUMERICAL INTEGRATION OF’THE EQUATION

OF GAS DYNAMICS

A numerical - ~aphical method is indicated for finding
solutions of the equation of gas dynamics with supersonic zones,
by progz’essivecalculation of the entire flow, starting.from an
exact solution at great distances from the body. The exact body
form follows at the end from the shape of the streamlines. Exceeding
the sonic velocity causes no special difficulties or peculairities.

Limited to two-dhnensional, irrotat~.or..a.lflows with w = @rad @
past a cylindrical hoiqy,equation (1.4) Lives for the velo~ity
potential q a nonlinear d.ii’ferentialequation of the second order

- i-
(2.1)

The zero point of the coordinate system is placed in the body, its
dimensions are of the order of ma~itude of urdty, and the flow
strikes the body along the positive x-axis. The boundary conditions

s
or 0 then read:

& = O at the body itself, IT denotin~ the normal, and at infinity

i

.—— .
for z E X2 + yz.+~ $~0 end ~-+uo = (dimensionless)flow

velocity.
/ l——-- \
(l\IOn passing through the local velocity of sound —
$,\n+lj’

equation (2.1) changes from the elliptic to the hyperbolical type.
For this case the exact integration has be3n successfully secured
for single specific exsmples only. For the subsonic range several
general approximate solutions are available, the sim-~lestand best
known of which is the solution 0.~ obtained by the Prandtl rule.

This satisfies equation (2.1) better as the body lecomes more slender
and the distance from the body becomes greater.

.- .—.
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The following method ~s therefore indicated. Compute the
‘1%.iidtlsolution Q fo-rthe entire flow and attempt to secure
the correction q !?nsuchaw’ay that @p+ q=@ becomosa
Solutfon of the complete equation (2.1). As the analytical
calculation of q is too complicated,a numerical method is
advisable, starting from the outside (z >> 1) where q % O,
and progressively continuing inwardly toward the body, The
exact body shape follows at the end of the calculation from
the stmanl.ine distribution; however it ie to be suspected that
it essenthlly remains similar to the form of the Prandtl solution.

For this ?nzmose the differential eauation for o =0 -~. “
.

i.;an exact aol.utionof
&%o:p~2.?7 :

with

{he considera~ly simplified

o

I,
u 2

‘oMa. = ~ = –—.
co ~ ‘l-uop

The subscript c refers to the condition~ at frtinity, VP

fulfills the complete equation (2.1) u-pto an error En which
can be computed by means of (2.2): .

T

(2.2)

(2.3)

Putting

equation

q)<<
%

derivatives as well. Merely the terms of the zero and first degree

Q = Qp + T in (2,1) and regarding it as a differential

for q, ‘ -Cp follows as term of zero degree in q. As

in the entire range, it i~ assumed that it applies to the
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and the greatest term of the second degree in (p need to be included.
There results

[-1

1
(n + 1)

+ 2n

The bettei+ Op satisfies the equation of gas dynam~csj the

(2.4)

easier is the determiriationof V. Soj at Sreat distances from the ,
body the equation can be substantially simplified. For z >> 1,

aophence we can put?Iop
especially on slender bodies, ~<< ~x–;

~=() and ?!;.
by

O iil2.4 but in coutrast to the Prandtl rulo

>Q
consider the variation of - . Since Cp~O for z~cv, the term

dx
of the second degree is omitted also. Anclequation (2.4) is simplified
to

with

(2.5)
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and

This equationucould also be derived from (1.7); F is an abbre-

viation for ~eu .

The boundary condition for z~m i-s (p= O where the Prandtl
rule applies exactly. On the other hand, however, the disturbance
of the flow by the body is very extended when the flow velocity
approaches sonic velocity. It is therefore necessary to determine
an initial approximation for q analytic~lly so as not to be com-
pelled to start at unduly ~ineatdistancec. For ‘thispurpose (2.5)
is transformed further. While Ma = Maoj by the Prandtl rule, hence

F =Foj the more exact term F = I?.-iF?. (~-uo), sotha~

Wp =3?#(’
There — can be ignored with respect ‘~o — and it

“(~ aq
2X2 ‘

that M~<<&--no at Sreat distances; for cxmple, in

culateclcase: For a parallel flow and d~.yole, # - U.

l/z2, but ~ as l/z4. Hence finally:
,

>,
F #(p b2~ (F 1?
o~;+p= o- F) ~

is aasmed

the cal-

dies down as

(2.10)

All the equations for the proce~s are now available. The general
process of calculation i= as follows: First determine the entire
field of flow of the incompressible fluid numerically, and then the
compressible approximate solution by the Prandtl rule for a fixed
Ma number of the flow velocity. The c~lirection cp on a strip for
great y follows fl%m (2.10). Fra.ohere on q is ccmputed
numerically, step by step. At great difltancefrom the body we

\
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therefore first use equation (2.5) and later in the neighborhood
of the body the more complete equatjon (2.4). Having thus
determined cp for the entire field, the titreamlines and there-
fore the body contour itself, as well as pressure and velocity
distribution,are obtained from @ = @p + q. Naturally the process
can be built on another approximate solution; however, the formulas
probably become simplest when the J?randtlrule is used.

,,

For the present the range of application of this method is
confined to the flows where the Prandtl rule affords a good
approximate solution and the fundamental assumption q<< 9P is
actually fulfilled.

Excluded are accordingly flows around not sufficiently slender
bodies, as well as areas in which the velocity of sound is sub-
stantially exceeded. This also manifested itself in the calcu-
lated exam~le. Flow around a cylinder (circular in the incompressible
case) at Ma = 0.7454. The calcl.~lationwas perfectly smooth into
the supersonic range, where it had to be broken off bSpf3Cially

since
2

a%.

and

and — but
ax ;y

difficulties.

~2q a@p
-— quickly rose to the order of magnitude of
ax by K

exceeding the sonic velocity itself involved no

In principle we can also free ourselves from the approximation
that P<< Qp~ when in the formulation of’equation 2.4 we consider
terms of the third degree in cp; the len:;thof the calculation,
however, becomes disproportionately large. In another more appro-
priate method the assumption q<< ~ ~s omtt-tedand the tedious

calculation of @p in the entire field of flow is eliminated. The
previously described (p method is utilized only for computing the
initial values for larfle L. The new method is as follows: @p is
evaluated at large distances from the body for y >> yl; where Y1
is chosen so large that the error of the Prandtl solution is suf-
ficiently small; cp is evaluated from equation 2.10. This affords
the exact ~olution of the dynamic gas equation @=@p+q inan

initial strip. From here on @ itself is calculated step by step.
The width of the initial strip from -xl to + x& must ex’~end

upstream and downstream from the body so that for all y at
X<-xl and x > X2 the Prariotlrule i~ applicable with sufficient—
accuracy. From 71 on, where @ is then known,

a2@
— i~ graphically extrapolated to Y1
~y2

-~Ay for certain

lFor bodies which are symmetrical relative to the y-axis
also, xl is naturally = W.

-1
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fixed abscissae x (Ay is the length of the step; it canbe
assumed.quite large at first, and reduced again later in proximity
of-the-body). Next

is plotted against x

a20
I&--s . Plotting

yl-Ay

IE
Y~-~Y Y1 Yl

and graphically differentiated,which gives
a2@

~
against y and integrating gives

I a20
‘astly‘he‘a’iationof*Y1over x yields — by graphical

ax2
differentiation. With it

are knowm

From

fication

i3g~< 2J0
ay W ay.

against y.
~2@

Then the calculation ia repeated, — extrapolated

for y~ - :Ay ~d SO forth.
ay*

for y = yl - Ay.

the equation of gas dynsmics (?.1), in which the simpli-

bm - 0 w,nbe made so long as it is valid that ,—-
ay
a2~

is calculated for the required xn values and plotted

If the values of
~2@
— computed for y > yl, the value
-ay2

extrapolated at yl - ~ and that computed for yl -Ay do not

form a smooth curve,the step must be repeated with a differenth~
extrapolated value for the particular abscissae. In this event it
is better to reduce the length of the step. Since the differentiation
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/

w
of the curves

E ‘d s /
is uncertain at the

y=const. y=cone%.
boundary points X = - Xl and X = X2, it is advisable to compute

@= @p + q also in two vertical strips x~-xl and X2X2 and

to join the progressively defined points to these edfl+strips.

The direction of integration for this step method must be
chosen at right angles to the flow for the following reason, At

flow around a body exposed to a flow along x. ~ Is mre to be
a~

greater than —
by

almost everywhere, esyeci.allyin the supersonic

Thus at entry in a supersonic zone the coefficient of a~zone.
&2

in (2.1) goes through zero. This does rot interfere in the above
~2Q

method since (2.1)isused for computing ~

If, however, we Integrate In the x-direction and solve

equation (2.1)for ~“, then difficultie~ will result. The
~2@ ~:m, on the other hand, ~i*apFe,w Ofly ~ar

coefficient of -—
ayz

~0 is not important at the pointabove the speed of sound where
by

under consideration. We can also yrove this s-tateof affairs with
the help of characteristics. When discontinuitfes in the velocity
or their derivatives appear we cannot integrate across a character-
istic, On the other hsnd the characteristics of our flow become
nearly vertical so that again we can not calculate in the x direction
in this supersonic region.

3. ILLUSTRATIVE EXNWLE

A flow symmetrical in x and y is computed for a Mach number
of flow of 0.74’54. The flows on smooth bumps with supersonic zones
are obtained exactly, but on the other hand the flow past a closed
body is obtained only with errors in the region of the stagnation
point.

The described method is tried out on a very simple example;
we start from the incompressible flow (subscript i) past a circular
cylinder

(3.1)
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the f’ree-etreamvelocity and the radius are taken a~ unity. Prsndtlfs
rule is applied to a fixed Wch number of flow Ma.
dlinensionlessflow velocity

a#

IUo=a$
z -&o

corresponds. The abscissas for this

r——————

d
Mao2

=
Mao2 + n

transfolmation

‘Jby ,1- %02.
x d3 - Mao21xi
= ‘p =

The ordinate& remain the same: y E YP = Yi; so that

To compute q by equation (2.10) the

are used, so that

to which the

are contracted ,

(3.2)

u a2~i-0” —. —

1 1
- ,Ia2 axi*

o

coordinates Xj- andy=yi

1-1 + Mao2

Ilevelopmentof the right-hand side

using equation (3.1) gives for the

E=g Y?and q=--
Zi-

~i2-1-E

1- (n+l) U02 (&i/bXi)2

r,)i\21 -’02~

(3.4)

first approximation,when
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&p(xi, y) = -
~& 4

67 + 8q2)

I

+(1-
nuo 1 - &02 Z’i

12MS04 xi

(
10=-

d
--& )-yE+;~2

nuo 1 - Mao2 ‘i
(3.5)

A particular integral of this Poisson equation is obtained

with the help of the separation formula q =
general solution Is written

~f (~). Thus the
Zi

(3.6)

with Aqpot = O and c arbitrary.

As boundary condition for q the sole requirement is that
it shall be small comPared to Qp, that Is,decrease more rapidly

1

than <. But for the rest Qpot and c can be chosen at random.

The physical meaning of this ambiguity ie as follows: Owing to the
disregarded terms of hi~her order in the formulation of (3.5) only
the effects of the fir~t order of the bed;’at great distances are
taken into account. But these are the same for different body
forms● So the calculation yields different section forme, deTending
upon the choice of c and Qpot. The winner in which c and
9 ot affect the body form cannot be evaluated until several examples
h&e been worked out. Up to now only one such example has been
worked out, owing to

The Mach num%er
specifically chosen.

1.1o=.nl-G= 0.3162

—
lack of time.

of flow Ma. = ~%=0.745b had bee~
The dimensionless velocity is then

and XZXP=2X, 3i

In (3.6) only half Q Ot ~ O and c = 1/8 were assumed for
simplicity, thus elimtnati~g the linear ~erm in &
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with this cp the velocities (and their
solution Q = @p+q for y=10 end

x = 6, O~y~10 were computed and @

(3.7)

derivatives) of the exact
Ocx< 6, as well as to

was determined for
y < 10 and x <6 by the described step-by-stepmethod. In view
of the synmetry of flow relative to x and y the calculation
in one quadrant was sufficient. The step length & up to y = 1,5
was dy = 0.5; from there on 0.2.

While the exceeding of the sonic velocity (first at y = 1.35)
caused no difficulties, the cdculabion could not be carried out to
the body becaus~ of another reason but hnd to be broken at y = 0.6.
For at x x 0.6 the horizontal components of the velocity
aa
x

changes so rapidly for smaller ordinates y that the graphicaJ-

diffez%ntiationsbecame too uncertain to compute the next step.
As is seen from the contour of constant velocity (Fir. 3) a
stead,ybut still very sudden rarers.ctj.onoccurs and on a point
symmetrically situated with reference to X.o s compression
occurs. This phenomenon would of course not be plain at a lower
flow veioci~y, but ~t is certainly characteristic of the flow in
proximity of the stagna-tflonpoint where the upeed increases quickly
from subsonic to supexwonic. For this point of the flow field
another method must therefore be developed.

So while unable to obtain the flow around a finite body
with a ~ta~lation point, the data obtaiiledthus far are nevertheless
very info-rmativefor subsonic flows with supezwonic zones. The
calculated.streamlines and lines of const,antvelocity are shown in
figure 3. Visualizin~, the lowest streamline in figure 3 as rigid
wall, we get the flow along a smooth bump with a supersonic zone
near the highest point. Since this streamline is already very
steep for x= 0.65, it can be assumed that the velocity distribution
arowad the finite body (with symmetry axes x=Oandy = 0.5)
indicated in fi~ure 5 ie fairly accurately reproduced by the dotted
line. Incidental.ly,itis noted that even Prandtl?s rule y~elds
considerable errors near the stagnation point.

Fig~e 4 shows se~erai stre@ines magnified five times in
elevation, along with the respective ve:ocity distributions. Not-
withstanding the similarity of the individual peaks the velocities
differ considerably at various places. The velocity - and with
it the pressure distribution of thfn bodies+ is therefore at high
flow velocities markedly dependent upon the exact shape of the body.
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Noteworthy also is the steep velocity increase at a point where
the streamlines themselves are still comparatively flat.

The contours of equal velocity in the supersonic region prove
the principle set up in section 1 according to which the highest
speede under certain assumptions do not occur at the point of
maximum thickness of the body. Even the equation (1.9) applied
for the derivation of thts principle is satisfactorily confirmed
in figure 6, where the velocities on the y-fifp are plotted along
with the hyperbola (dotted) that touches the uurve W(x = O)/c* at
w/c* = 1. From the far-reaching agreement of the curves it follows

that in the vicinity of w = c* the expresej.on u = W(X = 0) = &
b+y

is a good approximation. With this example the accuracy of table I -
can be checked. In view of the flow velocity of uc/c* = 0.7746

= O.O1$J would have to be expected according to this table,
%?$Y the calculated example it is proved thd from $ax/R = 0.031
on, the speed maximum is no longer situated at the grea est ordinate.
Thus, it is seen that table I is a good representation of the order
of magnitude of H x/R. The difference is attributable to the
fact that the hype!%ola used for the approximation gives too low
speeds in the subsonic range.

PART 11

4. INTRODUCTORY IWITH ON BOUNDARY LAYERSAT HIGH SI’EEDS

Studies Gf the behavior of s’~personicflows in parallel
channels disclose that in the supersonic zone,principal flow
and boundary flow are in unstable equilibrium in certain circum-
stances. An effect of the boundary layer on the principal flow
in the zone of the critical speed is to be expected for the reason
that here small variations In stream density cause considerable
changes in speed. Th~.sis particularly plain in the calculation
of the flow through a Laval nozzle at high subsonic speed with
observance of the boundary layer.

In order to gain aiiinsight into the condition of the
boundary-layer flow at high speeds, which we will study in the
following, consider an example from the sphere of incompres~ible
flows, where the conditions are better controlled. We consider
the circulation-free, incompressible,and stationary flow around
a circular cylinder at a high but still subcritical Reynolds
nmmber. Computing the pressure distribution at the body with the
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~

Iif aid of the yotential theory on the assumption that the cylinder has
no dead-air region behind ~t and then calculating on the basj.sof

~ this the boundary-layer conditions,
I

say, with the aid of a refined

j Pohlhausen method, we find a separation point in the zone of rising

I

yressure. It is found that the omission of the dead-air region was
wrong. The pressure distribution on the body must therefore be

I
computed with due allowance for the dead-air region and then it can

1’

1

be hoped to attain a result corresponding to reality when the
dead-air region is so assumed that the related pressure distribution

I yields separation exactly at the starting point of the free stream-
;!

/!

line. This example shows that potential flow and boundary-layer
:; flow usually depend upon each other. In general, we can say that
!1 the potential flow determines the bounds-f>y-layerflow, also that
,: the boundary-layer flow determines the potential flow. The former

can be stated with great approximation in flow without pressure rise.

It is a Imown experimental fact that for large expansions a. .
flow simply does not follow the boundaries of the region; but it

i, should be remembered that for the developpient of a dead-air region”
not the expansion of the stream filament but the fact of a i>ressure
rise is decisive, which only in subsonic flows goes hand in hand
with an increase in stream filament section. In supersonic flow
on the other hand a contraction of the stream filament results in a

i pressure rise. Thus visualizing a parallel channel with a flow of
~. Ma >1 a too strong growth in boundary layer caused by some
\ disturbance is followed by a pressure ri~e, which in turn favors

a stronger growth in boundary layer. In contrast to subsonic flow,
r[ an unstable equili-~riwnof boundary layer and principal flow is

involved in this instance and a very cormidmable bowxlary layer
1 growth must be reckoned with in certain circumstances. It may,

in a straight channel result in a sudden strcng pressure rise at
the flat wall and so in the formation of a dead-air region (fig. 7(a)).
(Compare reference 11.) If the presmre rise is so ~eat that the
flow becomes subsonic, the ~elation of main flow and boundary-layer
flow is stable again, the dead-air space cannot remain in this part
of the channel. If a small presswe rise is involved of’,say, a
weaker oblique compressibility shock, the principal flow experiences
a directional change in the sense of a channel contraction. The

,’ dead-air space must increase wedge-like, but this holds only over

1

a short distance, otherwise the flow would have to revert into the
subsonic range. It is therefore’to be assumed that at an oblique

‘,1 compressibility shock, as met with in fi~.ure7(a), tne turbulent
-j; intermingling imposes a limit on the gro~~thof the dead-air space.

/*

1

These qualitative reflections lead to the conclusion that in the
i’ range Ma> 1 an unstable state of equilibrium must be reckoned

al
with in certain circumstances between principal - and bnundaqy-layer

2 flow, which mqy promote the formation of dead-air regions even at
\ a flat wall.
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A disturbance
and boundary-layer
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of the unstable state of equilibrium of principal
flow in the supersonic range is favored.by the

fact that & minor disturbance in a supersonic flow is propagated
undamped along Mach lines. Thus, a pressure rise in a supersonic
tunnel can be dispersed by a small disturbance far upstream; on the
other hand, the presswe rise sets in again some distance downstream
as we can also infei-frernour example.

The unstable behavior of the boundary layer in the supersonic
zone must disappear when the principal flow approaches sonic
velocity. In the critical speed range w = C*, which is of particu-
lar-interest in flows past bodies with high speed, the fact stands
out that this is Vae range of maximum flw density- But the proce-
dure in computing the incompressible flow past an ai~foil is such
that the pressure distribution is o’btainefifrom the potential flow
without consideration of the displacement effect of the boundary layer>
and then the ‘boundarylayer is computed witlathe aid of this pressure
distribution. This is not permissible however in the region of the
velocity of sound, because a minor variation in stream density 0
exerts a very substantial effect on the speed. This is readily
apTarent in figure 4, where peaks with comparatively minor form
changes produce very unlike pressure distributirnsc This effect
increases with increasing fl~w velocity,

The effect of the boundary layer on the flew in the vicinity of
the velocity of sound is illustrated by a simple example, whichp
althnugh it involves no flew problem, is ncwertheless informative
for the appraisal of the displacement effect of bcundary layers
at high speeds. The velocity distribution in the nozzle used by
Stanton (reference 1) for his experiments was computed by appli-
cation of the simple flew filament theory, once without boundary
layer, end once on the assumption of’s laminar boundary layer.
The boundary-layer calculation is made with the help ef a pi-~cess
which will be explained in the following section. The -initial
value of momentum and displacewmt thiclness at x = - 0.20 was
estimated. The dimensions of the nozzle are so smalQ that it can
be assumed that no turbulent transition takes place. Wanton!s
test series C is Illustrated infigum 7(b). The velocities were
deteitined by measuring the static pressu~’een the axis of the
axially symmetrical nozzle (lowei-test points) and adjacent to the
wall (upper test points). The theoretical curves by Oswatitsch and
Rothstein (reference 2) and the flow filament solution with and
without lnundary layer allowed for are included for comparison.
The former was computed ardy as far as the separation point. It is
seen that the asyrmnetty-isreproduced qualitatively correct by the
flow filament solution with boundary kiyei” taken into account.
The displacement thiclmess at the narrowest point of the nozzle is
not quite 2 percent af the nozzle radius. Computing the velocity
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distribution for the same nozzle in incompressl%le flow with and

‘\ without consideration of the boundary layer, the results in both

~

I

[1 cases are essentially even lines. Even at speeds about 15 yercent
below those of test C,any boundary-layer effect is quite insignifl.cant.

\ This may be taken as proof that the asymmetry in nozzle flows which

/ at the most, manifest local supersonic zones, are caused by boundary-
// layer effect. As to making the computation, only the following is

1! mentioned. That one gets at first the distribution of the displace-
(, ment thickness from the stream filament solution and then a new

stream filament solution taking into account the calculated displace-
ment thickness is proof in itself that such an iterative procedure
is ~rmissable at very high subsonic speeds. Displacement thickness
and stream filament solution are obtained.stepwise at the same time
in the downstream direction.

The influence cf the boundary layer on a submerged body will be
handled in section 7. Oux exemple, however, shows that we cannot
hope to obta~.nresults that correspond to the real process in some
degree, for the flow Nroblem with high velocity, without
the boundary layer. We then have to remove, in practice
the influence of the boundary layer, perhapa by suction.

3. CALCULATION OF DISPLAC-NT T~CKNESS OF LAMINAR AND

COMPRESSIBLE BOUNDARY LAYERS

examining
or experiment,

muunwr

For more accurate calculation on bcundary-layer effect in
flows at high speed, formulas for the vsriatlon of the displacement
thickness are necessary. This is done in this section, first for the
lsminar and then for the turbulent boundary layers. In the derivation
of the formulas for laminar boundary layer a refined Pohlhausen method
is given for computing laminar compressible boundary layers for given
pressure distribution.

Inasmuch as the pressures in the compressible zone transverse
to the flow direction in the boundary J#iyeris also to be regarded
as constant, the relative density variations within the boundary
layer are in amount equal to the relative temperature variations.
Thus, if sonic velocity prevails in the outer flow the relative density
variation inside the boundary layer amounts to about 20 percentj
since stagmtion point temperature can be approximately assumed at the
wa11. So, at not too high supersonic speeds a qualitatively identical
behavior in the boundary layer and in the incompressiblerange is “to
be expected.
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So as not to exclude the possibility of
beforehand, the flow outsid,eof the boundary

~AcA ~ No. 1u39

compressibility shocks
layer is called outer-

or-principal flow instead of potential flow.

Being primarily interested in the behavior of the displacement
thickness, the behavior of other quantities is studied only to the
extent that it appears in the result wjthoutiloss of time. This is
the case in the study of larninarboundary layers, where the momentum
thickness is comparatively 9asily obtaine;. and the displacement thick.
ness derive? from it.

The process is based upon an improved Pohlhausen method in
conjunction with the reports by Bohlen (i’efarence~) and Walz
(reference 4).

Boundary-layer,equation and continu:.tycondition for the
stationary case are written as follows

I
I

(5.1)

.)

The coordinate system is chosen in the uoual manner so that x is
tangential and y normal to the contour of the body. Thusj in the
general case, x, y imply no Cartesian coordinates in the following:
P is the friction coefficient dependent on temperature. The
quantities p, p, u, and v are not made dimensionless. It further
is assumed that the boundary-layer thickneJs is small relative to
the radius of curvature of the wall, so that curvature effects can
be disregarded. The second .Navier_%okes equation gives then
exactly as for incompressible flow the result that p is merely
dependent on x, but not on y, which in the boundary-layer
equation was already evidenced by formation of the ordinary
derivative of p.

After integration of the boundary-layer equation over y, the
application of
equation which

the continuity condition
is written in the form

gives the von K&m& momentum

all
()w ~ w (5.2)
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I~_ The subscript w indfcates the values at the wall

\

~ those in’the enter flow.
, subscript a

In the momentum equation displacement
j, thfc-ss and momentum thickness are defined by

5*.j’f-.&-p,;.+$--.<)d,r (5.3)

where b is the so-called boundary-layer thiclmess. which is now
chosen so great that 5+ and .3 can be regarded as independent of
5. The displacement thickness has the ~hysical significance that
the throu@ flow volume in the boundary layer is reduced by an
amount that, on the m!sumption o? pure pc%ential flow, Is equivalent
to a shift of the wall by piece b+ in p~sitive y direction.

Equation (5.2) can also be given the form

Aside from the um.ml a~sunptions with the aid of which the boundary-
layer equations are dei”ived, no restrictions of any kind have been
made so far. Only the problem 17itlloutheat trmsfer on the wall,
the so-called.theraoms-terproblem, is trezked in the following.
Further we will make one approxiniition,by which we will specify
the form of the boundary-la,yerprofile by only one parameter In
addition to the Mach number of t-heoutside flow. Next it is
necessary to make an a~sumytion concernin~ the configl.rationof the
density profile. Having seen that in the vicinity of the critical
velocity the velocity profile especially mi@t be decisive, while
the density variation is unimportant, the case of laminar bound.ery
layers is limited to the assumption that the temperature at the
wall always attains the tank temperature Tm and satisfies ths
energy thee-remwithin the boundary layer. This ties in ,P2sothe
assumption that temperature - and velocity - boundary laye~s are
of equal thickness. Accurate calculations on flat plates indicate
that this assumption also holds in a considerable supersonic range
(reference 5).

The pressure in the y direction being constant, the density
variation follows from the temperature variation as
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The
the

2

()
1-s

_=r’P
Wm

= -.—
Pa T 2

()l-~

(5. J+)

parameter for the boundary-layer characterization is derived from
known boundary conditions which for u = v = O in the boundary-

layer equation leads to

Since the internal friction is only depcudent

(1
transfer takes place, ~

by
= o, hence with

on T and no heat

application of $

(5.5)

We have avoided the introduction of’the boundary-layer thickness
itself in the equations other than at the unjrnyortantplace as upper
limit of the integral. The version of (5.5) was largely taken frcm
WalT,tsreport (reference k). The parameter X*

conventional I’ohlhausenparameter by the factor

refers to that
For a class of
the individual

parameter X*

outside~ the internal friction to
velocity profiles, such as for M
profiles which are represented by

the quantities ~
()

auand — —
,% ‘a

W
function of the parameter A* from the class of,-,

d pa’!+<
obtain Ua — —

dx IAw
by (5.2a) simply as i’uncti.on

differs from the
& 2,() the density
.&
that at the wall.
= o, for instance,
the magnitude of

can be taken as

profiles, hence

of A*. Choosing

the Pohlhausen profiles as profile class ~~Lves the curve of Bohlen-
Holstein (refe~ence 3) in figure 1, while the Hartree or Howarth pro-
files result in Walzts curves of figure 1. Moreover, it is not
necessary at all to have an analytical representation of the profile
class, it can equally be given as family of experimental curves.
If the outer flow is dependent on a Mach number, one profile class
is used for each Mach number. In order not to come to grief because
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In the sphere of compressible velocity :Prcfiles
two kno~ facts are taken-advantage o>: First, we lmow ~hat the
velocity wofiles on the plate at constant pressure are not very
closely r~lated with the Mach nutnber.sof the outer flow (reference 5).
Therefore, this is assumed to be tinecase in i-etardedor accelerated
flow also; secondly, we know that the single parametric method in
the incompressible,which utilizes the Pohlhausen profi].es,leads to
fairly practical results,although the Fohlb.amelnyyofiles themselves
do not represent the actual profiles very well.. An exact represen-
tation of the velocity profiles themselves is not needed, the main
-pointis the displacement thickness for which the inte~ration over
the profile form is already accomyli,shed.

On the basis cf these arguments we therefore select, independent
of the Mach number, the Hartree profiles for the velocity di~tribution,
which, as a rule: yx-obablyreyresaat the incompressibleboundary
layer, best of all. The dermity variation is then [iven hy (5.~})as
function o; the ‘;elocityC.ishributionan?.owing to the presence of

quantity % as function of the llachnw:lber.
‘rm ~ \

()a LIBy a nume~ical method the q-.~e,ntities901 and — ———— are
$$.‘a

w
then obtained as functioruof >,:+and Maj as exemplified for the

i’ollo~~-in~Ma which correspond to the la values:
WWL

We obtain the curve system.of fi~ru)e8.

The curves are shown at the left as far as the separation
point, at the ri~~t they proceed to the point up to which the
Hartree profiles are calculated. Several cruwcs were extrapolated
beyond it, and indicated by dashes. The cmve l.ia= O is identical
with the Hartree curve from Walz.

Thus with the velocity distribution: the variag~;~ of the Mach

number of the o-~terflow, aad an initial value of “u—– the garsmeter
%T

A* can he formed; with it and observing Ma the quantity
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~ P@’2
— — can be taken from figure 8 and the variation of

‘a ax pw
computed.. From it we obtain again this quantity at a point

No. 1189

~a$p——
4

shifted
by one step and the calculation can then-be repeated (re$~renca ~).

Althou@ 5* is wanted, it was preferred to compute —
h

because the equation for this quantity is very much simpler. Knoi~-

ing the outer flow, -92 can now be specified, To determine 5*
5*

thus further requires ~ which is a function of A* and Ma,

represented in figure 9.

Since the quantity ~ in tie boundam~-layer equation is to

be defined as accurately as possible the following formula is of
advantage

This formula
~*, ol.which

lation. The

(5.6)

-Wm

{

a f)~o~ )*~:[a2‘Ua~~ J______ —.—
‘2 Pa-f+z~ I+!/ Llati

.—

b-%

contains only quantities dependent either on Ma and
can be taken from the previous boundary-layer calcu-

&erivative with resyect to 1~, which is a function
Wm

of Ma, was preI’erredover that with repect to Ma for reasons of
stiplicity. The first term at the ri@t-hand aide in (5.6) is
generally the principle term.

O*
If it is desired to eliminate -~ and

~ Pa79~

~ w~n
in (5.6)

so as to secure

then because of

solely dependent
fairly long, but
given here, the
side densitjj,the coefficient of friction at the wall and the
displacement thickness:

dua ““
~ merely in relation to ——— = (which

&x’ dx~
d~+—— enters iu the equation ) and coefficients
(lx
on A*, Ma, and Re, the expression becomes
since this relationship is used later it is
Re number being suitably referred to the out-

uapab*Re* . (5.7)
l-%
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The formula i-cads

It contains the first and second derivative of’ Ua made dimension-.

less with the displacmnent thickness and the Gutside velocity, and
also Re* and coef~icients that are dependent on A* and Ma.

TABLE II

LAMINAR ROUNEMRY IAY~; A* = O

—.._ ——.

i

0.$08

2.02

4.89

0.284 ,

0,4’73

2.30

4.50
I

0.557

2.76

3.87
I

0.667

3.82

2.37

‘ 0.349 0 .25Sa3 . . . . ... _a-------- _.. : .0.:.21-? 1 -_0252..-----
Later on the equation i.sto be applied to the ease where

velocity distribution differs little and monotonically from
the

%
S* d%

= Const, so that ——- and
8*2 d2ua
--— .——

i

are also regarded as

1

‘%ti ‘% dxz

,,
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being small. Restricted to
u. , the term with U1 can
a% az taken
me dependence
small that the

So on the
(5.8) is taken

To obtain
thickness of a

lUACA‘Ii!NO. 1189

the l.inee?terms in the derivatives of
be struck out and the coefficients ~
~++. 0 for the specified Mach number.

of al on the derivatives af Ua ~i-ov~~ to be so

same can he done for this quantity too.

assumption of small derivatives of Llg simply
with the constants of table II for the corresponding

of a lmnina~:boundary layer.

a formula for the variation of the displacement
tu~%ulent bound-arylayer a different yrocedure is

required. On analyzing the cause of the variation of an incom-
pressible turbulent velocity profile at a specific ~ressure
variation it is found that the pressure forces azzeyrimarily
responsible. ‘Tlheshearing stresses introduced by the turbulent
intermingling play$ however, a subordinate part. It is true that
the difference of the two effects is not so far reaching that a
second Drofile could be conputed accv.ratelyenoush from.the
specified velocity profile when the shearin,qctresses are di~countel,
because the shearinS stresses are able to substantially moiify the
character of the profile; but for the calculation of the variation
of displacement ‘thickness,which essentially i-nvol-;esa-nj.ntegral
over the velocity vai”ia-bionin the incompressible case, the shearing
stresse~ can be disregarded.

The result at Ma = O is the fol].owfngap~i-o::imationformula
for the turbulent boundary layei-:

d~%
@&.~%Y -<]%.--—= . — (5.9)

ax Ua

As the inte~rand is al’A’aYs positive, it can be taken from this
formula that a speed inci-easeis accompanied by a decrease in
displacement thickness and a speed decrease by an increase in
displacement thickness. fl.tconstant outside velocity the displace-
ment thickness remains constant, according to (5.9). This result
is naturally wrong, as indicated by experiments on the plate at
constant pressure. For in this causethe variation in displacement
thickness is contingent upon the turbulent shearing stresses, so no
correct result is to be expected, The formula could be improved
by the addition of the conventional formula for the variation of
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the displacement thiclmess, but it would serve no useful purpose, as
will be seen. It is of greater significance that in contrast to
equation (5.8) for the la,mln.arbo~dary layer the second derivative
of ua is lackingin (5.9). Since (5.9) was obtained by several
rougher omissions its practicability is illustrated in figure 10.

1 dua
The experirnen.talvalues of’ — ———

~d d~
are shown plotted

Ua dx dx
again~t the arc length x of Grusclr#it~,’s(reference 6) test
series 3, along dth the variation in displacem::t thickness calcu-

lated by ‘(5.9), the inte~al. being fofi~~edat & = O. It iS found

that the formula reproduce the actual conditions adequately, as far
as the area of @rester accelerations, where errors begin to be intro-
duced. This is, of course, due to the fact that 8* = O imposes a
limit on the decrease in displacement thickness.

These experiences in the incompressible zone can now be
interpreted to the effect that the turbulsnt shearing stresses for

the calculation of ~~ can also be cancelled in the compressible

zone. But even this assumption is insufficient to develop a law
for the variation in dioplacenent thickness; additional data on
the density distribution in the boundary layer are needed. In the
case of turbulent boundary layers the ener~y theorem is not
directly applicable, because the density-boundary layer is
pi-obablytwice as great as the velocity-boundarylayer; hence, the
density varies in an area in which the velocity is already practically
considered constant (fig. 11). The result of it is that the varia-
tion in density plays the same role in the calculation of W as
the variatf.onin speed within the boundary layer. Unfortunately
only one measurement of a turbulent supersonic profile is available,
and naturally there is little sense in developing a theory without
further basis. However, in order to reach a tolerably correct
$m,ucericalvalue, the part of the boundary layer in which the density
alone varies is disregarded for the present, since it involves
only about 10 percent of the displacement thickness, and, in the
remaining portion, putting the stresm de;wity as a function of the
velocity as follows:

pu

‘a% (,)=r+’ (5.10)

H to be taken from the oxporiment. Now the derivatives of P can
be expressed by derivatives of u, ~, and pa with the aid of
(5.10) . This enables us to derive a formula for the variation of
displacement thickness, neglecting the turbulent shearing stresses.
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H’ is the derivative of the function H according to the argument

and 8 the place where & can be put equal to unity
t %

()

u—= 1 , while 5* represents the corroct displacement thickness
%

hence, integrate up to a yoint where ~ itself’is equal to unity
pa<

()X.1. This means, we state that the 10 percent of the dis-
Pa I
placement thickness between the point 4 = 1 and L = 1

% Pa

contributes to the variation of the displacement thickness an amount
which corresponds to its portion of the displacement thickness.
For Ma = O, equation (5.11) naturally changes to (5.9). If’the
density and speed in the boundary layer az’especified, the inte~al
can be evaluated also. We have calculated the e~gression in paren-

theses for a profile by Gruschwitz, for which ‘&- = O, and for the

velocity and density ~rofile represented j.nfigm?e 11; thus we obtain
the constant U2 for two values of the Mach number.

TABLE III

TURBULENT BOUNDARY LAYER
——— ...— _____ _ _ _ ._ _______ .._ .
! Ma

I
1 0: l.’(/

I ~2 I 5.1 2*2 /
—— .—.—- :.——-—. .....—.——.!-——-— .

The close agreement of coefficient m2 ior the turbulent and the
laminar velocity profile is noteworthy.

6. ST.U31LI~ STTIDyON THE FLAT I?LATE

A study of the equilibrium of boundory layer and supersonic flw
on the flat plate indicates that an unstable state is involved. The
growth of a small disturbance in a laminar boundai”ylayer djffers
somewhat from that in a turbulent layer and is, especially in the last
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case, very.rapid. In incompressible flow a stable equilibrium
exists between principal flow and boundary layer.

Having secured the variation of displacement thickness 5*
in relation to the velocity variation of the outer flow, the
reciprocal.effect of principal - and boundary layer flow is now
analyzed in the eimplest case, nameSyj in the flow at the plate.
without specified preesure distribution.

,!

Since the effect of small disturbances is to be Involved, the
Mach number of the outer flow Ma is regarded as constant and the
v component of the velocity considered small relative {o the
velocity of sound. After f.ntroduct~onof a velocity potential the
simpld equation @.2) ia involved, and written in the form

,’ (6.1)

The x–axis is to be In plato direction, the y–axis normal to it,

Now it is necessary to represent the effect of the boundary
layer on the potential flow in form of a boundary condition. The
boundary layer is therefore visualized as be~ng replaced by an
elastic layer superimposed on the pla~e, which has the property
of always attaining the thicknese equivalent to the displacement
thickness of the boundary layer at the particular place for ‘the
prevailing velocity distribution. That is, the equation

(6.2)

must ~~ satisfied for y = S*,

This condition IS inconvenient to the extent that the bowndary
for which it is to be fulfilled is not specified beforehand. But,
inasmuch as the disturbances are to be small, hence the outerflow
is to differ very little fram a flow Ua . Const., the boundary
condition for displacement thickness 5* in ~~disturbed flow is
assumed. By assumption the departure of 5* from the value of
the displacement thickness for the undisturbed flow must be small.
Hence it seems immaterial whether v is specified at y = 8* or
sty. 5* + d5* in the linearized problem. Besides, the study is

d&
to be restricted to such a small area that’ ~ itself can’be .

regarded as constant at Ua = COn~t.
,.

n. —
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Furthermore the boundary condition (6.2) has the property of
giving the same v component of the velocity at y = .5* as a

boundary layer with equal ~$, on the assumption of yotential

flow in the entire space.

In (6.2), v and u are none other than the components of
the outer velocity, hence in the notation of the preceding section
equal to Va and Ua.

Applying (5.8) or (5.11) to ‘~~-

condition of the problem,lineari,zedin
following equation for

gives then as boundary

the derivatives of u, the

(6.2a)

If a laminar flow is involved the corresponding constants
must be taken from table II; If, turbulent flow, table III; in the
latter case, a3 must be put = 0. In view of the linearization
5* and Re* must also be regarded as constant; although the
variation of u in the first term is not importe,nt,it is considered
nevertheless, because the solution then is reduced to the treatment
of a homogeneous linear differential equation, which means some
simplification.

Now it is attempted to find the solution for the case that
the plate is exposed to a flow with the velocity u(x,y) = U. = Const
and at a point x = O at the plate the velocity is artificially varied
by an amount ii<< Uo, The coordinate system is turned through a
.small angle so that the x-axie in point x = O is exactly in flow
direction and the yi-axis normal to it. The tangent of the angle
of rotation is defined by the variation of the displacement thickness
at x = y = 0, which is equal to

~trictly speaking a transformation of the coordinates in the
equations themselves should be effected. But since the boundary
layer Itself makes no difference between these two directions,
and so a rotation merely Involves more paper work without any
physical significance, it Is disregarded and the equations applled
to the new coordinates, The coordinates are in addition visualized
as being made dimensionless by the displacement thickness and the
origin shifted to the point x = O, y = IS*.
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These new coordinates are denoted with

*t .*= &; ‘Y’

and after introducing the velocity potential in (6.2a) give the
following differential equation with the respective boundary
condition

Assuming a very general Bolution of (6.la), and writing the
potential as sum of a pot9ntial of a principal flow u and a
small disturbance

o

h Ja?=uo5*xr + E5* f xl - Map-1 yf
)

+ @ + - Y,)]

f and g are arbitraryfunctions of which it is merely required
that their sum at X1 = yf = O be equal to unity. It is seen
that g gives Mach lines which point toward the boundary layer,
hence stem from a disturbance from the outside. This function is
thus put identically zero since such disturbance are to be
disregarded. Introd@ion of’the thus obtained solution in the
boundary condition gives the functional form of f. Denoting the
derivative with respect to the argument

which inserted in (6.2b) gives en ordinary differential Gquation of
the form

a Re%?
3 ~~T) + a’g,,, --$ = 0

(6.3)

— — —
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This equation
layer, hence

is easily solved.
u~ + o. Then from

NACA TM NO. 1189

First postulating a laminar boundary
the requirement for x’ = y’ = O:

f= 1; a requir~ment foi-the second derivative fnn can be-satisfied,

because the uyger equation can be regarded as diff&ential equation
of the second order of fn. Since at this point only the consequences

of small velocity disturbances, not the consequences of disturbances
of the velocity difference are to be studied, the added requirement
for x’ =y’ =0 is fqq = 0, which gives the solution

where tl and t2

t1,2 =

As Re* in general
termunderthe root
appraisalsat hi&zh

are abbreviations for the expressions

—.— .—

/
‘,2 ,..~-.-..

1 ‘2 &/’ ‘2 +VMa -1
)

-__–fi/4\, a3Re*, 3.— .—
2 a3Re*

b

a Re*
(6.4)

has the order of ma~itude of 103, the last
is a term of greateot influence. Thus for
Be* we can yut

.— —..
) .-.–— ----

1“: + hap - 1
tl,2 -

\/
a3Re*

(6.4a)

It is to be noted however that the critical Re* which corresponds
to a ValuO of about 1.4 X 103 must net be exceeded as will be
shown later.

By use of (6.4) the velocity distribution in a laminar boundary
layer on the plate is obtained as:

-[(
-,

1 ~xl

.-— —

u=— u. U. + -—— ‘1tlet2 x’-~Ma2-ly’, - t2etl~X‘-l~x~-~;’)i(6.5)FJ* t~ - t2 J1..

which by (6.4a) is reduced to the sirlpleform
.———--— .

/(
,—.-.-——./ .—.
iMa- - 1

u ~ U. + ~ cosh~ ‘—a Re* x’ - \~Ma2-ly; (6.5a)
3
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If a turbulent boundary layer were fnvolved, hence a = 0.
2first summand in (6.3) cancels out and only one bounds y condition

be satisfied. Again requiring f = 1 for Xt = yt = O gives

r—Ma2_l
.—

‘~=e %? “

velocity fiela under the assumption of a turbulent boundary layer
at the plate is

=(X*- ~~y$
a2

u=uo+ lie (6.6)

From (6.5)and (6,6)it is seen that the boundary disturbance along
Mach lines is propagated Into the flow. The interference velocity
= is always accompanied by a function which grows considerably
with rising vallleof the argument, while in the case of the laminar
boundary layers the coefficient ct

?
plays the principal part. In

turbulentboundary layers the coef icienb a2 is essentially
involved. Thus the boundary layer of a flat plate in flow with
~>onst~t velocity is in both instances in an unstable state of
equilibrium with the principal flow
terms of the first order only,

, which with observance of the
lets a small disturbance grow

infinitely. The type of growth is, of course, quite dissimilar
on the two boundary laye?w. To secure a measure for the instability

of the state, we may ask for which vaiue of Xt =&at y~ =0

the disturbance hag grown to twice the amount and call this quantity
the length of growth A. It is not made dimensionless by the
displacement thickness.

The length of growth in a laminarbcmndary layer ‘1 is assessed
by (6.5a). The h,~erbolic cosine grows for a value of the argument
of around 1.3 to the amount 2. Accordingly

The length of growth of a turbulent boundary layer At IS

At = 0.70
*5’

(6.7)

(6.8}

P
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Postulatinga larninarboundarylayer
and 111 give the,following length of

TABLE

NACA ~ NO. 1189

at Re* = 1000, tables II
growth

Iv

Ma 1.2 1.5 1.7 2.0

Al
g 25 18 12

At
g~ 1.1

Noteworthy is the unusually ehort length of growth in the turbulent
boundary layer; but even that in the Iam!nar layer is still very
small when bearing in mind that the displacement thickness in
supersonic flows is of the order of magnitude of 10-3 to
10-2 centimeters.

The investigation was restricted to small disturbances. The
extent of growth once they have reached greater amounts remains to
be proved. One thing is certain that the outerflow cannot increase
to great velocities> because the boundary layer cannot drop below
the amount 5* = O. Thus no limit in velocity decrease is imposed.
It may be presumed that the velocity decreases until the boundary
layer breaks away. In general, the instability of the discussed
equilibrium condition will become evident in a pressure rise,
probably an oblique compressibility shock. It would not be sur-
prising if oblique compressibility shock occurred in the cen~er on
a flat wall (fig, 7(a)). The example cited here could be multiplied
by many others, perhaps even by flow around conical tips. It should
be kept in mind that a pressure rise can cause transition of the
boundary layer. In the emmple adduced here the boundary layer is
already certainly turbulent.

This study of plate flow can be regarded as first result in
this sphere of instability of supersonic bmml.ary layers. It would
be desirable to get away from the assumption of small disturbances
and constant flow velocity. This seems altogether possible by a
combination of characteristicsmethod and boundary layer computation.
For the turbulent boundary layer, of course, the laws of variation
5* would have to be analyzed first.

One unusual fact is that in the measured pressure distribution
on a wing, such as those by Gbthert (refevence 7), for instance,
pressureincreaseswere almostnever observedin the supersonic
zone,exceptin form of compressibilityshockor occasionally at
small Reynolds numbers, where laminar boundm?y layers must be assumed.
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It appears entirely possible that this fact might he explainable
by the cited properties of the supersonic boundary layer. .

The corresponding behavior of a laminar boundary layer in
incompressible flow (Ma = O) Is briefly indjcated, The disturbance
at great dfstences from the wall, that is,for great values of y,
must disappear. On these premises, (6.la), (6.2b) by the seinemethod
of calculation give

+lX f.+yf
u=uo+ue Cos (P2x’ - PIY’) (6.9)

with the abbreviations

\

IT
—_.

Ii132=Q————
a3Re* 2

%)4
)]+ (a3Re*)2 -[%2

The decisive term at high Rex numbers is again a3Re*, For
Re* = 500 it approximately is

that is, a strongly damped oscillation is involved. The analyzed
equilibrium of kminar boundary layer and outer flow in the sub-
sonic zone is extremely stable according to it. This method of
analyzing offers the further possibil~ty of exploring the stability
of lami.narsubsonic boundary Layer relative Lo nonstationary dis-
turbances and comparing the results with Tollrnlenrscalculations
(reference 8). For nonstationaryvel.ocj.tyvariationsPohlha.usenls
methodis, of course,not practicalin general,in the form given
here.

Incidentally, the requirement of damping of the disturbance
for great y is not fulfillable in subsonic flow on the assumption
of a turbulent boundary layer at the plate. This result may have
its cause in the fact that (5.9) does not meet all requirements.
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7* STGNIFICAIK!EOF BOUNDARYLAYERIN THE PRESSURE

DISTRIBUTIONON A BODY

Appraisals indicate that the flow in the critical range of
sonic velocity is very substantially affected by the boundary
layer. Without its inclusion a correct calculation of the pressure
distribution therefore seems, in general, not ver,ypromising. In
many instances the behavior of the bound~.rylayer actually governs
the pressure distribution.

On examining the pressure distribution at a bump computed in
section 3, (fig, 4), a symmetrical velocity distribution is alao
found on a body symmetrical a,boutthe y-axis. This is, however,
in great contrast to tbe experience in tests (compare,fig. 12),
where symmetrical peaks were invariably accompanied by asy-mmetrical
velocity distributions. Naturally the question is whether there
is only one solution for each bump but it will be shown that, owing
to the boundary-layer effect,symmetr~cal solutions can be expected
as little as in the example of the velocjty distribution in a nozzle
(fig 7(3)).

By (5,8) the displacement thickness of a laminar boundary layer
for constant outer speed is

.

What is the possible extent of the bump in
layer remain kuninar? Figuring with tests
the values at critical velocity are

order that the boundary
in a low-precsure tunnel,

Ua = 3 x 104cm/see; pa = 0.8 x 10--3g/cm3;Vw = 1.8 x 10-4
CGSE

It is to be presumed that the critical Re,ynoldsnumber at sonic
velocity does not differ substantially from that in incompressible
flow. Taking the critical Reynolds number formed with the plate
length at

Recrito = 5 x 105
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gives the critical Reynolds number (5.7) formed with the displacement
thickness at

Re+
crit. = 1.4 x 103 -

with the previous values of ~, Pa, and p~f the critical values of
plate le~th and displacement thickness are

‘crit. = 3.8 cm; b*crit. = 1.1x 10-2 cm

So in order to prevent transition from Iaminar to turbulent
the boundary-layer model, lengths of only a fow centimeters

flow in
may be

permitted in the usual test arrangements, provided that no strong
accelerations are involved.s

Conversely, the critical length indicated here gives a meamre
for when the transition point is to be expected on a plate flow in
an exhaustion tunnel at sonic velocity. In a free-air test this
length is reduced by about half because of the hi~her density.

In the schlieren photograph of an infantry shell in flight at
around sonic veloci-ty(fig. 13) (references 9 and 10) the oblique
compressibility shock is evidently released by transition, its
effect being probably emplified by the unstable behavior of the
boundary layer. The fact that a missile at small supersonic speed
is involved is immaterial; since a strai~ht compressibility shock
prevails in front of nose of the missile, it actually flies as if
in a subsonic flow.

Analyzing the bump in figure ~J,which at the point of its
greatest height has nearly constant sonic velocity for some distance,
and supposing the points of strong velocity rise and velocity
decrease (x .0. 6) to be about 2 centimeters apart, the displace-
ment thickness at the peak is certain~ greater than that of a plate
1 centimeter in length in flow at sonic velocity. Therefore

~*x=o >0.56x 10-2 urn

At the point of substantial speed decrease, separation must be
definitely expected. A calculation by the expanded Pohlkmusen
method shows that the mcmentum thicknese grows with increasing arc
length. Much greater is the rise in the ratio of displacement
thickness to momentum thickness (fig. 9) which for Ma = 1 increases
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from point A* = O to the ~eparationpojntfrcm value 3.2 to 4.7.
Consideringthe fact that the momentumthicknessitselfincreases
up to the separationpoint,an empirical.rule can be established
accordingto whichthe displacementthicknessis doubledbetween
X* = O and the pointof separation.

The differencebetweenthe displacementthicknessat the
separationpointand at the highestpoint of the peak is in the
example;therefore

5*
separ.

-&o. 0.56x 10-2 cm=

The difference In height of the highest
separation hsepar. is (compare fig. 4)

h - 3X l.o-~
separ.-

point and at point of

:m

While the variation in hse ar due to the boundary-layer effect
mounts to a mere 20 percen?, fhe illuetrotion shows th~t a change
in height of bump by this amount must be followed by an extra-
ordinarily great change in velocity distribution, so that there
can be no question of attaining symmetrical results in the
experiment.

The conditions in the presence of a turbulent boundary layer
are considerably wors~. A little calcul~tion on Grushwitzts test
series 3 (reference 6) discloses that the displacement thickness
multiplies from the point of transition to the point of turbulent
separation by about 25 times. -Asmxdng turbulent separation at
the point of severe velocity drop the greatest displacement effect
(height of bump + displacemcmt thickness) would also exist on a
bump of considerably greater absolute dimensions at the pojnt of
separation due to boundary-layer growth. It is supposed that the
displacement effect of the body, increased by the displacement
effect of the boundary layer, undergoes no substantial incre~.se
behind the highest point of the bump. In turbulent boundary layer
and thin profiles or low bumps this is possible only to the extent
that a compressibility shock occurs at tho point of Creetiy reduced
profile thickness; fu~thermore,a compressibility shock would have
to occur so much farther downstream as the bump cr the profile is
flatter. It aleo ie feasible that the effect of the increase in
displacement thickness is raised by strong return flow behind the
point of separation. TheGe q,~a~j,~tivere~t,.ltscan be checked

a~ainst the work cf GCtkert (reference ().
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The fact that a compressibility shock can occur when there is
enough space available for the increaoed displacement thickness
caused-by it is to be regarded as reason for the fact that the
separation computed by stream filament theory in figure 7(b) is almost
exactly coincident with the start of the compressibility shock in the
test.

Tt may be asked how the streamline pattern in a flow prollem
must look, in order that the compressibility shock be possible. Thie
can be answered to the effect that the compressibility shock on slender
bodies is to he expected near the point of vanishing streamline curva-
ture. Since the streamlines in the zone of critical sonic velocity
are approximately parallel, the points of vanishing streamline curvature
must lie near a common orthogonal trajectory, hence, a potential line.
Along it the velocity chan~es little according to (1;8). In a flow
that differs little from the critical sonic velocity, the free-stream
velocity is therefore to be expected in tilevicinity of points with
zero streamline curvature. If the curve decreases ra,pidl.yat a place
with supersonic velocity a decrease to tho outer velocity must be
counted on. The marked velocity variations ~n figure 4 coincide with
the streamline inflection points. On flat profilee a point of separa–
tion can be regarded as starting point oi’a free streamline with very
little curvature. The streamline curvature must thus decrease very
substantially in the separation point and it IS seen that a stronlq
compressibility shock produces through the separation connected with
it a streamline pattern that favors the appearance of the compressibility
shock. This ar~went is therefore not sl~itallefor finding the location
of a compressibility shock.

8. CONCLUDINGRJMUWC3

The preceding work shows that in a calculation conforming to
reality the pressure di~tril)l~tionof a body in a flow at supercritical
free-struam velocity may not be given by the potential flow, that the
boundary layer plays a decisive role here. In &eneral, the potential
flow around the body permits not even an approximate calculation of
the boundary layer, This means that in contrast to incompressible flow
the pressure distribution on flat %odies can also be much different.

It is therefore intended to first improve the process of calcula-
tion of the potential flow with a supersonic region. With the process
we will ascertain the flow around a substitute body. This will have
approximately the same displacement effect that is found on an
experimentally investigated body including its deadwater region and ,
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the displacementeffectof Its boundarylayer. We can also anticipate
from our calculationa strongvelocityincreaseat the body nose and
a strongvelocitydecreaseat the pointwherethe curvatureof the
substitutebody disappears.

Translated hy J. Yanier
National Advisory Committee
for Aeronautics
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Figure 11.- Turbulentcompressibleboundarylayer: velocityand density
profilemeasured on theflatplateat Ma = 1.7.
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Figure 13.- Infantry bullet at slight supersonic speed (reference 9 ).
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