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By A’.’A. Il@fihin

OF PLATES*

In this article are developed the resu.l,tsof my work (reference 1)
“The Stability of Plates and Shel.2.s beyond the Elastic Limit.” A
significant improvement is found in the derivation of the relations
between the stress factors and the strains resulting from the
instability of plates and.shells. In a strict analysis,the problem
reduces to the solution of two simultaneous nonlinear partial &iffe&
ential.equations of the fourth order in the deflection and stress
function, and in the approximate analysis to a sing~e linear eqim-.”
tion of the Bryan type. Solutions are given for the special cases
of a rectangular plate buckling into a cylindrical form, ~d of an
arbitrarily shaped plate under uniform compression. These solutions
indicate that the accuracy o%tained by the
satisfactory.

1. E~PRESSIONS FOR THE FORCES AND.,

approximate method is

MOMENTS IN TERMS

OF THE STRAINS IN THE MIDDLE SWWACE

on”’~mqreable J-)~rboux trihedron, rel~tive to which we shall
study the element of the shell, we choose the xy plane to be
tangent to the middle surface, and the x and- y directions
along orthogonal curves (fig. 1).

The state of s@ess of’the element is determined by the
trmsor of the stress S. Its components Zz, Zy, Zx, are

small compared to Xx, Y
Y’

and X
Y’

that is, each layer”of the

shell element parallel tb the middle surface 3s in a state of
plane stress. The intensity of stress in this layer will be

+$’’Upr~@pl&&ticheskay~Ustoi.chivostPla5teen.” F!rikladnaya.
Mate&atika i Mekhanika X, 19k6, pp 623,+38.
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&2, +,.Yy?.-X.&,’? sy~.:, .,:, (1.1]

. .. . .

The state .ofs.trainof.t,he,.element $s ?ieterminedby the
components of the tensor of “thestrains e’~, eyy.y‘ande Xy$
since the Bhea~s exzj eyz .are”’s~lljbut the relation to the

strain ezz may be found from the condition of constant volume

of the elenen%,

,...

The-intensity
by the formula,.

,. ,, ..
=0 (1.2)e= + eyy + eti.z

.
,,

of’strain in this MLyeZ;of the material is given

In agreement with the la~m for the elasticity and
of materials the stresses and ~trains are connected by

‘(1.3)

-plasticity
the relations

.,, C7i Cri
Sx aXx-*Yy=~exx

‘Y
GYy-+~=’--—eyy ‘3’-=— ‘Xy (1.4)

ei ‘i 3ei

Here ai = ~i(ei) is determined for each ‘materialas a function

of ej,. The properties of this functionary as follows. Within

the elastic.ltmit, that is, for ai< a? where o! IS a physical
.

constant, Hookels Law ai = Eej, alwaysholds. Be~ond.the eiastic

limit ai = Q(ei) is a certain curve (fj~. 2). If at a certain

instant of time there occur infinitely skl.1 variations f%om tb.e
state of ,straln,that is; the quantities ex. . . , receive

Increments ?5eD . . ., then the increments of stress below the

elastic limit are given by the formulae (i.k) by settin~ Ui = Eei,
.,.

Beyond the elastic limit ‘t~leincrements‘ot””stress.for, fiei.>O we

given by formulae (1.4)inaccordance with the curve ai =,@(ei),

but for bei <0 in~accorde.ncew!th the law of’unloading ai = Eel.

;,:
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The
foil.gyq,:
and with
critical
there is
cloqe,to

Let

problem of the
Give~a shell

stabtlity of shells (plates) is stated ae
under a given system of a.pp?.iedforces

the st-atg~of’sti%~s &d st~ain known. Requirtifl,the
Vd.W of the external forces for which, a% “thes- til~,
equilibrium with other poseible states of strain infinitely
the ori@nal state.

,.

.

the c?ian~ein the first and second quadratic form.of the
middle surface of the shell relative to the ~iven equilibrium
position be characterized by the parameters cl, G

2’ 2f3’ ‘d
‘~, ‘(2J T where 61, 62 are length ratios and.z%~ is the

shear in the middle surface in the x,y plcanejand >{3-,
“2’ T

are changes in curvature and twist. According to the Klrchoff
hypothesis the increments in l.en,qhand shear at a distance z
from the middle surfece will be

50= = Cl - z;~l ee ?5exy= 2C ‘- 2zr (1.5)
YY=G2-ZX2 . 3

We seek the stress increments corr~spotidj.ngto the strains (1.~).
For this it is necesse.ryto take the variations of re?x.t!ons(1,1$),
The ~~.ri~.tion of the in.tensit}-of’strain may he found.by rmking use
of (1.5), hut ,~eterward.we write for the vc.rie.tionof the work of the
internal forces al SeL> In termm of the stress comxments,

We intrc?ducethe nondimensional.quantities

(1.6)

h h%=.. T
‘Z%’r 2 (1,7)

where h is the shell thickness. Then in agreement

From (1.6) and (1,5) we.have

with (1.1)

..

(3.,8)



where .:

For the variation of formulae (1.k) we note that

(J% 1 ()ai ‘%.
8—”=”— —-— 80i
Gi ei ‘i doi

in which l)ythe properties of the curve ai = @(ei),

h
We denote by 20 = zo-~ ~ the coordinate ‘f ‘he

the intensity of strain is unchanged (~ei = O) during
It is clear that

The variations of fcrrmuke (1.1!)have the form.

Cf dcfi
.>— >0.
ei de.j

layer for which

instability.

“.

(1.io)

I

All quantities entering into iho ri~ht-hand
except the strains and the curvat~~resare known,
state of stress of the shell (whose stability is

~,

side of these equations
since the original.
sought) is Sup-poses
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Ut da~ .,,
given. The quantities E>.ll?q —~i, En’..=_

dei
,a~ tifionin figure 2

.
as tangents of angles, Young?s modulus bei~’-consttit”‘bu~”’~-$ and

-.E“ de~nding on the state df stress.

Before ins~abillty the shell may find itself whol].,ybeyond the
“elasticlimit, Or it may have elastic regions,elasto-.plasttcregions,
and purely plastic regions. If the state of atres~ i& momentless,
then the region of elasto-plastic strains, that is, the re,qj.onwhere
part of the shell,thickness i.selastic, parlplastfc, is s,b~e.qt.In
this paper we confine ourselvestothe detailed stdil.ity investigation
of compressed plates in which the state of stress is always momemtlesk
before instability. Hence we shall suppose that in -thesh.el.ls
considered below the region of elmto-plastic strain is missirqj,
%efore bucklfng (this a~swuption is not essential).

After insta.bllitythe re,qionof the ehell where the stress was
originally elast%c will he, generally speakingj elo,wticnllydeformed.,
since the strain variations are assumed infin!tos:l.mal.!’here@on of
purely plastic strain will be, generally speaking, reoc;!.vodafter
buckling into two - one remaining purely plastic, the c>therplasko-
plastic. Fi@are 3 shows a section ncnmml to a shell with the three”
designated regions (tho “plasticregion after instability is shaded).

&t the surface z = Z. represent the %oundary bet,wmn the

regions, one of which is elastic after instability, the other plastic.
For Its determi~tion we shall ~uppose tha,tin the elast.~~l,astf.c
zone, the plastic zone adjoins the shell surface z = + ~ ‘and the

,..
elastic zone which originates as a result of unloadin$ m.ljoin~the

‘“ILsurf’ace z = - ~.

Xn the region of elastic strain and.in the zbne of unloadhg
(z< Zo) formulae (1.1.1)take the form

.,

In the region of plastic strain bad in the zone of l.oatlin~’(q> ~)
of the el?sto-plastic region, these formulae may ‘cepresenhe~ ~h the
forml

.’

1
From (1.12) and (1.13) it isseen that the vari.ationw!8S . . .,x

on the boundary Z. are continuous in the case where the original’state
~of stress corresponds to the beginning of flow, and.equally so when, as
& result of variatton, the state of stress changes in proportion to the
original state{reference2).

P
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wx = (Ei.- i“j ~x-%~(z... o

‘“-}”.
“- ~ j + .IP(GX- ~lz)

.,,.., ,.

5s3’
~ (Et _ ~“] sy*X(z -’ 2.) “’+“E~(c: - ijz) (1.13)

c.
..

8X
Y
“=(-Jp _ E“) XY*X(Z - 2.) + ;,E’(:3 - ‘z)., ,,

J’
~,~epoceea ~0 the dex’ivs,tionof expres~ions ?OT fcu?ces~d

momnts arising “inthe shell duzwing,instability. For -theirdeter-

mination we have
h

:n.

@ .

/

7-
2 /“’T ~~

~T1=/h 5XX dz 5T2 = ~ 5YY dz bS = ~1aXy. dzh
- ,-.’02 ‘/-: ,/

--
~

,,

~n the region of vwrelv nlastic strains we obtain for the forces, in—.
agreement with (1.lJ)’:

and for the moments

,,
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where

,. .. E@
Dt:= ,

9
~t=E?-E” ,

Et

7

(1.16)

E the reaion of mzrelv elastic strains,
(lo~~) hold, OriLjE’r=E’t =E, ~~ = 0,

formulae (1,14) and

“of

are

Thus Zn the two region~, the forces are linear functions only
‘1>’”C2j and 2E3, the.middle surface sheav$ and the moments

linear functions only of the changes in curvature.

In the re@on of elaqt~plastic stral~s, the stresses 5XX . . .—.—.—— ..—-..,.
have different expressions for z > Z. bnd for Z< Z,

o*
Hencej

the tntegrals in the expressions for the ~orces and mouents must
be sp~.itinto $wp parts. For example,

.’

8M1- ;’pcdz;~,sx,d.z:~ .sxz.z-$ f5M2=/

u-?

hin which for the region Z. > z > - ; we take SSX according to

(1.12) and for the region ~ > z >... according ~0 (1.13). AS

a result of these calculation we obtain for the forcep .

Et - _JJ~l

+— FJ(l - ZO+’X*
2

I
.

+1.17)
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and for the moments

$ (+l-p,)=+ii, +(E;E~,io.3x1*-~(E-E,)(l_zo*?)c,
1

~Ei”_& ‘“(1 ‘i ZO++f(’2“+-zo*)S.ji+ .

f@~’-+[X:”Er+,,E’-Ef)Zo%jxJ-;(E-Ef)(l-zo*2)F2 ~
*Et _ Elf
- (1 - ZJ+(2 + ZO+)SY*X* .

2
.

“E; _TJl
+— (1 - ZO’’)*(2+ ZO*)XY*X*

2
,. . .

I
(I..18)

J

The dependency between forces and str~ins is nerd.~.near,.@rice [~
I zo~ enters into the formula and from (1.10) It depends on the strains.
From this fact proceed all the difficulties of bolution’df problem=
in shell stability %eyond the elastic limit, ,,

Further, it is essential that the ordinate Zo+” depending on

both the changes in curvature ,~1> X23 T 6,ndon the drains ‘1’

E,e,.2
be expressed only in the changes in curvature and the

3.
forces ?5Tl, 5T2, 8S. l.l~tiplyingthe.first equat,i.onof (1.17)

by XX*, the second by YY*, the third %Y 3X ‘% and.adding, we
Y

get

*fjT+ 3X .XfjsSX+$8T1+ Sy 2

A(1 -
Y =0ZO*)2 + 4zo’~- 4

Ehx+
(1.19)

.
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By introduo%ion of the notation ~ for the ratio of the ‘thSck-
nesa Ij.,,ofth~plas~io lay?rto thethfc~st iofthe shell. ., . .

%
I--zo* : ‘

{=~=~ (1.20)

v
tidsolving equation (1”.19)fOk g~ we get ““

where

L
v=—

1 -h

E -JiiFF’G”j1- 1- L)(I-+Q)
?s

h’
. . (1.21)

,. . .-

Formulae (1.17), (,1.18)are appreciably’”simpli<ied,(oth.ewise
conserving the prinoipal ‘complications).if we eonsid.eronly the
%eginning of flow, that is, we .suppcme’-thatthe shell gmterial
before instability exceeds the el.s,sticlimit very s15@tl.y. In”
this

have

case

Therefore, in the nobs,tionof (1.20.)the corresponding formulae
the form ~or the fo~ces

,,

(1s23)
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‘:

for the moments i

( )~’ ‘1 “ ;_:; .-” ,,:,‘,
5Ml - ~ 5M2

3D ,
1 + L5X%’2(3 - 2i)x

$i++o=wx,;y“ -2’)’},,,,
~8E.=-”$ + ixy+q3 -1-2!)X .;,.
3D “ - .-,. .... ..

(1.24)

-J

where D is the usual 8tiffnees for ??oissonfsratio equal to 1/2.

2. THE STABILITY OF COMPRESSED PLKTES

Denoting the %ending of’the yla.teduring instability by W(X,Y)
and the displacements of yoints in ‘themiddle surface projected in
the x,y directions by u(x,Y), v(x,y), respect5.yely,we have
expressions for the changes in curvature ‘1’ ‘2’ “

and the

strains :1, ~,? C3’

a% ‘ a%
‘l=~ 2=—3Y2

T
a2w

a-—

ax ay 1 (2.1)

&

The forces applied in the middle surface before instability
may %e written in the following foi?n:

T1 = h~iXx-~, ‘2 = haiYY* S = h~ixy%

and their projection on the Z-axis after instability in the form

Tlxl + %X2 + 2ST = ‘six
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Therefore, the condition of equilibrium of all
element and pro~ected on the z-axle, gives

u

forces applied to an

The conditton of equilibrium of the middle surface forces after
instabilitywill be

(2.3)

Finally, the compatibility condition for the strains has the
fop

The combination of differential equations (2.2), (2,3),,exd (2.4)
is necessary and sufficient for the solution of the :problemof
stability, If the corresponding boundary conditions are set up;
Indeed, according to (1.14), or to (1.24) and (1.20), the strains
cl> ‘2’ may be expressed in terms of the forces

‘3
8T1., bT2, as

and the curvatures X (bending w), following which the mcmente
5M1, 8M2, .5E are functions of these same fouzzarguments. Thus

the problem reduces itself to four differential equations with four
unknown functions, of which (2.2) is of the Bryan type, and (2.3),
(2.4) are of the type of equations in plane problems.

In the region of purely plastic strain of the plate, (that is,
such that the whole thickness, plastic before instahilityj remains
plastic after instability), the system of differential equations
is resolved into two. For simplicity we consider only the case
of the beginning of flow. Substitution of “t%evalves of ~M1> 5M2,

8H from (1.15) into (2,2) gives a differential equation for w
of the Bryan type:

4 hui
vw-—

(

x=2 Ex*+2& 2
4 ~x2 x

XY* 1-&-

)

yl;x ~~ (2.5)
D hay ay2 “
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where, in agreement with (1.9) and (2.1),
.,

(2.6)

The two boundary conditions on w agree with the l.xmal
boundary conditions for the Bryan equation.

,.

Solving equations (1.1~.:)for the stratns, we get

J
.:”

Equation6 (2.3) are satisfied if the stress function F’ is introduced:,. ,.

t5Tl $+i
—-.——=—

5T2

following which, analogous to (2.6) we denote

we obtain the compatibility condition for strain in the .f’orm

(2.8)

(2.9)

q

(.#v!F=— — SX;ES3.+LXJJ’L (2.10)
$yz x axz y axay ,,3.-x
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In or~erctd ii?itei“the

If the outward normal V and the tangent s to the”contoti
constitute a icoordinate:~y@em such,that by r@~@@p,: the positive
direction’of’ V:;;,cQinpi@e,s.,wifihthat;:of ,:y, ,md,~hp,yp,Q.Hi~iV6.“.
di?ection..of” s:’.co:lncl,deg..’wltihtha.$tof,.~~x:..:and.it $~e SJ%31Q
between thenormal and the x-axis Ss denoted by ~ ..(fig*4)J ,,.
then our quantities have the known expressions
... .,.,., “’, ..:“,...!..!.,.,....... .... .....,..,,.,,,.+,,,..,... ... ..,,,, ,,, .~.i ‘:’....,....:.:,

,.:.,”~~:~;’,~,:~~2,iT.Z -:~T2’,.;,.’1

.’ ],’

,
,,-.,...:,.,.:,,,,..,,...

tjtiv. — + - cos 2a + 6S &“2a
,’ 2,, ‘2 .,-

,,,.,,. .,,“;,
;! .,;.... . .‘., .::.”’ “,,,..... .. .. (2.11)
,pTi ,.’, ;! .. . ,:::

-“% ‘“” ..... .
5% =~sin2a-8Scos2a

q
,..,. ,,..... . ,.‘. !, ,. ,,...,. .’,-,, ,,

,.: .,, .. ..,. ,,.,...
The purely plastic’regton of the plate my he hounded by a

,$.

cent’onrjpart.of,which co,in~ides~~it~the,bomdary of the plate,
the part adjoins the”elasto-plast”icregion. Fcr the formulation :
OT the stability pro%lem in the first part, the boundary conditions
have the form ,’

,.,.,., ....,.... ....,.’..,.
. ,.

$3TV=6q=o ““ (2.12)

,. . ,!, .. . ,,. .. ,,. ,;,, .,,.,. : ........... ......... . ,.,.,, .,.,.,,.,,
and ‘inthe se’condpart,fjT ~ ?5Sv}’.mu@, be continuous.v’”’ .,’,,,,.- ,., ,,,. ,.>,

.It.is easy to.~hgw that dur~n~,lns~qbi>~~ythe”’e~(~re,tilat:,
tiy not.renkinin the purely plastic.,et;ate;.th?~.is, atiel’$a?o-.“”’
plasttc region may come into being, Indeed,’goin~ btick..we’.shall
have the unifom boundary conditions (2.12) on all’e.xternaledge~”
of the plate. But the differential equations (2.3) and (2.4) for
conditions (2.7) will be alsm,~inem?,andhomogeneous and so will
have the unique solution ~~ ‘ ~

,.. ,,,, ;“,’
,,: .6Tx=;T2=E~=0, ,.: .,,,

,- . ..“ ,:.
., ,,

It follows from”(2.7) that C1=”C2 = e; =0,’ frgm which on

the basis of (1.9) and (1.10), Z. = O. But z = Z. i8 the

___
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boundary between the elastic and plastic zones through
of the plate and the,conclttion Z. = O specifiersthat

TM No. .1188

the thickness
the middle

surface is this Boundatiyi It follows that a given region of a plate
is not purely plastic, but elasto-plastic,which contradicts the
assumption.

,.

During instability of a plate beyond the elastic limit it will
either go completely over to the elasto-plastic state.or there will
remain purely plastic regions in it, which are not diffused through-
out the plate.

In the region of elasto-plastic strains, equation (2.2) on the
basis of expressions (1.24) may be presented in the form

..

in which, as in equations (2.5), (2.10), the operator in parenthesis
acts like a multiplier on the quantity to its right.

The condition of compatibility of strain (2,4) on the basis of
,“,

(1.23) has the form

where the stress function F is determined by formulae (2.8). The
value of ~, the ratio of the thickness of the plastic layer to
the plate thickness, enters into equations (2,13) and (2.14),
therefore they show compatibility; this quantity ~ is expressed
by formula (1.21) in which the function q is, if use is made of
the notation (2.9) ,.

(2.14)

(2.15)

Equations (2.13), (2.14) agree with the corresponding equations
(2.5) and (2.1O) at the boundary of the purely plastic and the elasto-
nlastic re~ions. Indeed.,at this boundary, besides continuity in
~he values-of’the forces- 5Tv,
(where b%’ isthe rotational

5%, the-moments 5%, 5%:
moment according to the boundary
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conditions of K2rchoft),’~h6 bending’‘w and the slo~” of
plane,..there mustal.so’hold the Cotiditiori.“. ,:,,.

,.. .

or
.“”<’=h” “: ‘.... ..

1=1
.. . .

From (1.21) for this condftfonwe have p = --k and

following which the remarked coincidence of thb equationa
shown.

Thebound.ary conditions fbr equations (2.13), (2.14)

15

the tangent

...

(2.16)

on ‘the
elasto-plastic part of the c~ntour, coinciding with”’theplate C“onto”*j
yield the usual requirement 8TV = b% = O and two conditions relo,ting
to the bending w.

,,
Condition (2.15) or

,“,

represents in itself the equation of the boundary between the purely
plastic and the elasto–p.lasticregions.

The possibil~ty of purely plastic re~ions arising at the same
with-the,elasto-plasticre~ion.sfollows,from the fact ths,t.the
value of ~ in’ageeiueut with,(l.21.)and (2.1>) may take on values
not lying In the interval, 1 ? g >0.. Certain ex.amp.lesare Riven
below of exact solutions of the stabj.lityof’plates. and, in
particular, the problem 01 the compressed.plate freely supported
along two sides; the edges of the plate near the free supports,,
after instability, remain in the purely pl-asticstn.te.

and
the

3. EXAMFLES OF EXACT SOL%CIONS OF PROBLEMS

,. IN THE STABXLITY OF PLATES ,.

The integration of’the system of differential equations (2.13)
(2.14) in the elasto-plastic region, and of (2.5) agd (2.10) in
plastic region with an undetermined boundary between them given
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by (2.16), is frau@t with significant
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mathematical difficulties.
As was shown in 1, the stability problem simplifies when the
variations of the forces in the middle surface are zero every-
where. In that case the relative thickne~s ~ of the plastic
layer Is a known function of the coordinates, sfnce from (1.22)

v = O and consequently

,---.—

c.l-J1’-L (3.1) ,. ,,
h

If the state of stress of the plate before ins’te.’bility5.s
uniform, the value of ~ will,%e,constant, since
aui

in (1.22)

q will be the same for the whole plate.

We call those solutions of stabiTity problems aq?roximate
for which the variations 5T~, aT2, 8S, ‘ofthe f~rces are ‘

identically zero. Thus, the equations (2.3)’of equilibrium and
the boundary conditions (2.12) are satisfied, but, except in
special cases, the com~atibility condition (2.,4)is not satisfied.
The simplicity of such a solution arises from the fact that in
equation (2.13) the value of ~ is known and givenby formula
(3.1), as a result of which this equation becomes linear with
constant or variable coefficients. It closely resembles the
equation for the elastic stability of an anisotroyic plate.

The exact solutions of the system (2.13), (2.14) are undoubtedly
of interest in their own right, but for us they have significance
because they can %e made use of to estimate the degree of exactness
of approximate solutions.

We discuss a certain class of exact solutions of stability .
problems for uniformly compressed-plates of ar%itrary shape and the
solution for a rectangular plate in the case when buckling into a
cylindrical-shape is possible.

a. Stability of a Uniformly Compressed

Plate of Arbitrary Shape (Fig. 4)

In this case the state of stress of the plate before instability
is uniform and given by the formulae

x:~=Yy=-ai, Xy=o (3.2)

——11-llm-11~-~ I-1-l mm ml 111111I
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where I?i is the compressive stress along the edge and is also the
., uniform stress intensity at any point in the plate. The resfltf~ ,

stresses accordingto (1.7) ~d’(1.”4) will %6 ‘- “’

XX* .yy.%=-l Xy++=o $x*=sy+6=_$ (3.3)

For the.valuqs of x and t we’have the expressions from (2.6)
,., end (2.9)

X=-+w t=-w%
2

(3.4)

Equation (2.14) talse~the Ron

I?(t
),

-p{px =0

Neglecting the lmxmml.c furmtion, we obtafn

t hh ?%
=@

(3.5)

a class of exact solutions

as a resul.tof which the value of cp in (2.15) is expressed in terms
of <, and from (1.2) we find

()
—.

c+-+-p =c onst. (3.7)

The fundamental dif~erential equation of stz@f~itY (2.13) is now
linear with constant,coefficientsamd”has the simple form

[

1 1 ‘“i*2W = o
-p !2(3- 2g) VILW-1-~

,.

(3.8)

Its solution has %een much studied.for different shapes of
plates and for different boundary conditions”,although in connection
with the elastic stability of compressed plates.

,,,,, , , ..—-.....
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In the general case we have from (3.5) .:./i
.... . .

(3.9)

where rl is em arbitrary harmonic function. For continuous circular

kcordingto (2.17) and (1.21)plates, for example,: rl is s,constant.

. .

we now have an expression fur ~ in terms of X

,+(:m)..,=.nl -
-—..—. v~.=+—

‘-my- 4 16% )’
f@lowIng which equation (2.13), having in the given case the form,, .;.,,:,.,”

L .!

—
ha ““

V’1 _~~2(3--2~)X.I--.#~C=0
4

has o~~,yone un@mrn
be integrated once

fpnciion x, By use of relations

(3*1~)

(3.4)it may

where 179 ,is a new harmonic function~

lKrj-
+.— ‘ r’

L)w’

also a constsmt

(3.12)

for continuous

circular plates, irisol?aras w and V2W must be fi~ite “inthemiddle,

Equation (3.12), in view of (3.10), may be solved for
172w, after

which the problem reduces to the integration of only one linear paflid
:differential equation of the ‘secondorder (for circular plates)

. . .. .

The stress functio;: F is now determined,in accordance~~i~h (3.9)

and (3.4), from the PQisson differential bquatio~ ‘
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(3.13)

.. ... . -, .

As we see, the problem of the stability of circular plates may
~ %e solved in comparatively simple fashion ~hrough to the end. The

details of a similar calculation will be clarified be%.owfor the
exsmple of a rectangular plate compressed In one direction,

b. Stabillty of aRectan@ar Plate TJnd,erthe

Condition of Plane Strain (Fig. 5)

Such a case occur= if, when a rectanflularplate or length 1 is
compremed in the x-direction$ the width b in the y-direction cannot
change as s,result of’walls alonfl the boundaries y.o and y =b,
The plane x = O shown in figure ~, where C = 2C and. JJ= 27, wI1l
evidently be a plane of symmetry of strains.

We assume.the buckling to rostit in a cyl.indricaj.shape. In such... ..
a case,according to the conditions of the’problemj we have for the
stresses before instability

.

Xx=-p Y=
Y

$<’ ‘Xy=o ,D$”-P
I

) (3.14)

After buckling, w = “w(x), C2 = ~ = o.
3

From equations (1.24) we have

?5s=0 ‘2’”

Since, in accordance wtth the eq~tions

and 5T1 = O from the condition at the
.

of equilibrium, 8T1 = COne%.,

edge x = ~, then we have

the case 5T1 = 5TP ~“W3 = O. In consequence, the approximate
solution, as was nbted’at the beginning of 3, here becomes exact.

....--—
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The thickness ratio ~ ‘f’orthe
and is determined by formula (3.1).
takes the form

$lmt tc laye?
The stability

If the relative K&fin modulus, expressed by

K=

dai
4—
de.

m

.-+

J\

aui
E+ ~“

i.

4(1 - k).—.
= (1 + ~’1 - w

is introduced, then we get from (3,1)

4(1 - .../”k) ~ ~ /--
h “\k-—
= (~ _ \,,/~)2‘ = 2

following which we may simplify the expression for
equation (3,15)

hp hp# . _=—
D~--k\2(3-2~) Dk
—.

Since “k= 1 up to the elastic limit, and k

is a constant
equation (2.13)

(3.17)

(3.16)

(3.17)

the parmeter in

(3.1.8)
.,,

area where there is flow of the material, and since the character-
istic value of the parameter y must be the same in elastic and.in
plastic problems, then it follows from (3.18) that the critical
stress ccmrespond.ingto the small area of flow, is zerot

It is interesting to note that the &Pmbn problem may be
considered as a limiting case of the stability ~f a rectangular
plate compressed in one direction, of small wid~fi b,, for which
the parameter y will have the expression

4hp
72”—

3T)k



I

I

1

,

I

t

NACA ~ No. 1188 21

EUIdconsequently thb critic%l stress @ ‘zero at the small area of’
fluw~”‘“Asseen from”the pre~eding and follow$ng .eyampl~sof exact
solutions, the total loss of load-oarr~ing ability of a plate,
predicted in the I@rm6n problem, does not occur, generally speak$ng.
This circumstance has already been note~ (~ference 1).

o. The Stabtltty of a Rectangular Plate Compressed

In One Direction (Fig.5)

We shall suppose that the rectangular plate, sufficiently long
in the y-directton and compressed or(lyin the x-direction, buckles
into a cylindrical shape. In this case

xx = --at Yy.xy.o 1’(3.19)
By the aonditiona of the problem, all sections @ the plate

Y= const. remain plane after buckling amd so we have

‘3
=0

‘2 = const. (3.20)

on the basis of which from.(1.24), 5S = O. Besides this, 8Tl = O

from the boundary condition at the edges x = I .$ and consequently
it follows fra (2.3) that 8T1 = O everywhere.

Since there are no forces in’the y-direction, we must use the
condition

1,,,’)_

J;6T+’=0 , ,-.; (3.21)
--
2 “

From the second equation of the system (2.lk) we have
.,,

G?= t5T2
c- ppx

ai?K“ 2 1
(3.22)



Sj.nce.X.=,41., It is pot,diffiuult to .conv$,nceone?s ~elf that

(3.22) is%heintegral of equatlcm”(2’.’l4).The function q, by
which is found the value of” < from (1,21), here has the form

,.,. ,’“.

X5T2 hc2” ~~~
9=- —-

; ~2 (2 .
(3.23)

(L.-X)Xh2~ = (l-- k)h~, 4(1,-X)
;“..’. .. ,,

The lending moment in any section ’fs’: “

. 1-

[

8M1 =-D 1

and so the boundary condition

(3.2A)

,,

It is clear from (3.23) that ‘1 cannot be

plastic region since 62 # O {this folloys from

sign of g2x1j positive along the “entireplate,

+~isx
on the edges x = _ q = o.

2 ..

zero in the elasto-

the constancy of

necessitating

Thus the.el.as”~o-~lastice2 *O to satisfy condition (3.?2)).,

region does not go up to the edges of the plate ‘endwtops at the
+ c

section x = - -. The region adjoining this to the edge will be
2

purely plastic. Indeed.,since {2X is positive, then e2 is also

positive. It i’ollolrs from (2.7) that in the purely plastic and in
the purely elastic region: the force 5T2 has the same sign as ,.

e2,,that is, is a tensile force,. But if, to the plate, compressed.’

beyond.the elastic limit in the”x-direction, ‘thereis applied a ‘
tensile force in the y-lirection, then the plate remains in the
plastic state. One may convince onels self of this by formally
calculating the value of 8e. according to (1,8)~ which at the’
edges is equal to e]-,,but $he strain c1 according to (2.7)

is negative, and so the value of bei will be positive, th~.tis,

plastic strains before buckling remain plastic after buckling.

From (1.22-)and (3.23) we now have ~ ~ J

hXl ~
P(.C) = -4. + 8( .-3X(2 (3.25)

c;
==>
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From this we find the lower linit to the value of
,L .,, _,

The fundamental ditferen-tialequation of stability
fGrm

,,.

By introduction ot’

Q(g) =

the notation,

23

f(??>o) ‘ ‘

,..,,
(3.26)

(2.13) takes the
,,, :

0 (3.2.7)

we write equation (3.27) in the form

where lJ is the basic

(3.28)

(3.29)

pammeter determinin~ the critical stress

Cl hl2G<
A

v.’ = —D (3.30)

The integral of equation (3.P~) may be obtained by quadrature.
Through introduction of’the n~tation

we obtain”as a result

.J~i(&y($ ‘- ‘*= I.1%1- p’%, \/2@ = C2 -

,.

(3*31)

.(3.32)
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In the purely

moment 5M1,

plastic region we

in agreement with
.

5=S
Eh .4-3A

NACA TM:No.’

have forthe force .5T2 ahd

the results of 2 and (3,19):

The fundamental differential equation takes the form

The solution,

is written in

in which as a
right half of

1188

the

(3.33)

(3.34)

satisfying the condition ‘1 =Oattheendg=l,

the form

xl = C3E2
V(1 - E)

sin (3.35)
“~’

result of syrhnetrywe consider only deflections in the
the plate (x ~>O).

For determination of the five undetermined constants nemely,
the three integration constants cl> C2’ C3’

the koundary

coordinate a and the critical number v; we may, besides
equation (3.21), write four more.conditions: Conditions of symmetry

5 =0 d!=o
z

(3.36)

conditions at the boundary region

‘k=a ’{=1 (3*37)

two continuity conditions, of moment and.shear force, which in
accordance W-ith(3.25) ~d (3.35) take the form

C3 sin ‘(~~fl} = ~ - ~os _ = - [~’j (3.38)
\/4 - 3X h(4 - 3X)’ \/4- 3A v’4- 3A liI’2(1) cc
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The constant
.,.,..

oonditione insofar
..

By making use
a“new unknown ~o,

ah x’= O, “we get

‘2 isnot necessary and doq?,not,:nterthe
“8P ‘“ ‘1aa.the~ are,independen+ Or ---,....and—O

...62..’.-.
of the prescribed conditions an& ~.ntroducing
‘the relative”thickr@se of the plastfc’layer

fok the values of u and L-a (the mlativ’e
length of-the p~ely p~astic part) the-following formulae.,

A.M
,“1 ‘ “4-3~L :“w= -a= (3-39)

J;(1 - h) h .~ .:
. :,,,’,,

where L and M are the integrals
.... . ., ,.. ,.

~tR(!o) ~ ‘ ,.,..

r

R(~’o)‘(1_ )2 &f?
L=

I
- &~_~~2 ~ M=

{.R(l)
....--$------(3.40)

@(~.J?\./R~) -R(Q ‘ ~R(~) , -R(g) :,, ,,.,. .

in which the value of go is determined by the re].atfon

,,

As was already established, the vhue of 1 - a, iEIpositive,
therefore the integral L must %e positive, ,andfor t“his it i~

required that 1 - 2C0 + X~2Q > 0, that is ,,,,J

r .—.~ .,.. ,.
~o:<’l’:-\hl -~”’ ; . ,. (3.42)

,. . . .
By,eqnsidpring the estimate (3.26), which IS al~a rea~onable for

co, we”see that this’quantity is conta.inedwithinnarrow,llmits and
clos?,to,the approximate value’(’3.3). It foil.ow~from this,that.the
critical stress will ‘differ6iilySlightly froxm.theapproximatetique.

..: ..,, ..< ‘- .

~,,. ,., ,’ ,.,, ,’

,.
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d.9 Approximate Solution of the Froblem for a Plate

in a Uniform State of Stress Before Buckling
. .

In this case the stress components Xx, Yy, and X; and the

dress intensity ai are constant everywhere; the quantity 1,.
will also be constant, and hence ~ by (3.1).

The x and y axes in a given case may be so chosen that
the Xy stress is z’ero(principal,axesof.stress). The fundamental.,

stability equation (2,13) takes the fofi

[

“14’–*2 bw
l-.@-k)Xx ~~+21_~-

._,

[ ‘J

—
,.. .

‘“3, *2 a4w .
+ 1 -T(--- my

2

~4w
$1- k)Xx*Yy*

._8x%y2

i

hui “-””
xx. a%

~2;-
x_ +y -x_

--5- Y ~y2 (3.43)
3X2L._ -.

.

modulus is introduced in accordancein which the generalized K6rm6n
with formulae (3.16) and (3.17)jsince “therelation

1~2(3-2K) = 1 -k

holds. ‘

The coefficients in equation (3.43) are all positive, since
the largest value of each of the quantities XX*, Yy+ is

2’
~ and l>k?O.
Al3

Hence, the problem may be,sol.vedas a linear differential
equation of the Bryan type with constmnt coefficients, and in
difficulty is little different from the corresponding elastic
case.

Translated byE. Z. Stowell
National Advisory Committee
for Aeronautics
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Figure 4.

Figure 5.
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