THCFITICAL M MMORAGOUKTS

NATIONAL ADVISORY COMYITMTHPOR AHROKAUTIOS

NO. 934

IRPEFGATION OW THR MFTHODS OF:GGAS'DYNAMIOS' TO' WATHR FIOFS WITH BRHPT SURTAOTI

By Hrnat'Prei awèry

Institutut für Aerodynainik
IHIdenössi sohe Téchnis sche Hochachule. Zürith
 1月4\%
428
482

> Hashington March 1940

$$
4 \div-.
$$

The work here presented was auggested to me by Dr. J. Ackeret, and was carried out at the Institut fur Aerodynamik der \mathbb{H}.T.H. Problems in the field of supersonic flowe occur with increasing frequency in recent times. It is of interest firet to investigate as to how far the relation' extends between the flow of a liquid.on a horisontal bottom with the two dimensional flow of a compressible sas. Secondly, problems in the field of water flows may be solved directly by the methods of the theory of ges dynamics* rhich, in recent yerrs, have been highly developed.

The present vork wrs undertaken with two objects in viev. In the first place. it is consicered as a contribution to the water analogy of gas flows, and secondly, a large portion is devoted to the seneral theory of the twodimensional supersonic flows. An attempt has been made to bring the latter Into such shape and detail as to facilitate as much as possible its application by the enfineer, who is lees familiar with the subject.

Here, I should like to sxpreas my thanks to Dr. Ackeret for his encourcqement nnd rid, and to Dr. de Hnller, Assistnnt at the Institut für Aerodynnmik, for his friendly support.

Translntor's note: The term "gas dynamics" is defined in the Introduction.

MATIONAL ADVISORY COMMITr飞飞 FOB AERONAUTICS

TECHNICAL MEMORANDUM NO. 934

APPLICATIOB OF THE METHODS OR GAS DYNAMICS TO
 WATER FLOWS WITH FREE SURFACT*
 PART I. FLOTS WITH NO RNFRGY DISSIPATION**

By Hrnst Preiswerk

IBTRODUCTIOB

Let there be considered a gas at rest in space or a portion of space, and let a piston or a movable portion of the boundary set the gas in motion. In the case of an incompressible fluid, the latter will begin to flow simultaneously over the entire space at the Instant the disturbance is applied. With a compressible fluid the case is otherwise. The effect of a disturbance first shows up in a restricted portion of the space only at a definite time interval after the start of the disturbance. If the latter ia small, the speed of propagation of its effect is equal to the velocity of sound in the qas. In an ideal gas. it is proportional to the square root of the absolute temperature \boldsymbol{T} and depends only on the latter.

If the velocity of flow in afluid is small compared to the velocity of sound, the fluid may be treated as incompressible. The relation between velocity c (m/s) and pressure $p\left(\mathbf{k g} / \mathbf{m}^{\mathbf{a}}\right)$ at various pofnts of the flow, $\mathbf{i s}$ in the case of absence of friction, given by the Bernoulli equation. As soon, however, as the velocity differences at various points of the flow attain the order of masnitude of the velocity of sound, the compressibility of the sas may no longer be noplected. Density \boldsymbol{P} (mass per
 that the laws of thermodynamics must be taken Into account. Thethoory of such flow comes under Gpes Dynamics (references 1 and 7).

[^0]Depending on whether the flow velocity $\mathbf{1 s}$ smaller or larger than the velocity of sound, we speak of a subsonic and a supersonic flow, respectively, the two kinds being essentially. different in character. They may occur side by side in the same flow since the velocity c and the sound velocity a in general vary from point to point. The quotient velocity of flow per velocity of sound for a definite point of the flow is denoted as the local Mach number $\mathbb{M}=$ chr (reference 4). For $K<1$ the flow is subsonic: M $>$ l, supersonic. The subsonic flows in the neighborhood $n f$ $\boldsymbol{M}=1$ have as yet been little investigated. To are far bettor acouaintod with the proportion of supersonic flo rs, though chiefly the two-dimonsional flows:*

Eetvien the variables, pressure, temperature, nad densitu, there holds tho equation of state for an ideal sag

$$
P=g \mathrm{H} \rho T
$$

where $\boldsymbol{P}\left(\mathbf{k g} \mathbf{m} / \mathbf{k} \boldsymbol{5}^{\circ}=\mathrm{m} / \mathrm{o}\right)$ is Ω.constant that $\mathbf{i s}$ different for each Erse. By the addition of hoot, compression, and expansion, all possibiestrtos may bo attained in the $5 \boldsymbol{z}$. If, however, boat is noithor added nor token awry, and in the ans itself no heat arises through friction then, in addition tn equation (I), the following adiabatic equations hold betwuon tho state variables:

$$
\begin{align*}
& p / p_{0}=\left(\rho / \rho_{0}\right)^{k^{2}} \tag{Ra}\\
& P I P=\left(T_{0}^{\prime} / T_{0}\right)^{1 / L-1} \tag{2b}\\
& p / p_{0}=\left(T / T_{0}\right)^{k} / k-1 \tag{2c}
\end{align*}
$$

where Do, Po, To is pony reference state, and k is constank for an ideal $\mathbf{5 s s}^{\boldsymbol{s}, ~ b e i n g ~ t h e ~ r a t i o ~ o f ~ t h e ~ s p e c i f i c ~}$ heat rt constant pressure ($\mathbf{c}_{\mathbf{D}_{2}}$) to the specific heat at constant volume (o_{V}): This case of adiabatic change of atrto is the one that obtains in an $\mathbf{1 d e n l}$ flow (no friction, no addition of hent from the outside, heat conduclion nat heat radiation in the flow itself notifiable). As reference state in \boldsymbol{n} flow tinero is generally chosen the stntent n point of rest.

In order to be able to apply readily the energy aquation to thermal processes. there is introduced a further _ -
*1) Three-dimensional flows: references 6. 8. 20., 26.. 29.
2) Two-dimensional flows: references 1 (or 2), (pp. 308322); 3, 7 (pp. 407-444), 14, 15, 17, 18, 27. .
3) Transition region of subsonic and supersonic flows: references 9, 14 (pp. 57-67), 28, 30.
state variable, namely, the heat content 1 , defined by $1=\mathbf{c}_{\mathbf{p}} \boldsymbol{T}$. (in. $\mathbf{k g} \mathrm{m} / \mathrm{kg} 3^{*}$. Let the heat content at a point of reat be $\mathbf{I}_{\mathbf{o}}$. The flow velocity at an arbitrary point (1, P, T, P) of the flow is then computed from the energy equation to be

$$
\begin{equation*}
c^{a}=2 g\left(1_{0}-1\right)=2 g c_{p}\left(T_{0}-T\right) \tag{3}
\end{equation*}
$$

Transforming with the aid of equations (1) and (2)

$$
\begin{equation*}
o^{a}=\frac{2 k}{k-1} \frac{p_{0}}{\rho_{0}}\left[1-\left(\frac{p}{p_{0}}\right)^{\frac{k-1}{k}}\right] \tag{3a}
\end{equation*}
$$

This equation gives the relation between the pressure and velocity for the compressible adiabatic flow and replaces the Bernoulli equation. To a first approximation, ieee., for small Mach numbers, it goes over Into the Bernoulli equation. Bor the velocity of sound, ma have

$$
\mathbf{a}^{2}=\mathrm{d} \underline{1} / \mathrm{d} p \text { (reference } 13, \mathrm{p} .536 \text {)(4) }
$$

or, using equation (aa):

$$
\begin{equation*}
a^{a}=k \frac{p}{\rho}=51 r \quad T \tag{Aa}
\end{equation*}
$$

From (Ba) and (Aa) there is obtained:

$$
M^{2}=c^{2} / a^{2}=\frac{2}{k-1} \frac{D_{0}}{\rho_{0}} \frac{\rho}{p}\left[1-\left(\frac{p}{p_{0}}\right)^{\frac{k-1}{k}}\right]
$$

From the adiabatic 'equation (aa)

$$
\frac{p_{0}}{P O} \frac{p}{p}=\left(\frac{p_{0}}{p}\right)^{1-\frac{1}{k}}=k^{\frac{p o}{p}}{ }^{\frac{k-1}{k}}
$$

*The heat content is usually: expressed in keal/kg, Many computations are simplified, however, if the heat is consistently expressed in mk instead-of kcal. The specific heats cp and c_{v} must then be given in mkg/kg instead of in keal/kg ${ }^{\circ}$. The carrying along of the factor $A=1 / 427$
 In what follows, this assumption will everywhere be used.
and substituting in the above equation and solving for $\mathbf{p o p}_{\mathbf{o}}$. we have

$$
P O=p\left[1+\frac{k}{2} \frac{-1}{2} \mathbf{m}^{a}\right]^{\frac{\mathbf{k}}{\mathbf{k}-1}}
$$

Expanding the brackets into a series there is obtained:

$$
p_{0}=p\left[1+\frac{k}{k-1} \frac{k-1}{2} m^{2}+\frac{k}{k-1}\left(\frac{k}{k-1}-1\right) \frac{1}{1 \times 2}\left(\frac{k-1}{2} w^{2}\right)^{2}+\ldots\right]
$$

$$
p_{0}-p=p\left[\frac{k}{k-1} \frac{k-1}{2} M^{2}+\ldots\right]
$$

The common factor $\mathbf{m}^{\mathbf{a}} \frac{\mathbf{k}}{2}$ can be taken outside the brackets $p_{0}-p=p \frac{k}{2} M^{a}\left[1+\frac{1}{4} M^{2}+\frac{1(2-k)}{3!2^{2}} M^{4}+\frac{1(2-k)(3-2 k)}{4!2^{3}} M^{6}+\right.$

Consider

$$
\frac{P}{2} c^{a}=\frac{\rho}{2} \frac{c^{a}}{a^{a}} \cdot a^{a}
$$

Substituting $\mathbf{a}^{\mathbf{a}}$ from equation (Aa):

$$
\frac{P}{2} c^{a}=\mathbf{k}^{a} k \frac{p}{2}
$$

We thus have, finally

$$
\begin{equation*}
p_{0}-p=\frac{\rho}{2} c^{a}\left[1+\frac{1}{4} M^{a}+\frac{1(2-k)}{3!2^{2}} v^{4}+. . .\right] \tag{5}
\end{equation*}
$$

For $\mathbf{M} \approx 0$, the above becomes the Bernoulli equation $\frac{\rho}{\boldsymbol{C}} \mathbf{c}^{\mathbf{a}}=\mathrm{Po}-\mathrm{p}$. A better approximation is $\frac{\mathrm{P}}{\mathbf{2}} \mathbf{c}^{\mathbf{a}}=\left(p_{\mathbf{0}}-\mathbf{p}\right) /$ $\left(1+\frac{1}{4} \mathbb{X}^{\mathbf{2}}\right)$. The first two coefficients, 1 and $\mathbf{I} / 4$, in the series are independent of k. For $k=1.4$, the next two coefficients are $1 / 40$ and 1/1600.

We shall now bring out an important property of the supersonic flows. Let us consider first a parallel flow with constant velocity c. The velocity of sound core-
sponding to the temperature of the gas also has the same value over the entire flow plane. If a small cylindrical obstacle is situated in such a supersonic flow, the digturbance produced by the obstacle is propagated with respoct to the. moving gas rith the local sound velocity. The raves are circular cylindrical in siape (fig. 1). Let the obstacle be located at point P. If the wave center K_{I} is at point X, a time interval $t=x / C$, has passed since this wave arose. It then has the radius $r=a t=$ $a x / c$. At the point P such waves arise continuously. All of them have as their common envelope two atraight rays, the Mach rays, which form vith the direction of flow the Mach angle $a ;$ sin $\alpha=r / x=a / c$. If the obstacle at P is small, the intensity of the circular waves is small to a highor order. Only along the liach rays are tho circular waves denso enough for tho effoct of the disturbanco to be of the order of magnitude of the lattor. The effect of a disturbance at P is propasated only along the Mach rays through P. Nov instead of a parallel flow, te shall consider a general supersonic flow. The flow velocity and the sound velocity vary from point to point. For each sufficiently small partial rezion of flov tho same considerations as above are valid, tho direction and Mach angle varying only from point to point. The disturbance arising from a small obstacle ot P is now propacated alone curved Iinos (fig. 2), those boins known as Mach linog. For each flow there are two familios of Mach linos. All effocts arisins from the boundary of tho flow are evidenced along those lines of the flow.

It is poseible with liquid fluids (rater) to produce flows that show a far-reachins analosy to the dimensional flows of a compressible gas (references 5, li, l3 (p. 537), 21, 22, 23, and 24).
A. flow of this kind is obtained if mater is allowed to flow over a horizontal bottom under the effeot of gravity. The surface of the water is assumed to be free. At the sides it must be bounded by vertical walls or it must flow into water of a definite depth at rest. The fired vertical walls correspond to the boundaries of the gas flow. A channel with horizontal bottom and rectancular crosa section with variable. $\begin{gathered}\text { idth, the axis of mhich need }\end{gathered}$ not be rectilinear, is an example of this trpe of boundary. The water flowing into water at rest corresponde to a fres fas jet. An open sluice, from which the water flows out, is an example of the second boundary condition. The bottoms of the upatream and dopnatream water must lie in the same horizontal plane.

The volocities that occur in such flows aro very small in comparison $\begin{gathered}\text { ith the sound velocity in water }\end{gathered}$ (about $1,430 \mathrm{~m} / \mathrm{s}$). The Iatter plays no part at all in the considerations that follow: It is. another velocity which is analogous to the velocity of sound in a gas.

In the present work only stationary flows rill bo inveatigated. The free upper aurface of the water is then a fixed surface in space. The water depth h varies from point to point of the flow. For each depth there exists
 which depends on the depth alone. On the basis of this wave velocity the water flows described may be dividod into tro groups which, as in the, case of the gases, differ essentially in their properties. If the mater volocity is less than $\sqrt{\mathrm{gh}}$, tho mater will be said to "stream" if sreater than $\sqrt{g h}$, the rater will bo said to "shoot."

PART I. FIOWS TITH NO ENERGY DISSIPATION
Dtfferential Equation of the Tater Flow

1. Fnergy Equation

It rill be assumed that the flow of the water is frictionless so that conversion of erergy into heat is excluded. The onersy equation then simply riates that the sum of the potenticl and kinetic energy of a water particle is constant during its rotiov.

Let ins congider a flow filament (fig. 3) which passes through the point Jo. z_{0} of the initial cross section $x=0$. Along this filament, between the pressure p and the velocity c, there obtaing the Bernorilif oquation

$$
\begin{equation*}
p+\frac{\rho}{2} c^{a}+\rho g z=p_{1}+\frac{\rho}{2} c_{1}^{a}+\rho g z_{1} \tag{6}
\end{equation*}
$$

On tho surface of the water p is constant and equal to the atmospheric pressure p_{B}. In what follows we may, rithout orror, set this equal to zoro since only proseure differences are of physical significance in tho case of incompresaible filors. The magnitudes denoted with the subscript 1 refor to an arbitrary but fixed point of the flow filament (reforence point): The magnitudes without subscript'refer to a variable point. If the water flows out from an infinitoly ride basin, then the velocity in
the basin is $c_{0}=0$. Also, the curvature of the free surface is gero: The plane $x=0$ is assumed to lie in this region. We choose the point x_{0}, J_{0}, x_{0}. as reference point. The corresponding mater depth is denoted by h_{0} and $i s$ at the same time the maximum depth oqcurring.

For the above reference point, the Bernoulli equation reads:

$$
p+\frac{p}{2} c^{a}+p g z^{k}=p_{0}+p z_{0}
$$

from which

$$
\begin{equation*}
c^{a}=2 g\left(z_{0}-z\right)+2\left(p_{0}-p\right) / p \tag{7}
\end{equation*}
$$

We now make a simplifying asaumption, namely, that the vertical acceleration of the water is negligible compared with the acceleration of jravity. Under this assumption the static pressure at a point of the field of flow depende linearly on the vertical distance under the free surface at that positiot:
and

$$
\begin{equation*}
p_{0}=p g\left(h_{0}-z_{0}\right) \tag{8a}
\end{equation*}
$$

$$
\begin{equation*}
p=\rho g(h-z) \tag{8b}
\end{equation*}
$$

The above substituted in (7) ;ives, finally,

$$
\begin{equation*}
c^{3}=2 g\left(h_{0}-h\right)=2 g \Delta h \tag{9}
\end{equation*}
$$

The energy equation (9) holds for the flow filament passing through yo and y_{0} at $x=0$. Since, however, at $x=0$, all the atream filaments that lie one above the other, have the same h_{0} and for all of them, $c_{0}=0$; and since equation (9). does not contain the coordinate y, the velocity c at x, y is constant over the entire depth and is given only by the differenco in height Δh between the total head and the free level, Δh being, at most, equal to h_{0}. The maximum attainable velocity therea fore is $c_{\max }=\sqrt{2 g h_{0}}$. Tho energy equation may thus be written

$$
\begin{equation*}
\left(c / c_{\max }\right)^{a}=c^{a \cdot / 2 g} h_{0}=\Delta h / h_{0} \tag{9a}
\end{equation*}
$$

In a gas the maximum velocity is $c_{\max }=\sqrt{2 g i_{0}}$,
and equation (3), corresponding to (9a), becomes:

$$
\begin{equation*}
\left(c / c_{\max }\right)^{a}=c^{a / 2 g} 1_{0}=\Delta i / 1_{0}=\Delta T / T_{0} \tag{10}
\end{equation*}
$$

From these tro equations it may be seen that the ratio of the velocity to the maximum velocity for the water and gas flows becomes equally large if

$$
\left(h_{0}-h\right) / h_{0}=\left(T_{0}-T\right) / T_{0}
$$

This is the case for

$$
h / h_{0}=T / T_{0}
$$

With respect to the velocity there exists tinerefore an anal0 ogy between the two flows if the depth ratios h / h_{0} are compared with the sas-temperature ratios T / T_{0}. The water depth corresponds to the sas temperature, and conversely.*

2. Fquation of Continuity (reference lí, D. 320)

He shall set up the equation of continuity in differential form. For this purpose we congider at x, y a small fluid prism of edsas $d x$ and dy and height h (fig. 4). Let u and ∇ be the horizontal components, and W the vertical component of the velocity c in the direction of the coordinate axes x, y, and z.

Neglecting the vertical acceleration of the water in comparison fith the acceleration of gravity, equation (8 b) ig valid. From it, we have:

$$
\frac{\partial p}{\partial x}=\rho \boldsymbol{f} \frac{\partial h}{\partial x} \text { and } \frac{\partial p}{\partial y}=\rho \boldsymbol{f} \frac{\partial h}{\partial y}
$$

The right sides of the above relations are independent of z, so that the horizontal accelerations for all points alons a vertical also are independent of z. The horizontal velocity components u and v are thus constant over the entire depth because they were so in tho initial state (of rest).

[^1]The continuity equation for the atationary flow simply expresses the fact that the quantity of fluid flowing into the prism (fig. 4) per unit time is equal to the outflowing mass. Since the density of the water is constant, the same holde true for the inflowing fluid volume dqe ($\mathrm{m}^{3} / \mathrm{s}$) and for the outflowing volume dq_{a}; $\mathrm{dq}_{\mathrm{e}}=\mathrm{dq} \mathrm{a}_{\mathrm{a}}$: In the x-dírection the volume u h dy entera per unit time; dq_{θ} becomes $=u \mathrm{~h} d y+\nabla \mathrm{h} d x$. The totel outflowing volume, excopt for infinitely small magnitudes of higher order, becomes:

$$
d q_{Q}=\left(u+\frac{\partial u}{\partial x} d x\right)\left(h+\frac{\partial h}{\partial x} d x\right) d y+\left(v+\frac{\partial v}{\partial y} d y\right)\left(h+\frac{\partial h}{\partial y} d y\right) d x
$$

This continuity condition written out and dividod by $d x d y$ sives the equation of continuity

$$
\begin{equation*}
\frac{\partial(h u)}{\partial x}+\frac{\partial(h v)}{\partial y}=0^{\prime} \tag{11}
\end{equation*}
$$

The continuity equation for a two-aimonsional compressible gas flow is

$$
\begin{equation*}
\frac{\partial(p u)}{\partial x}+\frac{\partial(p \nabla)}{\partial y}=0 \tag{12}
\end{equation*}
$$

Comparison of tho two equations (11) and (12) shown that, just as the energy equations., the equations of continuity for the two flows have the same form. From these we may derive a further condition for the analosy, that the specific mass P of the gns flot corrosponds to the water depth h. It may be clearly seen now why the incompressible flow of the water may bear a relationship to the flow of a compressible gas. As a, consequence of the compressibility in a tro-dimensional gas flow, the gas masa per unit of bottom area is not a constant but varies from point to point of the flow plane. Since the water depth in the flow. with free surface varies, the mass per unit bottom 'area for this flow is also a variable.

From the equation of continuity, we derifed the result that the water depth h corresponds to the specific mass P. By comparison of the energy equations of the two flows, it folloved, howerer, that the water depth h was simultaneously also the analosous magnitude for the temperature T : This is poseible without contradiction only if a very
definite assumption is also made as regards the nature of the comparison gas. For the gas flow ρ depends upon \mathbb{T}, the relation between the tro being the adiabatic oquation. (2b)

$$
\rho / \rho_{0}=\left(T / T_{0}\right)^{1 / k-1}
$$

Nor $\rho / \rho_{0}=h / h_{0}$ and simultaneously $T / T_{0}=h / h_{0}$, and substituting in (2b), we have the equation:

$$
h / h_{0}=\left(h / h_{0}\right)^{1 / k-1}
$$

Which obviously is satisfied only for

$$
\begin{equation*}
\underline{k}=2 \tag{13}
\end{equation*}
$$

Thus we have the result that the flow of the water is comparable with the flow of a gas having a ratio $k=c_{p} / c_{\nabla}=$ 2. Such gases are not found in nature. There are, however, many phenomena which do not depend strongly on the value of k, so that the snalogy has significance also for actual gases.

> 3. Irrotational Motion

Before introducing the condition of absence of vor ticity, we make a slight transformation of the continuity equation (11), taking account of the energy equation (9). The latter solved for. h, reads:

$$
h=h_{0}-c^{2} / 25
$$

Hence

$$
\frac{\partial h}{\partial x}=-\frac{1}{2 p} \frac{\partial\left(c^{a}\right)}{\partial x}
$$

and using the fact that $c^{a}=u^{a}+\nabla^{3}{ }^{*}$ this gives

$$
\begin{equation*}
\frac{\partial h}{\partial x}=-\frac{1}{\xi}\left(u \frac{\partial u}{\partial x}+\nabla \frac{\partial v}{\partial x}\right) \tag{-}
\end{equation*}
$$

*Since u and v are constant on a vertical, and since
from (9), c also is constant, $\quad w=\sqrt{c^{2}-\left(u^{2}+T^{2}\right)}$ is also constant, and since w vanishes at the bottom, it may be neglected in comparison with the compononts u and マ.
N.A.C.A: Technical Memorandum. No. 934

Similarly.

$$
\begin{equation*}
\frac{\partial h}{\partial y}=-\frac{1}{g}\left(u \cdot \frac{\partial u}{\partial y}+\nabla \frac{\partial \bar{y}}{\partial y}\right) \tag{b}
\end{equation*}
$$

The continuity equation (11) may also be written in the form

$$
\frac{\partial u}{\partial x} h+\frac{\partial h}{\partial x} u+\frac{\partial v}{\partial y} h+\frac{\partial h}{\partial y} v=0
$$

Substituting in the above the expressions (a) and (b), there is obtained:

$$
\frac{\partial u}{\partial x} h-\frac{u}{\xi}\left(u \frac{\partial u}{\partial x}+\nabla \frac{\partial v}{\partial x}\right)+\frac{\partial v}{\partial y} h-\frac{v}{\beta}\left(u \frac{\partial u}{\partial y}+\nabla \frac{\partial v}{\partial y}\right)=0
$$

The above equation divided by h and rearranged, gives:

$$
\begin{equation*}
\frac{\partial u}{\partial x}\left(1-\frac{u^{2}}{\xi h}\right)+\frac{\partial v}{\partial y}\left(1-\frac{\nabla^{2}}{\xi h}\right)-\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right) \frac{u v}{\zeta \hbar}=0 \tag{14}
\end{equation*}
$$

We now introduce the condition for absence of vorticity. This rill be true if $\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=0$. In this case, there exists a function $\Phi(x, y)$, the velocity potential, of the coordinates x, y such that

$$
u=\frac{\partial \Phi}{\partial \mathbf{x}} \quad \nabla=\frac{\partial \Phi}{\partial \mathbf{y}}
$$

Substituting $\Phi(x, y)$ into equation (14), the latter may be written:*

$$
\begin{equation*}
\Phi_{x x}\left(1-\frac{\Phi_{x}^{a}}{5 h}\right)+\Phi_{y y} \cdot\left(1-\frac{\Phi_{y}}{5 h}\right)-2 \Phi_{x y} \frac{\Phi_{x} \Phi_{y}}{5 h}=0 \tag{15}
\end{equation*}
$$

This is the differential equation for the velocity potentdial of the ideal free surface water flow over a horizontal bottom. The equation is partial of the second order and

Instead of $\frac{\partial \Phi}{\partial x}$, we write in what follows in the usual notation $\Phi_{x} ; \quad \frac{\partial^{2} \Phi}{\partial x} \Phi^{\Phi} \equiv \Phi_{x x} ; \quad \frac{\partial^{2} \Phi}{\partial x \partial y} \equiv \Phi_{x y}, \quad$ etc.
linear in the second derivatives. The .coefficients depend on the derivatives of the first order and on these only. It is to be observed that $\boldsymbol{g} \mathrm{h}$ is not a constant but, according to the energy equation is

$$
g h=g h_{0}-c^{2} / 2=g h_{0}-\frac{\Phi_{x}^{2}+\Phi_{y^{2}}^{a}}{2}
$$

The equation corresponding to (15) for the velocity potential of a two-dimensional compressible flow is (refterence 1 (or 2), p. 308.

$$
\begin{equation*}
Q_{X X}\left(1-\frac{\Phi_{x}^{a}}{a^{a}}\right)+\Phi_{y Y}\left(1-\frac{\Phi_{y}^{a}}{a^{3}}\right)-2 \Phi_{x y} \frac{\Phi_{x} \Phi_{y}}{a^{2}}=0 \tag{16}
\end{equation*}
$$

The two equations (15) and (16) become Identical if
 velocity in shallow water, and corresponds to the velocity a in the gas flow.
4. Summary of the Blow Analogy

We shall yet inquire what magnitude in the water flow is analogous to the gas pressure. Writing tho equation of state (1) for an arbitrary state and for the state at rest, there is obtained by division:

$$
p / p_{0}=\left(p / p_{0}\right)\left(T / T_{0}\right)
$$

Substituting for ρ / ρ_{0} the corresponding value h / h_{0}, and for T / T_{0} also. h / h_{0}, there is obtained the value corrie-. sponding to $\mathbf{p} / \mathbf{p o}_{0}$:

$$
\begin{equation*}
p / p_{0}=\left(h / h_{0}\right)^{a} \tag{17}
\end{equation*}
$$

This is also obtained directly from the adiabatic equation (La) with $\rho / \rho_{0}=h / h_{0}$ and $k=2$.

The pressure P_{G} on the bottom surface is proportional to the water depth h; with ρ_{H} as specific mass of the water $\mathbf{p}_{G}=\rho_{W} \boldsymbol{s} h$. This pressure has no analogy in the two-dimensional gas flow. In particular, it is not the magnitude corresponding to the gag pressure since the corresponding magnitude to p is h and not h. The force \boldsymbol{P} of the water flow per unit of length of the vertical wall Is, on account of tho linear Increase of the pressure

With distance belong the free surface, given by

$$
P=\frac{\bar{P}_{H} S^{n}}{2} \cdot h^{\mathbf{a}}
$$

Hor P, therefore, we have $P / P_{0}=\left(h / h_{0}\right)^{B}$. Comparison With equation (1.7) shows that $p / p_{0}=P / P_{0}$. The magnitude of the water flow' corresponding to the jas pressure pis thus, the force of the water on a unit strip of the side walls. The pressures in the two-dimensional compressible flow are analogous to the forcesin the water on the vartical well.

Prom the differential equation for the velocity Potential,r., we have derived the fact that the velocity of sound a corresponds to the wave velocity $\sqrt{\mathbf{E}}$. Tie differentdial equation arose 'through the combination of the energy and continuity equations. Thus the result $\mathbf{a} \leftrightarrow \rightarrow \sqrt{\mathbf{5 h}} \mathbf{i}$ 'not sometinins essentially new but is only a consequence of the results $\rho \leftarrow \rightarrow \mathbf{h}, \boldsymbol{T} \leftarrow \mathbf{h}$, and $k=2$ of these two equations. We have $\mathbf{a}^{\mathbf{2}}=\mathbf{g} \mathbf{k} \boldsymbol{R} \boldsymbol{T}=\mathbf{g}(\mathbf{k}-\mathbf{1}) \mathbf{i}$, and for $k=$

Since the velocity corresponding to a is $\sqrt{\boldsymbol{\xi h}}$, there corresponds to the .subsonic flow $c / a<1$ the flow with $\mathbf{c} / \sqrt{\boldsymbol{g} h}<1$. The water in this case is said to "stream," rile the rater flow corresponding to the supersonic flow in Raid to "shoot." The essential difference in character batworn the supersonic and subsonic flows existsalso in the case of water between streaming and shooting flows.

The analogy considered in this section holds for flows with Mach numbers smaller and sweater than 1. Essentially, however, only the flow of shooting water will be treated in this work: Application $\boldsymbol{\pi} 111$ therefore be made of the extensively developed theory of two-dimensional supersonic flows to the flow of water.

TABLE OF FLOW ANAIOGY

	Two-dimensional gas flow	Ilquid flow with free sur- - face in grapity field
Nature of the flow \qquad medium \qquad olde boundaries geo hetrically aimilar	Hypothetical gas with $-k=c_{p} / c_{r}=2$ $\mid .$	Incompressible fluid \qquad (e.g., water) Side boundary vertical Bottom horizontal
Analogous magnitudeı	```Velocity c/cmax,c/a* Temperature rat&O,T/T! Density ratio, \rho/Po Pressure ratio, p/po Pressure on the side boundary walls p/po```	Velocity c/c max, $\mathbf{c} / \mathbf{a}^{*}$ Water depth ratio, h/ho Water depth ratio, h/ho Square of ${ }_{\mathbf{s}}$ rater depth ratio, $\left(\mathrm{h} / \mathrm{h}_{\mathrm{o}}\right)^{8}$ Force on the vertical walls. $\mathrm{P} / \mathrm{P}_{0}=\left(\mathrm{h} / \mathrm{h}_{0}\right)^{a}$
	Sound velocity a Mach number c/a Subsonic flow Supersonic flow Compresaive shock (right and slant)	Wave velocity $\sqrt{g^{h}}$. Mach number $c / \sqrt{g h}$ Streaming water Shooting water Hydraulic jump (normel and slant)

MarH HixarICAI BASIS

5. Introduction

For the treatment of fields of flow subjected to the boundary conditions, various mathematical methods, depending on the type of flow considered, are available. The • mathematical basis for two-dimensional incompressible flows is the conformal transformation method familiar from the function theory. For the computation of compressible subsonic flows, use is made of the theory of general elliptical differential equations. This theory has not yet been sufficiently developed as a practical method. For the computation of supersonio flows, however, and hence for "shooting" water, there has been perfected the method of characteristics of the theory of hyperbolic partial differential equations by Prandtl, Steichen, and Busemann.
known and, particularly, since it has not yet been applied to the inveatigation of flows of "shooting" water, this method in what follows, will be discursed in some detail.

6. Introduction of New Variables

The velocity potential $\Phi(\mathbf{x}, \mathrm{y})$ may bo feometrically ropresented by plotting vertically at each point of the flow plane $\boldsymbol{X}, \boldsymbol{\Psi}$ the corresponding value of Φ. We thris obtain a surface in space which we ehall denote as. a $\boldsymbol{\Phi} \boldsymbol{\operatorname { s u r }}$ face. The slope of this surfince along any direction give日 the component of the flow velocity in' this direction.

Let the velocity along a line AS of a shooting flow of water be given in magnitude and direction (fig. 5). This velocity at each point of A3 may be decomposed into component8 ct and \mathbf{c}_{n}, tangential and normal, respectively, to AB. Simultaneously, there will also be given the slopes of the Q-surface corresponding to the flom in the two directions and, finally, the value $\boldsymbol{\Phi}(\mathbf{x}, \mathbf{y})$ itself, except for a nonessential constant, will also be dotermined:

$$
\Phi=\int_{0}^{s} \frac{\partial \Phi}{\delta s} d s+\Phi_{A}
$$

The five masnitudes $\mathbf{x}, \boldsymbol{\Psi}, \boldsymbol{\Phi}$ (Doint P) and $\boldsymbol{\Phi}_{\mathbf{x}}, \Phi_{\mathbf{y}}$ (slope) are denoted $\boldsymbol{q} \boldsymbol{\varepsilon}$ an element of the \&surface. An element is simply an infinitesimal piece of the $\boldsymbol{\Phi}$-surface giving the position and elope. The assignment of the veilocity along $A B$ is equivalent to the assisnment of $a n$ olementary strip of the Φ-surface (fiq. 5). The mathematical problem may.thus be stated as followe: To find a surface rhose curvature and slope satisfy the differential equation (15).

It is possible to put equation (i5), by a transforman tion of variables, into n simpler form (reference 27, p. $\mathbf{0} \boldsymbol{0} \mathbf{1 0}$).

We consider firsta ueual coordinate transformation a so-called "point transformation.u Let x and y be the independent variables; $\mathbf{\Phi} \mathbf{a}$ function of x ond $\mathbf{y}, \boldsymbol{\Phi}(\mathbf{x}, \mathbf{y})$. Then net variables •X, Y, \mathbf{X} nag be introduced $\mathbf{b y} \mathbf{y}$ defining them through the following.equations:

$$
\left.\begin{array}{l}
X=X(x, y, \Phi(x, y)) \tag{18}\\
Y=Y(x, y, \Phi) \\
X=X(x, y, \Phi)
\end{array}\right\}
$$

The function X rnay be represented by a-surface in an X, Y, X spsse, takins X and Y as ths independent väriables. To each point x, y, Φ, there corresponds according to equation (l8), an image point $X, F X$. Conversely, to each imase point corresponds its originalpoint since, in general, equations (18) may be solved for x, y, and Φ :

$$
\left.\begin{array}{l}
\bar{X}=\mathbf{X}(X, Y, X) \tag{19}\\
\mathbf{Y}=\mathbf{Y}(X, Y, X) \\
\Phi=\Phi(X, Y, X)
\end{array}\right\}
$$

Let us, for simplicity, consider first a single indopendent variable x and a function $\oint=\Phi(x)$. The point transformation in this case is given by the two equations:

$$
\begin{equation*}
X=X(x, \Phi(x)) \text { and } X=X(x, \Phi) \tag{18a}
\end{equation*}
$$

Solving (l8a) for. x and Φ, there is obtained:

$$
\begin{equation*}
x=x(X, X) \text { and } \Phi=\Phi(X, X) \tag{19a}
\end{equation*}
$$

To each pair of values x and Φ (point P), there correm sponds according to (l8a), a pair of values X and X (point P^{*}) (fig. 6). An entire curve has another curve as its image and the transformation is uniquely reversible.

We shall now consider a more general transformation. Let an entire element - that is, $x, \Psi, \Phi, \Phi_{x}, \Phi_{y}$ be transformed. In place of formulas (18), we now have the more complicated traneformation formulas:

$$
\left.\begin{array}{l}
X=X\left(X, Y, \Phi, \Phi_{X}, \Phi_{Y}\right) \tag{20}\\
Y=Y\left(\dot{X}, \bar{Y}, \Phi, \Phi_{X}, \Phi_{Y}\right) \\
X=X\left(X, y, \Phi, \Phi_{X}, \Phi_{Y}\right)
\end{array}\right\}
$$

In the case of a single indepencent variable, an element is
given by the triple $\mathbf{x}, \boldsymbol{\Phi}, \boldsymbol{\Phi}_{\mathbf{x}}$ (point and direction). To transform this element the transofrmation formulas would be

$$
\begin{equation*}
\mathbf{X}=\mathbf{X}\left(\mathbf{x}, \Phi_{,} \Phi_{\mathbf{x}}\right) \text { and } \mathbf{X}=\mathbf{X}\left(\mathbf{x}, \Phi_{\mathbf{x}} \Phi_{\mathbf{x}}\right) \tag{20a}
\end{equation*}
$$

From the above we have:

$$
d X=X_{x} d x+X_{\Phi} d \Phi+X_{\Phi_{x}} d \Phi_{x}=\left(X_{x}+X_{\Phi} \Phi_{x}+X_{\Phi_{x}} \Phi_{x x}\right) d x
$$

and

$$
d x=\left(x_{x}+x_{\Phi} \Phi_{x}+x_{\Phi_{x}} \Phi_{x x}\right) d x
$$

go that

$$
\begin{equation*}
X_{X}=\frac{d X}{d X}=\frac{x_{x}+x_{\Phi} \Phi_{X}+x_{\Phi_{X}} \Phi_{x X}}{X_{X}+X_{\Phi}} \frac{\Phi_{X}}{\Phi_{\Phi_{X}}} \Phi_{\Phi_{X I}} \tag{21}
\end{equation*}
$$

hence, $d x / d x$, as (21) shows, in general depends on \mathbf{x}, $\Phi_{1} \Phi_{\mathbf{x}}$, and $\Phi_{\mathbf{x x}}, \quad$ If, for example, 8 curve $\Phi_{\mathbf{A}}$ (is. 6) is prescribed, then at each point of the curve these four values are known. From the three formulas (20a) and (21) there are thus determined at each image point P* the valuses X, X, and X_{X}. There $\mathbf{i s}_{\boldsymbol{s}}$ thus obtained the curve $X_{\boldsymbol{A}}$ as the image of curve $\boldsymbol{T}_{\mathbf{A}}$. Correspondingly, $\Phi_{\mathbf{A}}$ may also be drawn If the entire curve X_{A} is siren. On the other hand, from the element $\boldsymbol{x}, \boldsymbol{\Phi}_{\boldsymbol{N}}, \Phi_{\mathbf{x}}$, It is not possible to determine and element $X, X_{X}, X_{\mathbf{X}}$ from the formulas (20_{a}) and (21), different elements being obtained, depending on how $\Phi_{\text {IX }}$ is chosen. In one case, however, the transformmotion is such that the image of an element is again an elcement, and conversely. This is the case when $d X / d x$. in equation (21) becomes Independent of $\Phi_{\boldsymbol{x x}}$, which is true only if

$$
\begin{equation*}
\frac{x_{x}+x_{\Phi} \Phi_{x}}{x_{x}+x_{\Phi} \Phi_{x}}=\frac{x_{\Phi_{x}}}{x_{x}} \tag{22}
\end{equation*}
$$

If the transformation formulas (20a) satisfy the condition (22), then the elements uniquely correspond to one another in the transformation.

An example of the above is the Legendre transformation of \boldsymbol{x}, Φ to $\boldsymbol{X},{ }^{\prime} \boldsymbol{X}$; of which. we shall make important use below ; for this transformation, the following transformation formulas hold:

$$
\begin{aligned}
& \mathbf{x} \doteq \Phi_{\mathbf{x}} \\
& X=\Phi_{\mathbf{x}} \mathbf{x}-\Phi
\end{aligned}
$$

We then have:

$$
\begin{aligned}
& \mathrm{d} \mathbf{X}=\Phi_{\mathbf{x} \mathbf{x}} \mathrm{dx} \\
& \mathrm{~d} X=\boldsymbol{\Phi}_{\mathbf{x}} \mathrm{d} \mathbf{x}+\boldsymbol{\Phi}_{\mathbf{x} \mathbf{x}} \mathrm{dx} \mathrm{x}-\boldsymbol{\Phi}_{\mathbf{x}} \mathrm{d} \mathbf{x}=\mathbf{x} \boldsymbol{\Phi}_{\mathbf{x} \mathbf{x}} \mathrm{d} \mathbf{x}
\end{aligned}
$$

so that

$$
d X / d X=x, \quad \text { independent of } \Phi_{x x}
$$

The transformation with corresponding elements has in addition, another special property. Let us assume that at point P (fig. 6) two curves Φ_{A} and Φ_{B} touch each other. They thus have at point P a common element $\mathbf{x}_{\mathbb{A}} \boldsymbol{=}$ $\mathbf{x}_{B}, \Phi_{A}=\Phi_{B}, \quad$ and $\Phi_{x A}=\Phi_{x B} ;$ but $\Phi_{x X A} \neq \Phi_{x X B}$ the curves being assumed in contact' but not osculating. According to the traneformation formulas (20a). we shall al so have for this point. $X_{A}=X B$ and $X_{A}=X_{B}$. The two image curves X_{A} and $X B$ then have the point P^{*}, the image of P, also in common. Since, however, $d X / d x$ in general, conthins $\Phi_{\text {rx }}$ according to (21), and this second derivative is different for the curves A and B, the two image curves will intersect in point P^{*} and not touch as the original curves do. Only. if $d X / d X$ is independent of Φ_{11} will the two Image curves X_{A} and $X B$ also touch at point P^{*}. This is precisely the case for the transformadion with uniquely reciprocal element correspondence.. For this reason such transformations are known'as contact traneformatione.
*l> In correspondence with the concept-point transformation, the term "element transformation" is more logical than contact transformation.
2) The transformation (20a) becomes an element tranaformadion a 0 soon as, instead of only the two formulas of (20a), three are used:

There then corresponds to each $\boldsymbol{x}, \boldsymbol{\Phi}, \Phi_{\boldsymbol{x}}$, an $\boldsymbol{X}, X_{X}, X_{X}$, and conversely. It is to be noted, however, that there is a relation between the three variables since $X_{X}=d X / d X$. If the left aide of $(20 b)$ is independent of $\Phi_{\boldsymbol{x} \boldsymbol{x}}$, the right side must be. But this is precisely tho contact transformation.

The result found above we shall now apply to two indene pendent variables Is. J, and their function Φ. The trans formation formula 8 ere:

$$
\left.\begin{array}{l}
\mathbf{X}=\mathbf{X}\left(\mathbf{x}, \mathbf{y}, \Phi, \Phi_{\mathbf{X}}, \Phi_{\mathbf{Y}}\right) \tag{20}\\
\mathbf{Y}=\mathbf{Y}\left(\mathbf{x}, \mathbf{y}, \Phi, \Phi_{\mathbf{X}}, \Phi_{\mathbf{Y}}\right) \\
\mathbf{X}=\mathbf{X}\left(\mathbf{x}, \mathbf{y}, \Phi, \Phi_{\mathbf{X}}, \Phi_{\mathbf{Y}}\right)
\end{array}\right\}
$$

Since X, Y, and \mathbf{X} contain, in addition to \mathbf{x}, \mathbf{y}, and Φ,

and

$$
\left.\begin{array}{l}
X_{\mathbf{x}}=\partial x / \partial \bar{x}=f_{1}\left(x, y, \Phi, \Phi_{x}, \Phi_{y}, \Phi_{x x}, \Phi_{x y}, \Phi_{y y}\right) \tag{23}\\
x=\partial x / \partial \bar{y}=f_{z}\left(x, y, \Phi, \Phi_{x}, \Phi_{y}, \Phi_{x x}, \Phi_{x y}, \Phi_{y y}\right)
\end{array}\right\}
$$

the second derivatives $\Phi_{\mathbf{x x}}, \Phi_{\mathbf{x y}}, \Phi_{\mathbf{Y} \boldsymbol{y}}$. We shall interpret $\boldsymbol{\Phi}(\boldsymbol{x}, \boldsymbol{y}) \quad a 0$ a surface (is. 7). Two surfaces $\boldsymbol{\Phi}_{\mathbf{A}}$ and $\boldsymbol{\Phi}_{\mathbf{B}}$, which touch at a point,heve $x, \Psi, \Phi, \Phi_{X}, \Phi_{\boldsymbol{Y}}$ in common at this point. From the transformation equations they will then also have the 1 mage point X, Y, X of the contact point in common. Since, however, $X_{\mathbb{X}}$ nad X_{Y} contain the second derivatives of Φ, the to transformed surfaces will no longer be in contact at the common point: (XX), and (XX), not being equal - similarly, ($\left.X_{Y}\right)_{A}$ and $\left(X_{Y}\right)_{B}$. The transformation again $\boldsymbol{f i v e s ~ a ~ u n i q u e ~ c o r - ~}$ respondence of the elements only If the equations (23) do not contain the masnitudes $\Phi_{x x}$, $\Phi_{x y}$ find $\Phi_{y y}$. In this case two surfaces in oontnct at a point, $\boldsymbol{\Omega} \boldsymbol{q}$ over after traneformatlon Into two surfaces which at the image point again have a common tangent plane.

The Legendre contact transformation for two independent variables is.

The eurface $\boldsymbol{\Phi}=\boldsymbol{\Phi}(\mathbf{x}, \mathbf{y})$ with the above transformation goes

- over into a surface $X=X(X, Y)$ (fig. . 7). We. prove first - that the above is actually a contact transformation. From equation8 (24)

$$
d x=\Phi_{x} d x+x d \Phi_{x}+\Phi_{y} d y+y d \Phi_{y}-d \Phi
$$

Noting that $\mathbf{d} \Phi=\Phi_{\mathbf{x}} \mathrm{dx}+\Phi_{\mathbf{y}} \mathrm{dy}$, three terme drop out. Substituting for Φ_{z} and Φ_{y}, X and Y, respectively, from formulas (24), we have

$$
d X=x d X+y d Y
$$

For the X-surface, the relations must be satisfied:

$$
d X=X_{X} d X+X_{Y} d Y
$$

Comparison of the two expressions gives the derivatives of X of the first order:

$$
\left.\begin{array}{l}
X_{X}=\mathbf{x} \tag{24a}\\
\bar{X}_{Y}=\mathbf{y}
\end{array}\right\}
$$

Hnese are independent of the derivatives of Φ of the second order.. Formulas (24) thus actually express a contact trangformation, (24) and (24a) giving the corresponding element $\mathbb{X}, \mathbf{Y}, X_{X}, X_{\mathbb{X}}, X_{Y}$ when the oriqinal element
 obtained the element correspondence for the reciprocal transformation:

$$
\left.\begin{array}{l}
\mathbf{x}=X_{X} \\
\mathbf{Y}=X \mathbf{y} \tag{25a}\\
\Phi=X X_{X}+Y X y-X \\
\Phi_{\mathbf{X}}=\mathbf{X} \\
\Phi_{\mathbf{Y}}=Y
\end{array}\right\}
$$

We wish still to express the derivatives of second order $\Phi_{\mathbf{X X}}, \Phi_{\mathbf{x y}}$, and $\boldsymbol{\Phi}_{\mathbf{y y}}$ 'in the new variables $\mathbf{X}, \mathbf{Y}, \boldsymbol{X}, \mathbf{X}_{\mathbf{X}}$, $X_{Y}, X_{X I}, X_{X Y}$, and $X_{Y Y}$. There will then be obtained an $\pm m-$ portant result for the applicationa.

Hor this purpose we consider \mathbf{x} and \boldsymbol{y} as the indexpendent. variables. From the. first, and second of equations (25), there is obtained:

$$
\begin{aligned}
& d Y=X_{X X} d X+X_{X Y} d Y \\
& d y=X_{X Y} d X+X_{Y Y} d Y
\end{aligned}
$$

Solving for $\mathbf{d X}$ and $\mathbf{d Y}$

$$
\begin{aligned}
& d X=\left(X_{Y Y} d x-X_{X Y} d \Psi\right) i / N \\
& d Y=\left(-X_{X Y} d x+X_{X X X}{ }^{d}\right) I / N \\
& N=\left(X_{X X} X_{Y Y}-X_{X Y}\right)
\end{aligned}
$$

For the differential of Φ, we have (Φ-surface)

$$
\begin{equation*}
\mathrm{d} \Phi=\Phi_{x} \mathrm{dx}+\Phi_{y} \mathrm{dy} \tag{26}
\end{equation*}
$$

Substituting in the above (25a), there is obtained:

$$
\mathrm{d} \Phi=X \mathrm{X} \mathbf{X}+\boldsymbol{Y} \mathrm{d} \boldsymbol{y}
$$

For the second differential, we have:

$$
d^{\mathbf{a}} \Phi=d X d x+d Y d y
$$

for $\mathbf{d}^{\mathbf{a}} \mathbf{x}$ and $\mathbf{d}^{\mathbf{Z}} \mathbf{y}$ are equal to zero since \mathbf{x} and \mathbf{y} are independent variables. In this equation $w e$. substitute the previously found expressions for $d X$ and $d Y$, and obtain:

$$
d^{B} \Phi=\left(X_{Y Y} d x^{B}-2 X_{X Y} d x d y+X_{X X} d y^{a}\right) I / N
$$

On the other hand, from equation (28):

$$
\mathrm{d}^{\mathbf{a}} \boldsymbol{\Phi}=\Phi_{\mathbf{x x}} \mathrm{d} \mathbf{x}^{\mathbf{a}}+2 \Phi_{\mathbf{x y}} \mathrm{dx} \mathrm{dy}+\Phi_{\mathbf{y y}} \mathrm{d} \mathbf{y}^{\mathbf{a}}
$$

Comparison of the coefficients of $\mathbf{d} \mathbf{x}^{\mathbf{8}}, \mathbf{d} \mathbf{y}^{\mathbf{a}}$, and $\mathrm{dx} \mathbf{d y}$ of the last two equations shows finally that

$$
\left.\begin{array}{l}
\Phi_{X Y}=X_{Y Y} 1 / \mathbb{N} \tag{27}\\
\Phi_{Y Y}=X_{X X} 1 / \mathbb{N} \\
\Phi_{X Y}=-X_{X Y} I / W
\end{array}\right\}
$$

These are the required expressions for the derivatives of $\boldsymbol{\Phi}$ of the second order.. ...

The coefficients of the differential equation of the flow (15) depend on the derivatives of the velocity potential Φ of the first order. Introducing new variables into that equation (according to the Legendre contact transformation, the coefficients according to (24) will depend on the new independent variables and only on these. The partial derivatives of second order will be replaced, according to equations (27), by the partial derivatives of second order of the new function with the common denominator N. Since the differential equation (15) is linear homogeneous \mathbb{N} may be multiplied out. $\mathbf{B y}$ means of the Legendre contact equation, therefore, (15) becomes linear, homogeneous, of second ardor, and with coefficients that depend on the new independent variables only.

Let us introduce the new variables X, Y. Physically, \boldsymbol{X} and \boldsymbol{Y} are the velocity components \boldsymbol{u} and $\boldsymbol{\nabla}$. The new variables according to (24) are:

$$
\begin{align*}
(X=) \dot{u} & =\Phi_{x} \\
(\bar{Y}=v & =\Phi_{\mathbf{y}} \tag{28}\\
X & =\Phi_{x} \dot{x}+\Phi_{y} \mathbf{y} \div \Phi=u x+\nabla y-\Phi
\end{align*}
$$

The transformation formulas (25), (25a), and (27) are:

$$
\begin{gather*}
\left.\begin{array}{c}
\mathbf{x}=X_{u}, y=X_{v}, \Phi=u x+v y-x \\
\Phi_{\mathbf{x}}=u, \Phi_{y}=v
\end{array}\right\} \\
\Phi_{\mathbf{x X}}=X_{v v} i / v, \Phi_{x y}=-X_{u v} 1 / w, \Phi_{y y}=X_{u u} 1 / v
\end{gather*}
$$

The differential equation (15) in the new variables then becomes:

$$
\begin{equation*}
x_{\nabla v}\left(1-\frac{u^{2}}{\rho \underline{h}}\right)+x_{u u u}\left(1-\frac{\nabla^{2}}{g h}\right)+2 x_{u v} \frac{u u^{v}}{g h}=0 \tag{31}
\end{equation*}
$$

\mathbf{x} and \boldsymbol{y} being the coordinates of the flow. With the. Legendre transformation of equation (15) into (31), we passed from the flow over into its "velocity image" - that is, the hodograph (velocity plane) of the flow. At the same time, in place of the velocity potential Φ, which is
a function of the position in the flow, we have introduced the "position determining" potential X, which is a fundtion of the velocity in the hodograph.

The assignment of the velocity along a curve $A B$ is equivalent to the Assignment of an elementary strip of the Ф-surface. Since the oontaot transformation $\mathbf{i s}$ an element correspondence, the X-surface must contain the correspond \rightarrow ing X-elementary $\boldsymbol{s t r i p .}$

Bor later use, we ehall introduce in equation (31) in place of the rectangular coordinates u, $\boldsymbol{\tau}, \boldsymbol{X}$ the cylindrical coordinates $\mathbf{c}, \boldsymbol{\varphi}, X$ (point transformation), $\mathbf{f i \boldsymbol { \xi }}-$ urea 8.

The new variables are:

$$
\begin{aligned}
c & =\sqrt{u^{8}+v^{2}} \\
\varphi & =\left(\tan ^{-2}\right)(v / u> \\
X & =X
\end{aligned}
$$

whence

$$
\begin{align*}
& u=c \cos \varphi \\
& \nabla=c \sin \varphi \tag{b}
\end{align*}
$$

(a)
and

$$
\begin{aligned}
& \frac{\partial c}{\partial u}=\frac{1}{2}-\frac{1}{\sqrt{u^{2}+\nabla^{2}}} 2 u=\cos \varphi \\
& \frac{\partial c}{\partial v}=\sin \varphi \\
& \frac{\partial \varphi}{\partial u}=-\frac{\sin \varphi}{c} \\
& \frac{\partial \varphi}{\partial v}=\frac{\cos \varphi}{c}
\end{aligned}
$$

We have:

$$
X=X(u, v)=X[c, \varphi]=X[c(u, v), \varphi(u, v)]
$$

so that

$$
\left.\begin{array}{l}
\frac{a x}{\partial u}=\frac{\partial x}{\partial c} \frac{\partial_{c}}{\partial u}+\frac{\partial X^{\prime}}{\partial c_{i}^{\prime}} \frac{\partial \varphi}{\partial u}=\frac{\partial X}{\partial c} \cos \varphi-\frac{\partial X}{\partial \varphi} \frac{\operatorname{gin} \varphi}{c} \\
\frac{a x}{\partial r}=\frac{a x}{\partial c} \frac{\partial c}{a v}+\frac{a x}{\partial \psi} \frac{\partial \varphi}{a \bar{v}}=\frac{a x}{\partial \sin \varphi} \varphi+\underset{\sigma \psi}{ } \frac{00 \sin \varphi}{c}
\end{array}\right\}
$$

Furthermore:

$$
\begin{aligned}
& \frac{\partial^{2} x}{\partial v^{2}}=\frac{\partial(\partial x / \partial u)}{\partial u}=\frac{\partial(\partial x / \partial u)}{\partial c} \cos \varphi-\frac{\partial(\partial x / \partial u)}{\partial \varphi} \frac{\sin \varphi}{c} \varphi \\
& \frac{\partial^{\partial} x}{\partial u} \frac{a(\partial x / \partial v)}{\partial u}=\frac{\partial(\partial x / \partial v)}{\partial \tau} \cos \varphi-\frac{\partial(\partial x / \partial v)}{\partial \varphi} \frac{\sin \varphi}{c} . \\
& \frac{\partial^{2} x}{\partial v^{2}}=\frac{\partial(\partial x / \partial v)}{a v}=\frac{\partial(\partial x / \partial v)}{\partial 0} \sin \varphi+\frac{\partial(\partial x / \partial v)}{\partial \varphi} \frac{\cos \theta}{c}
\end{aligned}
$$

Substituting in the above the values of $a x / a u$ and $a x / a \nabla$ from equations (A) there is obtained:
$x_{u u}=\left[x_{c c} \cos \varphi-x_{c \varphi} \frac{\sin \varphi}{c}+x_{\varphi} \frac{\left.\sin \frac{n}{c^{3}} \varphi\right] \cos \varphi}{}\right.$

$$
-\left[x_{\infty \varphi} \cos \varphi-x_{c} \sin \varphi-x_{\varphi \varphi} \frac{\sin \varphi}{c}-x_{\varphi} \frac{\cos \varphi}{c}\right] \frac{\sin \varphi}{c}=
$$

$$
=x_{c c} \cos ^{2} \varphi-x_{c \varphi} \frac{2 \sin \varphi \frac{\cos \varphi}{c}+X_{\varphi \varphi \varphi} \frac{\sin ^{2}{ }^{2} \varphi}{c^{2}}+x_{c} \frac{\sin ^{2} \varphi}{c}+}{}+
$$

$$
\begin{equation*}
+X_{\varphi} \frac{2}{\sin n} \frac{n}{c}-\cos \varphi \tag{c}
\end{equation*}
$$

and the other two formulas give:
$X_{u \nabla}=X_{c c} \sin \varphi \cos \varphi+X_{C \varphi} \frac{\cos \theta^{2} \varphi-\sin n^{2} \varphi}{c}-X_{\varphi \varphi} \frac{\sin \varphi}{c} \cos \varphi-$

$$
\begin{equation*}
-X_{c} \frac{\ln \varphi \cos \varphi}{c}-X_{\varphi p} \frac{\operatorname{cog} \theta^{2} \varphi \varphi^{2}-8 i n^{2}}{c^{2}} \tag{d}
\end{equation*}
$$

$$
X_{\nabla V}=X_{c c} \sin ^{2} \varphi+X_{O \varphi} \frac{2}{} \frac{\sin ^{n} \varphi}{c} \cos \varphi\left(X_{\varphi \varphi} \frac{\cos ^{2} \varphi}{c^{2}}+X_{c} \frac{\cos ^{2} \varphi}{c}\right.
$$

$$
\begin{equation*}
-\quad X_{\varphi} \varphi^{2}-\sin \varphi \varphi^{2} \cos \varphi \tag{e}
\end{equation*}
$$

The transformation formulae (a) tọ (e) can now be introduced into equation (31)... The latter then reads in polar coordínates:

$$
\begin{equation*}
\frac{\partial^{B} x}{\partial c^{2}}-\frac{\partial^{3} x}{\partial \varphi^{2}} \frac{1}{c^{8}}\left(\frac{c^{a}}{\rho h}-1\right)-\frac{\partial x}{\partial c} \frac{1}{c}\left(\frac{c^{a}}{c^{h}}-1\right)=0 \tag{3Ia}
\end{equation*}
$$

7. Characteristics of the Differential Equation (references 10, p. 153, and 31, p. 282)

The differential equationa (31) and (3la) are apecial case of the following general form:

$$
\begin{align*}
& \mathbf{A}(\mathbf{X}, \mathbf{Y}) \mathbf{Z}_{\mathbf{X} \mathbf{X}}+\mathbf{Z B}(\mathbf{X}, \mathbf{Y}) \mathbf{Z}_{\mathbf{X Y}}+\mathbf{C}(\mathbf{X}, \mathbf{Y}) \mathrm{ZYY}= \\
& =D_{1}(\mathbf{X}, \mathbf{Y}) Z_{X}+\mathbb{F}_{\mathbf{I}}(\mathbf{X}, \mathbf{Y}) Z Y+\mathbb{F}_{\mathbf{I}}(\mathbf{X}, \mathbf{Y}) \mathbf{Z} \tag{32}
\end{align*}
$$

if for the moment we rrite Z in place of X, and X and Y for u and $\boldsymbol{\nabla}$, or \boldsymbol{c} and $\boldsymbol{?}$, respectively. The coefficients A to \boldsymbol{F} of differential equations (32) depend on the free variables only. For each pair of variables i.e., for each point of the hodosraph these three magnitudes are given numbers. There is a simple intesration method for equation (32) that depends on findias a Taylor series for the solution $Z=\mathbf{Z}(\mathbf{X}, \mathbf{Y})$.

We seek a solution of (32) that contains a prescribed elementary strip. Let the curve. over which the Z-element strip iagiven be expressed in parametric form with \mathbf{t} as parameter

$$
\left.\begin{array}{l}
x=: X(t) \\
Y=Y(t)
\end{array}\right\} \quad \text { (curve } \mathbf{A B} \text {) }
$$

The Z-surface strip (the boundary values of Z) over this curve is then given by

$$
\begin{equation*}
Z=F(t) \tag{33}
\end{equation*}
$$

and $\partial z / \partial n=Q(t)$ where n is tho normal of the curve $A D$. Along AB:

$$
\frac{d Z}{d t}=\frac{\partial Z}{\partial X} \frac{d X}{\partial t}+\frac{\partial Z}{\partial Y} \frac{d Y}{\partial t}=\frac{\partial Z}{\partial X} X^{\prime}(t)+\frac{\partial Z}{\partial Y} Y^{\prime}(t)
$$

On the other hand, on account of the prescribed boundary values along the curve AB, we have:

$$
\frac{d Z}{d t}=F^{\prime}(t)
$$

so that

$$
\begin{equation*}
\frac{\partial Z}{\partial X} X^{\prime}(t)+\frac{\partial Z}{\partial Y} Y^{\prime}(t)=F^{\prime}(t) \tag{33a}
\end{equation*}
$$

The normal of 'the curve $\boldsymbol{X}(t), \boldsymbol{\Psi}(t)$ has the direction cosines

$$
\begin{aligned}
& \cos (n, X)=-Y^{\prime}(t) / \sqrt{X^{\prime}(t)+Y^{1^{2}}(t)} \\
& \cos (n, Y)=X^{\prime}(t) / \sqrt{X^{\prime}+Y^{\prime}}
\end{aligned}
$$

Hence

$$
\begin{gathered}
\frac{\partial Z}{\partial n}=\frac{\partial Z}{\partial X} \cos (n, X)+\frac{\partial Z}{\partial Y} \cos (n, Y)=\frac{I}{\sqrt{X^{\prime}}+Y^{\prime 2}} \frac{\left.\right|^{a}}{x} \\
\left(-\frac{\partial Z}{\partial X} Y^{\prime}+\frac{\partial Z}{\partial Y} X^{\prime}\right)
\end{gathered}
$$

This expression must be equated to $G(t)$. Thus along $A B$ we also have:

$$
\begin{equation*}
-\frac{\partial Z}{\partial X} Y^{\prime}(t)+\frac{\partial Z}{\partial Y} X^{\prime}(t)=\sqrt{X^{i^{2}}+Y^{2}} G(t) \tag{33b}
\end{equation*}
$$

Equations (33a) and (33b) may be solved for $\partial z / \partial \mathbf{x}$ and $\partial Z / \partial Y$, since the denominator determinant of the pair of equations is

$$
\left|\begin{array}{ll}
X^{\prime} & Y^{\prime} \\
- & Y^{\prime} \\
X^{\prime}
\end{array}\right|=X^{a}+Y^{a} \neq 0
$$

Let the solution be

$$
\left.\begin{array}{l}
\partial Z / \partial X=q(t) \tag{34}\\
\partial Z / \partial Y=q(t)
\end{array}\right\}
$$

Differentiating each of these equations with respect to t, there is obtained:

$$
\begin{align*}
& \mathbf{Z}_{\mathbf{X} \mathbf{X}^{\prime}} \mathbf{X}^{\prime}(t)+Z_{X Y} \mathbf{I}^{\prime}(t)=p^{\prime}(t) \tag{35a}
\end{align*}
$$

For the second derivatives of \mathbb{Z}, $\boldsymbol{\pi e}$ have as third condition the 'differential equation itself:

$$
\begin{equation*}
\mathbf{A} \mathbf{Z}_{\mathbf{X X}}+2 B \mathbf{Z}_{\mathbf{X Y}}+\mathbf{C} \mathbf{Z}_{\mathbf{Y} \mathbf{Y}}=\mathbf{D}_{\mathbf{I}} \mathbf{Z}_{\mathbf{X}}+\mathbb{\mathbb { P }}_{\mathbf{I}} Z Y+\mathbb{F}_{\mathbf{I}} Z \tag{35c}
\end{equation*}
$$

If the denominator determinant of the aystem of equations (35)

$$
\left|\begin{array}{lll}
\mathbf{X}^{\mathbf{1}} & \mathbf{Y}^{\mathbf{1}} & \mathbf{0} \tag{36}\\
0 & \mathbf{X}^{\mathbf{1}} & \mathbf{Y} \\
A & 2 B & C
\end{array}\right|=\mathbf{C} \mathbf{X}^{\mathbf{a}} .-2 B \mathbf{X}^{\mathbf{I}} \mathbf{Y}^{\mathbf{1}}+A \mathbf{Y}^{\mathbf{a}}
$$

is not equal to zero, the three equations (35a-c) may be solved for $\mathbf{Z}_{\mathbf{X X}}, \mathbf{Z}_{\mathbf{X Y}}$, and $\mathbf{Z}_{\mathbf{Y} Y}$. Let there bo obtained for the-derivatives of Z of the socond order nlong ABthe values:

$$
\begin{equation*}
Z_{X X}=R(t) ; \quad Z_{X Y}=S(t) ; \quad Z_{Y Y}=T(t) \tag{37}
\end{equation*}
$$

Differentiating (35a) and (35b) with respect to t and
 substituting In the last two equations the values for \mathbf{Z}, $\mathbf{Z}_{\mathbf{X}}$... from equations (33), (34) and (37), there is obtained the system of equations:

$$
\begin{aligned}
& Z_{X X X} X^{\mathbf{a}}+\mathbf{Z Z}_{X X Y} X^{\prime} Y^{\prime}+Z_{X Y Y} Y^{\prime^{a}} \quad=p{ }^{\prime}(t) \\
& Z_{X X Y} X^{\prime 2}+2 Z_{X Y Y} X^{\prime} Y^{\prime}+Z_{Y Y Y} Y^{\prime}{ }^{0}=q^{\prime \prime}(t) \\
& \text { A } \mathbf{Z}_{\mathbf{X X X}}+2 B \mathbf{Z}_{\mathbf{X X Y}}+0 \mathbf{Z}_{X Y Y} \\
& A Z_{X X Y}+2 B Z_{X Y Y}+C Z_{Y Y Y} \\
& =. \alpha(t) \\
& =\beta(t)
\end{aligned}
$$

From these equations are obtained the four derivatives of third ofder.of Z along the projection curve of the given elementary strip, since the determinant of the denominator is equal to the square of the determinant (36) and thus not equal to zero if that determinant $\mathbf{i s}$ different from zero. Proceodingin tinio manner there are obtained all of the
higher derivatives of \boldsymbol{Z} starting from the boundary values $B(t)$ and $Q(t)$ \{equations (33). (34), (37), etc.). It is thus possible to write the solution of $\mathbf{Z}=\mathbf{Z}(\mathbf{X}, \mathbf{Y})$ also for points which do not lie on the curve AB as a Taylor series:

$$
\begin{aligned}
& Z(X, Y)=Z\left(X_{O}, Y_{O}\right)+\frac{I}{I!}\left[Z_{X}\left(X_{0}, Y_{O}\right)\left(X-X_{O}\right)+\dot{Z}_{Y}\left(X_{O}, Y_{O}\right)\left(Y-Y_{O}\right)+\right. \\
& +\frac{1}{2!}\left[Z_{X X}\left(X_{0}, Y_{0}\right)\left(X-X_{0}\right)^{2}+2 Z_{X Y}\left(X_{0}, Y_{0}\right) \cdot\left(X-X_{0}\right)\left(Y-Y_{0}\right)+\right. \\
& \left.+Z_{Y Y}\left(X_{O}, Y_{O}\right)\left(Y-Y_{0}\right)^{a}\right\rfloor+\cdots
\end{aligned}
$$

This method of solution falls, however, if the determinant (36) assumes the value, zero, i.e., if

$$
O(X, Y)\left(\frac{d X^{a}}{d t}\right)-2 B(X, Y) \frac{d X}{d t} \frac{d Y}{d t}+\Delta(X, Y)\left(\frac{d Y}{d t}\right)^{B}=0
$$

or

$$
\begin{equation*}
C d X^{\mathbf{a}}-2 B \cdot d X d Y+A d Y^{\mathbf{a}}=0 \tag{38}
\end{equation*}
$$

This equation, decomposed into linear factors, becomes:

$$
\left[A d Y-\left.\left(B+\sqrt{B^{2}-A C}\right) d X\right|_{-1} ^{1} A d Y-\left(B-\sqrt{B^{2}-A C}\right) d X\right]=0
$$

The denominator determinant (36) thus vanishes if either

$$
\begin{equation*}
A(X, Y) d Y-\left(B(X, Y)+\sqrt{B^{2}(X, Y)-A(X, Y) C(X, Y)}\right) d X=0 \tag{38a}
\end{equation*}
$$

or

$$
\begin{equation*}
A d Y-\left(B-\sqrt{B^{a}-A} C\right) d X=0 \tag{38b}
\end{equation*}
$$

It is Important $^{\text {m }}$ observe that the pair of equations (38a) and ($\mathbf{3 8} \overline{\mathrm{b}}$) are given $\mathrm{a} \boldsymbol{\gamma}$ the coefficients of the ditferential equation (32) alone. They are two ordinary diffferential equations. The solution of each represents a family of curves $\mathbf{f}(\mathbf{X}, \mathbf{Y})=\mathrm{k}$. These two families of curves are denoted as the characteristics of differential equation
(32). If these families of curves, defined by (38a) and (38b) are real, then (32) in this region is denotod as byperbolic. If the two families coincide, then (32) is parabolic. In regions within which the two sets of characm teristics are imaginary, (32) is denoted as an elliptic differential equation.

If, therefore, the curve $A B$ along which the Z-elemen-
tarp stripisprescribedas boundary value to (32)-is a characteristic, the described method of solution by development of $Z(\mathbb{X}, \mathbf{Y})$ into a Taylor series, fails.......

As an application we shall now compute the charactera istica of the differential equation of the flow. The computation $1 \mathbf{a}$ simplestif. me etart from the equation in polar coordinates (31a). Oomparison of (31a) with (32) shoms that for this case the magnitudes A, B, and 0 assume the following values:

$$
A=1, \quad B=0, \quad C=-\frac{1}{c^{n}}\left(\frac{c^{2}}{6 h}-1\right)
$$

and the variables X and \mathbf{Y} are now \mathbf{c} and $\boldsymbol{\varphi}$. The ordinary differential equations of the characteristica (38a) and (38 b) then become:

$$
\begin{equation*}
d \varphi \mp \sqrt{\frac{1}{c^{3}}\left(\frac{c^{a}}{g h}-I\right)} d c=0 \tag{39a,b}
\end{equation*}
$$

Substituting in the above the energy equation (9):

$$
z, \underline{y}=g h_{0}-c^{8} / 2
$$

there is obtained the differential equationa of the two families of characteristics:

$$
\begin{equation*}
\pm \mathrm{d} \varphi=\frac{1}{c} \sqrt{\frac{\mathrm{c}^{8}-\frac{2}{3} \mathrm{gh}_{0}}{\frac{2}{3} g h_{0}-\frac{c^{a}}{3}}} \mathrm{dc} \tag{40a,b}
\end{equation*}
$$

Before we integrate this equation, we wish yet to Introduce another concept.

The critical velocity a* (m/e> is given by the condition that the flow velocity is -equal to the wave propafation velocity $\mathbf{a}=\sqrt{\boldsymbol{g h}}$, sothat the Each number $\mathbf{M}=\mathbf{I}$. Thus if $\mathbf{c}^{\mathbf{a}}=\boldsymbol{g} \mathbf{h}, \mathbf{a}^{\boldsymbol{*}}=\mathbf{c}=\sqrt{\boldsymbol{5} \mathbf{h}^{\prime}}$. Let us compute tho water depth at the critical positions. From the energy equation

$$
c^{a}=25 h_{0}-25 h
$$

and this should be equal to

$$
a^{a}=5 h
$$

that is,

$$
\begin{equation*}
2 g h_{0}-2 g h=g h \text { so that } h *=\frac{2}{3} h_{0} \tag{4I}
\end{equation*}
$$

and hence, .

$$
\begin{equation*}
c^{*^{a}}=a^{\frac{a}{*}} \quad-\frac{2}{3} \operatorname{gh}_{0} \tag{42}
\end{equation*}
$$

The critical positions in a water flow without energy dissipation are located where the water depth is two-thirds of the total head. These poeitions in an acceleratod flow are the transition pointa from "streaming" to "shooting" water and conversely, for decelerated flow.

Substituting (42) into equations (40), the latter after a small transformation, become:

$$
\pm d \varphi=\frac{1}{\left(c / a^{*}\right)} \sqrt{\frac{\left(c / a^{*}\right)^{a}-1}{1-\left(c / a^{*}\right)^{3} / 3}} a\left(c / a^{*}\right)
$$

We shall denote c/a* as the volocity ratio $\overline{\mathbf{c}}$, for which a* is taken as the refcronco volocity. Hence,

$$
\begin{equation*}
\pm d \varphi=\frac{1}{\bar{c}} \sqrt{\frac{\bar{c}^{2}-\frac{1}{1-\bar{c}^{2} / 3}}{1}} \mathrm{~d} \overline{\mathrm{c}} \tag{43a,b}
\end{equation*}
$$

The variables in the above equation are already separated, and the equation map be integrated by a simple quadrature. Fe first introduce a new integration variable:

$$
\mathrm{z}=\overline{\mathrm{C}}^{\mathbf{a}}
$$

so that we have:

$$
\begin{gathered}
\int \pm d \varphi=\int \frac{1}{2 z} \frac{\sqrt{z-1}}{\sqrt{1-z / 3}} d z=\frac{1}{2} \int \frac{z-1}{z} \frac{\sqrt{3} d z}{\sqrt{(z-1)(3-z)}}= \\
=\frac{1}{2} \int\left(1-\frac{1}{z}\right)-\frac{\sqrt{3} d z}{\sqrt{-3+4 z-z^{2}}}
\end{gathered}
$$

This integral splits up into two parts, $J_{\mathbf{1}}$ and J_{a}, of Which the first maybe directly evaluated: ; . .

$$
J_{1}=\int \frac{\sqrt{3} d z}{\sqrt{-3+4 z-z^{3}}}=\sqrt{3} \int \frac{d z}{\sqrt{1-(z-2)^{3}}}=\sqrt{3}\left(\sin ^{-2}\right)(z-2)
$$

In the second integral

$$
J_{\mathrm{a}}=-\int_{\mathrm{z}}-\frac{\sqrt{3} \mathrm{dz}}{3+4 \mathrm{z}-\mathrm{z}}
$$

we make the substitution, $\pi=I / z$, so that:

$$
\begin{aligned}
\mathbf{z} & =1 / \mathrm{w} \\
\mathrm{dz} & =-\frac{1}{\mathrm{a}^{2}} \mathrm{dw} .
\end{aligned}
$$

We now have:

$$
\begin{aligned}
J_{a} & =+\int \frac{\sqrt{3} d \nabla}{\sqrt{-3 \pi+4 \pi-1}}=\int \frac{d(3 \pi)}{\sqrt{1-(3 \pi-2)^{2}}}=\left(\sin ^{-1}\right)(3 \pi-2) \\
& =\left(\sin ^{-1}\right)(3 / z-2)
\end{aligned}
$$

Denoting

$$
\begin{equation*}
f(\bar{c}) \equiv \int \frac{1}{\bar{c}} \sqrt{\frac{\bar{c}^{\bar{a}}-1}{1-\bar{c}^{8} / 3}} d \bar{c} \tag{44a}
\end{equation*}
$$

. we have finally with J_{1} and J_{a}

$$
\begin{equation*}
f(\bar{c})=\frac{1}{2}\left[\sqrt{3}\left(\sin ^{-1}\right)\left(\bar{c}^{a}-2\right)+\left(\sin ^{-1}\right)\left(3 / /^{a}-2\right)\right] \tag{44~b}
\end{equation*}
$$

The solutions of (43) are thus: .

$$
\begin{align*}
\varphi-\varphi_{1} & =f(\bar{c}) \tag{45a}\\
-\varphi+\varphi_{a} & =f(\mathrm{c}) \tag{45b}
\end{align*}
$$

where $\boldsymbol{\varphi}_{\mathbf{1}}$ and $\boldsymbol{\varphi}_{\mathbf{a}}$ ' are the constants of integration $\mathbf{-}$. these being the: parameters of the two families of characteristics. The latter are shown in figure 9; they are opicycloids, the loci of the points of the circumference of a circle which role on another circle (fig. 10). This statement can be confirmed in the following manner.

From the equations (39) (characteristics). and from the energy equation (9), It follows that for $h=0$ the magnitude of the velocity becomes maximum. In the velocity diagram the extremity of $\boldsymbol{c}_{\text {max }}$ then lies on a circle Kmax (fig. 9). For all possible velocities that occur, $\mathbf{c}(u, v)<\mathbf{c}_{\text {max }} h>0$. For $c^{\boldsymbol{a}}>\boldsymbol{g} h$, the radicand of (39) then becomes positive and the root real. Hence, for that region of the hodoqraph in which $\boldsymbol{c}_{\boldsymbol{m a x}}>c>\sqrt{\mathbf{g h}}$ (region II), there are two real families of characteristics. This holds for the shooting water (supersonic flow). For a flow in which $c<\sqrt{\mathbf{g h}}$, the root in (39) becomes imaginary and there exist in this region (I) no real characteristics. This is the case for streaming water.

Let the angle $\boldsymbol{\psi}$ be chosen as parameter (fig. 10). Then, on account of the "rolling condition,"

$$
\alpha=(r / R) \psi
$$

From the triangle PSO, there is obtained for $\boldsymbol{\beta}$

$$
\beta=\left(\tan ^{-1}\right)\left[\frac{r}{(R+r)}-\frac{\sin }{r} \frac{\psi}{\cos } \bar{\psi}\right]
$$

From these two equations, we have:

$$
\begin{equation*}
\varphi=\alpha-\beta=(r / E) \psi \rightarrow\left(\tan ^{-1}\right)\left[\frac{r \cdot \sin \psi}{(R+r)-r \cos \psi}\right] \tag{a}
\end{equation*}
$$

From the cosine law for the triangle PTO:

$$
\begin{equation*}
\bar{c}=\sqrt{(R+r)^{a}+r^{a}-2(R+r) r \cos \psi} \tag{b}
\end{equation*}
$$

Differentiating (a) and (b), there is obtained:
$d \varphi=\frac{\left[(R+r)^{a}+r^{a}-2(\underline{R}+r) r \cos \psi\right] r / \underline{R}-(R+r) r \cos \psi+r^{a}}{\cdot(R+r)^{a}+r^{a}-2(R+r) r \cos \psi} d \psi$

$$
\begin{equation*}
d \bar{c}=\frac{r(R+r) \sin \psi}{\sqrt{\because(R+\dot{r})^{2}}+r^{8}-2(R+r) x \cos \psi} d \psi \tag{a}
\end{equation*}
$$

eliminating in these two equations sin ψ and cos ψ with the aid of equation (b), and than dividing(c)by (d). there is obtained:.

Dividing numerator and denominator of this fraction by $\sqrt{c^{\bar{a}}-\mathrm{P}^{\mathbf{a}}}(\mathrm{R}+2 \mathrm{r}) / \mathrm{R}$, we have, finally:

$$
\begin{equation*}
\frac{d \varphi}{d c}=\frac{1}{\bar{c}} \sqrt{\frac{\bar{c}^{2}-R^{2}}{\left.R^{a}-[R / R+2 r)\right]^{2} \bar{c}^{2}}} \tag{f}
\end{equation*}
$$

Bs was to be proved. Bor $R=1$ and $(R+2 r) / R=\sqrt{3}$, this is the differential equation (43). The epicycloid drawn in figure 10 is the a characteristic of the family (458).

The characteristics of shooting water flow are epicycloids between two circles whose radii are in the ratio $\sqrt{3}: 1$. They are drawn on chart 2 of the supplement. For 8 gas, the characteristics lie between circles whose radii are In the ratio $\sqrt{(k+1) /(k-1)}$ to 1 . They are shown on chart 1 for air $(k=1.405)$.
8. Further Properties of. the Characteristics

We have seen that If an elementary strip be given as boundary value over the characteristics of a partial differential equation, the solution method by a series development of the required function fails. Some further properties of the characteristics will now be discussed. The physical character of the Bupersonlc flow (shooting water) which differs essentially from subsonic flow '(streaming aster) - will thereby receive an interesting explanation from the mathematical point of view.

$$
\text { In equation }(32) \text { : }
$$

$$
A Z_{X X}+2 B Z_{X Y}+0 Z_{Y Y}=D_{1} Z_{X}+H_{1} Z_{Y}+H_{1} Z
$$

let new. variables be introduced by making use of a point transformation. Let the new variables 'be:

$$
\left.\begin{array}{l}
A=\lambda(\mathbf{X}, \mathbf{Y}) \tag{46}\\
\boldsymbol{\mu}=\boldsymbol{\mu}(\mathbf{X}, \mathbf{Y})
\end{array}\right\}
$$

where for the moment we.do not $\mathbf{f i x}$ any definite transformation formulas. From (46) we obtain the inverse formulas:

$$
\begin{aligned}
& X=\dot{X}(\lambda, \mu) \\
& Y=\underline{I}(\dot{\lambda} ; \mu)
\end{aligned}
$$

The solution of the differential equation (32) $Z=\mathbf{Z}(\mathbf{X}, \mathbf{Y})$. is thus a function of $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$.

$$
Z=Z[\lambda, \mu]=Z[\lambda(X, Y), \mu(X, Y)]
$$

From tho above, wo havo:

$$
\left.\begin{array}{l}
z_{X}=z_{\lambda} \lambda_{X}+z_{\mu} \mu_{X} \tag{47a}\\
z_{Y}=z_{\lambda} \lambda_{Y}+z_{\mu} \mu_{Y}
\end{array}\right\}
$$

Differentiating e second timo, thoro are obtained the derifatives of second order of Z in the new variables:

$$
\begin{aligned}
& Z_{X X}=Z_{\lambda \lambda}\left(\lambda_{X}\right)^{a}+2 Z_{\lambda \mu} \lambda_{Y} \mu_{X}+z_{\mu \mu}\left(\mu_{X}\right)^{a}+Z_{\lambda} \lambda_{Z X}+Z_{\mu} \mu_{X X} \\
& Z_{X Y}=Z_{\lambda \lambda} \lambda_{X} \lambda_{Y}+Z_{\lambda_{\mu}}\left(\lambda_{X} \dot{H}_{Y}+\lambda_{Y} \mu_{X}\right)+Z_{\mu \mu \mu} \mu_{X} \mu_{Y}+Z_{\lambda} \dot{\lambda}_{X Y}+Z_{\mu} \mu_{X Y} \\
& Z_{Y Y}=Z_{\lambda \lambda}\left(\lambda_{Y}\right)^{a}+2 Z_{\lambda \mu} \lambda_{Y} \mu_{Y}+Z_{\mu_{\mu}}\left(\mu_{Y}\right)^{a}+Z_{\lambda} \lambda_{Y Y}+Z_{\mu} \mu_{Y Y}
\end{aligned}
$$

Putting these expressions in differential equation (32), it becomes:
$Z_{\lambda \lambda}\left[, A \lambda_{X}{ }^{a}+2 B \lambda_{, X} \lambda_{Y}+C \lambda_{Y}^{a}\right]+2 Z_{\lambda_{\mu}}\left[A \lambda_{X} \mu_{X}+B\left(\lambda_{X} \mu_{Y}+\lambda_{Y} \mu_{X}\right)+C \lambda_{Y} \mu_{Y_{1}}+\right.$

$$
+Z_{\mu_{\mu_{L}}} A \mu_{X}{ }^{2}+2 B \mu_{X} \mu_{Y}+C \mu_{Y}{ }_{3}^{a}=\dot{D}_{3} Z_{\lambda}+\mathbb{F}_{3} Z_{\mu^{\prime}}+\mathbb{F}_{2} Z
$$

We shall now determine the transformation formulas
(46). The differential equation of the characteristicsis

$$
\begin{equation*}
\text { c. } d X^{2}-2 B d X d Y+A d Y^{a}=0 \tag{38}
\end{equation*}
$$

If equation (32) is hyperbolic, (38) has tao real families of curves as solutions. . Wet these be:

$$
\begin{equation*}
f_{1}(X, Y)=\text { constant } \tag{49}
\end{equation*}
$$

and

$$
\left.f_{\mathrm{a}}(X, Y) \triangleq \text { constant }\right\}
$$

Along each of these curves.

$$
f_{\mathbf{X}} \mathrm{d} \mathbf{X}+f_{\mathbf{Y}} \mathrm{dY} \cdot 0
$$

This equation together with. (38) gives for both f_{1} and $\mathbf{f}_{\mathbf{a}}$, the relation:

$$
\begin{equation*}
\mathbb{A} \mathbf{f}_{\mathbf{X}}{ }^{\mathbf{a}}+2 \mathrm{~B} \mathbf{f}_{\mathbf{X}} \mathrm{f}_{\mathbf{Y}}+\mathbf{C} \mathrm{f}_{\mathbf{Y}^{\prime \prime}}=0 \tag{50}
\end{equation*}
$$

An essential simplification $\mathbf{A a}$ obtained if, for the transformation formulae (46), the following special ones are chosen:

$$
\left.\begin{array}{l}
\lambda=f_{1}(X, Y) \tag{51}\\
\mu=f_{2}(X, Y)
\end{array}\right\}
$$

[curvilinear coordinate in tie hodo弓raphs, fig. lib). The two coefficients of $\mathbf{z}_{\lambda \boldsymbol{\lambda}}$ and $\mathbf{Z}_{\mu \boldsymbol{\mu}}$ by (50) then vanish in the transformed differential equation, the latter receiving the form

$$
\begin{equation*}
\frac{\partial z}{\partial \lambda \alpha \mu}=-\left[\bar{j} a(\lambda, \mu) \frac{\partial Z}{\partial \lambda}+b(\lambda, \mu) \frac{\partial Z}{\partial \mu}+c(\lambda, \mu) z\right] \tag{52}
\end{equation*}
$$

This form is called the normal form of the linear hyper-. boric differential equation. It is well suited to numeric. bal integration by means of the difference method.

As an application, let the characteristics (45a and b) be Introduced as curvilinear coordinates of the positiondetermining potential x (Bia). We then obtain the normail form of the differential equation of flow.

By elimination of h and h_{0} from the three equations:
(9) $\mathbf{c}^{\mathbf{a}}=\mathbf{2 g} \mathbf{h}_{0}-2 \boldsymbol{2 g}$,
(42) $\quad a^{* a}=2 g h_{0} / 3$, and $a^{2}=g h$
there $\mathbf{1 a}$ obtained:

$$
c^{a}=3 a m^{a}-2 a^{a}
$$

from mhtch, after short computation and substitution of the velocity ratio $\overline{\mathbf{o}}=c / a *$, there is obtained:

$$
\frac{\mathbf{c}^{2}}{\mathbf{a}^{\mathbf{a}}}=\frac{2 \bar{c}^{2}}{\mathbf{3}-\overline{\mathbf{c}}^{a}} \text { and } \frac{\mathbf{c}^{\mathbf{a}}}{a^{2}}-1=3 \frac{\overline{\mathbf{c}}^{2}-1}{3-\overline{\mathbf{c}}^{2}}
$$

Substituting this expression in (3la) and multiplving the latter by the critical velocity a^{*} (42), then (3la) may be written in nondimensional form:.

$$
\frac{\bar{\sigma}^{2} x}{\partial \bar{c}^{2}}-\frac{\dot{o}^{2} x}{\partial \varphi^{2}} \frac{3\left(\bar{c}^{2}-\frac{1}{c}\left(3-\bar{c}^{2}\right)\right.}{c^{2}(3 \bar{c}} \frac{\partial x\left(\bar{c}^{2}-1\right)}{\frac{1}{c}\left(3-\bar{c}^{2}\right)}=0
$$

In the above we now introduce the coordinates $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$ through the following exprersions:

$$
\begin{aligned}
& x_{\bar{c}}=x_{\lambda} x_{\bar{c}}+x_{\mu \mu} \bar{c} \\
& x_{\overline{c c}}=x_{\lambda \lambda}\left(x_{\bar{c}}\right)^{a}+2 x_{\lambda \mu} \lambda_{\bar{c}} \mu_{\bar{c}}+x_{\mu_{\mu}}\left(\mu_{\bar{c}}\right)^{a}+x_{\lambda} \lambda_{\bar{c} \bar{c}}+x_{\mu} \mu_{\overline{c c}} \\
& x_{\varphi \varphi}=x_{\lambda \lambda}\left(\lambda_{\varphi}\right)^{a}+2 \sum_{\lambda_{\lambda \mu} \lambda_{\vec{Y}}} \mu_{\varphi \varphi}+x_{\mu_{\mu \mu}}\left(\mu_{\mu \varphi}\right)^{2}+x_{\lambda} \lambda_{\varphi \varphi}+x_{\mu} \mu_{\varphi \varphi \varphi}
\end{aligned}
$$

After substitution and rearrarjement, there is obtained:

$$
\begin{aligned}
& +2 \frac{\partial^{3} x}{\partial \lambda \partial \mu}\left[\frac{\partial \lambda}{\partial \bar{c}} \frac{\partial \mu}{\partial \bar{c}}-\frac{3\left(\bar{c}^{3}-1\right)}{\bar{c}^{2}\left(\left\{-\bar{c}^{2}\right)\right.} \frac{\partial \lambda}{\partial \varphi} \frac{\partial \mu}{\partial \varphi}\right]+
\end{aligned}
$$

$$
\begin{align*}
& +\frac{\partial X}{\partial \mu}\left[\frac{\partial^{2} \mu}{\partial \bar{c}^{2}}-\frac{3\left(\bar{c}^{2}-1\right)}{\bar{c}^{2}\left(X-\bar{c}^{2}\right)} \frac{c^{a} \mu}{\partial \varphi^{2}}-\frac{3\left(\overline{c^{2}}-\bar{l}\right)}{\bar{c}\left(3-\bar{c}^{2}\right)} \frac{\bar{\partial} \mu}{\partial \bar{c}}\right]=0 \tag{A}
\end{align*}
$$

The two sets of charactrifatics (45s) and (45b) in the implicit form are now

$$
\begin{aligned}
& f(\overline{3})+\varphi=\operatorname{con} \operatorname{stan} t \\
& f(\bar{c})-\varphi=\text { constant }
\end{aligned}
$$

Substituting in (A) for $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$ by (51). the two values
and

$$
\ddot{\lambda}=\dot{f}(\bar{c})+\dot{\varphi} \dot{\varphi} \cdot-\cdots \quad . \quad\left(53_{a}\right)
$$

$$
\begin{equation*}
\mu=f(\bar{c})-\varphi \tag{53.b}
\end{equation*}
$$

the coefficients. of $\boldsymbol{x}_{\lambda \lambda}$ and $\boldsymbol{X}_{\boldsymbol{\mu} \boldsymbol{\mu}}$ become zero and, since.

$$
\begin{aligned}
& \lambda_{\varphi}=1, . \mu_{\varphi}=-\quad 1, \quad \lambda_{\varphi \varphi \bar{\varphi}}=0, \quad \mu_{\varphi \varphi \varphi}=0 \\
& \lambda_{\bar{c}}=\mathrm{df}(\overline{\mathrm{c}}) / \mathrm{d} \overline{\mathrm{c}} \quad \mu_{\bar{c}}=\mathrm{df}(\dot{\bar{c}}) / \mathrm{d} \overline{\mathrm{c}} . \\
& \lambda \overline{c c}=d^{a} f(\bar{c}) / d \bar{c}^{a} \quad \cdot \mu_{\bar{c}}=d^{a} f(\bar{c}) / d \bar{c}^{a}
\end{aligned}
$$

(A) becomes:

$\left.2 \frac{\partial^{a} x}{\partial \lambda \partial \mu}\left[\left(\frac{d f}{d \bar{c}}\right)^{a}+\frac{3\left(\bar{c}^{a}-I\right)}{\bar{c}^{2}(3-\bar{c}} \overline{\frac{a}{a}}\right)\right]+\left[\frac{\partial X}{\partial \lambda}+\frac{\partial X}{\partial \mu}\right]\left[\frac{d^{a} f}{d \bar{c}^{a}}-\frac{3\left(\bar{c}^{a}-1\right)}{c\left(3-\bar{c}^{a}\right)} \frac{d f}{d \bar{c}_{I}}=0\right.$
and the normal form finally reads;

where A and $\boldsymbol{\mu}$ are defined by (53a) and (53b), and K is obtained by. substituting the expression for $\mathbf{f}(\bar{c})$ from (44b) :

$$
\begin{equation*}
K=K(\lambda, \mu)=K(\lambda+\mu)=K(\bar{c})=\frac{\bar{c}_{-}^{a}\left(1-\bar{c}^{a} / \underline{2}\right)-}{\sqrt{\overline{3} \sqrt{ }\left(3-\bar{c}^{a}\right)} \sqrt{ } \frac{\left(\bar{c}^{a}-1\right)^{3}}{}} \tag{53d}
\end{equation*}
$$

The numerical values intr K are collected in table II.
The lInes. $\boldsymbol{\lambda}=$ 'constant, and $\boldsymbol{\mu}=$ constant are characteristice since we had. so chosen the transformation formulae (51). If, after the transformation, $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$ are plotted as rectangular coordinates (figs. lie), it appears that the normal form (53c) of the hyperbolic..equation has as characteristics, the sets of parallels to the A and $\boldsymbol{\mu}$ axes. For equation (52), winch is also of the form (32), $\mathbf{A}=0, B=\frac{1}{B}, C=0$, and the variables X and \mathbf{Y} are now A and $\mu_{\text {. }}$ These substituted in the general aqualion (38) of the characteristics, give:

$$
d \lambda d \mu=0
$$

The two solutions of this differential equation are:

$$
\lambda=\text { constant }
$$

and
$\boldsymbol{\mu}=$ constant (fig. 12)
The solution Z of the differential equations (32) and (52) may be determined if, along a general curve, an element strip is prescribed as boundary value. This curve may not, however, be a characteristic. But if it is made up of two characteristics .of different families, it is surprising that a solution of the differential equation may still be determined. For this purpose, the function \mathbf{Z} alone is sufficient as boundary value while no elementary strip may be prescribed since this mould be imposing too many conditions.

Let the values $Z=\varphi\left(\lambda, \mu_{0}\right)=\varphi(\lambda)$ and $Z=\psi\left(\lambda_{0}, \mu\right)=$ $\Psi(\mu)$ with $\varphi\left(\lambda_{0}\right)=\Psi\left(\mu_{0}\right)$ bo given along two segments $\boldsymbol{A}_{\mathbf{0}} \boldsymbol{A}_{\mathbf{1}}$ and $\boldsymbol{A}_{\mathbf{o}} \boldsymbol{A}_{\mathbf{a}}$ of to characteristics (first 12). Along $A_{0} A_{0}$ there is therewith also $\because \boldsymbol{i v e n} \dot{\partial} / \bar{\partial} \mu$, but $\partial Z / \partial \mu$ is assumed not to be prescribed; similarly, along $\boldsymbol{A}_{0} \mathbb{A}_{1}$. It is to be observed tint no elementary strip is prescribed along $A_{1} A_{0} \mathbf{A}_{\mathbf{B}}$ of \mathbf{Z} but only the values of Z itself. By the method of so-called "successive approximation," it is then possible to find a solution Z of the partial differential equation (52) for the entire region $\mathbf{A}_{1} \mathbf{A}_{0} \mathbf{A}_{\mathbf{2}} \boldsymbol{A}_{3}$, . which assumes the given values of Z along $\boldsymbol{A}_{\mathbf{1}} \mathbf{A}_{\mathbf{o}} \mathbf{A}_{\mathbf{a}}$.

As a first approximation, Earn (reference 10)

$$
z_{\alpha}=\varphi(\lambda)+\psi(\omega)-\varphi\left(\lambda_{0}, \mu_{0}\right)
$$

for all values A and $\boldsymbol{\mu}$ of the region $\mathbf{A}_{1} \mathbf{A}_{0} \mathbf{A}_{\mathbf{a}} \mathbf{A}_{\mathbf{3}}$. On the boundaries $\mathbf{A}_{0} \boldsymbol{A}_{\mathbf{1}}$ and $\boldsymbol{A}_{\mathbf{c}} \boldsymbol{A}_{\mathbf{a}} \mathbf{Z}_{\boldsymbol{\alpha}}$ becomes equal to the prescribed vales.

[^2]We now form with the right side of equation (52):

$$
z_{g:}(\lambda, \mu)=-\int_{\lambda_{0}} \int_{\mu_{n}}^{\lambda^{\mu}}\left(a \frac{\partial z_{\alpha}}{\partial \lambda}+b \frac{\partial z_{\alpha}}{\partial \mu}+c z_{\alpha} j d \lambda d \mu\right.
$$

where the integration $\mathbf{1 a}$ to be taken ovar the doubly hatched rectangle. Proceoding in this manner, we form

$$
z_{\sigma}(\lambda, \mu)=-\int_{\lambda_{0}}^{\lambda} \int_{\mu_{0}}^{\mu}\left(a \frac{\partial z_{\sigma-2}}{\partial \lambda}+b \frac{\partial z_{\sigma-1}}{a_{\mu} \mu}+c z_{\sigma-1}\right) d \lambda d \mu
$$

Setting

$$
z(\lambda, \mu)=z_{\alpha}+z_{\beta}+z_{\gamma}+\ldots .
$$

then this sum is the requirod solution and it converges, as shown by Horn, in the rectangle $A_{1} A_{0} A_{8} A_{3}$.

There will now bo shorn a last property of the characteristics - the most importent for tho application to shooting water. At tho samo timo, in addition to the method of solution of (32) by sories development and the method of successive approximation, we shall become acquainted with the method of intogration of Riemann.

Te denote by $W(Z)$ the most general homogeneous linear differential expression:

$$
\begin{equation*}
\mathbf{N}(\mathbf{Z}) \equiv A \mathbf{Z}_{\mathbf{X} \mathbf{X}}+2 \mathrm{~B} \mathbf{Z}_{\mathbf{X Y}}+\mathbf{O} \mathrm{Zyy}+\mathrm{D} \mathbf{Z}_{\mathbf{X}}+\mathbf{I} \mathbf{Z}_{\mathbf{Y}}+\mathbf{F} \mathbf{Z} \tag{55}
\end{equation*}
$$

where the coefficients A-to \boldsymbol{T} depend only on the free variables \dot{X} and 'Y. The general linear homogeneous differential equation of the second order is the equation (32):

$$
\begin{equation*}
N(Z)=0^{\circ} \tag{56}
\end{equation*}
$$

To the expression $\mathbb{N}(Z)$ another one $M(T)$ is made to correspond, having thensame coefficient. . A, . B, C, etc.' as in (55). where

$$
\begin{align*}
& =M(\mathbb{H})=\mathbb{A} \Pi_{X X}+2 B \nabla_{X Y}+C \Pi_{Y Y}+2 W_{X}\left(A_{X}+B_{Y}-\frac{1}{d} D\right)+ \tag{57}
\end{align*}
$$

$M(W)$ is then denoted as the adjunt of $\cdot \mathbb{N}(Z)$ and the equation

$$
\begin{equation*}
M(W)=0 \tag{58}
\end{equation*}
$$

the adjolnt differential equation of $\mathbb{N}(\mathbb{Z})=0 .{ }^{\circ} \mathbf{Z}$ and W are functions of X and $Y: Z=\mathbf{Z}(\mathbf{X}, \mathbf{Y}), W=\mathbb{W}(\mathbf{X}, \mathbf{Y}) . \quad \mathbf{M}(\boldsymbol{T})=$ 0 has the same characteristics as $N(Z)=0$, since in . (57a) and in (55) the coefficients of the partial derivatives of the second order are the same and since, according to (38), the characteristics depend on these coeffir cionta only.

By addition of the identities:

$$
\begin{aligned}
& A W Z_{X X}-Z(A W)_{X X}=\frac{\partial}{\partial X}\left[^{r} A W Z X-Z(A F) X_{3}\right. \\
& B W Z_{X Y} \rightarrow Z(B H)_{X Y}=\frac{\partial}{\partial Y}\left[B H Z_{X}\right]-\frac{\partial}{\partial X}[Z(B W) \underline{Y}] \\
& B F Z_{X Y}-Z(B F)_{X Y}=\frac{\partial}{\partial X}\left[3 F Z_{Y}\right]-\frac{\partial}{\partial V}\left[Z(B W)_{X}\right] \\
& C W Z_{Y Y}-Z\left(C W i_{Y Y}=\frac{\partial}{O Y}\left[G \Pi Z_{Y} \rightarrow Z(C ה)_{Y}\right]\right. \text {. } \\
& D H Z X+Z(D \pi)_{X}=\left.\frac{\partial}{\partial X}\right|_{i} ^{r} D Z \pi i \\
& E \pi Z_{Y}+Z(E W)_{Y}=\frac{\partial}{\partial Y}[J Z \pi] \\
& \text { FWZ - ZFW = n }
\end{aligned}
$$

there $\mathbf{i s}$ obtained the identity:

$$
\begin{equation*}
+\frac{\dot{\partial}}{\partial Y}\left[B W Z_{X}-Z(B \Pi)_{X}+O W Z_{Y}-Z(C T)_{Y}+E Z T\right. \tag{59}
\end{equation*}
$$

Denoting for a moment the two expreseions in brackets by P and Q, respectively, the above equation reads:

$$
\begin{equation*}
\bar{H} N(Z)-Z Y(W)=\partial P / \partial X+\partial Q / \partial Y \tag{59a}
\end{equation*}
$$

This equation we shall integrate over the resion F of the \mathbf{X}, \mathbf{Y} plane; Let the boundary of the refion of integration,
to be more definitely fixed later, be 0 (fig. 13):

$$
\int_{(\mathbb{T})}[\Pi \mathbb{N}(Z)-\ddot{Z} u(\mathbb{H})]_{-} d \ddot{X} d Y=\iint_{(\mathbb{M})}(\partial P l \partial X+\partial Q / \partial Y) \text { ax } d Y
$$

The right af de may by integration by marta be converted into a line integral. There is obtained:

$$
\begin{equation*}
\int_{(\mathbb{F})}[W \mathbb{H}(Z)-Z M(\pi)] d \bar{X} d Y=\oint_{(0)}(P d Y-Q d X) \tag{60}
\end{equation*}
$$

The generalized Green's theorem (60) will pow be applied to the normal form (52) of the hyperbolic differential equation. For this purpose there is to be set in (60)
' $\mathrm{A}=0, \mathrm{~B}=\mathrm{i}, \mathrm{C}=0, \mathrm{D}=\mathrm{a}, \mathrm{E}=\mathrm{b}$, and $\mathrm{F}=\mathrm{c}$. In place of X and Y, we have $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$. The expressions P and Q then become:

$$
\left.\begin{array}{l}
P=\frac{1}{3}\left(\mathbb{Z} Z_{\mu}-Z W_{\mu}\right)+a z \pi \tag{61a}\\
Q=\frac{t}{y}\left(\mathbb{Z} Z_{\lambda}-Z W_{\lambda}\right)+b Z W
\end{array}\right\}
$$

Green's formula (60) now reads:

$$
\begin{equation*}
\int_{(\mathbb{F})}[\pi N(Z)-Z M(\pi)]^{\prime} d \lambda d \mu=\oint_{(0)}(P d \mu-Q d \lambda) \tag{fIb}
\end{equation*}
$$

With this formula we may now prove the following:
If Z is a function of $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}, Z=Z(\lambda, \mu)$, which satisfies the hyperbolic differential equation (52) and for which, along a' curve from \mathbf{A}_{1} to $\mathbf{B}_{\mathbf{1}}$ (fig. 14) \rightarrow which thus. in general, is not a characteristic - an elementary strip if given; then by these boundary values and the diffferential equation, the function $Z \mathbf{i s}^{\boldsymbol{d}} \mathbf{d e t e r m i n e d ~ i n ~ t h e ~}$ characteristic rectangle $A_{1} O_{1} B_{1} O_{1}{ }^{\prime}$, which contains the curve $\boldsymbol{A}_{\mathbf{1}} \boldsymbol{B}_{\mathbf{I}}$ with its end points.

In order to enow this we apply the formula (61b) to the region G and its boundary AOBA .of figure 14, where
*Along $A_{1} B_{1}$ therefore Z and the slopes $\partial Z / \partial \lambda$ and $\partial Z / \partial \mu$. are siven where naturally along $\mathbf{A}_{\mathbf{1}} \mathbf{B}_{\mathbf{1}}$, the condition $\mathbf{d Z}=$ $\mathbf{Z}_{\boldsymbol{\lambda}} \mathbf{d} \boldsymbol{\lambda}+\mathbf{Z}_{\mu} \mathbf{d} \boldsymbol{\mu}$ must be satisfied.

0 is an arbitrary interior point ($\boldsymbol{\lambda}=\mathbf{p}, \boldsymbol{\mu}=\mathbf{q}$) of the characteristic rectangle $\mathbf{A}_{\mathbf{1}} \mathbf{O}_{\mathbf{1}} \mathbf{B}_{\mathbf{1}} \mathbf{O}_{\mathbf{1}} \mathbf{}^{\mathbf{\prime}}$. In integrating along OB, only P d $\boldsymbol{\mu}$ contributes anything: $Q ~ d \boldsymbol{\lambda}$ does not con. tribute anything, since $\mathbf{d \lambda}=0$. Similarly,

$$
\int_{A}^{0}(P d \mu-Q d \lambda)=-\int_{A}^{0} Q d \lambda
$$

since along $A 0 \mu=q=$ constant, so that $\boldsymbol{d} \boldsymbol{\mu}=0$. We thea obtain from (61b) applied to the hatched region G

$$
\int_{(G)}[W N(Z)-Z \operatorname{Id}(W)] d \lambda d \mu=\int_{0}^{B} P d \mu-\int_{A}^{0} Q d \lambda+\int_{B}^{A}(P d \mu-Q d \lambda)
$$

Non from'(6la), if the first term is integrated by parts*

$$
\begin{align*}
& \int_{0}^{B} P d \mu=\int_{0}^{B}\left(\frac{1}{2} \pi \cdot \frac{\partial Z}{\partial \mu}-\frac{\lambda}{2} Z \frac{\partial \pi}{\partial \mu}+a Z \pi\right) d \mu= \\
& =\frac{\partial}{2}\left(\begin{array}{ll}
H & Z
\end{array}\right)_{B}-\frac{\partial}{2}\left(\begin{array}{ll}
\pi & Z
\end{array}\right)_{O}-\int_{0}^{B} Z(\partial \pi / \partial \mu-a W) d \mu \tag{a}
\end{align*}
$$

Similarly, by integration by parts of the first term

$$
\begin{align*}
& -\int_{A}^{0} Q d \lambda=+\int_{A}^{0}\left(-\frac{1}{3} \pi \frac{\partial \dot{Z}}{\partial \lambda}+\frac{1}{2} Z \frac{\partial \dot{H}}{\partial \lambda}-b z \pi\right) d \lambda \\
& =-\frac{1}{2}(\pi Z)^{\prime}+\frac{\partial}{a}(\mathbb{Z})_{A}+\int_{A}^{0} Z(\bar{c} H / \delta \lambda-b W) d \lambda \tag{b}
\end{align*}
$$

With expressions (a) and (b), formula (62) becomes:

$$
\int_{0}^{B} \frac{t}{\partial} W \frac{\partial Z}{\partial \mu} d \mu=\left.\frac{1}{2}(\pi Z)\right|_{0} ^{B}-\int_{0}^{B} \frac{1}{2} Z \frac{\partial \pi}{\partial \mu} d \mu
$$

$$
\begin{align*}
& +\int_{\Lambda}^{0} z(\partial \pi / \partial \lambda-b \pi) d \lambda-\int_{0}^{B} z(\partial \pi / \partial \mu-a \pi) d \mu+ \\
& +\int_{A}^{B}(Q d \lambda-P \quad d \mu) . \tag{63}
\end{align*}
$$

We now choose for each point. ' 0 which is given by the coordinates $\boldsymbol{\lambda}=\mathbf{p}, \boldsymbol{\mu}=\mathbf{q}$, a definite function W of the coordinates A and $\boldsymbol{\mu}: W=\mathbb{F}(\lambda, \mu)$. In this functions and q occur as parameters, the function $\mathbb{F}(\lambda, \mu)$ being different for each choice of the point $\mathbf{O}(\mathbf{p}, \mathbf{q})$. We thus have:

$$
W=W(\lambda, \mu)=W(\lambda, \mu ; p, q)
$$

where the function is to have the following properties:

1. At the point 0 itself (p, q), W is to assume the value 1.
2. The function W is to satisfy over the entire redion G (fig. 14) the adjunct differential equation $M(\mathbb{H})=$ 0 ; i.e., be a solution of

$$
\begin{equation*}
M(\pi)=0 \tag{64}
\end{equation*}
$$

Ba) Along the-gtraight line $O B \quad(\lambda=p$ constant, $\boldsymbol{\mu}$ variable) the function W is to assume the values:

$$
\begin{equation*}
\nabla(p, \mu)=e^{\int_{q}^{\mu}(p, \mu) d \mu} \tag{65a}
\end{equation*}
$$

Condition 1 is thereby satisfied since for the point $\boldsymbol{\lambda}=$ $\mathrm{p}, \boldsymbol{\mu}=\mathbf{q}, \boldsymbol{W}(\mathrm{p}, \mathbf{q})=\boldsymbol{e}^{\boldsymbol{\delta}}=1$. Differentiating ($\mathbf{0} \overline{5} \mathbf{a}$) with respect to $\boldsymbol{\mu}$, there $\mathbf{i s}$ obtained for the function W along $O B$ the relation

$$
\begin{equation*}
\partial \pi / \partial \mu-a W=0 \tag{66a}
\end{equation*}
$$

Bb) Similarly along the straight line $A 0$ ($\boldsymbol{\mu}=\mathbf{q}$ constand; $\boldsymbol{\lambda}$ variable) the function is to assume the values:

$$
\ldots W(\lambda, q)=e_{p}^{\lambda} \int_{p}^{\lambda}(\lambda, q) d \lambda
$$

Here, too, vie condition $\mathbb{W}(\underline{p}, \underline{q})=1$ is satisfied. Differentiating (65b) along AO with respect to $\boldsymbol{\lambda}$ thore.is obtained along this line the relation:

$$
\begin{equation*}
\dot{\partial} \pi / \partial \lambda-b \pi=0 \tag{66~b}
\end{equation*}
$$

The function defined by the conditions 1,2 , and 3, is known as Green's function $\pi(\boldsymbol{\lambda}, \boldsymbol{\mu} \boldsymbol{p}, \boldsymbol{q})$ of the differential equation $N(Z)=0$. It is determined only by the coefficients of this equation. That it exists we know for $\boldsymbol{\pi}$, according to condition 2 , $\mathbf{1} \mathbf{s}$ a solution of the partial differential equation of. the second order (M) $=0$, for which the values of W along the two characteristics AO nid $O B$ are prescribed according to requirements 1 and 3 , as boundary values. It is thus possible to determine \mathbb{F} by the method, for example, of successive approximation.

Substituting now in (63) $N(Z)=0$, nd Green's function W, with its properties (64) and (66n, b), there is obtained:

$$
\begin{aligned}
& \left.0=-Z O+\frac{1}{B}\left[(W Z)_{A}+(F Z)_{B}\right]+\int_{A}^{B}(Q d \lambda-P d \mu)\right) \\
& \text { that }
\end{aligned}
$$

$$
\begin{equation*}
Z 03 \mathrm{Z}(p, q)=\frac{1}{2}[\cdot W Z)_{A}+(W Z)_{B_{I}}+{ }_{\cdot A^{S}}(Q d \lambda-P d \mu) \tag{67}
\end{equation*}
$$

Substituting further the expressions (6la) for P and Q, we have:

$$
Z O=Z(p, q)=\frac{1}{2}\left[(W Z)_{A}+(W Z) B_{3}+\right.
$$

$$
+\int_{A}^{B}\left(\frac{1}{2} W Z \lambda-\frac{1}{Z} \cdot Z W_{\lambda}+b Z W\right) d \lambda+\left(-\frac{1}{2} W Z_{\mu}+\frac{i}{B} Z \nabla_{\mu-i} Z W\right) d \mu=
$$

$$
=\frac{\frac{1}{2}}{A}\left[(W Z)_{A}+(W Z)_{B}\right]+\int_{B}^{B} \sum_{i}^{B} \frac{\Delta}{Z} \pi(\partial Z / \partial \lambda \cos \varphi-\partial Z / \partial \mu \sin \varphi)
$$

We here thus expressed the required solution Z at -point - $0(p, q)$. by -the.given boundary. values; i.e., by a portion of the elementary 'strip $A_{1} B_{1}$. The "coñiderations hold for every arbitrary point 0 which belongs to the characteristio rectangle determined by the points $\boldsymbol{A}_{\mathbf{1}}$ arid $\mathbf{B}_{\mathbf{1}}$. It may be remarked further that \mathbf{Z} Is already determ mined at point 0 by'ita elementary strip alonsAB and therefore that the portions $\mathbf{A A}_{\mathbf{1}}$ and $\mathbf{B B}_{\mathbf{1}}$ (fis.: $\mathbf{1 4}$) of the boundary value strip $\mathbf{A}_{\boldsymbol{1}} \mathbf{B}_{\mathbf{1}}$ have no effect on the value of Z at point 0 .

By means of the elementary otrip. $\boldsymbol{\Lambda}_{1} \boldsymbol{B}_{1}$ therefore, .the solution $\mathbf{Z}(\boldsymbol{\lambda}, \boldsymbol{\mu})$ of the differential equation $\mathbb{H}(\mathbf{Z})=$ 0 is certainly determined In the largest characteriatio rectanale which is fixed by $\boldsymbol{A}_{\mathbf{1}} \mathbf{B}_{\mathbf{1}}$. We wish to show, furthermore, that it $\mathbf{i a}$ determined only within it, and not outside of It. Let Q be \boldsymbol{a} point without $\mathbf{A}_{\mathbf{1}} \mathbf{O}_{\mathbf{1}} \mathbf{B}_{\mathbf{1}} \mathbf{O}_{\mathbf{1}} \mathbf{\prime}$. Z is. not determined in Q since, according to formula (67a) $Z Q$ depends on the elementary strip AR (fis. 14). The portion $\mathbf{B}_{\mathbf{1}} \mathbf{R}$ of this required elementary strip, however, is not given. Thus the a oove theorem is proven.

A special case milich we still must examine in particular, $\mathbf{1} \mathbf{a}$ that for which the curve $\mathbf{A}_{\mathbf{1}} \mathbf{B}_{\mathbf{1}}-\mathbf{a l o n g}$ which an elementary strip of Z Is riven \rightarrow degenerates into the line $A_{1} O_{1}^{\prime} B_{1}(f i g .15), ~ c o n s i s t i n g$ of two characteristics. From the method of successive approximation, we know that Z is then determined in the region $\mathbb{A}_{1} O_{1} B_{1} O_{1}{ }^{\prime}$ by the assignment of the values of Z alone, along $\mathbf{B}_{\mathbf{1}} \mathbf{O}_{\mathbf{1}}^{\mathbf{\prime}} \mathbf{A}$. This fact will now also be derived from Riemann's method of inm tegration.

We start from the solution

$$
\begin{equation*}
Z(p, q)=\left.\frac{t}{2}\right|^{-}(\mathbb{Z} Z)_{A}+\left(\pi^{\cdot} Z\right)_{B_{I}}+\underset{\left(A O_{1}^{\prime} B\right)}{S} \cdot(Q d \lambda-P d \mu) \tag{67}
\end{equation*}
$$

Since along $\mathbf{A} \mathbf{O}_{1}{ }^{\prime} \boldsymbol{\lambda}=$ constant, $\boldsymbol{d} \boldsymbol{\lambda}=0$, and alonf $\mathrm{O}_{1}{ }^{\mathbf{\prime} \mathbf{B}}$ $\boldsymbol{\mu}=$ constant, $\mathbf{d} \boldsymbol{\mu}=0$, the integral on the right side bréaks up into two-part integrals

$$
\int_{-O_{1}^{\prime}-B}^{B}(Q d \lambda-P \cdot d \mu)=\int_{A}^{O_{1}}-P d \mu+\int_{O_{1}}^{B} \cdot Q d \lambda
$$

Substituting in the above the expressions P and Q (equaltions 6la), there is obtained, as before:

$$
-\int_{A}^{O_{1}^{\prime}} P d \mu=+\int_{01^{\prime}}^{A}\left(8 W \partial Z / \partial \mu-\frac{1}{2} Z \partial W / \partial \mu+a Z W\right) d \mu
$$

This time me integrate the second term by parts and obtain:

$$
\begin{equation*}
-\int_{A}^{O_{1} \prime} P d \mu=\frac{1}{2}(\pi Z)_{O_{1}}-\frac{1}{2}(\pi Z)_{A}+\int_{O_{1}}^{A} \pi(\partial Z / \partial \mu+a Z) d \mu \tag{a}
\end{equation*}
$$

Similarly (again the second term inter rated by parts):

$$
\int_{0_{1},}^{B} Q d \lambda=\frac{z}{2}(\pi z)_{Q_{1}},-\dot{z}(\pi z)_{B}+\int_{0 ; 1}^{B} \pi(\partial z / \partial \lambda+b z) d \lambda
$$

Substituting (a) and (b), we have, finally:

$$
z(p, q)=(\pi z)_{O_{1}^{\prime}}+\int_{0_{1}^{\prime}}^{A^{A}} \pi(\partial z / \partial \mu+a z) d \mu+\int_{0_{1}}^{B} \pi(\partial z / \partial \lambda+b z) d \lambda
$$

With the prescribed values of Z as boundary values $\partial Z / \bar{\sigma} \mu$ is also given along $O_{1} A^{\prime}$: The integral from O_{1} : to A nay thus be evaluated without the necessity of giving also oZ/ di and nonce elementary trip. Simpcarly with the Z values alone, the values $\partial z / \partial \lambda$ along $\mathrm{O}_{1}{ }^{\prime} \mathrm{B}_{1}$ and also the second intogrinl in (68) mat be evaluate by assigning Z alone. The formula (os) thus reprosente the solution $\mathbf{Z}(p, q)$ in the entire characteristic rectangle $A_{1} O_{1} B_{1} O_{1}^{\prime}$.

$$
\text { NoA.O.A. Teohntcial Mex̃oremidum . M, o. } 9.34
$$

From the differential equation of. the .velocity potential (15) of a compressible flow and from the flow space, Tie were led by the Legendre contact transformation to the differential equation of the poeitlon-determining potential X (31) in the velocity plane. In aonneation with this partial differential equation of seaond order, we became familiar with the characteristio ourves and some of their properties. For 'shooting water and for superspnic flows, these aonsfst of two real families of curves; namion Iy, epiayalolds. The Ryemann method of solution showed that the solution of the hyperbolic partial differential equation by the boundary values is nlwers determined within a complete characteristic reatenqle, namely, the smallest rectangle which containg all the boundary values.

THE METHOD OF CHARACTRRISTICS

10. Introduction

Important contributions to the solution of the differm ential equation of tro-dimenaional supersonic flows have been made by Prendtl, Meyer, Steichen, Ackeret, and Busem mann. Whereas the first solution methods are purely computational,. it was pointed out by J. Ackeret that, with' the aid of the characteristios a sraphical method may be .. developed. This has been carried out for flows without energy dissipation by Prandtl end Busemann. Hor the case of flaws with Impulsive discontinuities, Busemenn has developed - on the basis of the method for nondissipativa flows - a graphical method where the characteristics are replaced by the so-oalled "shock polara" (references 1 (or 2).7, (pp. 421-440), 14, 15, 17, 18 (np. 499-509), end 27).

Let the velocity of a two-dimensional supersonic flow or a shooting-water flow be given along a portion of a curve AB (fig. 16). Let the flow be from left tor right, 0^{\prime} a point downstream throush mhich pass the two Mach lines $\mathbf{B O}^{\mathbf{\prime}}$ and. $\boldsymbol{1 0}^{\prime}$. . The region of the $\mathbf{f l o w}$ bounded by* the Yeah lines .OA, OB, BO', AO', we shall denote as the Mach quadrilateral, We shell assume that no restriction of the flow (vertical walls) is located in its interior: that is, neither boundary nor any other object. It may be shown by a simple consideration that under these assump..
tions the flow, if prescribed along $A B$, determines the condition in the entire Mach quadrilateral AO'BOA. Outside of this quadrilateral, influences from other points are effective. At point \boldsymbol{F}, for example, another wave G尹 may arrive and produce a disturbance without producing a change on $\mathbf{A B}$, since. Gris a wave of the same family as BO'.

Since every nondissipative flow $\mathbf{1} \boldsymbol{a}$ also a possible flow in the opposite direction, the same considerations apply to the upstream region AOB. This statement is not in contradiction of the general fact that in a flow with the above critical velocity, the effects of disturbances make themselves felt only downstream. We a0 not state that the condition at 0 , for example, is caused by effects on AB, but rather, from the effects on $\boldsymbol{A B}$, conclude as to the upstream-lying causes.

It is to be observed that the Mach quadrilateral AO'BOA in general has curved sites which, as Mach lines, are determined with the flow itself. In the preceding section, from the intejrals of the hyperbolic differential equation, we became familiar with the remarkable fact that boundary values act as determining factors only within rem
. stricted regions. To the characteristic quadrilateral, the region of solution of the differential equation, there corresponds in the flow the Mach orrdrilateral. The Mach lines are no other than the "characteristica" of the differential equation of the velocity potential. The characteristics in the flow plane are'not given, however, in advance as those in the hodograph, but become known simultaneously $\boldsymbol{w i t h}$. the solution $\boldsymbol{\Phi}(\mathbf{x}, \mathbf{y})$. This is due to the fact that the coefficients of that partial differential equation (15) contain not only the free variables but also the. first•derivatives of the function Φ, that is, $\Phi_{\boldsymbol{x}}$ and $\Phi_{\mathbf{y}}$. This is.aiso the reason why we passed from the . flow space to the velocity plane (equations (31), (31a), and (53c)).

11: Physical Basis of the Method of Characteristics

. By means of the characteristics in the velocity plane, it is simple to draw the field of flow of two-dimensional supersonic flows and also shooting water if the flow of approach and the side boundaries are given. With a velocity prescribed alone; ε line, the flow may be determined in goneral in the circumscribed Mach quadrilateral.' It is thus a question of Graphical method of solution of the par-
tial differential equation (15) or (31). The flow is known - uff the velocity. (u, y) is known at each point (x,y). Hence, It is not necessary to know the velocity potential $\Phi(x, y)$ or the position-determining potentiai $X(u, v)$ themselves. It Is suffioient.only to determine $X_{\mathbb{U}}, X_{\boldsymbol{T}}$ 'and $\Phi_{\boldsymbol{x}}, \Phi_{\mathbf{Y}}$. (Compare formulas (29): $X_{\mathbf{u}}=\mathrm{x}, \quad \mathrm{XV}_{\mathrm{V}}=\mathrm{Y}$ and $\left.\Phi_{\mathbf{x}}=\mathbf{u}_{\mathbf{t}} \Phi_{\mathbf{y}} \dot{=} \mathbf{v}.\right)$

- • The graphical method Is based oñthé simultaneous. con-. structlon of the flow in the velocity field (u,v) and In the field of flow ($\boldsymbol{x}, \boldsymbol{y}$).

Letus consider first a parallel-flow assumed to be bounded on ona side. At the position \dot{S}, the wall receives. a gmall deflection 8 (fig. 17). In the case of supersonic flow and shooting water, this leads to a pressure increase."

If the wall has a convex corner, a flow arises with diverging cross section. In the case of shooting water, this leads to \boldsymbol{a} level drop and acceleration. .

Since in the boundary of the frictionless flow of figure 17, no finite length occurs as reference length, all streamlines must be similar with respect to the corner 8. Water depth and velocity in magnitude and direotion therefore have constant values along-each stream through the corner.

The flow of Plgure 17a for large deflection angles. is described in Part II of this report (T.M. No. 935), under Shock Polar Diagram, page 1. This flow is nonstationary. The discontinuities of the different streamlines are equal and all lie on a straight stream $S T$ passing through the corner. For extremely smnll deflections, the corner leads to only a small dlsturbnnce in the flow. Since small disturbances have the Mach linos as the wave front, the disturbance line $S T$ ia a Mach line. It forms with the
*The foilowing considerations hold for vater and gas flows. Since, however, for tho analogous concepts different terms are applied in hydrodynamics and gns dynamics, both would always have to be carried along In this work. This difficulty hns. been avoided as far as possible by using the terms from hydrodramics. There terms from gas dynamics, nevertheless, occur the corresponding terms are: Expansion $=$ level drop; compression = levol.rise; Impulse $=$ Jump; oxpansion wave = depreseion wave, etc..
parallel flow an engle 'a where gin $\boldsymbol{\alpha}=a / c=\sqrt{\mathbf{5 h}} / \mathbf{c}$. For somewhat larger deflections the discontinuity lies on a stream ST, those direction lies between the directions of the two Mach lines of flow I before the deflection, and flow II after the deflection.

The flow corresponding to figure 17b for large deflections and hence, strons acceleration, Is treated more In detail In section 21, Part II of this report (T, M. No. 935), under Level Drop about a Corner. In contrast to level rest, the drop ia continuous. It beginsagain on account of the slmllarlty for all streamlines on a stream ST'. This Is a Mach line of flow I before the level drop. The deflection for all streamlines ends on a stream STI, a'Mach line of flow II. For small deflections, It may be assumed as a first approximation also for the level drop that It Is concentrated on a mean stream ST. An important slmpllflcatlon Is thus obtained for the qraphlcal method.

Both the small level drop (In the gas expansion) and small level rise (compression) have the follomlng in common: The relocity receives along a disturbance line a change in magnitude and direction. The direction of the disturbance line is given as the mean direction of the two Mach lines of the conditions before and after the change.* In traversing this line, there Is also a change In the pressure. The pressure drop or tradient - that is, the Increase In pressure per unit len弓th in the direction of the most rapid chanse - is thus normal to the mean Mach line. According to Newton's law, the acceleration and hence also the vector change In tho velocity, has the direction of the force. We thus have the result: The volocity vector $\overrightarrow{\mathbf{c}_{I}}$ before the deflection (rise and drop) receives as a result of tho deflection, a vector Increment $\overrightarrow{\Delta c}$ which is normal to the Mach line. Since the deflection angle Is also known, $\overrightarrow{\Delta c}$ Is detorminod (fig. 18).

The graphical method consists In ouilding up the entire field of flow out of small individual Mach quadrilat~ erals, in each of which the velocity is conatant and deflections occur from ono quadrilateral to the 'other.
*Wherever necessary for clearness In what follows, a distinctlon will be made jetreon disturbance line and Mach line. The disturbance lines are those along which the discontlnultles arise. Disturbance lines of Infinitely small intensity are'Mach Iines. Both pass over into one another In steady flow.
12. Mach Number and Angle.
 $\boldsymbol{\alpha}$ ($\boldsymbol{s i n} \boldsymbol{\alpha}=\mathbf{l} / \mathbf{M}$) are given by the magnitude of the flow ven -Iocity alone, since $\sin a=\sqrt{g h} / c$ and. according to $t h e$ - energy equation; the water depth h depends uniquely on the flow velocity (equation (9)). Te this have:

$$
\sin { }^{2} \alpha=\beta h / c^{a}=\left(5 h_{0}-\frac{1}{8} c^{\dot{a}}\right) / c^{3}
$$

-Dividing numerator and denominator of the right side by $\because \dot{a}^{\mathbf{2}}(42)$

$$
a^{*^{a}}=2 g h_{0} / 3
$$

we obtain in the notation of nondimensianal velocities c = cha*:

$$
\begin{equation*}
1 / M^{a}=\sin ^{a} \alpha=\left(\frac{3}{2}-\frac{1}{2} \bar{c}^{a}\right) / c^{a} \tag{69}
\end{equation*}
$$

For the graphical method, there 1 s applied the graphical representation of equation (59) (fig. lg), a being plotted as arc, and $\overrightarrow{\mathbf{c}}, \mathbf{a s}$ radius vector. In rectangular coordinates, $\overline{\mathbf{\nabla}}=\overline{\mathbf{c}}$ sin a ,
and

$$
\bar{v}^{2}=\bar{c}^{a} \sin ^{a} \alpha=\frac{2}{2}-\frac{1}{2} \bar{c}^{a}
$$

$$
\bar{u}^{\mathrm{a}}=\overline{\mathrm{c}}^{\mathrm{a}}\left(1-\sin ^{a} \alpha\right)=\frac{3}{2} \bar{c}^{a}-\frac{3}{2}
$$

Eliminating $\overline{\mathbf{c}}$ from those two equations, there $\mathbf{i s}$ obtained the curve in rectangular coordinates

$$
\begin{equation*}
(\bar{u} / \sqrt{3})^{2}+\bar{v}^{a}=1 \tag{70}
\end{equation*}
$$

This is an ellipse with major n nd minor semiaxes $\sqrt{3}$ and 1 (fig. 19). For an ideal zorn, it is an ellipse with the - seminxes $\sqrt{(k+1) /(k \cdots} \ln \quad \operatorname{nnd} 1$..
13. Cherfcteristics.

If any nondimensional velocity. $\overline{\mathbf{c}}_{\mathbf{I}}$.is given at point \mathbf{P} of the flow plane, the direction of the Mach line at the point conaideredis obtained in the following manner: $\overline{\boldsymbol{C}}_{\mathbf{I}}$ is drawing. in the velocity plane (fig. 20). The.ellipse
is now rotated about 0 until the extremity of $\overline{\mathbf{o}}_{\mathbf{I}}$ lies on it (two possible oases).. Then, according to figure 19, the principal axis of the ellipse so rotated gives the direction of the Mach lines in the flow and according to figure 18, the minor axis of tho ellipse give日 the direction of the velocity increment Ac. Pour typos of incraase are possible, depending on whether the Mach line is a disturbance line of the first or second family, and whother the disturbance is a drop or \boldsymbol{n} rise. In the example shown (fig. 20) no disturbance line of the first family passes through the point P, whereas that of the second family results in a deflection, namely, a level drop. The velocity increment, denoted by a heavy arrow, thus, is the one that comes under consideration for this example. If the disturbance lines of both the first and second families pass through the point \mathbf{P}, the apparent difficulty $\mathbf{1 s}$ removed by considering a neighboring streamline. For the latter, the velocity receives tao chansea, one following shortly after the other, each of which is uniquely determined.

At each point of the velocity plane there are thus two directions of the velocity Increment. These two directions are given by the minor axis of the ellipse (fig. 21.* There is thus obtained in the circular ring area, between $R=\sqrt{3}$, and $\mathbf{r}=1$, a direction field which determines two families of curves. In figure 21 , two representatives of theso two familios are dramn. By the following simple consideration, Busemann shows that we have here the case of the previously found epicycloids.

The direction field is obtained by drawing the small segments $a, b, c, d, \ldots . i^{i n}$ the direction of the minor axis of the ellipse ($0, \sqrt{3}, 1$), then rotating the ellipse some-hat, and again drawing the lines. We may now consider a, b, c, . . . as lying, instead of on the ellipse, on the fixed points of the circle chords $\boldsymbol{A}_{\mathbf{1}} \boldsymbol{A}_{\boldsymbol{1}}, \mathbf{B}_{\mathbf{1}} \mathbf{B}_{\mathbf{2}}, \mathbf{C}_{\mathbf{1}} \mathbf{C}_{\mathbf{2}}, \ldots$. There $\boldsymbol{i} \boldsymbol{s}$ then obtained the same direction field nagefore if these chords are rotated in the circle $(0, \sqrt{3})$ and a, b, c, . . . drawn each time. If all these chords with their points a, b, \mathbf{c}, . . are now qrbitrarily drawn in the circle ($0, \sqrt{3}$) (fig. 22), the small serments a, b, c, . . . are still in the direction of the required direction field. By suitable rotation of the chord diagram (fif. 2l), we pass a family of ohords through an arbitrarily chosen point A1, the chord diagram being rotated so thet $\mathbf{B}_{1}, \mathbf{C}_{1}, \mathrm{D}_{1}, \ldots$
*Fiss. 21, 22, and 23 correspond to figs. 40. 41 , and 42 of Busemann, 1931, p. 422 (reference 7).
lie auccessitely on $\boldsymbol{\Lambda}_{\mathbf{I}}$, end the segments $8, \mathrm{~b}, \mathrm{c}, \ldots$ r belmg drawn. The latter arillestill be segmente in the direction field (fig. 23); The complete field will be "obio tained by rotating thie diagram about $\mathbf{O}_{\mathbf{i}}$ 'for example,' \boldsymbol{A}_{1} toward $\mathbb{A}_{1} \mathbf{l}^{\prime}$, and then again drawing the small segmente $\mathrm{a}, \mathrm{b}, \mathrm{c}$, . . .

Now the points a, b, a, \ldots. . . divide the chorde $\mathbb{A}_{1} \boldsymbol{A}_{\mathbf{a}}$, $\mathbf{B}_{\mathbf{1}} \mathbf{B}_{\mathbf{a}}, \mathbf{C}_{\mathbf{1}} \mathbf{C}_{\mathbf{a}}, \ldots(f i g ; 21$) in the same ratio; the ellipse as effine figure of the circle having this property: The points a, b, c, . . . in fisure 23, thus lie on a circle. The directions a, b, c.. . . are normal, respectively; to $\mathrm{Ab}, \mathrm{Ac}, \ldots$

If the circle with diameter $\mathbf{A A}_{\mathbf{1}}$ is rolled on the' circle about 0 with the radius 1 , each of its pointadescribes en epicycloid. The rolling circle at the instant represented, rotates about the point A. All of its points thus also move on normals to the lines joining the corrogponding points with A, the direction field of the set of epicycloids being identical with that of the required curves of the possible velocity Increment Ac. These curves. arethus the epicycloida described above (fiss. 21 and 9).

We have mentioned the same epicycloida before. They are the characteristics of the partial differential equation of the flow. We now see the physical interpretation of the characteristics: During the passing of 8 smell disturbance wave the flow velocity changes along the corresponding characteristic.

14. Graphical Construction of the Flow

The field of flow and the hodograph are drawn simultaneously -. in the hodoyraph, the velocities and their changes; in the field of flow, the streamlines. The flow is always assumed from left to right. Te may then speak of en upper or a lower boundary. All disturbance lines that start from the upper boundary will bodenoted as the upper system of waves; and"all thoee from the lower boundary; the lower system.
A) 'Flow bounded on one gide.- The simplest supersonic flow is that bounded on only one side as. given by the boundary conditions of figure 24. Let the' approach be parallel end have the Mach number $\mathbf{M}=1.5 .{ }^{\prime}$ As a first step the
continuously curved mall is replaced by small gtralght se\%--ments with angle increments of, for example, 2 , In some Cases it may be of advantage to make theangleincrements of various amounts.

To the flow of approach (parallel flow), there corresponds, in the velocity plane, a single point P_{1} given by the direction of \mathbf{c}_{1}. and the magnitude $\overline{\mathbf{c}}_{1}{ }^{*} . \mathbf{P}_{1}$ is also obtained as the point in the hodograph (fig. 24c) at which the normal to the characteristic forma with the velocity, the Mach angle $\boldsymbol{\alpha}_{1}$. At \mathbf{E}_{1} the flow receives a first discontinuity, a level drop which leads to a deflection by the angle 6. This deflection is of equal magnitude for all stroamines and lies for tho ontire flow along the disturbance $\operatorname{lin} \boldsymbol{\theta} \mathbf{S}_{\mathbf{1}} \mathbf{T}_{\mathbf{1}}$, whose direction wo shall learn from the hodogrnph. In the lattor the velocity $\overline{\mathbf{c}}_{\mathbf{a}}$ aftor the first discontinuity is given by the point $P_{\mathbf{2}}$ whose radius vector forms the angle $\boldsymbol{\varepsilon}$ with that of \mathbf{P}_{1}, and which lies on the characteristic through P_{1}. correspond1n5, for $\overline{\mathbf{c}}_{\mathbf{1}} \longrightarrow \overline{\mathrm{c}}_{\mathbf{2}}$, to a drop; that is, an increase in velocity. We thus obtain P_{a} and $\bar{c}_{\mathbf{a}}$. The disturbance line $S_{1} T_{1}$ in the flow is, as re know. a mean Mach line between the states $P_{\mathbf{1}}$ and $\boldsymbol{P}_{\mathbf{a}}$. This direction is now given simply as the norsal to the characteristic between $\boldsymbol{P}_{\mathbf{1}}$ and $\mathrm{Pa}_{\mathbf{a}}$ in the velocity plane. In the entire region 2, the flow is again a parallel flow with the velocity $\mathbf{c}_{\boldsymbol{a}}$ upto the disturbance line $\mathbf{S}_{\mathbf{a}} \mathbb{T}_{\mathbf{a}}$. This line and the stat8 after this second disturbanca, is determined similarly as for $\mathbb{S}_{\mathbf{1}} \mathbb{T}_{\mathbf{1}}$, only now the initial velocity is given in the hodograph by P_{a}. The velocity after the disturbance is again the velocity $O P_{3}$ deflected by $\boldsymbol{\delta}$. The direction of the disturbance line $S_{a} T_{a}$ is the direction of the normal to the characteristic between $\mathbf{P}_{\mathbf{3}}$ and $\mathbf{P}_{\mathbf{3}}$, etc.

With the above construction, the first disturbance thus lies along $S_{1} \cdot T_{1}$, the last along $S_{n \rightarrow 1} T_{n-1}$. Actually the beginning and end of the disturbances lie along the dotted lines $S_{0} T_{0}$ and $S T$, which have the directions of the normals to the characteristic in P_{1} and P_{1}. It is only

Or завөв: $\overline{\mathbf{c}}^{\mathbf{a}}=(\mathrm{k}+1) \mathrm{u}^{\mathbf{a}} /\left[(\mathrm{k}-1) \mathrm{m}^{2}+2\right]$		

N.A.C.A. Technical Memorandum No. 934
because we must draw the flow discontinuously in finite
 firist. disturbance do not accuratelycoincide. BP decreasing. the steps, 'the accurecy may be raised.

Figure 25 shows a flow drarinin this manner with $M=$ 1.5, and for rater ($k=2$) , the deflectionincremente being 2°. From this simple example, an important property of shooting water bounded on one aide (supersonic flow) may be recosnized, namely, that as' long as no largediscontinuous pressure riees (impulses) occur, all the points giving the statein the hodographile on a single charaoteristic; i.e., for such a flow the masnitude of the velocity depends uniquely on itadirection and viceveraa.

A limiting case of the expmple considered is the level drop about a corner (fig. $26 a-c$) (references 14 and 17). This flow isa parallel flow with m Mach number equal to or greater than one. The one-aided rectilinear boundary ends at S. On thd lomerside of the boundary the water depth (pressure in the sas)is zero or at least smaller than in the parallel flow of amprosect. The same results hold as for the flow nf fisure $2 \overline{4}$ except that now the lines $S_{1} T_{1}, S_{a} T_{\mathbf{a}}, \ldots$ all pass through the point $S_{\text {. }}$ The velocity variesalonsastreaminne in 'such a manner that its end point travels on n characteristic in the velocity plane (fig. 26 c). The constant velocity along a stream SP has its end point $P{ }^{\prime}$ at that zoaition of the corresponding characteristic where the normal to the characteristic is parallel to SP.
b) Interior of a fion bounded on two sidegs- Let the
 tain region 1 (fig. 27). Let this region be 'bounded on the right aide by an upper (b), and a lower, disturbance line (a). The streamlines r and β, which-may also be considered 'as.walls, are correspondingly assumed to have small defleotiona at A and B. : The deflections' $\mathbf{8}_{\boldsymbol{\alpha}}$ and $\mathbf{8}_{\boldsymbol{\beta}}$ aregiven. The point P_{1} in the hodograph is the $1 m-$ ase point of the region 1 of the flov (fig. 27 b). In crosaing the disturbance wave a from resion 1 to region 2 (drop, since deflectionis toward outside) the velocity c_{i} receives a change auch that the relocity c_{a} lies on the characteristiccoriesponding to the lower disturbance wave system and forma ifth.cı the angle 8, This gives the point 'Pa. in the hodograph as in a flow bounded on oneskde and hence also the direction of a as normal. to
$\overline{\mathbf{P}_{\mathbf{1}} \mathbf{P a n}_{\mathbf{a}}}$. The same is true in crossing the disturbance wave b. To this corresponds in the velocity diagram a traveling along the characteristic of the upper system from $\boldsymbol{P}_{\mathbf{1}}$ toward $\mathbf{P}_{\mathbf{3}}\left(\boldsymbol{\delta}_{\boldsymbol{\theta}}\right.$ is given). At a position X the two disturbance waves meet and their effects will "cross." From the point X a disturbance wave of the lower set al starts out and one from the upper set b'. Grossing 'a' in the flow means in the hodoqraph, as in a flow bounded on 'one side, a change in the velocity from $\mathbf{P}_{\mathbf{3}}$ toward $\mathbb{Q}_{\mathbf{4}}$ (fig. 27b) where Q_{4} for the present, $\mathbf{1 s}$ unknown. Similarly the velocity on crossing $\mathbf{b l}^{\mathbf{l}}$ receives a change_ from $\mathbf{P}_{\mathbf{a}}$ to $\mathbf{S}_{\mathbf{4}}$ where $\mathbf{S}_{\mathbf{4}}$ similarly is for the present, un..known. Bow a first condition for \mathbb{Q}_{4} and $\mathbf{S}_{\mathbf{4}}$ is that the velocity in the region 4 q of the flow on passing from from $I \rightarrow 3 \rightarrow 4$, should have the same direction as the welocity in region 4 s on passing $1 \rightarrow 2 \rightarrow 4$. This means in the velocity diagram that the points $\mathbf{Q}_{\mathbf{4}}$ and $\mathbf{S}_{\mathbf{4}}$ must lie on a straight stream through $0: \mathbf{O S}_{\mathbf{4}}\| \|_{4}$. There is, furthermore, to be satisfied, the condition that the water depth (pressure in the gas) in the region $4 q$ must be the same as in As. As long as the flow is free from imppulse, the water depth is uniquely determined by the welocity. The requirement that the depth ahould be the same in 4 q and $\mathbf{4 s}$, means therefore that the velocity $\mathbf{O S}_{\mathbf{4}}$ must have the same magnitude as $\mathbf{O Q}_{\mathbf{4}}: \overline{O S}_{\mathbf{4}}=\overline{\mathrm{O}}_{\mathbf{4}}$. Both conditions are simultaneously satisfied if $\mathbf{S}_{\mathbf{4}}$ and $\mathbf{Q}_{\mathbf{4}}$ coincide at the point of intersection $\mathbf{P}_{\mathbf{4}}$. The entire region 4 of the flow is thus in the velocity diagram given by the point $\mathbf{P 4 .}^{\mathbf{4}}$. Te may now draw \boldsymbol{a}^{\prime} and \boldsymbol{b}^{\prime}. They start from . \boldsymbol{X} in the direction of the normals to $\mathbf{P}_{3} \mathbf{P}_{\mathbf{4}}$ and $\mathrm{Ps} \mathbf{P}_{\mathbf{4}}$, respectively.

Figure 28 shows the intercrossing of two streamlines where now one disturbance is a level rise, the other a drop. The picture would be quite similar if the two disturbances were level rises.

We shall now follow a disturbance line in the interior of a flow in the case where it, encounters several disturbance lines of the other family (fig. 29). The diractions of $a, \mathbf{b}, \mathbf{a}^{\mathbf{l}}$, and $\mathbf{b}^{\mathbf{l}}$ and the points. $\mathbf{P}_{\mathbf{1}}$, Ps. $\mathbf{P}_{\mathbf{a}}$, and $\boldsymbol{P}_{\mathbf{4}}$ are assumed to be determined by the method given. Then for the regions $\mathbf{Z}, 4,5$, and 6 , we again have $\mathbf{P}_{\mathbf{4}}$ and $P s$ lying on the characteristics through- $\mathbf{P}_{\mathbf{3}}$. The po-
sition of P_{B} is determined by the deflection: 8_{3} and Ψ_{4} " is fixed by-the characteristics, $P_{2} P_{4}$, and $P_{3} P_{4}$. There $\mathbf{1 s}$ now obtained also $P_{\mathbf{a}}$ and hence the velocity $\mathbf{O P}_{\mathbf{B}}$ in region $6, \mathrm{Ps}$ being the point of intersection of. the two characteristics $\mathbf{P}_{\mathbf{5}} \mathbf{P}_{\mathbf{8}}$. and $\mathbf{P}_{\mathbf{4}} \mathbf{P}_{\mathbf{8}}$. Similarly, there. is 'finally obtained $\mathbf{P}_{\mathbf{a}}$. The individual portions of the disturbance wave as' all a ${ }^{\prime \prime \prime}$ are in the directions 'of the normals at the centers of the 'portions of the characterises tics ' $\mathbf{P}_{\mathbf{1}} \mathbf{R}_{\mathbf{a}}, \mathbf{P}_{\mathbf{3}} \mathbf{P}_{\mathbf{4}}$, $\mathbf{P}_{5} \mathbf{P}_{\mathbf{6}}, \mathbf{P}_{\mathbf{7}} \mathrm{Ps}$, respectively.

We thus' find the result, namely, that the extremities 'of all possible velocity vectors before crossing the disturbance wave aarau...., the points $P_{1}, P_{3}, P_{k,} \ldots, a_{1}$ lying on, a fired charaoterlstlc through $\mathbf{P}_{\mathbf{1}}$. Similarly, all extremities of the velocities after crossing theism turbance wave a-that is, the points $\mathbf{P}_{\mathbf{g}}, \mathbf{P}_{\mathbf{4}}, \mathbf{P}_{\mathbf{6}}, \ldots \mathrm{m}$. lie on the characteristic through Ps. Crossing the 'disturbance wave and $\mathbf{a}^{\boldsymbol{n}} \mathbf{a}^{\boldsymbol{\prime \prime}}$ at any position in the direction of the flow, has the result with respect to the velocity, that there is a transition from the characteristic 1 to the characteristic 2 (both of 'the same family) each time along a characteristic of the other family. These changes are the heavily drawn portions of figure 29 b . Since the two families of characteristics lie symmetrically:
$\Varangle P_{7} O P_{B}=\Varangle P_{5} O P_{6}=\Varangle P_{3} O P_{4}=\Varangle P_{1} O P_{a}=O_{1 \varepsilon}$
1.e.,

$$
8_{1 a}=8_{34}=8_{56}=8_{78}=\ldots
$$

In figure 30, let the curves denoted by K be circles about 0 . We then have:
a) $\Varangle \mathrm{AOC}=\Varangle \mathrm{EOF}, \quad$ because each characteristic of the same family arises from the other by rotation about 0 .
b) $\Varangle \mathbf{A O B}=\Varangle \mathrm{BOE}=\mathbf{1} / \mathbf{2} \dot{\mathbf{A}}$ AOE, because $\mathbf{A B}$ is symmetrical to - $\mathbb{H B}$ with axis of symmetry $B O$.
c) $亠 \mathrm{COD}=\Varangle \mathrm{DOF}=1 / 2 \Varangle$ COF, similar to b)
a) $\Varangle \mathrm{COF}=\Varangle \mathrm{COE}$.

Equation d) subtracted from a) fives
1.e., $\Varangle \mathbf{A} \mathbf{O H}=\Varangle$ COF, and hence it follows from \mathbf{b}) and \mathbf{c})

BOE = $=$ DOF, as was to be proved.
He thus obtain the moat important result: On crossing a disturbance wave the velocity undergoes a change in magnitude and direction. The change in the velocity direction is the same at all points of the entire disturbance wave Independent of the direction of the velocity before the arrival of the disturbance wave and regardiess of whether or not the wave was crossed by disturbances of the other family. This is true on the assumption of flow free from impulse. In section 4 we consider flows with Impulse for which the velocity is not a unique function of the water depth. 'There it will be found that the deflection angle caused by a disturbance wave may vary along the wave.
c) Fixed wall with 8 flow bounded on two-sides.- In figure 31, let SAC be the upper boundary of a flow. Let no disturbance wave from the opposite wall meet the corner S of the wall at first. From the latter, 8 wave s starts out which is identical with that of a disturbance starting from a flow bounded on one side.

Te shall now consider the effect of a disturbance wave a which encounters the straight wall SC at point \boldsymbol{A}. In region 1, let the velocity be siven by the hodograph point P_{1} (fig. 3lb). On crossing the disturbance wave a from region 1 to region 2, the velocity receives a deflection 8, given by the lower wall. $\mathbf{P a}_{\mathbf{a}}$ lying on the characteristic is thereby determined and also the disturbance line a. Since at each point of a flow there are two possible disturbance waves, there can start out from \boldsymbol{A} only 8 wave of the uppor family (b). The line b and the velocity in region 3 are determined from the condition that first the velocities $\mathbf{c}_{\mathbf{1}}$ in region 1 , and $\mathbf{c}_{\mathbf{3}}$ in $\mathbf{r o -}$ gion 3, must be parallel, since it was assumed that the wall had no discontinuity at A. In the hodograph this means that $\mathrm{P}_{\mathbf{3}}$ must lie on the straight $0 \mathrm{P}_{\mathbf{1}}$. Secondly, b is a disturbance line from the family other than that of a, so that $P_{\mathbf{3}}$ lies on the characteristic $P_{\mathbf{a}} \mathbf{P}_{\mathbf{3}}$, which passes through $\mathbf{P a}_{\mathbf{a}}$. By both of these conditions $\mathbf{P}_{\mathbf{3}}$, the velocity \mathbf{c}_{3} and also the disturbance line b are determined.
on crossingthe reflected wave is equal and opposite to themençle. of deflection by, the incident disturbance line. If the incident disturbance i's' a lével if's'é, then the reflected disturbance is also a rise (fig. 31b). If the disturbance line is a drop, then the reflected lineis also a level-drop disturbance (3lc)..

In casethe disturbance line' a strikes the wall at the position. \boldsymbol{G} where. the pall has a discontinuity, no new difficulty arises. It is then only necessary to imasine that the reflected disturbance line b and the newly generated dleturbance line is follow shortly upon one another. If \mathbf{b} and sare both level-drop waves, each .must be. drawn separately; if both are level-rise waves, then they are drawn together as a gingle disturbanoe starta ing from S, on the crossinf of which the valocity undergoes a deflection equal to the sum of the deflection8 due to s and b. If, however, one of the disturbanoe lines is a rise, and the other a drop, then only a single disturbance line starting from. S is drawn, along which the deflection angle for the velocity is equal to the difference between the deflection anqles for s and \mathbf{b} and, dopending on.the Intensities of \boldsymbol{g} and' \mathbf{b}, may be a rise or a drop line.* rind b are opposlto, it mny'also happen that they have the same masnitude. In that case no disturbance at all start8 out from that point. This is the case if the wall itself has the same deflection angle as that of the approaching disturbance wave. This fact $\mathbf{f a}$ made 'use of where it is desired to produce a parallel flow. In the latter no disturbance waves occur. This condition is obtained by giving the walls in successiondiscontinuities such that one disturbance .rave f_{g} "gvallowed" when the other strikes it.
d) Free jot.- If a disturbance line strikes a free jet, nnothei type of reflection occura since the water depth must have a fixid value (fig. 32). Let the point P_{1} in the velocity diagram correspond to region 1 ahead of the disturbance wave. The point P_{a} which givesthe velocity
Wor the third.case it is clear that only a aingle dieturba ance line starting from $S i s$ drawn because the sum of the two disturbances is smaller than that of either Individual case. For the first case two, and for the second base only one, disturbance line is drawn in order to approach the
. true condition for which drops are spread out in the form of a fan (drop about an edge) while rises are concentrated (impulse).
$0 P_{a}$ of resion 2, lies on the characteristic through $P_{\mathbf{1}}$ belonging to the lowier family of disturbance lines and determined by the deflection angle 8,. Since at each point two disturbance waves, at most, pass through, there can etart'out at point A of the flow where the line a strikes the free jet, at most, another disturbance line b of the other family (b).' The disturbance b must be such that the water depth is the same in regions 1 and 3 . This means for flow without energy dissipation that the hodograph point P_{3} corresponding to region 3 , must lie on a circle through $P_{\mathbf{1}}$ about $0: O P,=O P$, Since, moreover, $\mathbf{P}_{\mathbf{3}}$ lies on the characteristic through $\mathrm{P}_{\mathbf{a}}$ belonging to the upper disturbance line, family P_{3} is uniquely determined and hence, $\Omega \mathbf{l s o} \mathrm{b}$. On account of the symmetry of the two families of characteristics $\Varangle P_{1} 0 P_{a}=\Varangle P_{B} O P_{3}$.
A level-drop wavo is reflected on a freo jot as a levelrise wave, and conversely. It is important to observe that the velocity deflection on crossing tho reflected save is as large as that on crossing the incident. Here again ve find that disturbance waves - whether they are crossed by. others or reflected - produce at all points equally large deflection angles of the local velocities.

15. Application: Laval Nozzle

Let a Laval nozzle be drawn for mater ($\mathbf{k}=2$) in which the flov is parallel at the minimum cross section ($\mathbf{M}=1$) and which is to produce \boldsymbol{n} t its exit Ω parallel flow of Mach number $\boldsymbol{M}=2$.

Aside from flows with hydraulic jumps (shocks), all the phenomena have been discussed in detail in the previous sections. There are no difficulties in drawing up the flow with the aid of tho basic elements described above. Instead of drawing Mach lines, however, as normals to the characteristics, the accuracy is considerably Improved by using the ellipse construction described in sections 12 and 13. The normal to the charactoristic is then obtained as the direction of the major axis of the ellipse without requiring eithor the tangent or the.normal of the characteristic itsolf (figs. 20 nnd 33).

A convenient arrangement for the drawing is shown on figuré 34 . A strip B is glued on the transparent paper \boldsymbol{A} with the ellipse \mathbb{F}, the edge of the strip being paral-

- lel to the minor axis.of the.ellipse androtatable about .a needle at point 0 in. the orisin. of the velocity plane. The direction of the major axits fis drawn with the triangle If an disturbance tave in the flow.

The Leval nozzle invegtigated has ag itg boundary at the approach sideof the flow, a cubical parabola PQ.with a ehort connecting straight piece $\mathbb{Q R}$, in order that at the minimum cross section the flow, for the ahooting-water region to be drawn, ehould be parallel.. There:will then - be no disturbance waresin ft. To the straight portion there is connected a circular arc ..RS. The shape of this 'portion can be ohosen at will and the first disturbance waves start out from It. The ghnoe of ST is determined by that assumed'for RS alnce the former must be such that, starting from the channel exit, there are no disturbance maves in the flop.

If the approach flow is parallel, the construction of the flow beging with the first disturbance line from RS, the line being that of a flow bounded on one aide. The construction is then followed As discussedin the preceding parazraphs.

Since we Are conatantly passing from the velocity diasram to the flow dingram And in order that corresponding pointa may be rocognizod as auch, It isnecesaary to introduce suitable notstion. For this jurpose the curvilinear coordinates A And $\boldsymbol{\mu}$ nre convenient (equations $\left(53_{a}\right)$ and (53b)). The numbering $\mathbf{i s}$ shown in figure 34. The number beside each characteristicof the upper family gives the Angle in degrees At which It atarts on the unit circle, and similarly, for the coordinates of the characteristics of the lower family. In order that the two famim lies of charactoristicemay not be confuged, the coordin nates of the upper family are preceded 'by a zero.* The coordinates A And $\boldsymbol{\mu}$ of the velocity plane Are written in the corresponding field of flow: The numbers thue written have the property (equations (53a, And b)) that (A - $\boldsymbol{\mu}$)/ $2=\varphi ;$ that is, their helf difference gives the angle of the flow with respect to the horizontal. Their hnlf aum $(\lambda+\boldsymbol{H}) / 2$ is A number on which the magnitude of the nondimensional velocity and hence also the water-depth ratio h / h_{0} uniquely depends, since $\lambda+\mu i \dot{s}$ conistant on dir-

[^3]cles about 0 . With a definite value $(A+\boldsymbol{\mu}) / \mathbf{i s} \boldsymbol{a s s o -}$ ciated the same water-depth ratio $a, \boldsymbol{b}_{0} / \mathbf{h}$ (gas temperature ratio T / \mathbb{T}_{0}, hence presiure ratio, p / p_{0}), which corresponds to the level drop about a corner startins from $\mathbf{M}=1$ (fig. $\mathbf{2 6 b}$) and deflected from the direction of the approach flow by the angle $\omega=(\boldsymbol{\lambda}+\boldsymbol{\mu}) / 2$. Corresponding values $h / h_{0}, p / p_{0}, \quad M, \bar{c}$, and $w=(A+\mu) / 2$ are collected in tables I and II.

In general, the difference of the two coordinate numbersis not required since the direction of the streamlines in each field may be taken directly from the.velocn ity diagram. The streamlines may also be simply and rapidly drawn with the arrangement shown in fisure 34, it being only necessary to pass the major axis of the ellipse through the hodograph point given by the coordinate numbers, the triangla then $\boldsymbol{H}_{\boldsymbol{j}} \boldsymbol{\gamma i n g}_{5}$ the velocity direction in the corresponding field.

The aum of the two coordinates, however, is required If it is desired to draw the lines of constant water depth in the flow. These lines may $0.1 \mathbf{s o}$ be drawn without known ing the coordinate sum if equal deflectlone are chosen for all disturbance lines, namely, as diagonals of the Mach quadrilaterals.

In all problems in which a parallel flow is given qs initial flow, we begin, accordins to the characteristic method, with the first disturbance lines starting from the boundary.

Under suitable assumptions, there may also be prescribed as an initial element, the velocity distribution along a line. The latter must not, however, at any point touch a Yach'line. It must thus be a line which in'itself is not a Mach line and which does not intersect the same Mach line twice. Streamlines and their orthogonal trajectories certainly are such lines. The flow may then be computed by the characteristic8 method in the entire Mach quadrilateral described about this line. Thia Mach quadrilateral is only determined on drawing the flow. If the velocity along a line is prescribed as initial element, a further condition is that the position of this line with respect to a side boundary is such that no flow restriction falls within the Mach quadrilateral described about the line except when the latter has the form of a streamline.

For the graphical determination of euah flows the IIne mugt first be broken up into suitable segments on which the velocity is constantrin direction and magnitude. These pieces are then separated by disturbance waves and, starting from these, the flow may be determined with the Mach. quadrilateral. .

List of Most Frequently Ocourring Symbola
5. acceleration of sravity.

B, sas congtant.
$\boldsymbol{\nabla}$, kinematic $\boldsymbol{\nabla i s c o s i t y .}$
P. density.
p, pressure.
T, absolute temperature.
1, heat contont.
c_{p}, specific heat at constant pressure. --
$\boldsymbol{C}_{\boldsymbol{V}}$, specific heat at conptant volume.
$\mathbf{k}=\mathbf{c}_{\mathbf{p}} / \mathbf{c}_{\boldsymbol{v}}$, adiabatic exponent.
Φ, velocity potential.
X, positioning-determining potential.
$\boldsymbol{x}, \boldsymbol{y}, \mathbf{z}, \quad$ rectaņular coordinates in the flow space.
$\mathbf{r}, \boldsymbol{t}$, polar coordinates In the flow plane (\mathbf{x}, \mathbf{y}).
$\boldsymbol{\lambda}, \boldsymbol{\mu}$, curvilinear coordinates in the velocity plane, charncteristlc coordinates.
X, Y, Z, general variables.
$\mathbf{u , \nabla}, \boldsymbol{\pi}, \quad \begin{gathered}\text { components of. the velocity } \\ \text { directiona. }\end{gathered}$ directiona.
c, φ ! polar coordinates in the velocity diagram (twodimensional flow),
$c_{\text {max }}$, maximum velocity.
c, velocity increment.
a, in gas: velocity of sound. in water: propagation wave velocity $\sqrt{\mathbf{g h}}$.
a*, critical velocity.
 \mathbf{a}^{*}; in hydraulic jump $\mathbf{a}_{\mathbf{1}}{ }^{\boldsymbol{*}}$ the critical velocity before the jump).
$\mathbf{i} \mathbf{L}=\mathbf{c} / \mathbf{a}$, Mach number.
$\alpha=\left(s i n^{-2}\right)(a / c)$, Mach angle.
h, water depth.
h_{0}, total head (water depth for $c=0$).
$\mathbf{h}_{\mathbf{0}} \mathbf{\prime}^{\prime}, \mathbf{h}_{\mathbf{o}}$ ". total heads after hydraulic jumps.
$\mathrm{p}_{0}, \mathrm{~T}_{0}, \mathbf{I}_{0}, \mathrm{~h}_{0}$, subscript 0 : stagnation state.
T*,h*,..., asterisk *: critical state.
$\mathbf{u}_{\mathbf{1}}, \mathbf{c}_{\mathbf{1}}, \mathbf{h}_{\mathbf{1}}, \mathbf{M}_{\mathbf{1}}$, subscript $1:$ before hydraulic jump.
$\mathbf{U}_{\mathbf{a}}, \mathbf{c}_{\mathbf{2}}, \boldsymbol{h}_{\mathbf{a}}, \mathrm{kin}_{\mathbf{a}}, ~ s u b s c r i p t 2: ~ a f t e r ~ h y d r a u l i c ~ j u m p . ~$
$\mathbf{u}_{\mathbf{a z}}$, velocity after right hydraulic jump.
$\mathbf{A}(\mathbf{X}, \mathbf{Y}), \mathbf{B}, \mathbf{C}, \quad$ coefficients of linear partial differential equation of second order.
a,b,c, coefficients of the differential equation in normal form.

K, coefficient of the differential equation of the flow In normal form.

8, small deflection angle.
\boldsymbol{w}, deflection angle of the flow without dissipslion (sec. 21, Part II, T. M. No. 935).
日, deflection angle for hydraulic jump (fiefs. $\mathbf{i 7}$ and 38, Part II, T.\&. No. 935).
\boldsymbol{Y}, angle of the hydraulic jump wave front (firs. 37 and 38, Part II, T.M. No. 935).

$$
\text { N.A.C.A. Technıcal Memorandup No_. } 934
$$

BEFERIMOES

1. Ackeret; J.: Gnadynamik. Handbuch der Physik, Bd. 8 , 1925, 8. 289-342. Geifer und Soheel, Julius Sprinfer, - Berlin.
'2. Ackeret, J.: Iuftkrafte auf Fingel, die mit grösserer Geschwindigkeit als Schallgeschwindigkeit bewegt werden. Z.耳.M., Bd. 16, Nr. 3, 1925, S. 72-74.
 1gkeiten ingbesondere bei ebenen Strọmugen. Helvetice Physica Acta, 4. VI. 1928, 8. 301-322.
2. Ackeret, J.: Der Luktwiderstand bei sehr grosien Geschwindigieiten. Schweizerische Beuzeitung, Bd. 94, N1. 15, 1929, 8. 179-18K.
3. Binnie, A. M., and Hooker, S. G.: The Flow under Gravity of an Incompressible and Inviscid Fluid through a Congtrictionin Ω Horisontnl Channel. Proc. Bog. Soc. (London), vol.159, no. 899, April 1937, pp. 592.608.
ò, Busomann, A.: Drücke auf kegelfömixe Spitzen bei BeWegung mit therschalljeschrindigkeit. Z.f.a.M.M., Bतe 9, Mr. $\mathbf{0}, 1929$, S. 493-498.
 physik, Bd. 4, Toil 1, 1981, S. 341-460. Akademische Verlajsgesellschaft, Leipais.
4. Busemann, A.: Aerodynnmischer Auftrieb bet tberschallgeschwindigkeit. Renle Accndemia diftạlja, Quinto Convegno "Volta", 1935", S. :28-368.
5. Hooker, S. G.: The $\begin{gathered}\text { Fion of a Comproseibio Iiquid in }\end{gathered}$ the Welqhborhood of the Throat of \boldsymbol{A} Constriction in a Circular Wind Channol. Proc. Roy. Soc. $\boldsymbol{A}, \mathrm{vol}$. 135, 1932, pp. 498-511. (See.nlso reference 5.).
10.' Horn, J.': Hinfẗhrung in die Theorio deŕr partiellen Differontialsleichungen. Snmmlung Schubert, Bd. 60, Abschnitte III und IV; 1910, \$, 92-187. Oöschen, Leipzis.
 kaiten und Gasen. Z.V.D.I., Bd. 55, 1911, S. 428-431.
6. $\operatorname{von~Kirmín,~Th.~:~Hine~praktische~Anwendung~der~Anologie~}$ zwischen tberschall-Stromung in Gasen und uberkritischer Strômung in offcnen Gerinnen. Z.f.e.M.M., Bd. 18, Nr. 1, 1938, S. 49-56.
7. Lamb, H.: Lehrbuch der Hydrodgnnmik. Deuteche Ausgabe, zweite Auflnfe. G. B. Teubner, Leipzig und Berlin, 1931.
8. Meyer, Th.: tber zweidimensionale Beweguņsvorgange in einem Gas, das mit tberschallgeschmindigkeit strbmt. Mitteilunsen fiber Forschunqsarbeiten auf dem Gebiete des Ing.-Hesens, Heft 62, Berlin, 1908. (Dissert. GOttingen.)
9. Prandtl, L.: Hber die stationären Toilen in einem Gasgtrahl. Physik. Zeitschr., Bd. ©, $\mathrm{IT}^{\mathbf{r} . ~ 19, ~ 1904, ~ S . ~}$ 599~ธ02.
10. Prandtl, Li: Beitryse zur Theorie der Dampfatrómung durch Dutsen. Z.V.D.I., Bd. 48, Nr. 10, March 1904, S. 348-350.
11. Prandtl, L.: Neue Üntersuchungen Ȟber die stromende Bewesuns der Gaso und D!!mpfe. Phgsik. Zeitechr., $\mathrm{Bd} .8, \mathrm{Nr} .1,1907, \mathrm{~s} .23-31$.
12. Prandtl, L., and Jusemann, A.: Näherungsverfahren zur zeichnerischon Wrmittlung von ebrnen Stromungen mit Uberschallgeschinindirloit. Festschrift Dr. A. Stodola. Orell-Fप̆́sali, Zurich, 1929.
13. Prandtl, L., and Busomann, A.: Allgomeino Betrachtunsen प̆ Z.f.f.M.M., Bd. 16, Br. \mathbf{Z}_{1}, June 1936, S. 129-142.
14. Prandtl, L., and Busemann, A.: Theorie des Flugzeugtragfihgels im zusammendruckbaren liedirum. Luftfahrtforschung, Bd. 13, Nr. 10, Oct. 1936, S. 313-319.
15. Preisperk, E.: Zweidinonsionsle Strömung schiessenden Wassors. Schreizorische 3auzeitung, Bd. 139, Jra 20, 1937, s. 237.
16. Riabouchinsky, D.: Sur I'analozie hydraulique des mouroments d'un fluido compressible. Compt. Rend. de I'académ. des sciences, Bd. 195, īr. 22, INov. 1932, S. 998-999.
17. Biabouchinsky, D.: Quelques nouvelles remarques sur
". . - l'analogia hydraulique doe mouvements d'un fluide compressible. oompt. Rend. de 1'首ćadernades sci-a ences, Bd. 199, Nr. 14, Oct. 1934, S. 632-634.
18. Riabouchinski, D.: Recherche comparative sur liaerom dynamique des petitos et des grandes vitesses. Oompt. Bend. de I'acadrn. des sciences, Bd. 202, Nr. 21, May 1936, S. 1725-8.
19. Biabouchinsky, D.: Recherches aur l'amelioration des qualités árodynamiques dea profile d'alles aux grandos vitesses. Publications scientifiques et teohniquos du miniatêredel'air, Nr. 108, 1937, S. 49-60 and S. 99-131.
20. Schlichting, H.; Tragfltheltheorie bei troerachallger schwindiskoit. Luftfahrtforschung, Bd. 13, Nr. 10, Oct. 1970, S. 72 7-335.
21. Stoichen, A.: Bfitrife zur Thoorie der zwefdimensionalen Bewerungavorgango in ofnem Gna, den nit tberschallesscinwindickeit strönt. (Dissert. Göttin弓en, 1909.)
?8. Taylor, G. I.: The Flor of Air nt High Spoods Past Curved Surfocos. R. ${ }^{3}$ (. No. 1381, British A.R.C., 1970, p!. 1-15.
22. Taplor, G. I., nnd Maccoll, J. T.: The Air Prosaure on a Cone Movinf pt High Spoods. Proc. Roy. Soc. A, vol. 139, มо..838, Ғub. 1973, pp. 278-311.
23. Tollaien. T. Zun Uborsang von Unterschall- in Uberechallströmungen. Z.f.t.M.E., 3a. 17, Nr. 2, April 1937; S. 117-136.
24. Webster, A. G.: Partielle Differentialsleichungen der mathematlachen physik, 1927. Deutsche Bearbeitung von Dr. G. Szego. G. B. Teubner, Leipzig u. 'Berlin, 1930.

Translation by S. Reiss,
National Advisory Committee
for Aeronautlca.

TABLE I*

$\begin{gathered} \omega=\frac{(\lambda+\mu)}{2} \\ \left(\operatorname{deg}_{\bullet}\right) \end{gathered}$	$\frac{\mathrm{P}}{\mathrm{p}_{0}}$	$\vec{C}=\frac{c}{a^{*}}$	$\mathbf{M}=\frac{\mathrm{c}}{\mathrm{a}}$	$\begin{gathered} \omega=\frac{(\lambda+\mu)}{2} \\ \left(\text { deg. }_{.}\right) \end{gathered}$	$\frac{p}{p_{0}}$	$\overline{\mathbf{c}}=\frac{\mathrm{c}}{\mathrm{a}^{4}}$	$\mathbf{M}=\frac{\mathrm{c}}{\mathbf{a}}$
0	0.527	1.000	1.000	26	3.130	1.625	1.995
1	. 476	1.073	1.090	27	. 123	1.640	2.028
2	. 449	1.110	1.142	28	, 116	1.656	2.065
3	. 424	1,141	1.186	29	. 109	1.671	2.101
4	6.402	1.172	1.228	30	. 103	1.686	2.138
5	. 382	1.200	1.265	31	. 097	1.700	2.178
6	. 363	1.227	1.305	32	. 091	1.718	2.215
7	. 345	1.253	1.342	33	.086	1.732	2.258
8	, 329	1.278	1.376	34	. 081	1.748	2.298
9	.313	1.300	1.413	35	.076	1.763	2.338
10	. 298	1.322	1.443	36	. 071	1.776	2.378
11	. 284	1.343	1.474	37	. 067	1.791	2.421
12	. 270	1.365	1,506	\% 8	. 062	1.805	2.460
13	. 257	1.387	1.542	39	. 058	1.819	2.506
14	. 245	1.409	1.575	40	. 055	1.832	2.548
15	.233	1.426	1.608	- 41	. 051	1.845	2.592
16	. 221	1.447	1.643	42	. 048	1.858	2.636
17	.210	1.466	1.680	43	.044	1.872	2.680
18	. 200	1.486	1.718	44	. 041	1.884	2.730
19	.190	1.503	1.750	45	. 039	1.898	2.778
20	.180	1.520	1.780	46	. 036	1.910	2.825
21	.171	1.539	1.815	47	, 033	1.923	2.875
22	.162	1.556	1.850	48	. 031	1.936	2.920
23	.153	1.575	1.885	49	. 029	1.948	2.978
24	. 145	1.590	1.923	50	, 027	1.960	3.028
25	.137	1.608	1.958	$129^{\circ} 191$)	2.437	∞

*See reference 7, pp. 426-7. For values of K, see reference 1 (or 2), p. 717.

TABLE II

$\begin{aligned} & w=\frac{\lambda+u}{2} \\ & \text { (deg.) } \end{aligned}$	$\frac{h}{h_{0}}$	$\overline{\mathrm{c}}=\frac{\mathrm{C}}{\mathrm{B}^{+1}}$	$\mathbf{M}=\frac{\mathbf{c}}{\mathbf{a}}$	K	$\begin{gathered} w=\frac{\lambda+\mu}{2} \\ \text { (deg.) } \end{gathered}$	$\frac{\mathrm{h}}{\mathrm{h}_{0}}$	$E=\frac{c}{a^{*}}$	$M=\frac{c}{a}$	K
0	2/3	1.000	1.000	∞	26	1.234	1.516	2.56	.0.160
1	1.624	1.06	1.098	2.68	27	.223	1.527	2.64	-. 177
2	. 598	1.101	1.160	2.07	28	. 212	1.538	2.73	-. 196
3	. 576	1.129	1.214	1.40	29	. 201	1.549	2.88	-. 216
4	. 555	1.156	1.267	1.014.	30	. 190	1.559	2.92	-. 234
5	-535	1.182	1.319	. 758	31	.180	1.569	3.02	-. 252
6	. 516	1.207	1.371	. 590	32	. 170	1.579	3.13	-.271
7	. 498	1.229	1.422	. 476	33	. 160	1.588	3.24	-.251
8	. 481	1.249	1.470	.394	34	, 151	1.597	3.36	-. 313
9	, 464	1.269	1.520	. 318	35	. 141	1.605	3.49	-.336
10	. 448	1.288	1.570	. 263	36	. 132	1. 613	3.63	-.36
11	- 432	1.306	1.622	. 215	37	. 123	1. 21	3.78	-.38
12	. 417	1.323	1.674	. 170	38	. 115	1.629	3.93	-. 40
13	. 402	1.340	1.727	. 133	39	. 107	1.637	4.01	-. 43
14	, 387	1.356	1.781	.103	40	.099	1.644	4.26	-. 46
15	. 373	1.372	1.835	.072	녹	,092	1.651	4.44	-. 49
16	, 359	1.387	1.89	. 046	42	. 085	1.657	4.63	-. 52
17	. 345	1. 402	1.95	. 050	43	. 078	1.663	4.85	-. 54
18	. 331	1.416	2.01	-. 004	44	.072	1.669	5.08	-. 58
19	. 318	1.430	2.07	-.028	45	.066	1.675	5.33	-. 62
20	. 305	1.444	2.13	-. 050	46	.060	1.681	5.62	-. 66
21	.292	1.457	2.20	-. 071	47	. 054	1.686	5.95	-.m
22	. 280	1.470	2.27	-. 089	48	. 048	1.681	6.30	-. 75
23	. 268	1.482	2.34	-. 108	49	. 043	1.696	6.68	-. 81
24	. 256	1.594	2.41	-126	50	. 038	1.700	7.11	-. 86
25	.245	1.505	2.48	$-.143$	$65^{\circ} 531$)	$\sqrt{3}$	∞	$-\infty$

H.A.C.A. Technical Memorandum Mo. 934

Tiga. 1,2,3,4,5,6

Figure 1.- Mack rays.

Figure 3.- Notation for energy equatioa.

Figure 4.- Skatch for
derivation
of continuity equation.

Figure 6.- Contact transformation
for one Independent variable.

Figure 5.- $\mathbf{\text { d-murfaca }}$ trip.
N.A.C.A. Technical Memorandum Mo. 934

Figure 7.- Element transformation for two independent variables.

Figure 9.- Characteristics of the flow differential equation.

Figure 11.- The various coordinates.

(a) Flow plane. (b) Velocity diagram. (c) Characteristic coordinates
N.A.C.A. Technic81 Memorandom Po. 9.3 .4

Figs. 14,15,16,17,18,19

Figure 14.- Region of integration for
the normal form of the
byperbolic equation and characteristic quadrilateral.

Pigure 15.e. Notation for application of
formula (67) if the boundary value8 \mathbf{Z} are
given along two character;

Figure 19.- Relation between the flow velocity \bar{c} and the Mach angle am
M. A.C.A. Iechnical Memorandum IV. 934

Fics. 20,21,22,23,24

Pigure 24.- Flow bounded on one ride.

N.A.C.A. Technical Memorandum No. 934

(a) Flow plane. (b) Velocity diagram.

Tigs.
25,26,27,28,29

Figure 26.- Sinkinget an edge.
(a) Starting from $M_{1}>1$. (c) Velocity diagram.
(a) Flow plane.
(b) Velocity diagram.

Figure 28.m Interior point of a flow bounded on two

sides.

(b)
(a)
nterior point of a flow bounded on two sides (the deflection angles δ which are of the order of magnitude of 1 degree are in thir and the following figures drawn exaggerated for clearness).

Figure 29. - Conditions along a disturbence line.
(a) Flow plane. (b) Velocity diagram.

N．A．C．A．Technical Memorandum Mo． 934
Fign．30，31，32，33，34

（a）How plane．
（b）Velocity
diagram for $\boldsymbol{\alpha}$
a level raising （condensation） wave．
（c）Velocity diagram for level lowering
 wave．

Figure 31．－Disturbence wave striking a wall．

Figure 33．－Sketch showing method of＇ determination of the by means of the ellipse．

Q 4 Q

[^0]: *"Anwendung gasdynnmischer Methoden auf Wasserstr"mungen mit freior Oberflacho." Mitteilungon aug dem Institut für Aerodynamik, No. 7, 1938, Iidgenössische Technische Hochschule, Zurich,
 **For Part II, see N.A.C.A. Technical Memorandum No. 935.

[^1]: *It is not a question of setting absolute values of the velocities equal to each other but only, of course, nondimensional magnitudes, as $c / c_{\text {max }}$.

[^2]: *The proof will not be given here. It is carried out by J. Horn (ref̈erenceln), 1913, sec. 30, on. lö4-1069. For us it is of importance to know only that the prescribed function $\mathbf{Z}(\boldsymbol{\lambda}, \boldsymbol{\mu})$ satisfies tho boundary values and the hyperbolic differential equation (52).

[^3]: *To the curvilinear coordinates $\boldsymbol{\lambda}=0, \mu=00$, for example, correspond the polar coordinates $\dot{\mathbf{c}}=1, \boldsymbol{\varphi}=0$.

