- F	57-34-16 414 Copy RM E56K20
NACA RM E56K20	PLATE 4692
6869	RESEARCH MEMORANDUM
	EXPERIMENTAL INVESTIGATION OF EJECTOR-NOZZLE METAL TEMPERATURES By Thomas B. Shillito and William K. Koffel Lewis Flight Propulsion Laboratory Cleveland, Ohio Classification concelled for changed to MICLASSIFIED. W Futhority of MASA-58, 9NOV 6/ (OFFICER AUTHORIZED TO CHANGE) By MANE AND MANE AND MANE AND The products information affecting for the United Plates within the meaning of manual approach and the concelled for the United Plates within the meaning of manual approach and the concelled for the United Plates within the meaning of the product and the concelled for the States of the United Plates within the meaning of the product and the concelled for the States of the United Plates within the meaning of the product and the concelled for the States of the United Plates within the meaning of the product and the concelled for the States of the United Plates within the meaning of the product and the concelled for the the plates of the United Plates within the meaning of the product and the concelled for the the plates of the United Plates within the meaning of the plates of the plates of the States of the United Plates within the meaning of the plates of the plates of the States of the States of the United Plates within the meaning of the plates of the plates of the States of the States of the United Plates within the meaning of the plates of the plates of the States of
	NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON February 27, 1957

HADC ADJ '57-1639

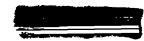
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

EXPERIMENTAL INVESTIGATION OF EJECTOR-NOZZLE

METAL TEMPERATURES

By Thomas B. Shillito and William K. Koffel


SUMMARY

A full-scale ejector installed on an afterburner was equipped with instrumentation to determine metal temperatures on both the primary-jet nozzle and the shroud. The afterburner was operated at exhaust-gas total temperatures up to 2990° F (3450° R), and the secondary airflow through the ejector was varied from 1.5 to 20 percent of the primary-gas flow out of the afterburner.

Low flow velocities in the secondary airstream gave low film heattransfer coefficients compared with those for the primary-gas stream. Because of this, the primary-jet-nozzle metal temperature was closer to the primary-gas temperature than to the cooling-air (secondary-air) temperature. Critical primary-jet-nozzle metal temperatures were not reached, however, because of a favorable temperature distribution out of the afterburner. Even at a bulk afterburner-outlet temperature of 2990° F (3450° R), the effective gas temperature adjacent to the primaryjet-nozzle walls was only 350° F higher than the temperature of the turbine-discharge air. The low secondary-air heat-transfer coefficients also made the primary-jet-nozzle metal temperatures fairly insensitive to secondary airflow. For example, with an afterburner-outlet bulk temperature of 2990° F, the primary-jet-nozzle metal temperature decreased only 50° (from 1390° to 1340° F) as the secondary airflow increased from 1.5 to 20 percent of the primary-gas flow. Leakage of primary gas into the secondary-air passage caused local increases in primary-jet-nozzle metal temperatures of 250° F.

Mixing of the hot primary jet with the secondary flow controls the temperature of the shroud. Hence, maximum temperatures on the secondary shroud were much more sensitive to secondary airflow than were temperatures on the primary-jet nozzle. At secondary airflows less than 7 percent of the primary-gas flow, shroud temperatures exceeded primary-jetnozzle temperatures.

INTRODUCTION

Aircraft-engine ejector nozzles are generally used on engines equipped with afterburners. In such applications, the nozzle components must remain cool enough to ensure structural soundness at useful afterburner-outlet temperatures. Flow of the relatively cool secondary air (generally ram air) through the ejector helps to provide the protection required. The primary-jet nozzle of the ejector is cooled by the flow of secondary air over its outside surface, and the amount of cooling which the primary-jet nozzle requires will depend to a large extent upon the gas temperature distribution at the afterburner outlet. The gas temperature distribution is a function of the fuel-air distribution and the persistence of any cooling-air layer which might be introduced along the outer wall of the afterburner. Obviously, as afterburner output approaches the theoretical maximum, the primary-jet-nozzle metal temperatures will depend entirely upon cooling afforded by the secondary airstream unless another source of cooling such as fuel can be utilized.

The ejector shroud is protected by the layer of secondary air which separates it and the primary-jet nozzle. It is exposed to severe heating only after this cool layer of air and the primary-gas stream have become mixed and the surface is exposed directly to relatively high-temperature air-gas mixtures.

Little is known about ejector design cooling requirements or of metal temperatures actually reached on operating ejector nozzles. In order to provide some insight into cooling and heating mechanisms involved in an ejector nozzle and to determine maximum temperatures and their locations, temperature instrumentation was installed on some of the components of a full-scale ejector during an engine and ejector performance investigation at the NACA Lewis laboratory.

The ejector was installed on an afterburner which was operated at bulk outlet temperatures up to 2990° F (3450° R) in an altitude test chamber. Temperature measurements were obtained on components of the primary-jet nozzle and the shroud; and data were obtained at two afterburner-outlet temperatures, at two ejector diameter ratios, and for a range of over-all pressure ratios and secondary weight flows.

APPARATUS

Ejector Nozzle

Both the primary-jet nozzle and the shroud were of iris-type construction and were variable. The primary-jet nozzle had 24 leaves which were 0.06 inch thick. A drawing of one of the leaves is shown on figure 1. The leaves were of single-skin construction and each had two stiffeners on the downstream face which carried the actuator hinge points.

4245

5

· __-

. . .

ಿ ಎಂದಿ ಕ್ಷೇತ್ರಿಗಳು

NACA RM E56K20

When the nozzle opens, pie-shaped openings form between adjacent leaves; and these openings are covered by the filler pieces shown on figure 1. The filler pieces, which were 0.06 inch thick, were loosely attached to the upstream surface of the primary leaves and were held against them by the pressure of the primary-gas flow.

The secondary shroud had 24 leaves of double-skin (0.04-in.) construction, as shown in figure 2. Each leaf had a stiffener on the inner surface. Filler pieces slide into pockets in the edges of the doublewall secondary leaves. Figure 3 is a photograph of the assembled shroud as viewed from the inside.

A schematic representation of the ejector nozzle (fig. 4) shows the relative positions of the primary-jet nozzle and the shroud. The shaded areas represent partial obstructions to the flow of secondary air caused by linkages, stiffeners, and so forth.

Installation

The ejector nozzle was installed on an afterburner-equipped turbojet engine which had a dry sea-level static-thrust rating of about 10,000 pounds. An exterior view of the afterburner-ejector assembly in the altitude test chamber, where the experiments were conducted, is shown in figure 5. Ejector secondary air was directed from an external source through a special line to an annular plenum chamber surrounding the afterburner near its upstream end. The secondary air passed from the plenum chamber to the ejector through an annular passage surrounding the afterburner. The secondary-air ducting and passage around the afterburner are shown schematically in figure 6.

The afterburner was 32 inches in diameter, and the length from the plane of fuel injection to the primary-nozzle hinge plane was 65 inches. Fuel was injected through 20 radial spray bars, each of which had orifices spraying from both sides of the bar normal to the airstream at 12 different radial positions. Details of the spray-bar hole distribution and their relation to the inner and outer walls of the afterburner flow passage are shown in figure 7.

A corrugated louvered liner extended from the fuel spray bars to a point just upstream of the primary-jet-nozzle hinge point. The mean flow-passage height of the louvered liner was 5/8 inch. Its downstream end was closed.

A two-ring annular V-gutter flameholder with gutter diameters of 11.04 and 25.52 inches was used. The flameholder was located at two alternate axial positions, $9\frac{1}{2}$ and $14\frac{1}{2}$ inches downstream of the fuel spray bars.

HADC ADJ '57-1639

-

Ξ

4245

÷

......

. 1.

Ē

Instrumentation

The primary-jet-nozzle gas flow was determined from measurements of total and static pressures and temperatures at the engine inlet, overboard bleed flow from the engine, and total fuel flow to the engine and afterburner. Secondary airflow was determined from measurements of total and static pressures and temperatures in the secondary-air supply line (fig. 6). Fuel flows to the engine and afterburner were measured with rotating vane-type flowmeters.

Total pressure at the inlet to the primary-jet nozzle was measured with a diametrical rake. The tubes in the rake were spaced to give _ readings in 19 equal areas. Total pressure and temperature of the secondary flow were measured at three radial positions at each of four ______ positions 90⁰ apart around the annular secondary-flow passage. These measurements at both the primary-jet-nozzle inlet and in the secondaryflow passage were at the same axial position as indicated in figure 4.

Temperature measurements on the inner surfaces of both the primaryjet nozzle and the shroud were taken at three circumferential locations spaced 120° apart which were designated 0° , 120° , and 240° locations. Thermocouple locations on the leaves and filler pieces were the same for all three circumferential locations. The locations of the thermocouples on the primary-jet nozzle are shown in figure 1, and the thermocouples are designated according to location as a, b, c, and d. The thermocouples were chromel and alumel wire with magnesia insulation inside stainless-steel tubing which was swaged to 0.062-inch outside diameter. The ends of the thermocouples were brazed into holes in the metal skin with the thermocouple junction flush with the hot-gas side of the metal. The inset sketch in figure 1 shows a typical primary-jet-nozzle thermocouple installation.

Thermocouples on the shroud leaves were installed at the locations shown in figure 2. The thermocouples used were of the swaged type similar to those for the primary nozzle. The junctions of thermocouples a, b, c, and d, which can be seen in the photograph of figure 3, were welded to the inner surface and the thermocouple leads were laid along the surface. The leads for thermocouples e and f, which measured the metal temperature of the stiffener, were inside the stiffener and cannot be seen in figure 3.

PROCEDURE

All the data were taken under steady-state operating conditions. For each series of runs, the engine and test-chamber conditions, the afterburner-outlet temperature, and the ejector geometry were fixed; and systematic variations in ejector secondary airflow were made. All runs were made with an ejector spacing ratio l/D_D of about 0.73.

NACA RM E56K20

The primary-gas total temperatures which are used in this report are bulk values and were calculated by well-known flow continuity methods which utilize primary-jet-nozzle mass flow, inlet pressure, and effective throat area.

The stems of the thermocouples on the primary-jet-nozzle leaves and filler pieces (fig. 1) were exposed to the flow of secondary air. A socalled "fin-effect" correction had to be made to account for local overcooling at the point of measurement. Local overcooling occurs because heat is conducted away from the point of measurement through the stems of the thermocouples and is then transferred by convection to the secondary air. The corrections were made according to the methods outlined in chapter 2 of reference 1.

RESULTS AND DISCUSSION

Primary-Jet-Nozzle Cooling

<u>General characteristics</u>. - At the conditions investigated, convective cooling of the primary-jet nozzle by the ejector secondary air was weak and did not materially affect temperatures of the components. Despite the absence of strong cooling, however, metal temperatures did not exceed or even approach critical values, apparently because of an afterburner-outlet temperature distribution that was favorable to the nozzle for cooling. This was true even at an afterburner-outlet temperature of 2990° F (3450° R), where the highest metal temperatures on the primary-jet-nozzle leaves were about 1400° F, as shown in figure 8.

Figure 8, which shows primary-jet-nozzle leaf temperatures at the nozzle throat and secondary-air temperature as a function of the ratio of secondary-airflow to primary-gas flow, illustrates that convective cooling is not too significant. The metal temperature of the leaf changed only slightly (approx. 50° F) as the secondary airflow increased from 1.5 percent to 20.0 percent of the primary-gas flow. Furthermore, part of the trend of metal temperature with secondary airflow can be attributed to the change in secondary-air temperature shown in the lower part of the figure. The ejector secondary air was ducted from the annular plenum chamber (figs. 5 and 6) through the passage surrounding the afterburner and was heated by the afterburner walls. The temperature of the secondary air at the ejector inlet thus decreased with increasing secondary airflow.

Actual gas temperatures adjacent to the primary nozzle were not measured. Consideration of the convective heat-transfer process, however, clearly illustrates the existence of a relatively cool gas layer adjacent to the primary-jet-nozzle surface. The metal reaches some temperature between the temperatures of the gas and the cooling air and is dependent

Politic is the strend of the Constitute of the

upon the local film heat-transfer coefficients for the cooling air and the gas. In equation form, $\frac{T_g - (T_m + 460)}{(T_m + 460) - T_a} = \frac{h_a}{h_g}$. Estimates of heattransfer coefficients obtained from reference 2 showed that the ratio

h_g/h_g was very low (because of the low flow velocities of the secondary air) and reached a value of only 0.18 when the secondary airflow was 20 percent of the primary-gas flow. It is obvious from the equation that the metal temperature T_m was much closer to the gas temperature than to the cooling-air temperature. The effective value of this gas temperature, therefore, had to be much lower than the primary-gas bulk temperature in order to give the observed metal temperatures which are shown on figure 8.

Graphic illustration of the existence and effectiveness of the cool gas layer is given in figure 9. Figure 9 shows a comparison of observed primary-jet leaf temperatures with values calculated For two gas temperatures, 2990° F (3450° R), which corresponds to the observed bulk temperature, and 1100° F (1560° R), which corresponds to the turbinedischarge temperature. The curve through the experimental data has been extrapolated to zero secondary airflow, and the intercept obtained on the temperature scale indicates that the gas temperature adjacent to the nozzle surface was only 1450° F (1910° R), an increase over the turbinedischarge temperature of only 350° F. This indicates that the film of turbine-discharge gas emitted from the cooling-liner louvers must have persisted to a large extent through the exhaust nozzle. The liner cooling-gas discharge and the spray bars (fig. 7), which were designed to keep the outermost 10 percent of the air fuel free, apparently combined to provide the low level of temperature in the gas brushing the primary-jet-nozzle surface.

If higher temperatures existed at the wall of the nozzle, such as might be the case with increased values of afterburner output, a serious cooling problem might exist. This would demand higher secondary-air velocities over the primary nozzle than existed in the ejector investigated, possibly finning to increase the convective heat transfer, or _ even some form of film cooling.

In computing the curves shown on figure 9, equation (9-32c) of reference 2 (p. 242) was used. Skin temperatures at the downstream edge of the nozzle, where the highest heat flux would occur, were computed for sonic flow through the nozzle and for secondary-air temperatures corresponding to those shown in figure 8. The thermal resistance of the metal skin and radiation from the gases were neglected.

Effect of construction features and operating conditions. - A comparison of leaf and filler temperatures on figure 10 shows that the filler temperature was about 250° F hotter than the leaf temperature at

NACA RM E56K20

4245

all secondary airflows. It appears from figure 8 that without any convective cooling the maximum temperature of any of the primary-jet-nozzle components would be about 1450° F. The 250° F difference noted in figure 10 must therefore be attributed to leakage which put hot gases on the outside of the filler pieces and reduced the effectiveness of the insulating layer of cool gas on the inside surface of the filler pieces. The apparent source of this leakage is shown in the photograph of figure 11. Cracks which existed between the primary-leaf hinges were not covered completely by the upstream ends of the filler pieces, particularly with the nozzle in the open or afterburning position. The gas leakage also caused the temperature on the upstream part of the filler piece to be slightly higher than the downstream temperature. This is shown by the top pair of curves in figure 12.

The lower pair of curves in figure 12 shows how overlapping of the leaves and the filler pieces allowed the edges of the leaves to be from 50° to 90° F cooler than the center portions of the leaves. The higher thermal resistance caused by the overlap provided a protective action for the leaf. By a similar token, the overlap might make the edge of the filler piece the critical zone for cooling with more severe afterburner-outlet temperature profiles.

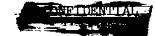
A reduction in the primary-gas temperature from 2990° F (3450° R) to 2530° F (2990° R) reduced the primary-leaf temperature between 350° F and 450° F, as shown in figure 13. The curves in figure 13 show that the leaf temperatures at a primary-gas temperature of 2530° F (2990° R) were more sensitive to secondary airflow rate than were the leaf temperatures at 2990° F (3450° R), a result contrary to what could logically be expected. No reasons have been found for this apparently inverted behavior.

Ejector-Shroud Heating

<u>General mechanism</u>. - The ejector shroud does not have a forcedconvection cooling system similar to that provided for the primary-jet nozzle. (During the investigation, the outside of the shroud was exposed to the relatively still, low-pressure air which ventilated the altitude test chamber.) Internally, the shroud has a blanket of secondary air which, until it becomes mixed with the hot primary gas, protects it and keeps its temperature low. Processes that are important in the mixing of gas streams can therefore be expected to control the temperatures reached by parts of the ejector shroud. In the mixing of two coaxial streams at the same temperature, the mixing boundaries are functions of the ratio of velocities in the streams (ref. 3). A similar influence of velocity ratio could be expected in the mixing processes occurring in an ejector.

. ___

A set of data selected to illustrate the connection between mixing of the gas streams and the shroud metal temperature is shown in figure 14. The upper part of the figure shows the ratio of primary-gas velocity to secondary-air velocity in the plane of the primary-jet-nozzle exit as a function of the ratio of secondary airflow to primary-gas flow. The velocity ratio decreases with increasing airflow Tatio, as would be expected. Changes in flow conditions occur axially in an ejector so that the values shown are only indicative of conditions at the beginning of the mixing process.


The variation with airflow ratio of metal temperatures measured on the shroud at the furthest upstream thermocouple location is shown in the lower part of the figure. Secondary-air temperature is also shown for reference. At low airflow ratios (below 0.10), the mixing boundary is upstream of the shroud thermocouple location and the shroud metal temperature decreases rapidly with increasing airflow ratio, reflecting changes in the amount of mixing of the secondary air and the primary gas which occurs upstream of the thermocouple. At an airflow ratio of 0.10 an apparent discontinuous change in shroud temperature variation takes place. This discontinuity is believed to be the point at which the mixing boundary passes the thermocouple location. At airflow ratios greater than 0.10 the shroud wall at the point of measurement was in contact with secondary air that had not been heated by mixing with the primary gas. The shroud temperature was from 100° to 180° F higher than the secondary air, possibly as a result of radiation from the primary gases. Some convective cooling of the metal by the secondary air at airflow ratios above 0.10 is indicated by the decrease in temperature difference between the metal and the air as the airflow ratio increases.

Further evidence of this progressive mixing is the manner in which the temperature of the shroud leaves increases with distance downstream. A plot of typical data which shows how the metal temperature increases with distance along the shroud is shown in figure 15. Curves are shown for different ratios of ejector secondary airflow to primary-gas flow; on the abscissa scale the thermocouple positions are noted for reference. At a given airflow ratio, mixing of secondary airflow and primary-gas flow becomes more complete with distance downstream. The mixture of gas and air adjacent to the shroud surface thus becomes hotter with distance downstream, and the shroud surface temperature responds directly to the mixture temperature.

For the conditions shown on figure 15, the maximum shroud-leaf temperatures occur at the downstream edge of the shroud or thermocouple d location. In some cases thermocouple c gave a reading slightly higher than thermocouple d. This occurred at ejector diameter ratios of 1.29 and particularly at low over-all pressure ratios. It is believed that, when thermocouple c reading was higher than thermocouple d reading, there was a flow separation near the downstream edge of the shroud with

AN IS TO BEEN IT T

CK-2

an attendant backflow of cool ambient air from the test chamber. In subsequent data plots, the higher reading of either thermocouple c or d is used to illustrate effects of different variables.

Effect of operating conditions on shroud skin temperature. - A change in the ejector diameter ratio (ratio of shroud-exit diam. to primary-jet-nozzle diam.) had a pronounced effect on the shroud metal temperature. Figure 16 shows that at a primary-gas total temperature of about 2940° F (3400° R) and an over-all pressure ratio of 4.9, the shroud was from 300° to 550° F hotter at a diameter ratio of 1.1 than it was at a diameter ratio of 1.29. Among the factors that could cause this is the difference in initial velocity ratio. At a given secondary airflow, the initial ratio of primary-gas velocity to secondary-air velocity is higher for the lower diameter ratio because of higher secondary-air pressures. This would give a higher mixing rate for the lower diameter ratio.

A comparison of temperatures on the secondary shroud and the primaryjet nozzle shows that for this particular ejector geometry the shroud could be the critical component. The shroud temperature at an airflow ratio of 0.05 and a diameter ratio of 1.1 is about 1500° F (fig. 16). This is about 100° F hotter than the temperature of the primary-jetnozzle leaf (fig. 8) and only 150° F less than the filler-piece temperature (fig. 10). In the absence of gas leakage, which would cause the filler-piece temperature to be artificially high, the shroud is hotter than the primary nozzle at all airflow ratios below about 0.07.

The response of the ejector-shroud temperature to changes in primary-gas bulk temperature was about the same as for the primary-jet nozzle. Figure 17 shows that a 400° R increase in primary-gas bulk temperature increased the shroud leaf temperature from 400° to 500° F.

The influence of over-all pressure ratio on the shroud metal temperature was highly dependent upon both the level of pressure ratio and the diameter ratio. As figure 18(a) shows, an increase in pressure ratio from about 4.8 to about 6.2 caused only a slight decrease in shroud metal temperature for a 1.29-diameter-ratio ejector. The absence of any appreciable change in temperature with pressure ratio results from the fact that at these pressure ratios internal choking prevents the established pattern of internal flow from being affected by changes in over-all pressure ratio. However, a very marked change is noted as the over-all pressure ratio is lowered to a value near 2.0. The metal temperature decreases sharply at the low secondary airflows. At an ejector diameter ratio of 1.10 (fig. 18(b)), the effect of reducing the over-all pressure ratio to about 2.0 is much less pronounced than for the higher-diameterratio ejector.

Tabulated Data

The performance curves presented in this report were plotted from data contained in tables I to III. Table I gives general information as to engine, afterburner, ejector, and test-chamber operating conditions and describes the significant ejector geometrical ratios. Temperatures measured on the primary-jet-nozzle components are given in table II (corrected for fin effect) and on the ejector shroud, in table III. Some thermocouples malfunctioned during the course of testing, and readings which were obviously in error have thus been deleted. Inspection of the values reveals that temperatures in the 120° location of the primary-jet nozzle (table II) appear abnormally low and thus questionable.

CONCLUDING REMARKS

Metal temperatures were determined on both the primary nozzle and the shroud of an ejector installed on an afterburner having exhaust-gas temperatures as high as 2990° F (3450° R). In the ejector investigated, convective cooling of the primary-jet nozzle was weak because of low secondary-air velocities over its surface. Strong cooling was not too essential, however, because of an afterburner-outlet profile that was favorable for cooling. This fact demonstrates that close attention to and control of the afterburner-outlet profile, by means of both the control of fuel distribution and the use of afterburner wall liners, is probably one of the most effective ways of ensuring satisfactory metal temperatures in the primary-jet nozzle. Higher afterburner-outlet bulk temperatures will, however, complicate the problem by leading to less favorable temperature profiles. If convective cooling is depended upon, higher secondary-air velocities over the primary-jet nozzle and use of techniques such as finning will be required. In extreme cases, convective cooling by the secondary air might be incapable of providing metal temperatures low enough to ensure structural soundness; and film cooling in some form might be required.

Leakage of hot gas into the secondary-flow passage through openings in the iris components of the primary-jet nozzle could create problems. Such leaks in the ejector investigated increased local metal temperatures by 250° F.

Rapid mixing of the primary jet with the secondary airflow prevents the shroud from benefiting as much as the primary-jet nozzle from a favorable afterburner-outlet temperature profile. As a result, the ejector shroud appears to be potentially more critical than the primaryjet nozzle. The metal temperature of the shroud, which was very sensitive

NACA RM E56K20

to secondary-flow rate, exceeded primary-jet-nozzle temperatures (1400° F) in one case when the secondary airflow was less than 7 percent of the primary-gas flow.

Lewis Flight Propulsion Laboratory National Advisory Committee for Aeronautics Cleveland, Ohio, November 21, 1956

NACA RM E56K20

	APPENDIX - SYMBOLS	. ÷
D_p	primary-jet-nozzle throat diameter, ft	۲
D _s	shroud-outlet diameter, ft	
h _a	cooling-air-film heat-transfer coefficient, $Btu/(sec)(sq ft)(^{O}F)$	
hg	primary-gas heat-transfer coefficient, Btu/(sec)(sq ft)(^O F)	4
2	distance between primary-jet-nozzle outlet and_shroud outlet, ft	4245 ⁱ
Pp	primary-jet-nozzle total pressure, 1b/sq ft abs	
Ps	secondary-air total pressure, lb/sq ft abs	Ξ.
Pl	engine-inlet total pressure, lb/sq ft abs	
P ₅	turbine-outlet total pressure, lb/sq ft abs	
₽ ₀	exhaust static pressure, lb/sq ft abs	- -
^T a,3	cooling-air (secondary-air) temperature at ejector entrance, ^O R	_ ~
Τg	primary-gas (or afterburner-outlet) bulk total temperature, ^O R	=
Tg,p	primary-gas temperature adjacent to primary-jet-nozzle surface, ^O R	±
Tm	metal temperature, ^O F	
T _{s,3}	secondary-air total temperature at ejector entrance, ^O R	-
Tl	engine-inlet total temperature (or initial secondary-air tempera- ture at plenum-chamber inlet), ^O R	
^T 5	turbine-outlet total temperature, ^O R	.1
^w a,1	engine-inlet airflow, lb/sec	
^w f,ab	afterburner fuel flow, lb/hr	
₩f,e	engine fuel flow, lb/hr	_
wp	primary-jet-nozzle (or afterburner-outlet) gas flow, lb/sec	
^w в	secondary airflow, lb/sec	• _

REFERENCES

- 1. Boelter, L. M. K., Cherry, V. H., Johnson, H. A., and Martinelli, R. C.: Heat Transfer Notes. Univ. Calif. Press (Berkley), 1948.
- 2. McAdams, William H.: Heat Transmission. Third ed., McGraw-Hill Book Co., Inc., 1954.
- 3. Forstall, Walton, Jr., and Shapiro, Ascher H.: Momentum and Mass Transfer in Coaxial Gas Jets. Meteor Rep. No. 39, Dept. Mech. Eng., M.I.T., July 1949. (Bur. Ord. Contract NOrd 9661.)

TABLE I. - OPERATING CONDITIONS

TIONS	.=

4245

· · · · · ·

----...

Ŧ

- -

Run	Exhaust	Engine-	Engine-	Engine-	Engine	Turbine-	Turbine-	After-	Ejector	Ejector
	static	inlet	inlet	inlet	fuel	outlet	outlet total	burner	primary-	primary-
	pressure, P _O '	pressure,	total temper-	airflow, ^W a,l'	flow, ^W f,e'	total_ tempera-	pressure,	fuel flow,	gas total	gas total
	<u>1</u> b	P ₁ ,	ature.	lb/sec	lb/hr	ture,	P ₅ ,	Wf,ab,	temper-	P _p ,
	sq ft abs	<u>1b</u>	T1,		10/10	^T 5, ⊤	lb sq ft abs	1b/hr	ature, ^T g,	1b sq ft abs
		sq ft abs	OR			R			°R R	bu to abb
1	517	1152	494	93.55	4 870	1569 -	2828	11,840	3415	2500
2 3	526 519	1156 1152	494 494	93.75 93.46	4850 4850	1565 1564	2824	11,800	3384 3395	2496 2491
4	520	1155	493	93.77	4890	1564	2842	12,020	3442	2519
5	497	1158	493	93.94	4860	1564	2832	11,990	3399	2509
6	490	1159	494	93.97	4860	1562	2830	11,930	3398	2510 _
7 8	1077 1091	1157 1151	495 495	93.54 93.32	4890 4865	1555	2837 282 4	11,630 11,670	3445 3 4 33	2518 <u>-</u> 2506 -
9	1113	1150	494	93.27	4875	1549.	2829	11,870	3436	2509 🗁
10	1101	1154	494	93.69	4900	1555_	2842	12,100	3435	2519
11	1100 1108	1156 1157	494 494	93.65 93.91	4930 4910	1559 <u> </u>	2854 2848	12,350 12,100	3462 3436	2530 2524
.3	520	1154	493	93.71	4840	1557	2821	11,750	3391	2409 📑
4	536	1154	493	93.83	4935	1563	2859	12,260	3454	2530
.5	544	1153	493	93.83	4935	1561	2857	12,310	3450	2529
L6 L7	512 509	1160 1155	493 493	94.13 93.75	4940 4930	1565 1563	2863 2857	12,330 12,330	3449 3462	2535 - 2530 -
8	510	1155	493 494	94.12	4930	1563	2857	12,290	3435	2530
9	502	1159	493	94.28	4915	1559	2854	12,190	3416	2527
0	1104	1157	494	93.89	4920	1552	2852	12,100	3428	2523
1	1115	1156	494	93.80	4935	1558	2858	12,120 12,120	3448	2527
22	1120 1098	1158 1152	494 494	94.02 93.40	4950 4925	1550 1556	2863 2850	12,120	3439 3453	2532
24	1089	1144	494	92.99	4910	1559	2840	12,070	3467	2513
25	1100	1153	494	93.52	4910	1554	2844	12,070	3445	2518 _
26	1099 1076	1146 1143	493 493	93.07 92,80	4875 4880	1550 1553	2828 2827	12,050	3450 3450	2507 2504
8	427	1140	507	91.53	4720	1549	2754	11,395	3361	2428
9	406	1161	508	91.45	4740	1544	2760	11,340	3387	2434
50	398	1164	508	91.36	4755	1551	2767	11,340	3439	2446
51	392 381	1160 1163	507 506	91.29 91.78	4760 4735	1554_ 1548	2769 2761	11,375 11,395	3439 3387	2444 2439
3	369	1168	505	92.22	4740	1546	2772	11,500	3376	2448
4	364	1168	505	92.19	4740	1542	2772	11,500	3394	2454
5	354	1150	520	88.33	4360	1531	2679	11,620	3371	2387
6	595	1151 1150	523 523	88.22 88.05	4340 4350	1532 1532	2677 2682	11,450 11,450	3372 3403	2385
8	983 465	1154	523	88.50	4370	1536	2693	9,110	2967	2393
9	469	1157	523	88.52	4450	1551	2731	9,400	3033	2487
0	477	1158	523	88.76	4350	1531	2682	8,910	2943	2450
1	470 472	1159 1156	523 524	88.68 88.56	4395 4395	1537 1538	2716 2709	9,155 9,110	2990 2993	2470 2467
3	473	1162)	524	88.60	4380	1538_	2701	9,155	2971	2460
4	449	1168	526	89.18	4395	1540	2710	9,055	2962	2470
5	462	1166	526	89,18	4450	1543	2737	9,205	2995	2487
6 7	465 465	1163 1165	526 526	89.24 89.18	4445 4420	1539 1533_	2736 2738	9,170 9,155	2998 3002	2489 2489
8	478	1164	526	89.15	4410	1530	2728	9,095	2992	2484
9	475 460	1164 1170	523 522	89.18 89.52	4410 4410	1527 1545	2728 2722	9,095 9,055	2992 2955	2485 2477
1	479	1161	522	89.06	4395	1543	2713	9,035	2964	2468
2	465	1176	522	89.70	4410	1543	2713	9,005	2925	2469
34	239	1132	523	86.91	4370	1553	2674 2676	9,005	3016 2990	2432 2432
4 5	240 253	1140 1138	523 523	87.36 87.31	4350 4340	1552 1551	2670	8,910 8,895	2990	2426
6	255	1137 {	523	87.40	4305	1549	2654	8,880	2945	2417
7	248	1137	523	87.28	4305	1551	2655	8,805	2960	2417

.

NACA RM E56K20

AND EJECTOR CONFIGURATIONS

Ejector secondary- air total	Ejector secondary- air total	Ejector secondary airflow,	Corrected mass flow ratio,	Diameter of primary-	diameter ratio,	spacing ratio,	Over-all pressure ratio,	total- pressure	Air- flow ratio,	Run
tempera- ture,	pressure, Ps,3, lb	w _s , lb/sec	$\frac{w_{B}}{w_{p}}\sqrt{\frac{T_{B,3}}{T_{g}}}$		D _g /D _p	ı∕Dp	Pp/P0	ratio, P _{s,3} /P _p	₩ ₈ ∕₩ _p	
^T s,3, R	sq ft abs		P V O	D _p , in.						
540 549 560	1172 1055 979	20.07 16.35 12.86	0.0830 .0683 .0544	28.46 28.46 28.46	1.103 1.103 1.103	0.7256 .7259 .7259	4.836 4.746 4.798	0.4688 .4227 .3930	0.2087 .1697 .1339	1 2 3
575 601	919 850	9.66 7.04	.0410 .0307	28.46 28.45	1.103 1.103	.7252 .7255	4.845 5.048	.3648	.1002	4 5
637 538 542 560	794 1350 1288 1207	4.98 20.33 17.49 13.55	.0223 .0836 .0725 .0570	28.44 28.43 28.44 28.44	1.104 1.104 1.104 1.104	.7257 .7263 .7261 .7261	5.123 2.338 2.297 2.254	.3163 .5361 .5740 .4811	.0516 .2116 .1824 .1413	
590 624	1098 1025	8.57 4.91	.0368	28.44 28.44	1.104	.7257 .7257	2.288	.4359	.0889	
647 542 540 550	977 810 786 734	2.64 18.62 16.91 13.78	.0118 .0773 .0692 .0570	28.45 28.44 28.44 28.45	1.103 1.293 1.293 1.292	.7255 .7264 .7264 .7264 .7262	2.278 4.805 4.719 4.649	.3871 .3241 .3107 .2902	.0273 .1934 .1751 .1427	12 13 14
559 588 623 673 540	666 604 566 529 1176	10.20 6.92 4.60 2.97 19.96	.0424 .0295 .0202 .0136 .0820	28.45 28.45 28.45 28.44 28.44 28.44	1.292 1.292 1.292 1.293 1.293	.7262 .7262 .7262 .7264 .7268	4.950 4.970 4.960 5.033 2.285	.2627 .2387 .2237 .2093 .4661	.1053 .0717 .0475 .0306 .2066	17 18 19
545 557 582 600 633	1160 1143 1098 1070 1060	16.61 13.37 9.46 6.97 4.62	.0684 .0556 .0404 .0303 .0206	28.44 28.44 28.44 28.44 28.44 28.44	1.293 1.293 1.293 1.293 1.293 1.293	.7268 .7264 .7264 .7264 .7264 .7264	2.267 2.261 2.295 2.308 2.289	.4590 .4514 .4357 .4258 .4210	.1721 .1382 .0984 .0728 .0480	22 23 24
673 700 553 559 568	1046 1010 793 708 646	2.55 1.38 19.84 15.76 13.24	.0117 .0072 .0856 .0682 .0573	28.45 28.45 28.45 28.45 28.45 28.45 28.48	1.290 1.291 1.292 1.292 1.292 1.291	.7262 .7262 .7272 .7276 .7268	2.281 2.327 5.685 5.995 6.146	.4172 .4034 .3266 .2909 .2641	.0266 .0144 .2110 .1678 .1411	26 27 28 29
592 603 646 707 743	579 524 480 433 476	9.63 6.97 4.66 2.64 2.93	.0426 .0312 .0215 .0127 .0151	28.48 28.47 28.47 28.47 28.47 28.45	1.291 1.291 1.291 1.291 1.291 1.284	.7268 .7271 .7267 .7267 .7255	6.234 6.402 6.636 6.743 6.743	.2369 .2148 .1961 .1764 .1994	.1027 .0740 .0492 .0279 .0322	32 33 34
735 719 731 688 664	518 905 463 502 528	2.83 2.92 2.74 4.06 5.35	.0146 .0148 .0150 .0214 .0281	28.45 28.45 27.04 27.04 27.04	<pre>\1.278 1.279 1.286 1.287 1.287</pre>	.7258 .7258 .7245 .7245 .7234	4.008 2.434 5.282 5.302 5.136	.2172 .3782 .1885 .2018 .2155	.0312 .0322 .0303 .0449 .0591	37 38 39
630 605 592 597 611	570 629 703 1004 858	7.49 10.32 14.50 14.42 11.23	.0380 .0513 .0715 .0711 .0557	27.04 27.04 27.04 27.04 27.04	1.288 1.288 1.288 1.097 1.097	.7234 .7245 .7245 .7237 .7237	5.254 5.227 5.200 5.500 5.382	.2131 .2550 .2858 .4065 .3450	.0827 .1141 .1602 .1584 .1233	42 43 44
630 673 684 693 688	815 732 704 645 590	8.77 5.38 4.05 4.05 3.90	.0441 .0280 .0228 .0214 .0206	27.04 27.04 27.04 27.04 27.04	1.097 1.097 1.097 1.144 1.204	.7237 .7237 .7237 .7282 .7308	5.353 5.353 5.197 5.232 5.385	.3274 .2941 .2834 .2596 .2382	.0962 .0591 .0445 .0445 .0427	47 48 49
695 693 588 597 610 674 754	544 570 728 691 639 524 454	3.85 3.85 15.81 13.99 10.84 5.50 2.44	.0208 .0208 .0786 .0701 .0550 .0295 .0138	27.04 27.04 27.04 27.04 27.04 27.04 27.04 27.04	1.252 1.207 1.288 1.288 1.288 1.288 1.288	.7322 .7311 .7245 .7245 .7245 .7245 .7245 .7245	5.151 5.310 10.17 10.13 9.587 9.478 9.746	.2204 .2309 .2993 .2184 .2634 .2168 .1878	.0423 .0421 .1780 .1568 .1216 .0616 .0274	52 53 54 55 56

...

-

트한번 웹사이터 NUL (4.245): 이 이용하세요.

...

111. Internation

i i sida e dalla

a day of the estimate lifts as

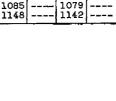
1.2

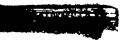
12

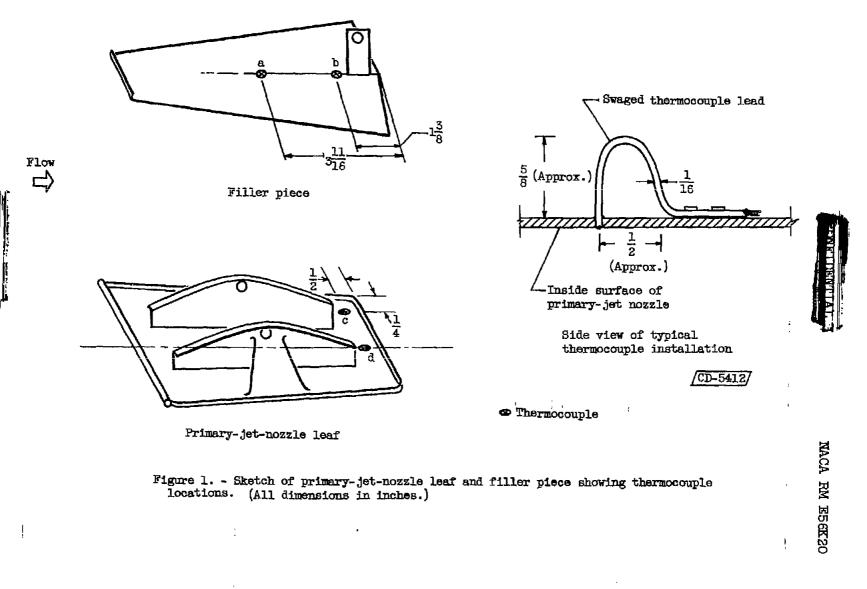
TABLE II. - METAL TEMPERATURES ON PRIMARY JET NOZZLE

Run			c	ircum	feren	tial	locat	ion,	deg					
		0			_	120			240	240				
	F113	Ler	Lea	ıf		ler			Filler Leaf					
						rmoco								
	a	Ъ	c		a Ietal	b	c	<u>d</u>	a	b	<u>c</u>	đ		
1	1528 1610		$1268 \\ 1283$	1342 1351			1024 1030		1575		1284 1215			
23	1593		1297	1354	1029	986	1050		1587	1536	1,213			
4	1656 1646		$1311 \\ 1319$	1373 1382		1027 1078	1085 1099		1539 1563	1492 1532	1211 1204			
6	1643		1322	1 390	1123	1150	1139	.	1566	1545	1233			
7	1621		1279	1331	1002	943	1030		1570	1518	1179			
8	1637 1666			1332 1361	1021 1046		1027 1046		1565 1579	1514	1180 1188			
10	1676		1318	1381		1030				1541				
11	1669			1394		1091				1566				
12 13	1633 1598		1313 1255	1386 1344	1091 974		1101 1017		1576	1535 1536				
14	1631		1299	1383	999	956	1026		1621	1585	1195			
15	1646		1325	1397	1036	993	1047		1620	1589	1220			
16	1675			1416		1039			1628					
17 18	1661 1673			1417 1419	1056 1090					1611	1268			
19	1667 1571		1378 1211	1424		1171 878	1160 967		1590 1540					
20				1299										
21 22	1610		1268 1287		993 1014		1014 1025		1584 1583					
23	1647		1300	1362	1037	1011	1048		1575	1539	1216			
24 25	1651 1652		1303 1305	1360 1362		1036	1051		1573 1554					
26	1638		1287		1085	1143	1075		1571	1525	1235			
27	1620		1339	1390	1118	1154	1102		1585	1549	1262			
28 29	1422 1501			1304 1361		830 917	978 1046		1489 1542		1051			
30	1516			1387			1062		1553					
31	1514			1395		1052					1165			
32 33	1511 1523			1392 1414		1112 1174			1548 1560		1168 1185			
34	1438			1433	1096		1205		1541	1515	1195			
35	1482		1098	1140	1601		1254		1192		1124			
36	1466			1124							1098			
37 38	1456 1362		1057	1114			1208 1155		1135 1113		1082			
39	1423		1084	1078			1183 1100		1094 1037		1063			
40	1356		1052	1021										
41 42	1384		1028	1002	1400		1102 1094		1017		1012			
43	1333		960	895	1401		1077		933		1002			
44 45	1291 1337		922 952	878 920	1385 1383		1045		932 1000		991 924			
			· .				ļ							
46 47	1336		962 1021	941 999	1372 1361		1057 1163		1037 1131		1047 1189			
48	1366		1037	1026	1355		1079		1173 1121		1277			
49 50	1366 1364		1037	1026 1031	1340 1333		1073 1083		1120		1099			
51	1364			1025	1332		1088		1072		1046			
52	1364		1056	1025	1322		1067		1098		1109			
53 54	1331		918 927	859 873	1389 1374		1063		940 964		994 1007			
55	1357		963	904	1357		1064		988		1010			
56 57	1367		1032 1080	990 1060	1346 1339		1074		1085 1148		1079			
L		Ī	1-200			L	L	L	L	L		·		

A DRAW AND A




TABLE III. - EJECTOR-SHROUD METAL TEMPERATURES


Run	Circumferential location, deg																	
			0							20					2	40		
1		T	. – –	r —	r				T	coupl	F	·		 			r	<u> </u>
	<u>a</u>	b	c	đ	e	f	a	b	c	d	0 F	f	a	b	c	<u>d</u>	e	f
L	<u> </u>	r	<u>,</u>				, .	·	τ <u> </u>	ture,		r			<u> </u>	1	T	
2	195 230	215	310	480 695	365	370 505	205	285 450	590	765 9 35	400	630 785		165	355	495		370
3	520 680	735		1170 1170	510 630	935 975	660 755	560	660 1130	1115 1270	545	955 1090	440	330 470	780	915	480	685 950
5	925			1370	835		950		1315	1425	845	1260		605	1255		925	1150
6	1125	1200	1420	1450	1065	1420	1095	1240	1455	1520	1065	1395	1180	730	1400	1520	1090	1350
7	190 215	210	325	370	370 395	410	185	265 340	600 695	750 845	405	620 685		160 180	425	555 645	350 380	
9	315	425	640	635	455	630	390	635	865	1025	510	815	350	295	715	860	475	645
10	470	705	925	925	580	905	415	825	1035	1180	625	985	560	410	960	1080	655	895
11	475	825	1165	1135	780 895	1155	490 525		1260	1380	785	1195		505 585	1200		905	1140
13 14	170 190	195 210	240 275	210 250	245 270	265 305	165 180	200 245	330 435	475 590	395 525	440 525	170	150 155	325 375	410	345	355 390
15	215	245	355	300	305	380	210	305	585	750	690	665		175	500	460 605		
16	180	330	545	440	420	555	300	485	820	965	905	885		250	735	870	565	715
17 18	450	815	830	690 970	615 865	820	465	715 940	1040	1150	1075	1070	560 805	410 570	975 1170	1145	735	965 1160
19 20	870 200	1035	1270	1185 320	1060	1300	855 175	1145 275	1370 370	1420 350		1330 370	1080			1505		1310 360
	1	1	1					1	ł	1	1	1	1		1	ł	1	
21 22	210 245	280 345	405 420	355 385	340 410	400 450	185 200	310 345	415	375 395	375 415	415 460		205 235	390 420		350 425	420 470
23 24	270 310	360	435 480	385 430	540 620	470 520	235 255	405	525 590	420 475	490 550	555 635	270	255 275	530 595	420	525 620	570 635
25	315	420	510	430	665	535	285	485	655	535	640	705		320	545	435	690	
26	360	450	525	460	725	575	355	500	785	685	745	830	375	345	685	485	775	745
27 28	380 170	455 185	535 220	455 205	775 230	590 260	415 145	535 195	860 325	755 4 10	840 355	920 350	440 170		745	540	865 315	815 330
29 30	205 255	225 270	270 330	265 300	270 320	325 390	175 230	260 370	435 580	550 690	535 695	480 615	200 230		395 450	495 555	385 410	410 425
31	375	390	530	445	485	570	360	560	785	900	965	845	285		655	775	520	625
32	510	560	590	650	740	805	570	730	955	1060	1175	995	370	305	835	955	710	815
33 34	720 990	810 1100	890 1200		1010 1290	1065 1300	835 1065	970 1255	1165 1060	1245 1430	1350 1505	1170 1350	610 1030	465 730	1075 1310		1010 1295	1065 1315
35			1150	1130		1215		685	1315	1445	1220	1315	730		850			
36			900	925		1050		535	1185	1300	1000		400		720	1135	1090	
37 38			580 1070	535 1060		630 1070		330 535	610 1150	425 1225	795 835	670 1085	310 630		480 705	550 1100	765 795	
39 40			905 755	930 765		955 795		460 370	1060 880	1140 970	680 545	985 805	550 430		650 580	1015 915	670 585	
41			520	545		600		260	685	790	470	610	320				525	
42			295	345		405	}	210	460	570	385	410	245		480 340	780 600	430	
43 44			205 270	235 310		280 310		185 165	300 275	395 420	320 305	305 280	205 560		235 660	380 1065	355 605	
45			430	470		460			405	630	350	340	740			1235	855	
46			670 979					250	595	835	415	485	830				1060	
47 48				1170		1130			1140				975 1110		1050		1280	
49 50			1010 875			990 890			1130 1160			1060				1350 1285	1170 1060	
51			755	1				[1145			1080	760			1175	890	
52		[770	790	[780	(585	1170	1265	905	1110	865		1000	1305	1080	
53 54			170	190		220 235		155 165	290 350	400 485	315 335	275 310	235 270		435 520	695 800		
55 56			225 420	250		280 520		200 470	490	620 1095	365 635	410 920			650	925 1180	565 915	
57			\$10							1335		1085	935			1305	1080	

. CK-3,

4245

.

4 1

.

al <u>service</u> i

sje o

..

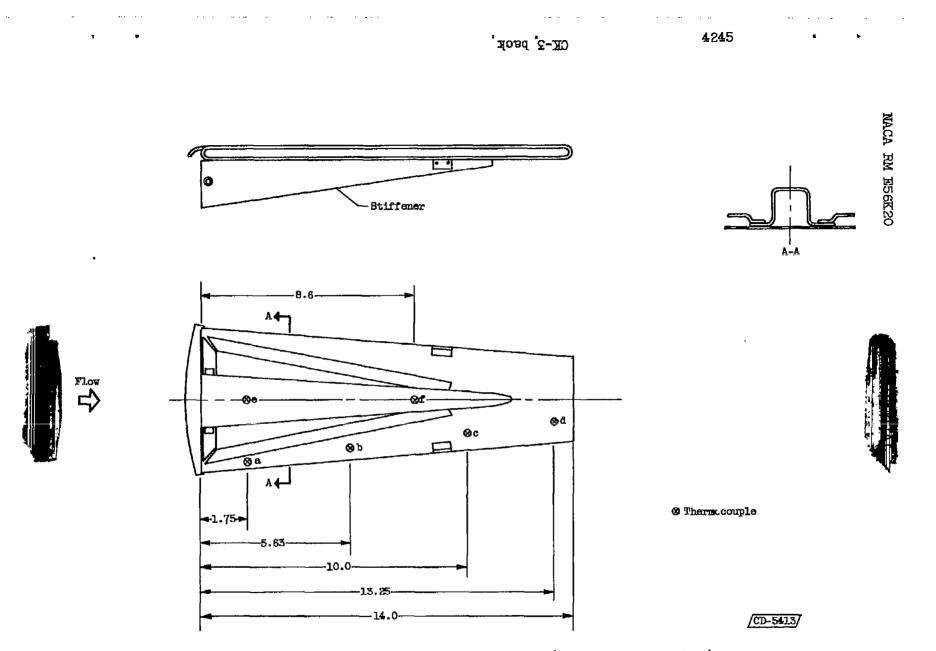


Figure 2. - Shroud leaf showing thermocouple locations. (All dimensions in inches.)

.. I

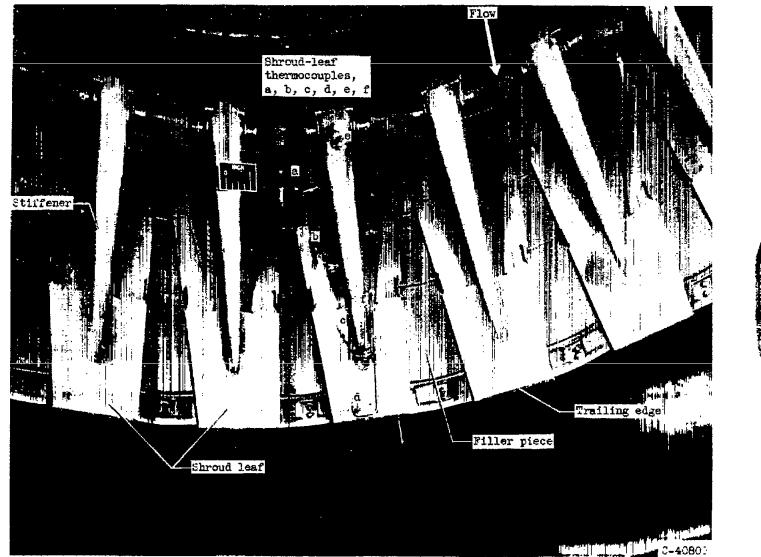


Figure 3. - Inside view of shroud.

۴

20

NACA RM E56K20

4**54**2

..

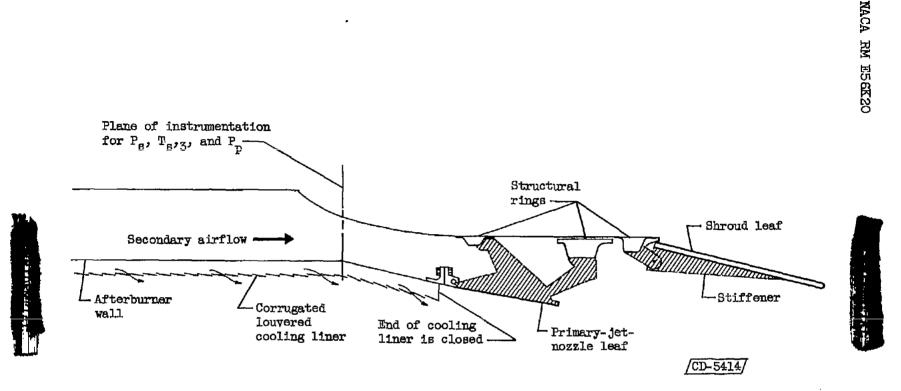
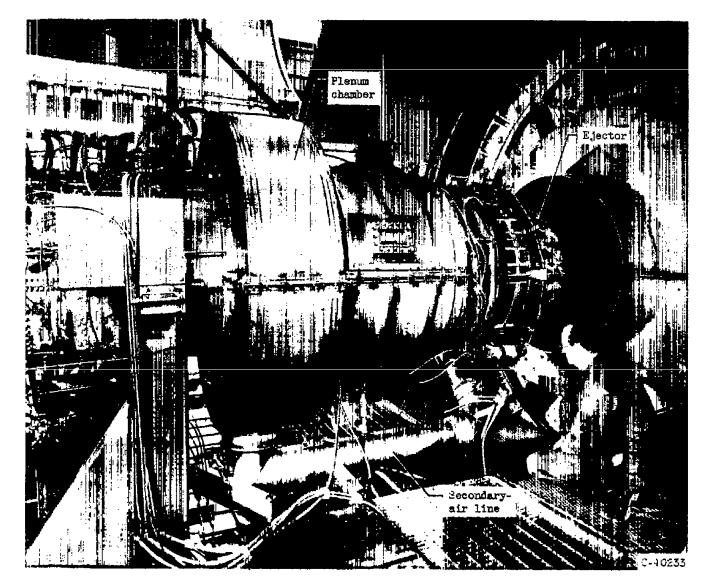
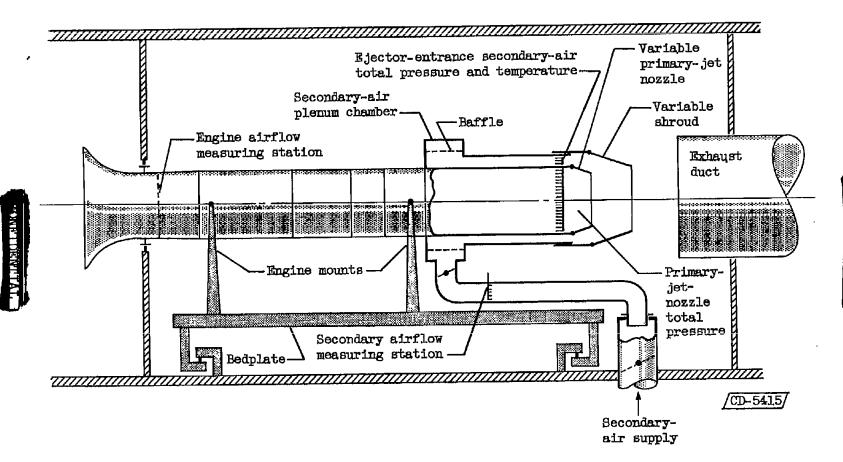
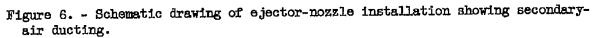


Figure 4. - Schematic drawing of iris-type ejector nozzle showing relative positions of primary-jet-nozzle and shroud leaves and regions of secondary airflow passage (shaded areas) partially obstructed by actuating mechanism.

1.3

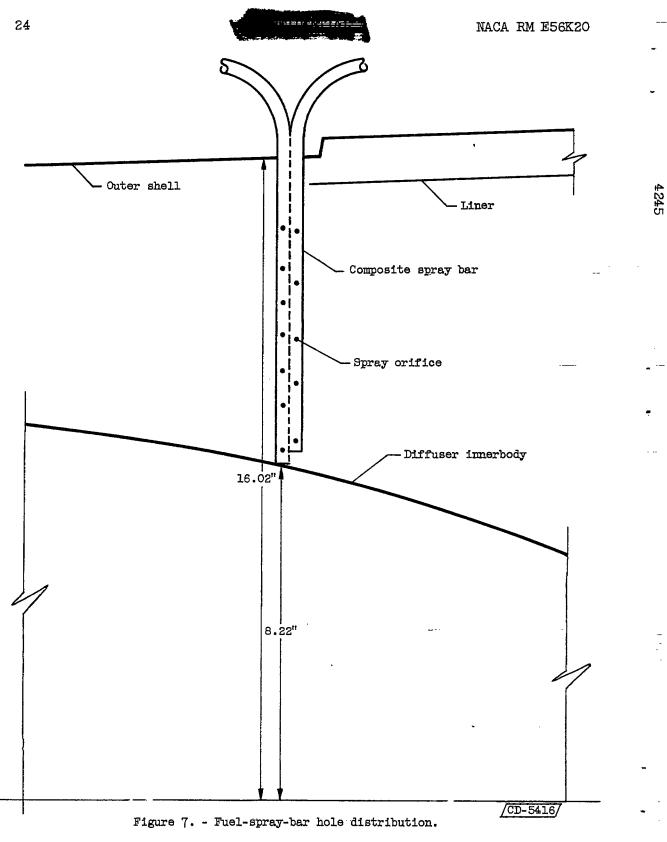


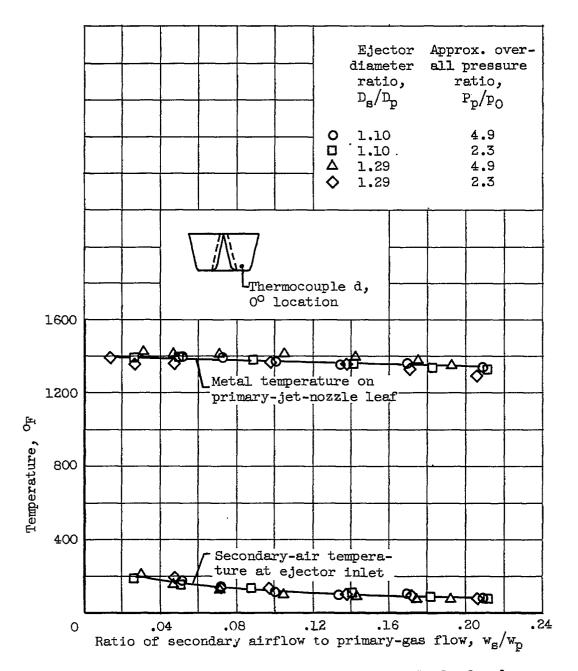

Figure 5. - Exterior view of ejector installation in altitude test chamber.

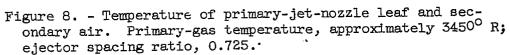

ł

22

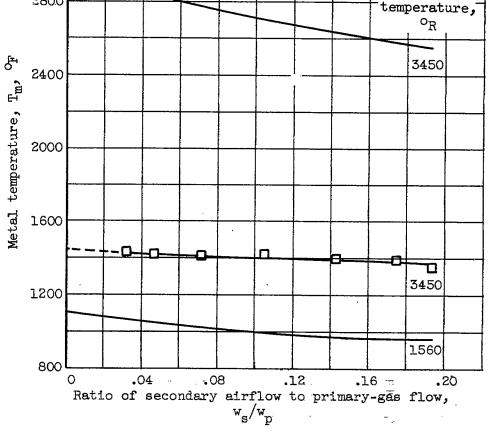
NACA RM E56K20

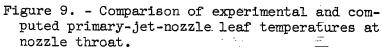

÷5¥2₹





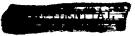
ANTE DENTITAL

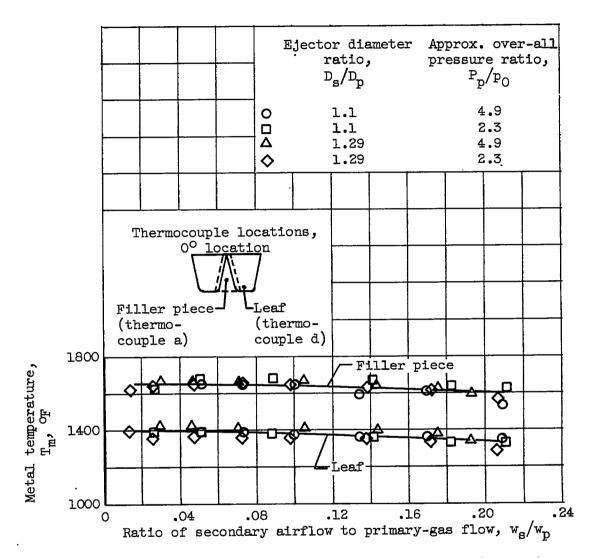


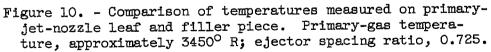


- Computed

- Experimental; thermocouple d, 0⁰ location


Primary-gas





3200

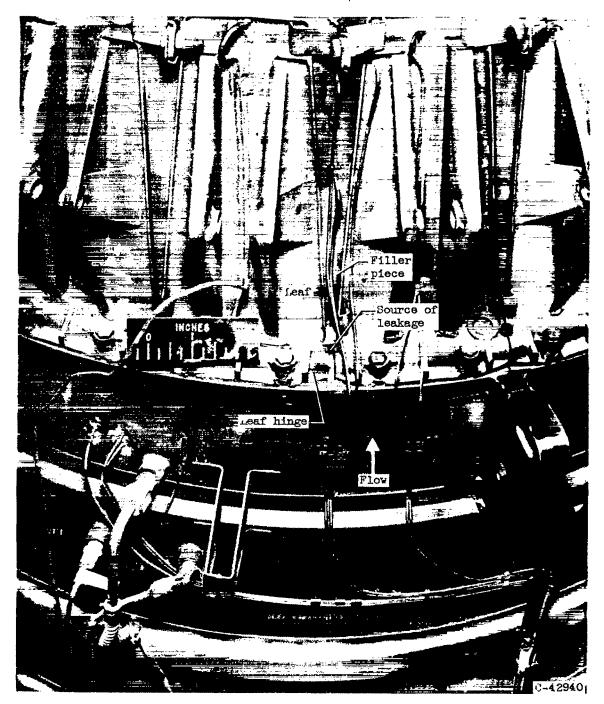


Figure 11. - Primary-jet-nozzle exterior showing source of primary-gas leakage.

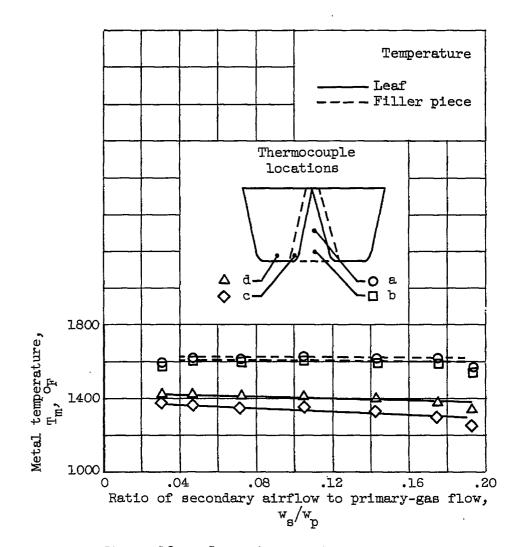
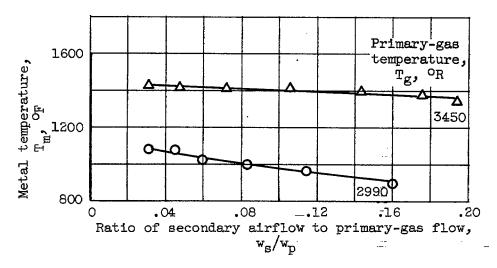
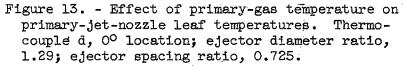
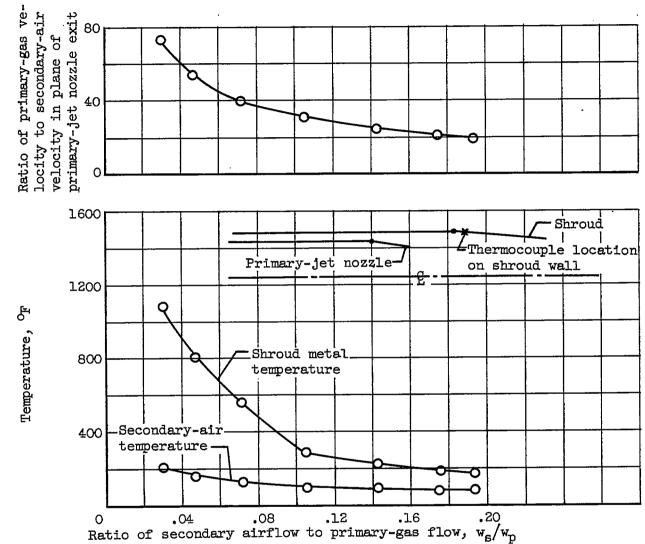
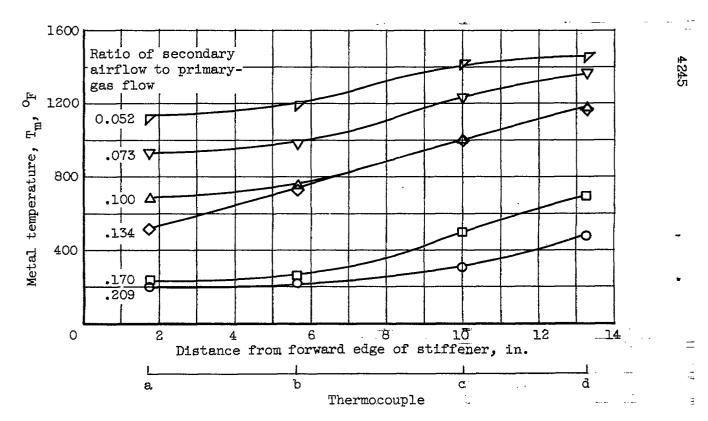
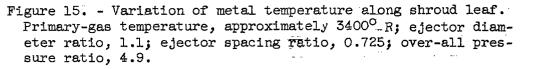




Figure 12. - Comparison of temperatures at various thermocouple locations on primary-jet nozzle. Primary-gas temperature, approximately 3450° R; ejector diameter ratio, 1.29.


Figure 14. - Effects of mixing of secondary air and primary gas on ejector-shroud heating. Primary-gas temperature, 3450° R; ejector diameter ratio, 1.29; over-all pressure ratio, approximately 4.9.

- 2

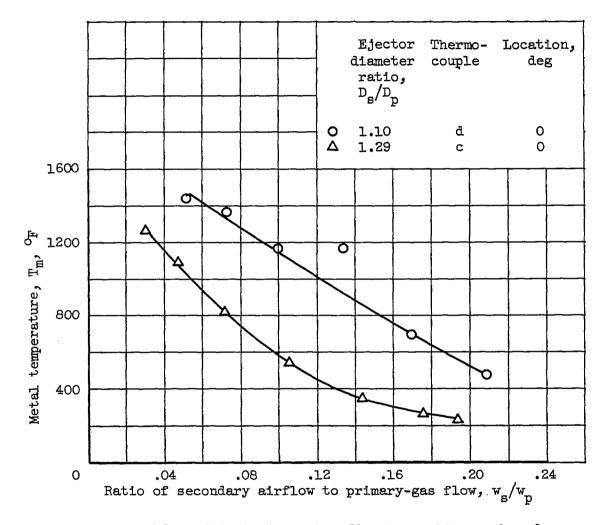
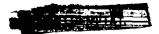



Figure 16. - Effect of ejector diameter ratio on shroud metal temperature. Primary-gas temperature, approximately 3400° R; over-all pressure ratio, approximately 4.9.

•

<u>___</u>

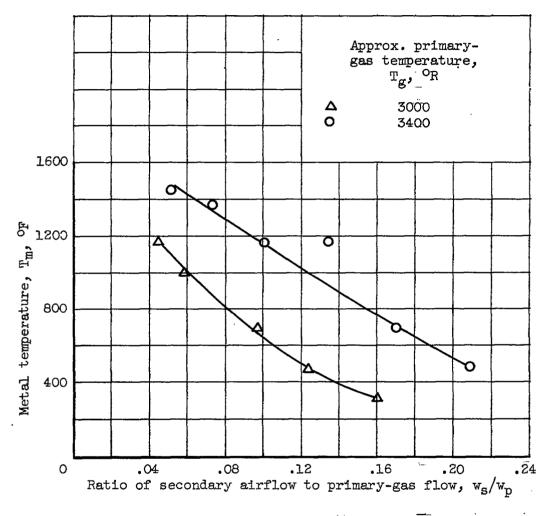
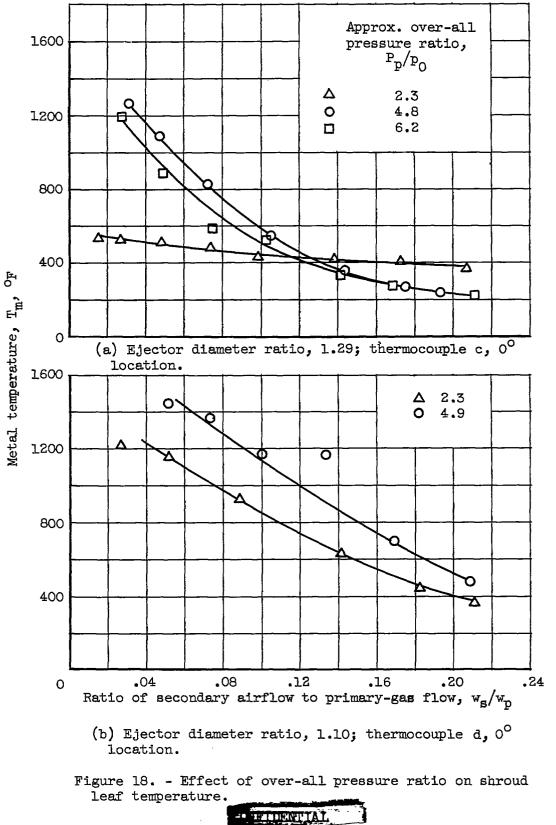



Figure 17. - Effect of primary-gas temperature on shroud leaf temperature. Ejector diameter ratio, 1.10; thermocouple d, 0° location.

PITORSTILLA.

NACA - Langley Field, Va.