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THEORETICAL ANALYSIS OF STATIONARY POTENTIAL
FLOWS AND BOUNDARY IAYERS AT HIGH SPEED¥*
By X. Oswatitozch and XK. Wieghardb

The present report consists of two parts. The first part
deals with the two-dimcnsional stationary flow in the presence
of local supersonic zones. A numerical ncthod of Integration
of the equaticn of gas dynamics is develoned. IProcesding from
solutions at great distance from the body the flow pattern is
calcwlated step by step. Accordingly the relgted bedy form is
obtained at the end of the calculation.

The secnnd part treats the relationship between the dis-
placemont thickness oI laminar and turbulent boundary layers
and the pressvre distribution at high specds. The stability
of the boundary layer 1s investigated, resulting 1ln basic
differences in the behavior of subscnic and supersonic flows.
Lastly, the decioive importance of the boundary layer for the
pressure distribution, particularly for thin profiles, is domon-
strated.

PART I
NOTATION

D presgsure

P density

T absolute temperature

ko ratlio of specific heats

[}
n = ==

*"Theoretische Untersuchungen Wber stationdre Potentlalstrdmungen

und Grencschichten bei hohen Geschwindigleiten." Lilienthal-
Gesellschaft fur Luftfahrtforschung Bericht S l3/l.Teil, oD, T-2h.
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K coefficlent of friction

v veloclty vector

w megnitude of velocity

u, v velocity components

4] velocity potential

c velocity of sound

c¥ critical velncity of sound

Ma = w/c Mach number , )
F=1-M2

6 ="wia Nf gtream density

Re* Reynolds number of the displacement thickhess

& boundary-layer thlckness /
% displacement thickness

3 momentum thickness

T stream filament section

r radiuns of curvature of the stream line

N normal to the stream line

H maximum dbump elevation

R related radius of curvaturs

Subscript » refers to the conditions in the free-stream reglon,
subscript « to the outer flow, subscrirt w +to the wall. BSubscript
m vrefers to the chamber or drum velues in the phase quantities and in
the velocity to the highest obtainable value. The quantities of state
in part I are made dimensionless by the chamber quantities and the

velocities by the highest velocity obtainable.
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PART T

1. NOTES ON THE CHARACTERISTICS OF COMERESSIDLM POTENTIAL FLOWS

The equation of gas dypamics 1s derived by means of the energy
equation rather than the adiabatic equation as customary. A simple
formula is obtained for the strsam density which is valid in a wide
range aboubt the critical velocity of sound. By applying this formula
a simplificd equation of gas dyaamics is derived which in the tran—
sition zone from subsonic to supersonic, for small velocity components
v, describes the prccesses very accurately. ZLastly, the problem of
flow around a cylindrical body, symetrical in two directions, ls
analyzed, It i1s fownd that, from n cortain [low velocity on, located
above the critical velocity, no matluum veloclty can occur at the
roint of maximum body thickness.

In the description of a gas flow the most yeneral cage involves
3ix unknown functions, namely, the throe components of the velocity
and the three phase guantities of the gas, the pressure p, the
density p, and the absolutc temperaturce T. The esguation of state
of the gas permits the teuperature to be expressed in terms of the
rressure and dengity, thie leavinz five unknown functlons for the
calculation of which the three Euler equations and thc continuity
equation are availaeblec., For the wmisa'ng eqnation it is customary
to use the adiapatic curve Lo eliminate the pressure and density from
the ejuaticn and zo arrive al an equalion between the velocity com—
ponente, that is, the so-called equation cf gas dynamics. However,
it appears to be unknown that for tho derivation of ths cquation of
gas dynamics the assuwuption of the adiabatic is not nccessary at all,
but that the use of the energy thecrem itself is sufficient. This
derivation is brierly carried out in the following, while having
recourse to the vector method.

Prescure, density, end temperature ars made nondimensional by
the corresponding "chember guantities"” Pps  Pps Ips that is, the
gquantities of state at velocity 0, and all occurring velocitieg
and velocity components by the maximum obtainable velocity, that
is, the velocity at pressure 0. With w denoting the velocity
vector, c the specific heat at constant pressiwe, and xr the
ratio of tge,specific heats this maximum velocity is

K PIU.

Uy = 20, Ty = 2

1}
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The equation of energy of an ideal gas in stationary flow has
expregsed nondimsnsionally - the following simple form

x._'2+—£—=l (1.1)

end the corresponding continulty condition reads
w
vy + 2 grad p = 0 (1.2)

The oft repeated guantiby

n'z:EE_:—i

has a physical significance; it indicates the degrees of freedom
of a molecnle., For alr n =5 1s very exact.

The Euler equation is then written as

2
Ggrad %— -wxrot w) ¥ = - -?J—'- grad D (1.3)

The quantity xn enters the equation through the nondimensional
notation.

Pressure and density are eliminated by forming the gradient of
the energy equstion, thus obtaining

0 = grad y2+%gradp+ (w? -U%grado

Scalar multiplication by ¥ eand application of (1.2) and (1.3)

glveg the equation of gas dynamlcs

2
(1 - Ez) div ¥ + nw grad %§ =0 (1.4)

This equation 1s written here in a form where the veloclity of sound
is already eliminated and only the flow velocity itself is present,.
¥We wlll use this equation in the next section.

For an insight into the votential flow properties in the apeed
range of Ma = 1 the just derived equation is much too complicated.
So the processes In a flow fllement are analyzed, unsteeady varlations
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and friction processes excluded so that adiabatic changes of state
cen be assumed. The enerzy equation (1.1) then affords a connection
between velocity and density, and the stream demsity wp can be -
represented as a function of the velocity w:

|
lﬁ
E e(w) = pw = w(l - W2)n/2 (1.5)
H

It ie known that this function reaches a maximum at the point vhere

§ the velocity is exactly equal to the velocity of sound. This

! particular point 1s generally denoted as the critical speed of

! gound c¥. With f as the section of a flow filament the continuity
! equaticn reads f8 = const. The speed o¥* is therelore characterized
by the fact that a flow filameut for lhis value of w reaches s
smallest pcssible cross section. For w> c¥ as for wg c¥ the
flow filament section is greater.

Less familiar is the smallness of the gtream density changes
6 ;
cver a very substaniial speed range. To indicate 1t Fx 1s

represented for % = 1.40° in the range of 0.5¢¥ < w < 1.5¢¥ in
figure 1. Quantity A% denotes *the velue of @ for w = c¥, the
same applies to the derivatives of 3. This characteristic of the
gtream density 1s of declisive significance for the effect of the
boundary layer on the flow, as will be shown elsewhere.

Consider the function & in the vicinity of the maxlmum
developed and signify ite derivative with Q*W’ O*Ww, etc. Now
it is found that the narebola i

e 1 ¥y [V e 5
—;I= 1 L :?- C‘X'E ?&“I (“é“; - l) (l'c)

is already sufficiently accurate for a wide sneed range. This
approximation is indicated by dashes in figure 1. The calculetion
for the coefficient of the gquadretic term gives the simpa.e result

) ¥*
i 1 .42 &% w K+ 1 + 1
| 73 e g s SRS (2-6)

The equation (1.5) serves in good stead for the derivation of a
simplified dynsmic ges equation for two-dimensional flows on the
limiting assumptions thet the ¥y component of velocity w,

gignified by v, 1is small coupared tc the velocity of sound ané that
u, the x component of the velocity, does not differ too much

from the velocity of sound. The stream density wp can be
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replaced by up = 6(u) and the equation of continuity (1.2) on
applying the same omissions as effected with respect to the terms
with the factor v for the derivation of the Prendtl law, can te
written as

du Oy _

u —_

The coefficient of %}% depends only on u; it is simply s dif-
ferent method of expreéssing the well<known quantlty 1 - Ma?,
Assuming, aside from the smalliness of v, that %-9 can .-be

regarded as constent results in the Prandtl--Glausrt analogy.

If this coefficient were plotted against u 1in the vicinity of
the sonic veloclty, it would show that it can assume negative as
well a3 positive values and at uw = c* 15 equal to zero. So
the premise of constancy of this guantity can no longsr be main-
tained, especially since the derivative 6,, changes signs at

sonic velocity, as seen from figure 1. The variations of 2 on

the other hand are no nmore weighty than the variations of the
entlre coefficient anywhere in the range of not too high subsonlc

gpeeds. Thus in support of Prandtl's law g- can very well be

put equal to this quantity in the free-stream region, but not for

6,+ This equaentity is computed by (1.6) and gives
u 3 - 6 2

_lo gy i_q)fd(y-_-_lu_.*l:
86 (x+ 2) ( ¢ ) ox \c¥ ] 7oy o

The subscript o denotes the quantitles in the fiee-gtream region,
Using the notation

=20 87 (., a0 8% V. 1.
U"’c*eo("““l) 5V =g gram (n v 1) (1.7)
gives for ?;%<< 1 and é%:zl. the simplified equation of gas dynamics

oU , OV _
- U == .

U can be positlve and negative. Here also the introduction of

a velocity potential is accompanied, although in simplified form,

by the undersirable change of the equation from the elliptical

to the hyperbollc type. To secure solutions which have supersonic
zones by an analytical method 1t is advisable to find solutions of
(1.7), because it combines the simplifying assumption of small v
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with a very accurate description of the processes in the critical
gonic speed range. Thls was the reason for the brief derivation
of the equation.

The fact that the flow filament scctlon has a minimum at the
critical speed may, under certain circumstances, have very
characteristic consequences for the velocity distribution at the
appearance of supersonlic zones on bodies, as will be demonstrated
for the case of two-dimenszsional flow past a hody that is symmetrical
about two mutually perpendicular axes. The flow direction 1s to
be along one body axils, 'that is, the argle of attack equal to zero.

The flow is to be adiabatic and irrotational, the latter
characteristic being exprsssesd by

%%:J_'—f’— (1.8)

where N 1s the noimal to the utreamiine and » 1ts radius of
curvature., The sign Tor N 1s so chocsn that it is positive when
the normal points out from the redius of curvature. Equation (1.8)
holds exactly for all two-dimensional potential flows. By the
continulty condition in the form,

6f = Congtant

and the freedom from rotation (1.8) the Tiow is completely defined.
The origin of the coordinate system x end y 19 placed in the
center of the body, axis x 1is made colincident with the fliow
direction (fig. 2). 2nd tho aren of pcsitive y value ana.yzed.
The cylindrical body is visualized as being exposed to a flow
velocity which leads to the formation of a supersonic zone near
the thickest part of the body and it is assumed that in every
gtream filament the maximum veloclty is ieached at the point

X = 0, an assumption which csrtainly sbhould be fulfilled {or
sutsonic {lows. A point on the y-—axis with supersonic speed
must have a maximum streem filsament width, a point with subsonic
speed, s minimm of stream [llament width. In the supersonic
region the curvature of the streamliines on the positlve portion
of the y- axis amust decrease less replaly than on concentric
circles, in the subsonic zone the stream line curvature must
decrease more rapidly than for concentric circles. Hence no.
great error is introduced when in the vicinity of the point on
the y-— &axis wheve sonic velocity is reached, the streamlines are
replaced by concentric circles, and it will not lead us far astray
when this is assumed up to a value of y equal to twlce the
distance from the cylinder of the point with the critical sonic
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velocity c¥*, After the streamline curvatureg are approximately
known the velocity distribution on the j-—axis In this zone 1s
completely defined by (1.8). If the piece which the body cuts off
from the y—axls 1s denoted by H and ths radius of curvature of
the profile on the y—axls by R, 1te velocity distribution is

u R
Uy-g TR~-H+y

(1.9)

According to (1.6) it may be stated that the volume of flow through
g section of the y-—axlis 1s then greater than on an identical
section of the free stream, if at 2 ,articular ,oint the inegualaty

uo< un< 2c*—uo

ig fulfilled., Since the velocity distribution for x =0 is
defined by (1.9) up to the constant wu, ., it algo is the

difference in through flow velums for®7Fs H 1in the Iree-strsam
region and on the y-waxis, It may now be asked at what value of the
congtantg the absolute amount of this through Fiow difference reaches
its highest posslible value and the answer lg found in the fairly
accurate equation

veg = 2¢% = ug (1.9a)

that 1s, that the stream density on the y—axis must nowhere be
lesg than 1In the free stream. For a simpie picture it is imagined
that (1.9) with the constant (1.92) is spplicsble up to the attain—
ment of spsed u_. and that from this y wvalue on, the constant
flow velocity prevails. This break may occur at the value y =y,
for which the equation reads

us=u forzg.;I:I.:g.gi __3)
o R U,

Ag near the body more can flow by than on a strip of egqual wildth
in the free-stream reglon, because of the increase in density. we
mugt proceed from the cylinder only as far as the free stream is
displaced. The result 1s therefore a highest possible value of H,
denoted by Hmax’ which is gliven by the esquation

F=Yo

2olmax = Jﬁ
Y=Hpax

(5 = 8,) dy (1.10)
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The integrand 1s given by (1.6), (1.9), (1.92), H is to be replaced

by Hpoxs, eince u 1s equal to w on the y—saxls. The evaluation

of (1.10) gives the following relation between flow veloclty and
Hpox

TABLE I
Uy
= 0.70 0.75 0.80 0.8s5. 0.90 0.95 1.00

~2X {0,053 | 0,026 }0.013 | 0.0059 ! 0.0020 |0.000% | O,

The extension of the speed by pilecca nt y = To unguestionably
introduces an ersror; but it can only caunse a shift in Hmax’ whilie

not changing the exiatence of such a value. In the gubsonic zons a
streemline may be re.ierded 'as a bmp and the vesgidual rise in
through flow volure dne to increase in 7eloclity computed by an approxi-
mation process that applies 1n the svbsonic range. The resuit then

ig a finlte variation of the integral in (1.10) and a correspondingly
different Hmax' The posgibllity of a ape2ed increase in y dJdirection
in the subsonic regilon must be rejected. as it would invalldete the
present congiderations. Hence it 1s seen thah the assumption cannot
be applied to all bodles and “herefore tha followin<s principle:

To each flow veloclty u., there corregponds a dsfinite ratio

Q2
Hmax/R' If the ratio H/R excesds this 1imit for & body symmet—

rical in two mutuelly perpendicular directions and lying along the
flow direction, there is no flow for whicih velocity maximums can be
reached c¢cn ths entire y-—axis.

It must be expected thab the maximum speeds on the y—axis
dlsappear only in the supersonlc range. But sincs 1t cannot be
assumed that velocity maximums irn the supersonic range disappear
on a part of the y-—axis while a velocity maximum appears on the
vody, we are led to the following princinle.

From a definite value of H/R on, for bodies and flow directions
of the described type, there is no flow at which a speed maximum with
local supersonic zone i reached at the point of maximum thickness
of the body.

A boundary point for thesge specific values of H/R i1s given
in table ¥.

In the subsonic zone this principle has no analogy.
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2. METHOD FOR THE NUMERICAL INTEGRATION OF THE EQUATION
OF GAS DYNAMICS

A numerical - gravhical method is indicated for finding
solutions of the equation of gas dynamics with supersonic zones,
by vrogressive calculation of the entire flow, starting from an
exact solution at great distances from the body. The exact body
form follows at the end from the shape of the streamlines. FExceeding
the sonic velocity causes no speclal dirficulties or peculairities.

Limited to two-dlmensional, irrotational flows with w = grad ¢

past a cylindrical body, equation (1l.4) rives for the velocity
votential ¢ a nonlinear dirferential equation of the second order

N

\uy/ dx2
T 37 <2
30 o0 o) -
+ {1 - <5x) - (n + 1) (EE>-] N (2.1)
Jy
30 o0 %0 2
-Enu—-:———=0 =
3x Oy Ox Jy PREET

The zero point of the coordinate system is placed in the body, its
dimensions are of the order of magnitude of unity, and the flow
strikes the body along the positive x-axis. The boundary conditions
ggr ¢ then read:

il O at the body itself, N denoting the normal, and at infinity

3 = _é— -":—'- .a..(?_. A za_q)_ — - .
for z _.Jx + yE—oo ay——%o and  £-—u = (dimensionless) flow
velocity. \

On nassing through the local velocity of sound {I = i T ),
equation (2.1) changes from the elliontic to the hyperbolical type.
For this case the sxact integration has besn successfully secured
for single specific examples only. For the subsonic range several
general approximete solutions are available, the simdlest and best
¥nown of which is the solution @0 obtained by the Prandtl rule.

This satisfies equation (2.1) bet%er as the body becomes more slender
and the distance from the body becomes greater.
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-~ The following method is therefore Indicated. Compute the
“Prandtl soluvtion ¢, ior the entire flow and attempt to secure

the correction gn such a way that 9+ ¢ =& becomes a
golution of the complete equation (2.1).p Ag the analytical
calculatlon of @ 18 too complicated,a numsrical method is
adviesable, starting from the outside (z 3> 1) where ¢= O,

and progressively continuing lnwardly toward the body. The

exact body shape follows at the end of the calculation from

the stresmiine distribution; however it is to be suspected that

1t esseontlally remains similar to the form of the Prandtl solution,

For thils purpose the differential equation for ¢ =@ =&
is set up; © ig an exact solution of the coneiderably simplgfied
equation (2.19:

R ¥
(1 — Ms, 2) Py =0
© Ax2 ay2
with
—
/ 2
A*8 u
Mag = —2 =  [n—2 - (2.2)
Co \ 1l - u02

The subscript © rofers to the conditlona at Infinity, @p

fulfills the complete equation (2.1) up to an error ¢ which
can be computed by means of (2.2):

el

- [ o 305 \2
D[QPI= E,'p = e l(Mao + 11) (—-é-?x—)

i~ 2 20
+ L(n + 1) Ma® - ] 02y - a2y T
3y : ox2
- 2
af")E ?%1 ?.?2 (2.3)

- 2n T
ox Oy Ox dy

Putting O = Qp + @ in (2.1) and regarding it as & differential
equation for o, €p’ follows as term of zero degree in @. As

<KL Qp in the entire range, it 1s assumed that it applies to the
derivatives as well, Merely the terms of the zero and first degree
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and the greatest term of the second degres in ¢ need to be included.
There results

d8.\° afbﬂ?_ 2
1__<___12> - (n + 1) ,__) i

i ox 'Sy _ 5,}’2
2 = N2 |
00y, OF %p, 0%
+ 2 (Mao“ + n> ,)p Qp 4+ n :Dp 2 gf’i
\ 3= ox ox Oy Oy |ox
- - = N 2 ]
J ! 2 3oy 3Py %  O0p |
S 7 i — i - 2 [Nl
te (kﬁn 1) Mag HJ e oy T ox dy Ox | oy
3@, o8, 2 My o
D G P D c=Q 3P
Ry me Y w g w (.4)

The better @P satisfies the equation of gas dynamics, the

easier is the determination of ®. So, at grest distances from the
body the equation can be substantially simplified. For 2z >> 1,

especially on slender bodies, =—=<<£ 5;—; hence we can put
oy

od o
2 -0 and S 0 in 2.4 but in contrast to the Prandtl ruls

dy dy

3
consider the variation of 59 . Since @20 for z->o, the tern

ax
of the second degree is omitted also. And equation (2.4) is simplified
to

2 923
A S T —-F@E—Fff?_c '
oy< © OX ) 3«7 oxe’ (2.5)
with 33 \¢
1 - (n 1)(7_2
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and 09 \
En(, P }
dF

@ TET

This equation could also be derived from (1.7); F is an abbre-
viation for =6,

e

The boundary condition for z > o i @ = 0 where the Prandtl
rule applies exactly. On the other hand, however, the dilsturbance
of the flow by the body is very extended when the flow velocity
approaches sonic velocity. It is therefore nscessary to determine
an initial approximation for ¢ analytically so as not to be com—
pelled to start at unduly great distances. For this purpose (2.5)
is transformed further., While Ma = Ma,, by the Prandtl rule, hence

. =
F = Fo’ the more exact term F = FO + B, ;ip o) s 80 that
2 | 250 3
F e QEE = — P A> <?® - p EQJ (2.7)
° 3x2 5y? Gxa dx= O 5x2 Ux
%) . ¥ e
There S;E can be ignored with respect to - , and it is agsumed

0
that 22 <L —EE ~1u_. at great distances; for example, in the cal~
ox ox 0 o)

culated case: For a parallel flow and dipole, S:E - Uy dies down as
X

1/22, but %9 as l/zh. Hence finally:
x

] \\\\\Eé

X Py D
Fo-g}-c—é + -a;-é' = (FO F) "T (2’10)

All the equations for the procegs are now available. The general
procese of calculation is as follows: First determine the entire
field of flow of the incompressible fluid nvmerically, and then the
compressible approximate solution by the Prandtl rule for a fixed
Ma number of the flow velocity, The cowrection ¢ on a strip for
great y follows fPom (2.10), Frcm here on ¢ is computed
numerically, step by step. At great digstance from the body we
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therefore first use equation (2.5) and later in the neighborhood
of the body the more complete equation (2.4). Having thus
determined ¢ for the entire field, the utream lines and there-
fore the body contour itself, as well as pressure and velocity
distribution,are obtained from & = &, + ¢. Naturally the process
can be built on ancother approximate solution; however, the formulas
probably become simplest when the Prandtl rule is used.

For the present the range of application of this method is
confined to the I'lows where the Prandtl rule affords a good
approximate solution and the fundamental assumption © << ip is
actually fulfilled.

Excluded are accordingly flows around not sufficiently slender
bodies, as well as areas in which the velccity of sound is sub-
gtantially exceeded. This also manifested itself in the calcu-
lated example, Flow around a cylinder (circular in the incompressible
case) at Ma = 0.7454. The calculation was perfectly smooth into
the supersonic range, where it had to be broken off eggpecially

P 3%y 3%,
since =<~ and =——=— quickly rose to the order of magnitude of =
ox o¥. Oy ox
Fo,
and 3 but excesding the sonic velocity itself involved no
X gy
difficulties.

In principle we can also free ourselves from the approximation
that © << ®,, when in the formulation of equation 2.4 we consider
terms of the third degree in ¢; the lensth of the calculation,
howsver, becomes disproportionately large. In another more appro—
priate method the assumption @ <« Eb iz omitted and the tedious

calculation of Qp in the entire field of flow is eliminated. The

previously described ¢ method is utilized only for computing the
initial values for large Z. The new method 1s as follows: & is
evaluated at large distances from the body for y'>>»yl; where yi
is chogen so large that the error of the Prandtl solution is suf—
ficiently small; ¢ 1is evaluated from equation 2.10. This affords
the exact solution of the dynamic gas equation ® =®%_ +0 in an
initial strip. From here on ¢ iteell is calculated step by step.
The width of the initial strip from -x) to + xp! must exiend
upstream and downstream from the hody so that for all y at

x {—x1 and X > xo the Pranatl rule ic applicable with sufficient

accuracy. From ¥y on, where ¢ 1s then known,

2
%—g is graphically extrapolated to yj = %-Ay for certain
Y

For bodies which are symmetrical relative to the y-axis
also, Xy 1is naturally = Xp.
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fixed abscissae x (Ay 1is the length of the step; it can be
agsumed quite large at first, and reduced again later in proximity
of the body). Next

!  _d0| . A
dy | dy 3y 2 v
ARA y y1-20y
i1s plotted against x and graphically differentiated, which gives
d°0 d20 . . :
. Plotting t d int t
35—55/ otting 5§—§§ against y and integrating gives
A}
Yl Yy ylﬂﬁy -
ox T x (/P dy ox
Ylﬂéy J1 VA

2
Lastly the variation of ggl over x yields Q-g by graphical
X

71 ox
differentiation. With it
QQ @9 _939_ and égg
ox’ oy’ oy ox’ dx2
are known for y =y, - 4Oy.

1

From the equation of gas dynamics (2.1), in which the simpli-

op

fication ey = 0 can be made so long as it is vealid that
v

g¢ << g¢ B is calculated for the required x values and plotted
Y Xa_

2
against y. Then the calculation ia repeated, Q—g extrapclated
for yq - 3ﬁg and so forth. Sy

2
320
If the values of S—- computed for y > T the value
¥

extrapolated at yi - %Ay and that computed for yi - Ay do not
form a smooth curve, the step must be repeated with a differently

extrapolated value for the particular abscissae. In this event it
is better to reduce the length of the step. Since the differentiation
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of the curves o BQ’ i
= and S5 is uncertain st the
y=const, y=const,
boundary polnts x = - x; and x = X5, it 1s advisaeble to compute

¢ = ¢p + @ also in two verticel strips x< - x; end x> x, and
to Join the progressively defined points to these edg= strips.

The direction of integration for this step method must be
chogen at right angles to the flow for the following reason, AYv

flow around a body exposed to a flow along x. EE? 18 sure to be
X
greater than S almost everywhere, especiglly In the supersonic

¥
zone. Thus at entry in a supersonic zone the coefficient of ggg
x .
in (2.1) goes through zero. This does rot %nterfere in the above
a=d

method since (2.1) is used for computing 5;5.
If, however, we l1ntegrate in the x -direction and solve
52
equation (2.1) for 53:9, theon difficulties will result. The
cx

2
coefficient of Q_Q can, on the other hand, diseppear only far

3y > <
above the apeed of sound where 99 is not 1mportant at the point

y
under conslderation. We can slso prove this state of affairs with

the help of characteristics. When discontinuities in the velocity

or their derivatives appear we cannot integrate across a character-
istic. On the other hand the characteristics of our flow become

nearly vertlcal so that again we can not calculate in the x direction
in thles supersonic region.

3. ILLUSTRATIVE EXAMPLE

A flow symmetrical In x and y 1s computed for a Mach number
of flow of 0.7454, The flows on smooth bumps with supersonic zones
are obtained exactly, but on the other hand the flow past a closed
body is obtained only with errors in the region of the stagnation
point.

The described method is tried out on a very simple example;

we start from the incompressible flow (subscript 1) past a circular
cylinder

Oy = xq + —=—no (3.1)
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the Tree-stream velocity and the radius are tsken as unity. Prandtl's
rule is epplied to a fixed Mach number of flow Ma, to which the
dimensionless flow veloclty

Yo = 3% = \j .
Z—ytoo kb + I

corresponds. The abscissas for this transformation are contracted

by \J& - Maog_

2‘
X=X, = \/l - Ma “'x; (3.2)
The ordinated remain the same: y=J¥, = Yy5 80 that
? [4
b, b4 . oD, Uy %,
3x TYodm TCGE T 5 9xy° (3-3)
. AV A Mao

To compute ¢ by equation (2.10) the coordinates x; and ¥y = ¥y
are used, so that

l

e BY Yo %o 3% %
(} Ma_ ) R PEarl

dy°  oxy2  dy°
) u, 3%, L. (n+ 1) u? (3d,/ox;)2
T 5 dxy° \2
\o-me 2000 g uf@%)
-1+ 2 (3.4)

Development of the right-hand side for large z. = x12 + yg by

using equation (3.1) gives for the first approximation, when

2 D
! ¥

é = ;—5 and 1 = —TE =1 - é
i 23
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L
- WMag 51.6.(1 - 6n + 8n2)
nug Vl - Meg 27y

oM h
% 2.6 3573
nu, Jl - May= "1

o(xy, ¥)

A particular integral of this Polsson sequation is obtained
b'd
with the help of the separation formula ¢ = —in-f (). Thus the

general solution 1is written z4
N -
- —1May " x4 L l) 1.2
o\/+ ~— %89

with A@pot =0 @&and c¢ arbitrary.

As boundary condition for ¢ +the sole requirement ig that
it shall be smaell compared to Ops that 1g, decrease more rapldly

1
than ‘z—i- But for the rest q’pot end ¢ can be chosen at random,

Ths physical meaning of this ambigulty 1s as follows: Owing to the
dlsregarded terms of higher order in the formulation of (3.5) only
the effects of the first order of the body at great dlstances are
taken into account. DBut these are the same for different body
forms., So the calculation yields different section forme, depending
upon the cholce of ¢ and ot+ The menner in which c¢ and

affect the body form cennot be evaluated until several examples
hgve been worked out. Up to now only one such example has been
worked out, owing to lack of time,

The Mech number of flow Mag, = |f5/9 = 0.745k had been
specifically chosen, The dimensionless veloclty 1ls then

U, = /10 = 0.3162 end x = x, =’§*Xi-

In (3.6) only half 20 and ¢ = 1/8 were assumed for
slmplicity, thus eliminatigg the linear term in ¢
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10 A
- 9 =-2L2 B (1 §2> (3.7)
21

‘ with this ¢ the velocitles (and their derivatives) of the exact
golution & = Pp+ @ for y= 10 and 0< x< 6, as well as to

x=6, 0£y< 10 wers computed and & was determined for

¥y<10 and x €6 by the described step~by—step method. In view
of the aymmetry of flow relative to x and y the calculation

in one quadrant was gufficient. The step length Ay uwp to y = 1.5
was Ay = 0.5; from there on 0.2.

While the exceeding of the sonic velocity (first at y = 1.35)
caused no difficulties, the calculation could not be carried out to
the body because of another reason bubt hnd to be broken at y = 0.6.
For at x = 0.6 the horizontal components of the velocity

g%- changes so rapidly for smaller ordinates y that the graphlcal

differentiations became too uncertain to compute the next step.

As is seen from the contour of constant velocity (Fie. 3) a

steady but still very sudden rarefsction occurs and on a point
symmetrically situated with reference to x =0 a compression
occurg, This phenomencn would of course not be plein at s lower
flow velocibty, but it is certainly charscteristic of the flow in
proximity of the stagnation point where the speed increases guickly
from subsonic to supersonic. TFor this noint of the flow fleld
another method mugt therefore be developsd.

So while unable to obtain the flow around a finite body
with a stagnation point, the data obtained thus far are nevertheless
vory informative for subsonlc flows with supersonic zones. The
calculated streamlines and lines of constant velocity are shown in
figure 3., Visuaslizing, the lowest sgtresmline in figure 3 as rigid
wall, we get the flow along a smooth bump with a suversonic zone
near the hlghest point. Since this streamline is already very
steep for x~ 0.55, it can be assumed that the velocity distribution
] around the finite body (with symmetry axes x =0 and y = 0.5)
b Indicated 1n figure 5 1s fairly accurately reproduced by the dotted
| line. Incidentally,it is noted thet even Prandtl's rule yields
conglderable errors near the stagnstion point.

Figure L shows several streamlines magnified five times in

! elevation, along with the respective velocity distributions., Not—
withstanding the similarity of the indlvidual pesks the velocities

{ differ conslderably at various places. The veloclty — and with

it the pressure distribution of thin bodiss - ig therefore at high
flow velocitles markedly dependent upon the exact shape of the body.
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Noteworthy also is the stesp velocity increase at a point where
the streamlines themselves are still comparatively flat.

The contours of equal velocity in the supersonic region prove
the principle set up in section 1 according to which the highest
speede under certain assumptions do not occur at the point of
maximum thickness of the body. Even the equation (1.9) applied
for the derivation of thie principle is satisfactorily confirmed
in figure 6, where the velocities on the y—axlie are plotted along
with the hyperbola (dotted) that touches the surve w(x = 0)/c* at
w/c* = 1. From the far-rsaching agreement of the curves it follows

8
b+y
13 & good approximation. With thils example the accuracy of table I
can be checked. In view of the flow veolocity of uc/c* = 0.7746
Hma /R = 0.019 would have to be expected according to this table,
butxby the calculated example it is proved that from H%1 x/R = 0,031

that in the vicinity of w = c* +the expression u = w(x = 0) =

on, the speed maximum is no longer situated at the grea gst ordinate.

Thus, it is seen that table I is a good representation of the order
of magnitude of K x/R' The difference is attributable to the
fact that the hype%%ola used for the approximation gives too low
speeds in the subsonic range,.

PART 1II
L, INTRODUCTORY NOTES ON BOUNDARY LAYERS AT HIGH SPEEDS

Studies cf the behavior of supersonic flows in parallel
channels disclose that in the supersonic zone, principal flow
and boundary flow are 1n unstable equilibrium in certain clrcum-
stances. An effect of the boundary layer on the principsl flow
in the zone of the critical speed i1s to be expected for the reason
that hers small variatlions in stream density cause considersble
changes 1n speed. Thisg 1s particulsrly piain in the calculation
of the flow through a Laval nozzle at high subsonic speed with
obgexrvance of the boundary layer.

In order to galn =2n insight into the condition of the
boundary-laysr flow at high speeds, which we will study 1in the
following, conglider an example from the sphere of incompressible
flows, where the conditlons ave better controlled. We congider
the clrculation—free, incompressible, and stationary flow around
a clrcular cylinder at a high but still subcritlical Reynolds
number, Computing the pressure distribution at the body with the
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aid of the potential theory on the assumption that the cylinder has
no dead-air region behind it and then calculating on the basis of
this the boundary-layer conditions, say, with the aid of a refined
Pohlhausen method, we find a separation point in the zone of rising
pressure. It is found that the omission of the dead-alr region was
wrong. The pressure distribution on the vody must therefore be
computed with dus allowance for the dead-air region and then it can
be hoped to attain a result corresponding to reality when the
dead-air region is so assumed that the related pressure distribution
yields separation exactly at the starting point of the free stream-
line. This example shows that potential flow and boundary-layer
flow usually depend upon each other. In general, we can say that
.the potential flow determines the boundary-lsyer flow, also that

the boundary-layer flow determines the potential flow. The former
can be stated with great approximation in flow without pressure rise.

It is a known experimental fact that for large expansions a- .
flow simply does not follow the boundaries of the region; but it
should be remembered that for the develoyment of a dead-air region
not the expansion of the stream filament but the fact of a pressure
rise is decisive, which only in subsonic flows goes hand in hand
with an increase in stream filament section. In supsrsonic flow
on the other hand a contraction of the stream filament resulis in a
pressure rise. Thus visualizing a parallel channel with a flow of
Ma >1 a too strong growth in boundary layer caused by some
disturbance is followed by a pressure rige, which in turn favors
a stronger growth in boundary layer. In contrast to subsonic flow,
an unstable equilibrium of boundary layer and principal flow is
involved in this instance and a very concidorable boundary layer
growth must be reckoned with in certain circumstances. It may,
in a straight channel result in a sudden strong pressure rise at
the flat wall and so in the formation of a dead-alr region (fig. 7(a)).
(Compare reference 11.) If the pressure rise is so great that the
flow becomes subsonic, the relation of main flow and boundary-layer
flow is stable again, the dead-air space cannot remain in this part
of the channel. If a small pressure rise is involved of, say, a
weaker oblique compressibility shock, the principal flow experiences
a directional change in the sense of a channel contraction. The
dead-air space must increase wedge-like, but this holds only over
a short distance, otherwise the flow would have to revert into the
subsonic range. It is therefore to be assumed that at an obligque
compressibility shock, as met with in figure 7(a), the turbulent
intermingling imposes a limit on the growth of the desd-air space.
These qualitative reflections lead to the conclusion that in the
range Md > 1 an unstable state of equilibrium must be reckoned
wlth in certain circumstances between principal - and boundary-layer
flow, which may promote the formation of dead-air regions even at
a flat wall.
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A disturbance of the unstable statc of equilibrium of principal
and boundary-layer flow in the supersonic range is favored by the
fact that any minor disturbance in a supersonic flow is propagated
undamped along Mech lines. Thug, a pressure rise in a supersonic
tunnel can be dispersed by a smell disturbance far upstream; on the
other hand, the pressure rise sets in again some distence downstream
as we can also infer frem our sxample.

The unstable behavior of the boundary layer in the supersonic
zone must disappear when the principal flow approaches gonic
velocity. In the critical speed range w = c¥*, which is of particu-
lar interest in flows past bodies with high speed, the fact stends
out that this is the range of maximum flow density. But the proce-
dure in computing the incompressible flow past an aiifoil is such
that the pressure distribution is obtained from the potential flow
without consideration of the displacement effect of the boundary layer,
and then the boundary laysr is computed with the aid of this pressure
distribution. This is not poermissible however in the region of the
velncity of sound, because a minor variation in stream density 6
eXerts a very substantial effect on the speesd. This is readlly
apparent in figure h, where peaks with comparatively minor form
ckranges produce very unlike pressure distributicnse This offect
increases with increasing flow velocity,

The effect of the boundary layer on the flow in the vicinity of
the velocity of sound i1s i1llustrated by a simple example, which,
althrugh 1t involves no flow problem, is novertheless informative.
for the appraisal of the displacement effect of becundary laysrs
at high speeds. The velocity distribution in the nozzle used by
Stenton (reference 1) for his experiments was computed by appli-
catien of the simple flew filament theory, once without boundary
layer, and once on the assumptinn of a laminar boundary layer.

The boundary-layer calculation is made with the help ¢f a prccess
which will be explained in the following sectimn. The initilal
value of momentum and displacewent thickness at x = - 0.20 was
egtimated. The dimensions of the nozzle are so small that it can
be assumed that no turbulent transition takes place. Stanton's
test series C is lllustrated in figure 7(b). The velocities were
determined by measuring the static pressure an the axis of the
axlally symmetrical nozzle (lower test points) and adjacent to the
wall (upper test points). The theoretical curves by Oswatitsch and
Rothstein (refersnce 2) and the flow filament solution with and
without toundary layer allowed for are included for ccuparison.

The former was computed -nly as far as the separation point. It is
seen that the asymmetry -i1s reproduced qualitatively correct by the
flow filament solution with boundery layer taken into acccunt.

The displecement thickness at the narrowsst point of the nozzle is
not quite 2 percent of the nozzle radius. Computing the veloclty
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distribution for the same nozzle in incompressible flow with and
without consilderation of the boundary leyer, the results in both
cases are esgentlally even lines. ZXHven at gpeeds about 15 percent
below those of test C, any boundary-layer effect 1s guite insignificant.
This may be taken as proof that the asymmetry in nozzle flows wvhich
at the most, manifest local supersonic zones, are caused by boundary—
laysr effect. As to making the computation, only ths followlng is
mentioned. That one gets at first the distribution of the dlsplace-
ment thickness {rom the stream filament solution and then a new
gtream filement solution taking into account the calculated displace-—
ment thickness 1s proof in itself that such an lterative procedure
is permissable at very high subsonic speeds. Dilsplacement thickness
and stream filament solution are obtailned gtep-wlse at the same time
in the downstream direction.

The influence cof the boundary layer on a submerged body will be
handled in section 7. Our example, however, shows that we cannot
hope to obtain results that correspond to the real process in some
degree, for the flow vroblem with high velocity, without examining
the boundary layer. We then have to remove, in practlice or experiment,
the influence of the boundary layer, perhaps by suctlon.

5. CALCULATICN OF DISPLACEMENT THICKNESS OF LAMINAR AND TURBULENT

COMPRESSIBLE BOUNDARY LAYERS

For more accurate calculations on boundary-layer effect in
flows at high speed, formulas for the veriation of the dlsplacement
thickness are necegsary. This is done in this section, first for the
laminar and then for the turbulent boundary layers. In the derivation
of the Tormulas for laminar boundary layer a refined Pohlhausen method
is glven for computing laminar compressible boundary layers for glven

pressure digtribution.

Inasmuch as the pressures in the compressible zone transverse
to the flow direction in the boundary layer is also to be regarded
as constant, the relative density variations within the boundsry
layer are in amount equal to the relative temperature variations.
Thus, if sonic velocity prevails in the outer flow the relative density
variation inside the boundary layer amounts to about 20 percent,
since stagnation point temperature can be approximately assumed at the
wall. So, at not too high supersonic speeds a qualitatively identical
behavior in the boundary layer and in the incompressible range is to

be expected.
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So as not to exclude the possibllity of compressibility shocks
beforehand, the flow outside of the boundary layer is called outer—
or—principal flow instead of potential flow.

Being primarily interested in the behavior of the displacement
thickness, the behavior of other quantities is studied only to the
extent that it appears in the result without loss of time. This is
the case in the study of laminar boundary layers, where the momentum
thickness is comparatively sasily obtained and the displacement thick-
ness derived from it.

The process is based upon an improved Pohlhausen method in
conjunction with the reports by Bohlen (veference 3) and Walz
(reference 4).

Boundary-layer equation and continuity condition for the
stationary cage are written as follows ’

ou du _ dp 9 3\ |
pugi+pV6§-——a~i+gy- I-J-BTY'

p (5.1)

4

% (pu) +§§ (pv) =0

J

The coordinate system is chosen in the ugual manner so that x is
tangential and y normal to the conbtour of the body. Thus, in the
general case, X, y imply no Cartesian coordinates in the following:
i is the friction coefficlent dependent on temperature. The
guantities p, p, u, and v are not made dimensionless. It further
iz assumed that the boundary-layer thickness is small relative %o
the radius of curvature of the wall, so that curvature effects can
be disregarded. The second Navier-Stokes equation gives then
exactly as for incompressible flow the result that p is merely
dependent on x, but not on y, which in the boundary-layer
equation was already evidenced by formation of the ordinary
derivative of p.

After integration of the boundary-layer equation over ¥y, the

application of the continnity condition gives the von Kdrmdn momentum
equation which is written in the form

d 2 dua - o
iz (Daua $) + Pgls A% O* = py (5; . (5.2)
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The gubscript w 1Indicates the values at the wall, subscript =a
those in the outer flow, In the momentum equation displacement
thickness and momentum thicknsss are defined by

8
* = - ‘3“ 4 L dy .
L/(:( aua ¥ S f ( ua> y (5.3)

where & 13 the so—called boundary-layer thicknees. which is now
¢hosen so great that 8% and 3 can be regarded as independent of
5. The displacement thickness has the physical significance that
the through flow volume in the boundary layer ia reduced by an
amount that, on the assumption of pure pctential flow, 1s equivalent
to a shift of the wall by plece &% in pogitive ¥y directlon.

Equation (5.2) can also be given ths form

_u.a_, QL"_EB_< = u-Lfm) /———3—1— (5.2a)

u
adx My Hy ¥ g

Aglde from the usual agsumptions with thz sid of which the boundary-
layer equations are derived, no restrictions of any kind have been
made so far. Only the problem without heat trsnsfer on the wall,
the so-called thermometer problem is trested in the Tollowing.
Purther we will make one arprOXWmatlon by which we will specify
the form of the boundary-layer profile by only one parameter in
addition to the Mach nvmber of the outside flow. Next it is
necessary to make an assumption concerning the configuration of the
density profile. Having seen that in the vicinity of the critical
veloclity the velocity profile esspeclally might be decisive, whille
the density variation ls uvnimportant, the case of laminar boundery
layers is limited to the sssumption that the temperature at the
wall always attains the tenk temperature T, and satisfies the
energy theorem within the boundary layer. This ties in also the
assumption that temperature — and velocity — boundary layers are

of equal thickness. Accurate calculations on flat ptates indicate
that thils assumption also holds in a considerable supersonic range
(reference 5).

The pressure in the y direction being congtant, the density
variation follows from the temperature variation as
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T u
— = ] = | — M = T e e 5 R ,-I-
T (Vm) ’ Pa (5.)

The parameter for the boundary-layer characterization is derived from
the known boundary conditions which for u = v =0 in the boundary—
layer equation lcads to

d) [ Pu) _ _ duy
<5§)w <5?) * “"’(ay2>w T 7 et ax

Since the internal friction is only dependent on T and no heat

o
transfer takes place, <§%)w = 0, hence with application of

A < u 1 _ 0332 dug
gl ey et 52
{_o(\—) AV

We have avoided the introduction of the boundary-layer thickness
itself in the equations other than at the unimportant place as upper
limit of the integral. The version of (5.5) was largely taken from
Walz's report (reference 4). The parameter ¥ differs from the

x\2
conventional Pohlhausen parameter by the factor (?;> , the density

refers to that outside, the internal friction to %hat at the wall.
For a class of velocity profiles, such ag for M = 0, for instance,
the individual profiles which are represented by the magnitude of

* Y

parameter A* the guantities o and (EL-%}> can be teken as
3 . “a

N\ '3- W
function of the parameter A* from the class of profiles, hence
: a_ Pad” . s
obtain ugy FrdaT by (5.2a) simply as Tunction of A¥. Choosing
W

the Pohlhausen profiles as profile class zives the curve of Bohlen—
Holstein (reference 3) in figure 1, while the Hartree or Howarth pro-—
files result in Walz's curves of figure 1. Moreover, it is not
necessary at all to have an analytical representation of the profile
clasg, 1t can equally be given as family ol experimental curves.

If the outer flow is dependent on a Mach number, one profile class

is used Tor each Mach number. In order not to come to grief because
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of our ignorance in the sphere of compressible velocity profiles

two known facts are taken advantage of: Firat, we know that the
velocity profiles on the plate at constant pressure ars not very
closely related with the Mach numbers of the outer Tflow (reference 5).
Therefore, this is assumed to be the case in retarded or accelerated
flow also; secondly, ws know that the single parametric method in
the incompressible, which utilizes the Pohlhausen profiles, leads to
fairly practical results, although the Pohlhausen nrofiles themselves
do not represent the actual »profiles very well. An exact represen-
tation of the velocity profiles themselves is not needed, the main
voint is the displacement thickness for which the integration over
the profile form is aliready accomnlished.

On thz basis cf these arguments we therefore sslect, independent
of the Mach number, the Hartree profiles for the velocity distribution,
which, as a rule, nrobably rewrssent the incomoressible boundary
layer, best of all. The density variation is then given by (5.k) as

functlon of the velocity distribution and owing to the presence of
P!
. 8, .
quantity - as function of the Mach nwaber.

m
By a numerical method thes gquantities 8¥ and S 21 are
9 3L Uy
Y W

then obtained as functlons of A% and Ma, as exemplified for the

W,
Tollowing Ma which correspond to the -2 ~values:

W

i

R s

Ma ol 1 1.2 1. 2.0

\Jl

| |
} !
A |
'0.557 |

0.480 0.473

g |
(@]

! T

! !
, ! !
; ' ! 0.567 I
| l l

|
|
L

We obtein the curve system of figure 5.

The curves ars shown at the left as far as the separation
point, at the right they »roceed to the noint up to which the
Hartree profiles are calculated. Several curves were extrapolated
beyond 1t, and indicated by dashes. The curve Lia = 0 1is identical
with the Hartree curve from Walz.

Thus with the velocity distribution, the Variatiog of the Mach
ol
number of the outer flow, and an initial value of -ﬁ:— the varameter
7

A¥ can be formed; with it and observing Ma the quantity
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g Pad®
ua a";c"
W
computed. From 1t we obtain again this quantity at a point shifted
by one step and the calculation can then be repeated (refgrence 3).
Pgl

2
0
can be taken from figure 8 and the variation of ~§§—

Although ©O®* is wanted, it was preferred to compute

because the equation for this quantity is very much simpler. Know-
ing the outer flow, 32 can now be specified. To determine 8%

thus further requires %; wiich is a function of A¥ and Ma,

represented in flgure 9.

Since the quantity

Qg% in thne boundary-layer equation is to

be defined as accurately as possible the following formulae is of
advantage

L@-iiﬁ@hiﬁ%ﬁik
O dx T o% oM 9 dx © B¥ uy \9 /) dx w
Wy
L1/ 1 a4 pad® 2 dug (5.6)
2 paa2 dx (Vi ug dx
\ H

This formula contains only quantities dependent either on Ma and
A% or which can be taken from the previous boundary-layer calcu-

lation. The devivative with respsct to 39, which is a function
Y

of Ma, was prererred over that with repsct to Ma for reasons of

simplicity. The firet term at the right-hand side in (5.6) is

genserally the principle term.

* Pgd @ .
If it is desired to eliminate 2o and -= —2— in (5.0)
(54 Xy
80 as to secure 98¥ merely in relation to EE@, d”va (which
ax’ g2
then because of anx enters in the equation ) and coefficients

solely dependent on A¥*, Ma, and Re, the expression becomes
fairly long, but since this relationship is used later it is
given here, the Re number being suitably referred to the out-
gide density, the coefficient of friction at the wall and the
dlsplacement thickness:

tepat?. (5.7
My

Re¥* =




NACA ™ No. 1189 29

The formule ieads

B 2 d 3 \ * * I
o G (5) EE RN FHT T e
%), = et el
o
Ug 9 3 B 3 \3 > o (6*2 d"ug,
b o—= oF L (L. 2" Ro¥ | e
W, 0% ~Us 3 *] A% B uag 2]
oy L
o* dug) @ < &% 9)
- (u ix) 2 3 + 4 - Ma
a |
al 5% dug B2 dgua % dua\e (5.8)
= ey -y e CL3Re* e - (IJ_RS* — o= <"
Re v, dx Ua  gq4° : u, ax

It contains the first and second derivative of u, made dimension-.

less with the displacement thickness and the cutside velocity, and
also Re* and coeflicients that are dependent on A* and Ma.

The coefficients a5, a,, and a3 for M =0 are given in the
following table: -
TABLE II

LAMINAR BOUNDARY IAYER; A¥ =0

¥a !0 1 1.2 1.5 | 2.0
. j l |
Ya i g 0.%8 | o0.473 1 0.557 | 0.667
W | } : i !
dl ! 147 2.02 | 2.30 | 2.76 : 3.8
] | I
T i 5L | kB | s | 3.87 | 2.3
ay ' 0.3491 0.8k 1 0.256, 0.219 | 0.154

Later on the equation is to be applied to the case where the
velocity distribution differs little and monotonically from

a 2 a2y '
ug = Const, so that Skl —%% and 82X 7 ars also regarded as

Uy gx®
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Peing small. Restricted to the linear terms in the derivatives of
vy, the term with a; can be struck out and the coefficlents ap
end a3 taken at the point A* =0 for the specified Mach number.
The dependence of a7 on the derivatives of wu, proves to be so
smell that the same can be done for this quantity too.

So on the assumption of small derivatives of v, simply
(5.8) is taken with the constants of table II for the corresponding
Ma, for ggf' of & leminar boundary layer.

To obtain a formula for the variation of the displacement
thickness of a turbulent boundary layer a different procedure 1is
required. On analyzing the cause of the variation of an incom-
pressible turbulent velocity prolile at a snecific pressure
variation 1t is found that the pressure forces are primarily
regponsible. The shearing stresses introduced by the turbulent
intermingling play, however, a subordinate part. It is true that
the difference of thc two effects 1s not so far reacliing that a
gecond profile could be computed accurately enough from the
specified velocity nroflle when the shearing ctressss are discountel,
because the shearing stresses are able to substantially modify the
character of the profile; but for the calculation of the variation
of displacement thickness, which esesentially involves an integral
over the velocity variation in the incompressible case, the shearing
stresses can be disregarded.

The result at Ma = 0 is the following ap-rorximotion formula
Tor the turbulent boundary layer'

agx _ _ &% Ma / ( _u | ar (5.9)
dJC ua d.l‘.. . ua 8T

As the integrand is always positive, it can be taken from this
formula that a speed increase 1s accompanied by a decrease 1n
displacement thickness and a speed decresase by an increase in
displacement thickness. At constant outside velocity the displace—
ment thickness remains constant, according to (5.9). This result
is naturally wrong, as indicated by experiments on the plate at
consgtant pressure. For in this case the variation in displacement
thickness 1s contingent upon the turbulent shearing stresses, S0 no
corrsct result is to be expected. The formula could be improved

by the addition of the conventional formula for the variation of
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the displacement thickness, but it would serve nc useful purpose, as
will be seen. It is of greater significance that in contrast to
equation (5.8) for the laminar boundary layer the second derivative
of wuy 1s lacking in (5.9). Since (5.9) was obtained by several
rougher omissions its practicability is illustrated in figure 10.

1 dug
Ug,
againgt the arc length x of Gruschwit~'s (reference 6) test

seriles 3, along with the variation in displacemg&t thickness calcu-
lated by (5-9), the integral being forred at EEQ = 0. It is found
that the formula reproduces the actual conditions adequately, as far
as the avea of greater accelerations, where errors begin to be intro-
duced. This is, of course, due to the fact that ©* = 0 imposes a
limit on the decrease in displacement thickness.

The experimental values of and %Sf are shown plotted

These experiences in the incompressible zone can now be
interpreted to the elfect that the turbul.nt shearing stresses for

the calculation of g%% can also be cancelled in the compressible

zone. But even this assumption is insutficisent to develop a law
for the variation in displacement thickness; additional data on

the density distribution in the boundary layer are needed. In the
case of turbulent boundary layers the energy theorem is not

directly applicable, because ths density -boundary layer is

probably twice as great as the velocity-boundary layer; hence, the
density varies in an area in which the velocity is already practically
considered constant (fig. 11). The result of it is that the varia-
tion in density plays the sams role in the calculatlon of ©* as
the variation in speed within the boundary layer. Unfortunately
only one measurement of a twbulent superconic profile is available,
and naturally there is little sense in desveloping a theory without
further basis. However, in order to reach a tolerably correct
nurerical value, the part of the boundary layer in which the density
alone varies 1s disregarded for the present, since it involves

only about 10 percent of the dlsplacement thickness, and, in the
remaining portion, putting the stream density as a function of the
velocity as follows:

I =1" S =Y A .10
S H(ua) (5.10)

H to be taken from the oxperiment. Now the derivatives of p can
be expressed by derivatives of wu, ug, and P, with the aid of
(5.10). This enables us to derive a foruumla for the variation of
displacement thickness, neglecting the turbulent shearing stresses.
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as* _ _ o¥ %EQ ]l - Ma® + A Pay \?QEE_ - i\ a l&
dx U dx | Jo P ou / )
s¥ AUy

= - 2 '{I‘a"’-‘é:']'c' (5-11)
H' is the derivative of the function H according %o the argument
2 and 5 the place where -% can be put squal to unity
Ug Y
(ﬁt = l), while &% ropresents the corrcct displacement thickness
hence, Intsgrate up to a point where £ itself is equal to unity

Pea,

<-§2- = 1>. This means, we state that the 10 percent of the dis-
a
placement thickness between the point ﬁi =1 -and =~ =1
a
contributes to the variation of the displacement thickness an amount
which corresponds to its portion of the disvplacoment thickness.
For Ma = 0, equation (5.11) naturally changes to (5.9). If the
density and speed in the boundary layer are specified, the integral
cen be evaluated also. We have calcuwlated the egpression in paren-
U,

for which -EE = 0, and for the
velocity and density orofile represented in figure 11; thus we obtain
the constant a, for two values of the Mach number.

thegses for a profile by Gruschwitz,

TABLE IIT

TURBULENT BOUNDARY 1LAYER

| 5.1

2.2

for the turbulent and the

%

The close agreement of coefficlent an
leminar velocity profile is noteworthy.

6. STABILITY STUDY ON THE FLAT PLATE

A study of the equilibrium of boundary layer and supersonic flow
on the flat plate indicates that an unstable state is involved. The
growth of a small disturbance in a laminar boundary layer differs
somewhat from that in a turbdbulent layer and is, especlally in the last
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case, very rapid. In incompressible flow a stable equilibrium
exlists between principal flow and boundary layer.

Having gecured the variation of displacement thickness 5%
in relation to the veloclty varlation of the outer flow, the
reciprocal effect of principsl — and boundary layer flow is now
analyzed in the simplest case, namely, in the flow at the plate
without specifled pressure distribution.

Since the effect of small disturbances is to be involved, the
Mach number of the outer flow Ma ig regarded as constant and the
v component of the velocity considered small relstive to the
velocity of sound, After introcduction of a wveloclty potential the
simplé equation (2.2) is involved, aznd written in the form

Oyy = Opy (Ma® - 1) (6.1)

The x-axis is to be in plats direction, the y—axls normal to it,

Now it 1s necessary to represent the effect of the boundary
layer on the potential flow in form of a boundary condition. The
boundary layer isg therefore vigualized as belng replaced by an
elastic layer superimpoged on the plabte, which has the property
of always attaining the thickness equivalent to the displacement
thickness of the boundary layer «t the particular place for the
prevalling velocity distribution., That is, the equation

v

1l

ao¥
Ry (6.2)

must Te gatisfled for y = &%,

This condition is inconvenient to the extent that the boundary
for which 1t is to be fulfilled is not specified beforehand. But,
inasmuch as the disturbances are to be small, hence the outerflow
is to differ very little fram a flow ug = Const., the boundary
condition for displacement thickness &* in undisturbed flow is
assumed. By assumption the departure of &% from the value of
the displacement thickness for the undisturbed flow must be small.
Hence it seems immaterial whether v is specified at y = &% or
at y = % 4+ dd* in the linearized problem. Besides, the study is
to be restricted to such a small area that g%; itself can be

regarded as constant at u, = Const.
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Furthermors the boundary condition (6.2) has the property of
giving the same v component of the velocity at y = 8% as a

*
boundary layer with equal ggi’ on the assumption of potential

flow in the entire space.

In (6.2), v and u are none other than the components of
the outer veloclty, hence in the notation of the preceeding section

equal to v, and u,.

¥*
Applying (5.8) or {(5.11) to gg}- glves then as boundary

condition of the problem,linearized in the derivatives of wu, the
following equation for

2
y=08% v=u-——-aq sr M _ o Re*.é_H.S*g 6.2a
Re* 27 Ik 3 3x? ( )

If e laminar flow is involved the corresponding constants
must be taken from table II; if, turbulent flow, table III; in the
latter case, a, mnmust be put = 0, In view of the linearization
B*¥ and Re* must also be regarded as constant; although the
variation of u 1in the first term is not Importent, it 1s considered
nevertheless, because the solution then is reduced to the treatment
of a homogeneous linear differential equation, whilch means some
glmplification.

Now 1t 18 attempted to find the solution for the cage that
the plate 1s exposed to a flow with the velocity u(x,y) = u, = Const
and at a point x = O &t the plate the velocity is artificially varied
by an amount W< u,. The coordinate system 1s turned through a
- small angle go that the x~axis in point x = 0 18 exactly in flow
direction and the yeaxis normal to it. The tangent of the angle
of rotation is defined by the variation of the displacement thickness
at x =y =0, which 18 equal to

@)

as* _ %1
dx Re*

Btrictly speaking a transformation of the coordinates in the
equations themgelves should be effected. But since the boundary
layer 1tself makes no difference between these two dilrectlons,

and so a rotation wmersely involves more paper work without any
physical significance, it 1s disregerded and the equations applied
to the new coordinates. The coordinates are In addition visualized
as being made dimensionless by the displacement thickness and the
origin shifted to the point x =0, y = B*,
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These new coordinates are denoted with

x’ = _]E..- ’yl =-z-.-:—-§—*—
o* o*

and after introducing the velocity potential in (6.2a) glve the
followlng differential equation with the respective boundary
condition

. Oorgt = Qyryt (Ma? - 1) (6.12)
a,

yt = 0; @y' = — Godptyr — a3Re*@x'xfxf (6.2v)

Assuming a very general solution of (A.la), and writing the
potential as sum of a potential of a principal flow u, and a
small dlsturbance

D= ugb*x? + ﬁB*[f(x' ~Jue? =1 y'>
+ glx' + \]Ma2 -1 y')]

f and g are earbitrary functions of which it is merely required
that thelr sum at x' = y' = 0 be equal to unity. It is seen
that g glves Mach lines which point toward the boundary layer,
hence stem from a disturbance from the ocutslde. This function is
thus put ldentically zero since such disturbances are to be
disregarded. Introdyction of the thus obtained solution in the
boundary condition giveg the functional form of f. Denoting the
derivative with respect to the argument

no=x! - Ma® - 1 y!

with subscript 1, we got

Oxt = u 5% + WoH, 5 Ox'xt = ds*r

Frin s
Qutoptat _ oy e Dot = — TE¥ [Ma2 — -
xtxTx 15) f‘mm, v ud \/Ma lfﬂ

which inserted in (6.2b) gives an ordinary differential equation of

the form
o Re*f + a.f —\’Mag-lf =0 6.
3 nnm 2y n (6.3)
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This equation is easily solved. First postulating a lamina; boundary
layer, hence - # 0. Then from the requirement for x' = y' = O:
= 1, a requirément for the second derivative fTm can be satisfled,

because the upver equation can be regarded as differential equation
of the second order of f_ . Since at this point only the consequences

of emall velocity disturbances, not the conseguences of disturbances
of the velocity difference are to be studied, the added requirement

for x'=y' =0 1is fTm = 0, which gives the solution
t & t2 %
f == c"2" - e 1"

where tl and t2 are abbreviations for the expressions

AN VR

1/ o VMa -1
Re¥ \// LA as‘?e*) * a-Re* (6.1)

“3

As Roe¥* In general has the order of magnitude of 103, the last
term under the root is a term of greatest influence. Thus for
appraisals at high Re* we can put

x /\/ivu;? -1 (6.ba)
\/

It is to be noted however that the critical Re* which corresponds
to a value of about 1.4 X 103 must not be exceeded as will be
ghown later.

By use of (6.4) the velocity distribution in a laminar boundary
layer on the plate is obtained as:

u = %;‘Dx' = Uy *+ E—-%;¥— {tlete(x'—JMaP-ly'> - teetl(d -V& 2 ly /I (6.5)
1 2

[ n.J

which by (5.4a) is reduced to the gimple form
t ~ = . . \

u s ou, F u cosh) e - 1 <x' - \/Mag -1 y’/) (6.35a)
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If a turbulent boundary laysr were Involved, hence o, = O,
the first summand in (6.3) cancels out and only one bounda%y condition
can be satlsfled. Again requiring f =1 for x' = y' = 0 glives

/ﬂée—l

fn = 8 @

The velocity fleld under the asgumption of a turbulent boundary layer

at the plate 1s
1f 2
Ma=ls , / 2 f

u = u, + 0. (6.6)

From (6.5) and (6,6) it is seen that the boundary disturbance along
Mach lines 1s propagated into the flow. The interference velocity
U 1s always accompanied by a function which grows considerably
wlth rising value of the argument, while in the case of the laminar
boundary layers the coefficient a, plays the principal part. In
turbulent boundary layers the coefficlent a is essentially
involved. Thus the boundary layer of a flat plate in flow with
nonstant velocity is in both instances 1n an unstable state of
equilibrium with the principal flow, which with observance of the
terms of the filrst order only, lets a small disturbance grow
infinitely. The type of growth ig, of course, quite dissimilar

on the two boundary layers. To secure a measure for the instabllity

x
of the state, we may ask for which value of x* =gz at y*' =0

the disturbance has grown to twice the amount and call this quantity
the length of growth A. Tt is not made dimensionleas by the
displacement thickness.

The length of growth in a laminar bcundary layer A is sasessed

by (6.5a). The hyperbolic cosine grows for a value of the argument
of around 1.3 to the smount 2. Accordingly

(6.7)

The length of growth of a turbulent boundary layer Ay 1s

e
Ay = 0.70 B* (6.8)
Ma“ — 1
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Postulating a laminar boundary laysr at Re* = 1000, +tables II
and III give the following length of growth

TABLE IV

Ma | 1.2 | 1.5 | 1.7 | 2.0

% 25 18 12

— 1.1

Noteworthy is the unusually short length of growth in the turbulent
boundary layer; but even that in the laminar layer is gtill very
small when bearing in mind that the displacement thickness in
supersonic flows is of the order of magnitude of 103 to

102 centimeters.

The investigation was restricted to small disturbances. The
extent of growth once they have reached gresater amounts remains to
be proved. One thing is certain that the outerflow cennot increase
to great velocities, because the boundary layer cannot drop below
the amount &% = 0. Thus no limit in velocity decrease is imposed.
It may be presumed that the velocity decreases until the boundary
layer breaks away. In general, the instability of the discussed
equllibrium condition will become evident in a pressure rise,
probably an oblique campresgsibility shock, It would not be sur—
prising if oblique compressiblility shock occurred in the center on
a flat wall (fig. 7(a)). The example cited here could be multiplied
by many others, perhaps even by flow around conical tips. It should
be kept in mind that a pressure rise can cause transition of the
boundary layer. In the example adduced here the boundary layer ls
already certainly turbulent.

This study of plate flow can be regarded as first result in
this sphere of linstability of supersonic boundary laysrs, It would
be desirable to get away from the assumption of small digturbances
and constant flow veloclty. This seems albogether possible by a
combination of characteristics method and boundary layer computation.
For the turbulent boundary layer, of course, the laws of variation
% would have to be analyzed first.

One unusual fact is that in the measured pressure distribution
on a wing, such as those by Gothert (reference 7), for instance,
pressure lncreases were almost never observed in the supersonic
zone, except in form of compressibillity shock or occasiocnally at
small Reynolds numbers, where laminar boundary layers must be assumed.
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It eppears entirely possible that thls fact might be explalnable
by the cited properties of the supersonic boundary layer.

The corregponding behavior of a laminar boundary layer in
incompressible flow (Ma = 0) 1is briefly indicated. The disturbance

at great distemces from the wall, that is, for great values of y,

must disappear. On these premises, (6.la), (6.2b) by the same method
of calculatlon give

! 1 __ 1
U= ug + ue Byx' By’ og (Box' — Byy") (6.9)

wlth the abbreviations

e A Rk

o - e 3| [ + ez - ()

The decismive term at high Re* numbers is again a3Re*. For
Re* = 500 1t approximately 1s

Bl = Bg = = 0.053

1
J2a3Re*

that 18, a strongly damped oscillation is involved. The analyzed
equilibrium of laminar boundary layer and outer flow In the sub-
sonlc zZone is extremely stable according to it. This method of
analyzing offers the further possibility of exploring the stability
of laminar subsonlc boundary layer relative to nonstationary dis~
turbances and comparing the results with Tollmlen's calculations
(reference 8). For nonstatlonary velocity variations Pohlhausen's

method is, of course, not practical 1n general, in the form given
here,

Incidentally, the requirement of damping of the disturbance
for great y 1s not fulfillable in subsonic flow on the assumption
of a turbulent boundary layer at the plate, Thls result may have
its cause in the fact that (5.9) does not meet all requirements.
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7. SIGNIFICANCE OF BOUNDARY IAYER IN THE PRESSURE

DISTRIBUTION ON A BODY

Appraisals lndicate that the flow 1n the critical range of
sonic velocity 1s very substantially affected by the boundary
layer. Without 1ts inclusion a correct calculation of the pressure
distribution therefore seems, ln general, not very promising. In
many lnstances the behavior of the boundery laysr actually governs
the pressure distribution.

On examining the pressure distribution at a bump computed in
section 3, (filg, 4), a symmetrical velocity distribution is also
found on a body symmetrlcal about the y-sxis, This is, however,
in great contrast to the experience in tests (compare, fig, 12),
where symmetrlcal peaks were invarlably sccompanied by asymmetrical
velocity distributions. Naturally the question 1s whether there
is only one solutlon for each bump but it will be shown that, owing
to the boundary-—layer effect, symmetrical solutions can be expected
g8 little ag In the example of the velocity distribution in a nozzle
(fig 7(b)).

By (5.8) the displacement thickness of a laminar boundsry layer
for constant outer speed 1s

’ Her
* =
B ?‘al u& Dax

What is the possible extent of the bump in order that the boundary
layer remain laminar? Figuring with tests in = low—pressure tunnel,
the values at critical velocity are

ug = 3 X 10%cm/sec; p, = 0.8 x 1073g/em3; p, = 1.8 x 10~*
CGSE

It is to be presumed that the critical Reynolds number at sonic
velocity does not differ substantially from that in incompressible
flow. Taking the critical Reynolds number formed with the plate
length at
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gives the critical Reynolds number (5.7) formed with the displacement
thickness at

Re* = 1.4 x 103

crit,

with the previous values of u,, Bg, and py the critical values of
plate length and displacement thickness are
Y

- o = _ - s)
xcrit. = 3'8 cm; O*crit’. = l'l ¥ 10 cm

So in order to prevent transition from laminar to turbulent flow in
the boundary-layer model, lengths of only a fow centimeters may be
permitted in the usual test arrangements, provided that no strong
accelerations are involved.

Conversely, the critical length indicated here gives a measurs
for when the transition point is to be expected on a plate flow in
an exhaustion tunuel at sonic velocity. In a free—air test this
length is reduced by aboubt half because of the higher density.

In the schlieren photograph of an infantry shell in flight at
around sonic velocity (fig. 13) (references 9 and 10) the obligue
campressibility shock is evidently released by transition, its
effect being probably smplified by the unstable bshavior of the
boundary layer. The fact that a missile at small supersonic speed
is involved 1s Immaterial; since a straight compressibllity shock
prevails in front of nose of the missile, it actually flies as if
in a subsonic flow.

Analyzing the bump in figure 4, which at the point of its
greatest height has nearly constant sonic velocity for scome distance,
and supposing the points of strong velocity rise and velocity
decrease (x = 0.6) 1o be about 2 centimeters apart, the displace-
ment thickness at the peak is certainly greater than that of a plate
1 centimeter in length in flow at sonic velocity. Therefore

8%, _5 > 0.56 x 1072 om

At the point of substantial speed decrease, separation must be
definitely expected. A calculation by the expanded Pohlhausen
method shows that the momentum thickness grows with increasing arc
length., Much greater is the rise in the ratio of displacement
thickness to momentum thickmess (fig. 9) which for Ma = 1 increases
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from point A% = O to the separation point from value 3.2 to 4.7.
Congidering the fact that the momentum thickness itself increases
up to the separation point, an emplirical rule can be established
according to whlch the displacement thickness is doubled between
A¥ = 0 and the point of separation.

The difference between the displacement thlckness at the
separation point oand at the hlghest point of the peak is in the
example; therefore

5% =~ 0.56 x 10~2 cm

B* -
separ. X=0

The difference In helght of the highest point and at point of

separation hsepar. ig (compare fiag, u4)

h = 3Ix 102 zm
separ.

While the wvarilation in hse ar due to the boundary-layer effect
amounts to a mere 20 percen%, £he illustrotion shows that a change
in height of bump by this amount must be followed by an extra-—
ordinarily great change In velocity distribution, so that there
can be no question of attalning symmetrical results in the
experiment.

The conditlions 1n the presence of a turbulent boundary layer
are congiderably worge. A little celculetion on Grushwitz's test
series 3 (reference 6) discloses that the displacement thickness
multiplies from the point of transition to the polnt of turbulent
goparation by about 25 times. Assuming turbulent separatlon at
the peoint of severe velocltiy drop the greatest displacement effect
(height of bump + displacement thickness) would also exist on a
bump of considerably greater absoiute dlmensions at the point of
separation due to boundary-layer growth, It is gupposed that the
displacement effect of the body, increased by the displacement
effect of the boundary laysr, undergoes no substantial increase
behind the highest point of the bump. In turbulent boundary layer
and thin profiles or low bumps this 1s possible only to the extent
that a compressibility shock occurs at the point of greetly reduced
profile thickness; furthermore, a compressibility shock would have
to occur so much farther downstream as the bump or the profille is
flatter. It also is feaslble that the effect of the increase in
displacement thickness lg raised by strong return flow behind the
point of separation, These gualitative results can be checked

against the work of G¢thert (reference ().
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The fact that a compresgibility shock can occur when there 1s
enough space avallable for the increased displacement thickness
caused by it is to be regarded as reason for the fact that the
separation computed by stream filament theory in figure 7(b) ies almost
oxactly coincident with the start of the compressibility shock in the
test.

It may be asked how the streamline pattern in a flow problem
must look, in order that the compressibility shock be possible, This
can be answered to the effect that the compressibility shock on slender
bodies 1s to be expected near the point of vanisghing streamline curva-
ture. Since the streamlines in the zone of critical sonlc velocity
are approximately parallel, the points of vanishing streamline curvature
must lie nesr a common orthogonal trajectory, hencs, a potential linse.
Along it the velocity changes little according to (1:8). In a flow
that differs little from the critical sonic velocity, the free-stream
velocity 1s therefore to be expected in the vicinity of points with
zero streamline curvature. If the curve decreases rapidly at a place
with supersonic velocity a decrease to the outer velocity must be
counted on, The marked velocity variations in Figure 4 coincide with
the gtreamline inflection points. On flat profiles a point of separa-
tion can be regarded as starting point of a {ree streamline with very
little curvature. The streamline curvature must thus decrease very
substantially in the separation point snd it 1s seen that a strong
compressibility shock produces through the separation connected with
it a streamline pattern that favors the appearance of the compressibility
shock., Thig argument ig therefore not suitable for finding the location
of a compressibility shock,

8. CONCLUDING RCMARKS

The preceeding work shows that in a calculation conforming to
reality the pressure dictribution of a body in a flow at supercritical
free~strcam veloclty may not be given by the potential flow, that the
boundary layer plays a decisive role here. In general, the potential
flow around the body permits not even an spproximate calculation of
the bpoundary layer. This means that in contrast to incompressible flow
the pressure distribution on flat bodies can alsoc be much different.

It lis therefore intended to first improve the process of calcula—
tion of the potential flow with a supersonic region. With the process
we willl ascertain the flow around s substitute body. This will have
approximately the same displacoment effect that is found on an
experimentally investigated body including its deadwater region and

’
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the displacement effcct of its boundary layer. We can also anticipate
from our calculation a strong velocity increase at the body nose and
a gtrong veloclty decrease at the point where the curvature of the
substitute body disappears.

Translated by J. Vanler
National Advisory Committee
for Aeronautics
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Figure 3.~ Streamlines and contours of equal velocity of a flow with supersonic zone (=o~.-
contour free stream velocity).
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Figure 6.- Velocity distributions on axis
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Figure 7a.~ Pressure distribution in a parallel channel at supersonic speed.
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Figure Tb.- Velocity distribution in an axially summetrical nozzle according
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e measured on the axis
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Figure 9.- Pohlhausen method for compressible boundary layers: & */3g
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Figure 10,- Turbulent incompressible boundary layer. Gruschwitz test
series 3 (reference 6):
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Figure 11.- Turbulent compressible boundary layer: velocity and density
profile measured on the flat plate at Ma = 1.7.
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Figure 12.- Velocity distribution measured along a circular arc at a Ma
number of flow of 0.61 (reference 12).
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Figure 13.~ Infantry bullet at slight supersonic speed (reference 9 ).
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