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LOCAL ISOTROPY IN TURBULENT SHEAR FLOW

By Stanley Corrsin
SUMMARY

The mean straln rate In turbulent shear flow must tend to mske the
structure anisotropic in &l11 parts of the spectrum. It is argued here,
however, that, if the spectral energy transfer process destroys orienta-
tion, the Kolmogoroff notion of local lsotropy can still be Justified
in spectral regions where the local transfer time 1s shorter than the
characteristic time of the gross shear strain.

INTRODUCTION

Recent meassurements on the anisotropy produced by homogeneous strain
of the (approximately) isotropic turbulence downstream of a grid (refs. 1
and 2) suggest reexsmination of Kolmogoroff's postulate of local isotropy
in shear flow (ref. 3). This postulate has been confirmed experimentally
in the sense that isotropic~type behavior has been measured for the small
"eddies" (refs. 4%, 5, 6, and T). Up to the present time there seems to
be no contradictory evidence.

Nevertheless, as polnted out by Uberol in reference 2, the ubigquitous
strein rate of turbulent shear flow must act upon eddies of all sizes,
tendlng to meke the turbulence anisotropic at all wave numbers. The
largest eddies must be nonlsotropic in any case since their dimensions
are comparable with the width of the mean shear zone.

Kolmogoroff's idee apparently was that, in the nonlinear transfer
of energy from smell to large wave numbers, the necessary direction
preference of the large structure gets lost. This seems quite plsusible,
but at least three other effects are involved: (1) The straln-induced
tendency to anlsotropy at all wave numbers, (2) the general tendency
toward isotropy (equipartition?) evident in the absence of straln rate
(see refs. 1 and 2) (this must also occur at all wave numbers), and
(3) the viscous dissipation to internal energy, especlally at very large
wave numbers.
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It is questioned whether the characteristic times for (a) inertisl
transfer to"higher wave number T (b) camponent transfer at the same

wave number Ty, and (c) viscous dissipation at each step of the spectral

energy cascade T, are sufficlently short to forestall the mean strain-

induced anisotropy. In inertial spectral domains if either Tg Or Ty

is short enough, local isotropy remains a plausible notion; in the domi-
nently viscous domein, T, 18 the critical time. The appropriate charac-

teristic time for comparison is, of course, the Inverse of the mean strain

=\ =1
rate, or %.QH in boundary-layer-type flows with principal mean
velocity field U(x,y).

This work was carried out at the Johns Hopklns University under the
sponsorship and with the financial aselstance of the Natlonal Advisory
Committee for Aeronautics. The author would llke fo thank Mr. E. M.
Fitzpatrick and Dr. C. C. Lin for thelr helpful comments.

SYMBOLS
D any characteristic length
E(k) "three-dimensionsl" energy spectrum
k magnitude of wave-nmumber vector
kc Kolmogoroff wave number (inverse of Kolmogoroff microscale)
characterizing viscous part of spectrum
kq component wave number corresponding to Kolmogoroff wave-number
1 megnitude
q magnitude of turbulent velocity, {ug + v2 + w2

Q' = VEE + V2 + ;E

R Reynolds number
4
Ry, turbulence Reynolds number, jé a’A
3 v
Us velocity vector
9] mean velocity in x-direction

u,v,w turbulent velocity components in x-, y-, and z-directions
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v ‘any characteristic mean velocity component

X,¥,2 Cartesian coordinate axes

r Heisenberg spectral constent

A dissipation scale (Taylor microscale)

v kinematic viscosity

7o (X) spectral inertial transfer time

Tb(k) spectral time for approach to isotropy Iln absence of gross
strain rate

Tc(k) viscous decay time

¢ rate of dissipation of turbulent kinetic energy per unlt mass

Subscripts:

i3,k vector dlrections

CHARACTERISTIC SPECTRAL TIMES

For a rough estimate of characteristic spectral times a dlscrete
energy cascade in the msmner of Onsager (ref. 8) is visualized. The
assumption of similarity in successive steps requires a geometric pro-
gression; that is, at each step Ak = k. Assume next that at each spec-
tral Jump in the cascade process all statistical orlentation 1s lost;
that is, the energy asrrives et wave number k 1n isotropic condition,
no metter how anisotropic it had become in the previous stage. Possibly
by direct dimensional réassoning, Onsager defines the characteristic
(inertial) transfer time per stage as

T (k) = == (1)
ijE(k)

where k 18 wave-number magnitude and E(k) 1is a three-dimensional
energy spectrum

1(2+v2+w2)=_32= =j;mE(k)dk (2)
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Here u, v, and w are orthogonal velocity fluctuation components.

Physically thils form can be deduced from

Ta

— Kinetic energy per stage (3)
Energy transfer rate

From equation (2) (and Ak ~ k) the numerator is obviously kE(k). By
analogy with the form of the product expressing the rate of transfer of

. oU
energy from mean shear flow to turbulence, uyu, —L in the general

turbulent energy equation (see ref. 9), the denominator is expressed as

(Spectral velocity)3 (kE)B/ ’ 53
Spectral length 1/k = VB’

Hence, following equation (1),

T (k) = =
\/ES? (S

Within each step of the cascade, the characteristic time m, for

edjustment of an Induced energy inequelity among the three components

is also an inertial phenomenon expressible in terms of pressure-veloclty
correlations, hence for want of more detailed understanding it 1s
assumed that _

Tb =~ Tg ) (ll')

The viscous decay time -Tc(k) of the energy at any stage 1s
physically '

_ Kinetlc energy per stage _ (5)
€ Viscous dissipation rate

The denomlnator here, by analogy to the form of the dissipation rate in

general Vv égl an 99;), is
ij axd oxy

2
v (Spectral velocity)= _ v = vk3E
(Specral leng'th)2 (1/k)
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where v 1is the kinematic viscosity. Hence

o) = o5
that is,
T, (k) = —ié (6)
v

Before returning to the question of local 1lsotropy, it 1s instruc-
tive to write out the two lnequelilfles which 1ldentify the inertial and
the viscous regions of the spectrum. The former region is temporally
characterized by the fact that the energy in any stage Jjumps to the next
before there has been time for appreciable viscoue dlssipation:

To(k) << 7, (k) ()

The latter region consists of the cascade stages 1n which the energy is
dissipated before there is time for inertial transfer:

T (k) >> 7,(k) (8)

Substituting equations (1) and (6) into these,

Inertial reglon: %—‘}——E(}f) > 1

(9)
Viscous region: %VE% << 1l

This serves as a check on the T definitions since %—%Q- is simply
the spectral Reynolds number.

INERTIAL REGION

With the assumed model a necessary condition for local isotropy in

the purely inertial spectral range 1s that T, be much smaller than the
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~\=1
characteristic mean strain time, most simply (% %} . In boundary-
layer type shear flows (this includes free flows in which Prandtl's
boundary-layer approximation is valid) % ot is a good approximation

oy
to the principal mean strain rate where U(x,y) is the mean component
of mean veloclty and y 1s the Carteslan coordinate with its highest
gradient. Thus, lnertial locsl isotropy can be expected at wave numbers
for which '

L <« 16_ (10)
3 Ngei]
Vk E(k) 2 3
In the inertial region a spectral behavior roughly like

can be expected since this 1s a formal result when local isotropy is
presupposed (see refs. 3 and 8). Here ¢ is the rate of dissipastion
of turbulent kinetic energy per unlt maess. With this spectral form,
Ta(k) decreases monctonically:

() = g5 (12)

If this expression were valid out to indefinitely large wave numbers,
inertlel local lsotropy could be found far enough out the spectrum no
matter how high the gross strain rate. There would always be & range
of k <for which

Ta(k) << EEEE (13)

2 oy

Of course, equation (12) cannot apply to indefinitely large wave
numbers, 8o Ty(k) will actually increase (eq. (28) or (30)). In any
case, the inviscid form, equation (12), converte equation (13) to

k2/3 > %__ ¢"'l/5 %yf_l (14)
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In a real flulid, the inertlal range cen exlst only at wave numbers
much smaller than the inverse of the Kolmogoroff mleroscale, that is,

k << (l)l/lL (15)

3

so that equations (14) and (15) make s pailr of necessary conditions for
inertial local isotropy. They can now be combined into a very crude
Reynolds number criterion.

Introduce the following symbol conventions: (a) If a?/3 >> 32/5
then o >>> B; (b) 1f a>> B and B> 9y then o >>>> y. For exsmple,
suppose that o >> B implies o = O(208): then € >>>> & implies

€ = o[(ao)zs] i

With this representation, equation (14) can be written as

@
k >>> 84 (16)
which can now be combined with equation (15) as
_3]1/2
<£.)l/h SSS>> <%U) (1)
Vv 88

For a turbulent shear flow In which the totsl production rate for tur-
bulent energy from mean flow energy ls of the seme order as the total
dissipation rate (they are exactly equal in pilpe flow),

¢ = o(ﬁ %ﬁ) (18)
But, empirically,
= ~ 0(515 ?.;2‘) (19)

according to measurements in a variety of shear flows, so

3 f1
S -oF) (20)
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Furthermore, approximste @ by its isotroplc form

525’*'51/93 (21)

where A 1s the Taylor microscale. Equations (20) and (21) convert
equation (17) to

Ry’ /2 oo 16 . (22)

In turbulent shear flows 1t seems reascnable to define the turbulence
Reynolds number R% as

aA (23)

where

VISCOUS REGION

In the predominantly viscous region of the spectrum,

k> (%) 1/ (2k)

and the temporal lnequality for possible isotropy is

T (k) = ;1%2. «< -l-LU_. (25)
2 3y
or-
K2 >> L 90 (26)
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Since T,.(k) decreases monotonically with k, 1t is clear that
there will alwsys be some wave number sbove which this necessary inequal-

ity will be satisfied.

It should be noted thet in this spectral range the simple dimen-
sional spectral transfer theory of Heisenberg in reference 10 gives

B(k) « k™1 (27)

a result which has had rough experimental conflrmation. This leads to
an incressing inertial time

7o (k) « K2 (28)

Although Tg 18 of negligible dynamic significance in the viscous region,
this suggests a detalled look at the mixed region, where

[/ g \1/%]
(5]

Here both 7, and T, are important and conceivably mey violate equa-

tion (13).

a

MIXED REGION

In the spectral region wlth both inertial transfer and viscous dis-
sipation, T,(k) can be estimated from equation (1) by inserting for

E(k) the function obtained by solving Heisenberg's equation (see ref. 10)

-k/3

E(k) = (ggi)Z/} 1+ 8—"3— it k'5/5 (29}
97 372¢

Here Tc(k), as given by equation (6), is independent of E(k).

The value of Heisenberg's constant 7 in equation (29) has been
variously estimated from experiment in the range 0.2 to 0.85, with 0.45
an accepteble campromlise vslue. For simplicity, teke ¥ = h/9. Assuming
the Kolmogoroff wave number is written as

. - (2\1/4

- ={3)
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equation (29) turns equation (1) into

@l gy T ™ e

For values of k/k, sufficlently small that the second term in the
brackets is negligible, this reduces to the inertisl estimate, equa-
tion (12).
The viscous decey time in terms of k/k, is
K\ _ ~1/2 1/2,4y\ -2
o) =

Figure 1 is a dimensionless plot of T4 and T,. The values of

Tg and T, &re necessarily of the same order in the vicinity of k= kc,

gince this is the reglon of equal lnertial and viscous effects, that is,
of Reynolds number sbout unity.

By equating the derivative of equation (30) to zero, the minimum
value of Tg 18 found to be

e, - oo -2y o

On the whole, & necegsary condition for local lsotropy is that

1.8(#) << 5 (33)
2 oy

or simply

)72 oy

A less certaln but more convenient criterion follows from the use
of equations (20) and (21):

Ry >> 15 (35)
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It 1s worth noting that for k/kc = 2, for example, the inertial
condition T, << —=— could be violated while the viscous condi-

3u/dy
_/ is satisfied. Yet thils 1s a spectral range in which
U/ oy

inertial forces are not negligible, and eguation (33) does not rule out
the possibility of an anisotropic local spectral range for k 2 k,. Of

course, for k>> k,, T, 1s not pertinent end To << (Ta) i{ns 5O equa-

tion (33) implies isotropy here.

tion Ta <<

WAVE NUMBER OF TURBULENT ENERGY PRODUCTION

Following Prandtl's simple kinetic-theory type of model in turbulent
shear flow, it 1s Inferred that the production of turbulent energy from
mean flow energy 1is primarily due to the lateral fluctuating motion of
"fluid balls" in the presence of a veloclty gradient. Therefore the mean
production rate must depend at least upon the laterasl root-mean-square
fluctuation v' and the chief mean velocity gradient JdU/dy in a
boundary-layer-type flow.

Of course, the turbulent energy equation gives the rate per unit mass

a8 uv %g. Presumably this energy is fed lnto the turbulence over a wide

range of wave numbers, each receiving an allotment proportional to its
spectral contribution to Tuwv.

It is noted, however, that v' and 3U/dy are sufficient to repro-
duce the dimensions of wave number k, so an estimate of the order of
magnitude of the energy production wave number kr is

k, = o(Fl,- %) (36)

Clearly local lsotropy can be expected only at wave numbers much
larger than kp:

19U
k = &=
> (37
For turbulent shear flows whose gross productlion rate is of the same
order ag the dissipation rate, equations (20) and (21) can be introduced
so that



12 . NACA RM 58B11l
KA >> i?{% (38)

For inertisl locsl 1sotropy, l/k mist also be much larger than
the Kolmogoroff microscale; that is, o o

| 4 /4
" 9 <
<< ( p) _ (39}
which mey be written together with equation (37) as
130 g\ 1/
- K k < (3) (40)
or
- 1/4
> % <<<< (%) (41)

Using equations (20) and (21) this gives & Reynolds number inequality

R3/2 5o 25 (42)

which is much like equation {22).
COMPARISON WITH EXPERIMENT

The three semiempirical Reynolds number criterla can be summerized
as follows:

(a) Lower bounds on R, for the exlstence of an isotroplc inertial

subrange are given by equation (22) based on inertisl transfer time and
Kolmogoroff wave number and by equation (42) based on turbulent produc-
tion wave number and Kolmogoroff wave number.

{(b) The lower bound on R, for local 1sotropy in. iInertisl or mixed

range 1ls glven by equation (35) based on minimm inertial transfer time
assuming a Helsenberg spectrum.

Next these inequalities sre compared with the condltions in typlesl
past experiments. In the round-jet experiments which include those of

references 5 &nd 11 R, = 120, hence" RR3/2 =~ 1,300. Since there is no
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a priori basls for assigning a specific numerical factor to the strong
inequelity o >> B, the experimental results are used. In these Jet meas-
urements the shear correlation spectrum reached zero st a one-dimensional
wave number of about 45 per centimeter, whereas the Kolmogoroff wave num-
ber k. (the inverse of the Kolmogoroff microscale) is 100 per centimeter.

Since Xk, 1s a three-dimensional wave-number magnitude, comparison
is properly made by defining a corresponding one-dimensional parameter kcl'
A plausible, though serbltrary, definition 1s the first moment of the one-

dimensional spectrum that corresponds to & Dirac-function three-dimensional

spectrum, that 1s, & spherical shell of radius k,:

ARGICS

L - @

)
whence kcl = B-kc =~ 38 per centimeter.

1

Therefore local isotropy 1s reached just around the Kolmogoroff
region where the spectral Reynolds number is of order unity. Hence
equation (35) should be Just barely satlisfied, and it 1s noted that
this is so if «>> B 1s interpreted to mean o > 8B.

In this flow there certalnly can be no isotropic inertial subrange,
and, in fact, neither equation (22) nor (42) is satisfied. The largest
value of R; attained in a well-defined turbulent flow appears to be

that in Laufer's pipe (see ref. 12), RK =~ 250. 1In this case,
ij/z =~ 4,000, and he does find some evidence for an isotropic inertial
subrange.

In coneclusion, 1t seems worthwhile to set up a turbulent flow with
still higher values of R, than those attained by Laufer, perhaps greater

than-or equal to 500. BSince R; Increases more slowly than R (where

R = VD/v and V and D are characteristic gross veloclty and width)l
for fixed geometrical bounderles, values of 500 or higher will not be
easy to attain with air in a small lsboratory.

The Johns Hopkins University,
‘Baltimore, Md., August 16, 1956.

lNeglecting the slow decrease in turbulence level which sometimes

accompanies Iincreasing Reynolds numbers in shear flows, Rk «< Rl/z.
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Figure l.- Characteristic spectral times (assuming a Helsenberg
spectrum).
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