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SUMMARY 

f 

The mean strain rate in turbulent shear flow must tend to make the 
structure anisotropic in 8ll parts of the spectrum. It is argued here, 
however, that, if the spectral energy transfer process destroys orienta- 
tion, the Kolmogoroff notion of local isotropy can still be Justified 
in spectral regions where the local transfer t3me is shorter than the 

i characteristic time of the gross shear strain. 

INTRODUCTION 

Recent measurements on the anisotropy produced by homogeneous strain 
of the (approximately) isotropic turbulence downstream of a grid (refs. 1 
and 2) suggest reexamination of Kolmogoroff's postulate of local isotropy 
in shear flow (ref. 3). This postulate has been confirmed experimentally 
in the sense that isotropic-type behavior has been measured for the small 
"eddies" (refs. 4, 5, 6, and 7). Up to the present time there seems to 
be no contradictory evidence. 

Nevertheless, as pointed out by Uberoi in reference 2, the ubiquitous 
strain rate of turbulent shear flow must act upon eddies of all sizes, 
tending to make the turbulence anisotropic at all wave nu&ers. The 
largest eddies must be nonisotropic in any case since their dimensions 
are comparable with the width of the mean shear zone. 

Kolmogoroff's idea apparently was that, in the nonlinear transfer 
of energy from small to large wave numbers, the necessary direction 
preference of the large structure gets lost. This seems quite plausible, 
but at least three other effects are involved: (1) The strain-induced 
tendency to anisotropy at all wave nunibers, (2) the general tendency 
toward isotropy (equipartition?) evident in the absence of strain rate 
(see refs. 1 and 2) (thfs must aLso occur at all wave nuribers), and 
(3) the viscous dissipation to intern&l energy, especially at very large 
wave nunibers. 

. 
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It is questioned whether the characteristic tTmes for (a) inertial 
l 

transfer to'higher wave number T&, (b) component transfer at the same 
wave number Tb, and (c) viscous dissipation at each step of the spectral L 
energy cascade TV- are sufficiently short to forestall the mean strain- 
induced anisotropy. In inertial spectral domains if either T& or TV 

is short enough, local isotropy remains a plausible notion; in the dami- 
nantly viscous domain, TV is the critical time. !I!he appropriate charsc- 
teristlc time for comparison is, of course, the inverse of the mean strain 

rste, or 
c ) 

1 a -l 
=ay 

fn boundary-layer-type flous with principal mean 

velocity field o(x,y). 

This work was carried out at the Johns Hopkins University under the 
sponsorship and with the financial assistance of the National Advisory 
Committee for Aeronautics. The author would like to thank Mr. H. M. 
Fitzpatrick and Dr. C. C.'Lin for their helpful comments. 

SYMBOLS 

D any characteristic length 

E(k) "three-dimensional" energy spectrum 

k magnitude of wave-number vector 

IrC Kolmogoroff wave number (inverse of Kolmogoroff microscale) 
characterizing viscous part of spectrum 

k 
c1 

component wave number corresponding to Kolmogoroff wave-number 
magnitude 

magnitude of turbulent velocity, d Ll2 + v2 + w2 

R Reynolds number 

1 q'h turbulence Reynolds number, - - 
6" 

ui velocity vector 

mean velocity in x-direction . 

UYV>W turbulent velocity components in x-, y-, and z-directions L 



NACA EM 58Bll 3 
I 

V any characteristic mean velocity component 

X,Y>Z Cartesian coordinate 8xes 

Y Heisenberg spectral constant 

h dissipation scale (Sylor microscale) 

V 

-r,(k) 

Tb (k) 

kinematic viscosity 

spectral inertial transfer time 

spectral time for approach to isotropy in absence of gross 
strain rate 

c Tc (k) viscous decay time 

. QI rate of dissipation of turbulent kinetic energy per unit mass 

Subscripts: 

i,J,k vector directions 

CHmAcmR1ST1c sPECT!RALTIMEs 

For a rough estimate of characteristic spectral times a discrete 
energy cascade in the manner of Onsager (ref. 8) is tisualized. The 
sssumption of similarity in successive steps requires 8 geometric pro- 
gression; that is, at each step Ak FJ k. Assume next that at each spec- 
tral jump in the cascade process all statistical orientation is lost; 
that is, the energy arrives at wave nuniber k in isotropic condition, 
no matter how anisotropic it had become in the previous stage. Possibly 
by direct dimensional r&asoning, Onsager defines the characteristic 
(inertisl) transfer time per stage as 

where k is wave-number magnitude and E(k) is a three-dimensional 
energy spectrum 

(2) 
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Here u, v, and w are orthogonal velocity fluctuation components. 

Physically this form can be deduced from 

T8 Z Kinetic energy per stage (3) 
Energy transfer rate 

From equation (2) (and hk = k) the numerator is obviously kE(k). By 
analogy with the form of the product expressing the rate of transfer of 

a, 
energy frcan mean shear flow to turbulelice, q - 

axk 
in the general 

turbulent energy equation (see ref. g), the denominator is expressed 8s 

(Spectral velocity)3 
Spectral length 

Hence, following equation (l), 

T,(k) =&=fig 

Within each step of the cascade, the Char&CteriStiC time Tb for 

adjustment of an induced energy inequality among the three components 
is also an inertial phenomenon expressible in terms of pressure-velocity 
correlations, hence for want of more detailed understanding it is 
assumed that 

The viscous decay tFme 
physically 

Tc(k) of the energy at any stage is 

Tc = Kinetic energy per stage 
Viscous dissipation rate (51 

The denominator here, by analogy to the form of the dissipation rate in 

general vg$g!$+g$ is - 

v (Spectral velocity)2 = v kE = vk3E 

(Specral lengthI (lh2 

L 

c 
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where v is the kinematic viscosity. Hence 

-r,(k) = = 
vk% 

that is, 

Tc(k) = 1 
vk2 

(6) 

Before returning to the question of local isotropy, it is instruc- 
tive to write out the two inequalities which identify the inertial and 
the viscous regions of the spectrum. The former region is temporally 
characterized by the fact that the energy in any stage jumps to the next 
before there has been time for appreciable viscous dissipation: 

(7) 

Ihe latter region consists of the cascade stages in which the energy is 
dissipated before there is time for inertial transfer: 

T,(k) >> T,(k) (8) 

Substituting equations (1) and (6) into these, 

Inertial region: 

Viscous region: 
(9) 

This serves as a check on the T definitions since 

the spectral Reynolds number. 

INERTIAL PJZGION 

With the assumed model a necessary coqdition for local isotropy in 
the purely inertial spectral range is that T& be much smaller than the 
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characteristic mean strain time, most simply 1 xi 
( ) 

-I- 
T2z ' In boundary- 

layer type shear flows (this includes free flows in which Prandtl's 

boundary-layer approximation is valid) 1 a 
2&Y 

is a good approximation 

to the principal mean strain rate where U(x,y) is the mean component 
of mean velocity and y is the Cartesian coordinate with its highest 
gradient. Thus, inertial local isotropy can be expected at wave numbers 
for which 

In the inertial region a spectral behavior roughly like 

E(k) = ti 2/3,-5 /3 (11) 

can be expected since this is a formal result when local isotropy is 
presupposed (see refs. 3 and 8). Here # is the rate of dissipation 
of turbulent kinetic energy per unit mass. 
-r&(k) decreases monotonically: 

With this spectral form, 

T,(k) FJ fi -1/3$-2/3 (W 

If this expression were valid out to indefinitely large wave numbers, 
inertial local isotropy could be found far enough out the spectrum no 
matter how high the gross strain rate. There would always be a range 
of k for which 

Of course, equation (12) cannot 8pplLy 
numbers, so Ta(k) will actu&ly incresse 

to indefinitely large wave 
(eq- (28) or (30)). III w 

case, the inviscid form, equation (X2), converts equation (13) to 

(13) 

k2/3 >> 1 43 E 
0 a, 
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In a real fluid, the inertial range can exist only at wave numbers 
much smaller than the inverse of the Kolmogoroff microscale, that is, 

(15) 

so that equations (14) and (15) make a pair of necessary conditions for 
inertial local isotropy. They can nowbe combined into a very crude 
Reynolds number criterion. 

Introduce the following symbol conventions: (a) If a2i3 >> p2i3 
then a>>> p; (b) if a>> j3 and fi >> 7 then a>>>> 7. For example, 
suppose that a>> e implies a = O(208): then s >>>> 6 implies 

E = 0 [( 20)28] . 

With this representation, equation (14) can be written as 

which can now be combined with equation (15) as 

07) 

For a turbulent shear flow in whfch the total production rate for tur- 
bulent energy from mean flow energy is of the same order as the total 
dissipation rate (they are exactly equal in pipe flow), 

But, empirically, 

according to measurements in a variety of shear flows, so 

(19) 
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Furthermore, approximate # by its isotropic form 

where h is the Taylor microscale. 
equation (17) to 

Equations (20) and (2l) convert 

3/2 Rh >>>>> 16 

In turbulent shear flows it seems reasonable 
Reynolds ntrmber Rh as 

where 

( ) 2 q: z? =,2+,2+7 

VISCOUS REGION 

(=) 
to define the turbulence 

(23) 

In the predominantly viscous region of the spectrum, 

pl l/4 
k>> - 

0 .3 

and the temporal inequality for possible isotropy is 

Tc(k) 

(24) 

(25) 

or 
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. 
Since TC(k) decreases monotonically with k, it is clear that 

there will always be some wave number above which this necessary inequal- 
ity will be satisfied. 

It should be noted that in this spectral range the simple dimen- 
sional spectral transfer theory of Heisenberg in reference 10 gives 

E(k) 0: k -7 (27) 
a result which has had rough experimental confirmation. ThisleadBto 
an increasing inertial time 

2 
Tack) a k (28) 

Although 7a is of negligible dynamic significance in the viscous region, 
this suggests a detailed look at the mixed region, where $ l/4 

k=O 3 [o 1 V 

Here both -fa and ~~ are important and conceivably may violate equa- 
tion (13). 

MIXED REGION 

In the spectral region with both inertial transfer and viscous dis- 
sipation, T,(k) can be estimated from equation (1) by Inserting for 
E(k) the function obtained by solving Heisenberg's equation (see ref. 10) 

E(k) = (,‘3~ + s $l-4’3 .-5/3 
Here Tc(k), as given by equation (6), is independent of E(k). 

(29) 

The value of Heisenberg's constant 7 in equation (29) has been 
variously esttited from experiment in the range 0.2 to 0.85, with 0.45 
an acceptable compromise value. For si@Licity, take 7 = 419. Assuming 
the 'Kolmogoroff wave number is written as 
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equation (29) turns equation (1) into 

7 k 
ak, 

0 

w 2-1/3@y1/2 (30) 

For values- of k/kc sufficiently small that the second term in the 
brackets is negligible, this reduces to the inertial estimate, equa- 
tion (I-2). 

The viscous decay time in terms of k/kc is 

7 (31) 

Figure 1 is a dimensionless plot of 7a and 'rc. The-values of 

Ta and Tc are necessarily of the same order in the vicinity of k n kc, - 
since this is the region of equal inertial and viscous effects, that is, 
of Reynolds number about unity. 

By equating the derivative of equation (30) to zero, the minimum 
Vdue Of Ta is found to be 

= Ta(0.40) = 1. 

On the whole, a necessary condition for local isotropy is that 

0 
pI l/2 
v >> $ 

(32) 

(33) 

(34) 

A less certain but more convenient criterion follows from the use 
of equations (20) and (21): 

R,, >> 15 (351 
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It is worth noting that for kb = 2, for example, the inertial 
2 condition ~~ << V could be violated while the vfscous condi- 

2 way 
tion Tc << - is satisfied. 

way 
Yet this is a spectral range in which 

FnertLal forces are not negligible, and equation (33) does not rule out 
the possibility of an anisotropic local spectral range for k>, kc. Of 
course, for k>> kc, 7a is not pertinent and 7c C< (TV&, so equa- 
tion (33) implies isotropy here. 

WAVENUMBERCF T!URBUIZXTENERGYPRODUC'ITON 

Following Prandtl's simple kinetic-theory type of model fn turbulent 
shear flow, it is inferred that the production of turbulent energy from 
mean flow energy is primarily due to the lateral fluctuating motion of 
"fluid balls" in the presence of a velocity gradient. Therefore the mean 
production rate must depend at least upon the lateral root-mean-square 
fluctuation v' and the chief mean velocity gradient Xi/* in a 
boundary-layer-type flow. 

Of course, the turbulent energy equation gives the rate per unit mass 

as i&i 
ay' 

Presumably this energy is fed into the turbulence over a tide 

range of wave numbers, each receiving an allotment proportional to its 
spectral contribution to Uv. 

It is noted, however, that v' and si/ay are sufficient to repro- 
duce the dimensions of wave number k, so an estimate of the order of 
magnitude of the energy production wave number kp is 

Clearly local isotropy can be expected only at wave numbers much 
larger than kp: 

k>> ' " -- 
v' by 

(311 

For turbulent shear flows whose gross production rate is of the same 
order as the dissipation rate, equations (20) and (2l) can be introduced 
so that 
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. 
For inertial local isotropy, l/k must also be much larger than 

the Kolmogoroff microscale; that is, 

PI 
0 

l/4 
k<< - 

. 

3 
which may be written together with equation (37) as 

or 

(39) . 

(40) 

Using equations (20) and (2l) this gives a Reynolds number inequality 

(42) 

which is much like equation (22). 

The three semiempirical Reynolds number criteria can be seized 
as follows: 

(a) Lower bounds on Rh for the existence of an isotropic inertial 
subrange are given by equation (22) based on inertial transfer time and 
Kolmogoroff wave number and by equation (42) based on turbulent produc- 
tion wave rnmiber and Kolmogoroff wave number. 

(b) The lower bound on Rh for local isotropy in-inertial or mixed 
range is given by equation (35) based on minimum inertial transfer time 
assuming a Eeisenberg spectrum. 

Next these inequalities are compared with the conditions in typical 
past experiments. In the round-jet experfments which include those of 

references 5 and 11 Rh fil120, hence Rh 3/2 = 1,300. Since there is no 

. 
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a priori basis for assigning a specific numerical factor to the strong 
inequality a >> p, the experimental results are used. In these jet meas- 
urements the shear correlation spectrum reached zero at a one-dimensional 
wave number of about 45 per centimeter, whereas the Kolmogoroff wave num- 
ber kc (the inverse of the Kolmogoroff microscale) is 100 per centimeter. 

Since kc is a three-bimensional wave-number magnitude, ccmparison 
is properly made by defining a corresponding one-dimensional parameter kcl. 
A plausible, though arbitrary, definition is the first moment of the one- 
dimensional spectrum that corresponds to a Dirac-function three-d3mensional 
spectrum, that is, a spherical shell of radius kc: 

whence k, l=gQ = 38 per centimeter. 

Therefore local isotropy is reached just around the Kolmogoroff 
region where the spectral Reynolds number fs of order unity. Hence 
equation (35) should be just barely satisfied, and it is noted that 
this is so if a >> B is interpreted to mean at2 88. 

In this flow there certainly can be no isotropic inertial subrange, 
and, in fact, neither equation (22) nor (42) is satisfied. The largest 
value of Rh attained in a well-defined turbulent flow appears to be 
that in Laufer's pfpe (see ref. 12), Rh = 250. 
Rh3i2 = 4,000, 

In this case, 
and he does find some evidence for an isotropic inertial 

subrange. 

In conclusion, it seems worthwhile to set up a turbulent flow with 
still higher values of Rh than those attained by Laufer, perhaps greater 
than.or equal to 500. Since Rh increases more slowly than R (where 
R z VD/v and V and D are characteristic gross velocity and width)' 
for fixed geometrical boundaries, values of 500 or higher will not be 
easy to attain with air in a small l&oratory. 

The Johns Hopkins University, 
Baltimore, Md., August 16, 136. 

'Neglecting the slow decrease in turbulence level which sometimes 

accompanies increasing Reynolds numbers in shear flows, Rh a R l/2 . 
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Figure l.- Chmacteristic spectral times (assrrming a Hhisenberg 
spectrum). 
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