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The work here preeented wab e&qeated to me $iy Dr.
J. Ackeret, and W88 Carried out 8t the Inetitut fur
Aerodynamik der E.T.H. Problem8 in the field of super- ’
sonic flowe occur with inoreeainq frequency in recent
timee. It Is of intereet firet to inveetiqate aa to how
far the relation' extend6  between the flow of a liquid.on
a horisontal bottom with the two-dimensional flow of a
compreeelble <aa. Secondly, problems in the field of
w.nter flows may be eolved directly by the method6 of the
theory of gae dynRmice* ahich, in r.ecebt yetxra, hp-xebeen
highly developed.

The present 17ork WAS undertaken with two object6 in
Vi8W. In the first place. it is consifiered as a Contri-
bution to the water analoqy of 48s flows, and secondly, a
larqe portion is devoted to the e;eneral theory of the two-
dimensional supersonic flowe. An attempt has been made
to brinl; the latter Into euch shape and detail at3 to facil-
itate a8 much a0 possible ito application by the engineer,
who is lees familiar with the subject.

Here, I Rhould like to sxpreas my thanks to Dr.
Ackeret for hie encourcqement nnd aid, and to Dr. de Hnller,
AsAietnnt at the Institut fir Aerodynnmik, for hle friendly
support.

Trnnelntor'e note: The term "&as dynamite" is defined in
the Introduction.
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APPLICATIOB OF THE METHODS OB (386 DYNAMICS TO

WATER FLOWS WITH FREE SlJER’ACI&*

PART I. FL6WS WIT$ BO ENERGY DISSIPATIOB*'

By Ernst Preiswerk

IBTRODUCTIOB ,

Let there be considered a P;as at rest in space or a
portion of space, and let a piston or a movable portion of
the boundary set the <as in motion. In the case of an in- .A.
compressible fluid, the latter will beqin to flow simulta-
neously over the entire space at the Instant the dlsturb-
ante is applied. With a compressible fluid the case is .
otherwise. The effect of a disturbance first shows up in
a restricted portion of the space only at a definite time
interval after the start of the disturbance. If the latter
la small, the speed of propasation of its effect is equal
to the velocity of sound In the qas. In an ideal gas. it
is proportional to the square root of the absolute temper-
ature T and depends only on the latter.

If the velocity of flow in a fluid is small compared
to the velocity of sound, the fluid may be treated as in-
compressl3le. The relation between relocitg c (m/s)
and pressure p (kg/ma) at various pofnts of the flow, 1s
in the case of absence of friction, given by the Bernoulli
equation. As soon, however, as the velocity differences
at various points of the flow attain the order of magnl-
tude of the velocity of sound, the compressibility of the
Gas may no longer be neglected. Density P (mass per
unit volume, kg sa/m4) and temperature are variable, so
that the laws of thermodynamics must be taken Into account.
The theory of such flow comes under Oqs Dynamics (refer-
ences 1 and 7). .

*"Anwendunq gasdynnmischor  Methoden auf Wassorstr8munGen
mlt fgeior 0berflgcho.s
tut .fur Aerodynamik,,,Eo.

Mitteilunqen auf dem Instl-
7, 1938, Eidqenossische  Tech-

nischo Hochschule, Zurich,

**For Part II, see N.A.C.A. Technical Memorandum 100. 9%.
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Depending on whether the flow velocity ie smaller or
larqer than the velocity of sound, we speak of a subsonic
and a supereonic flow, respectively, the two kinds beinq
essenfially.different  in character. They may oocur side by
side in the same flow since the velocity c and the eosznd
velocity a in general vary from Taint to point. The quo-
tient velocity of flow per velocity of sound for a definite
point of the flow is denoted as the local Mach number L¶ =
c/n (roforence 4). For K < 1 the flow is subsonic: M
>l, supersonic. The subsonic flows in the nei4hborhood  nf
M = 1 have as yet been little invostisatod. To are far
bettor acquainted with the properties of supersonic flo.vs,
thoue;h chiefly the two-dimonsional flov:s:*

6ctw.?en the vnriablas, pressure, tcmpornture, End don-
sity, there holds the equation of state for an ideal <as

P =r12pT i,

where 9 (kq m/kg0 = m/o) is .q constEnt that Is different
for each <as. By the addition of hoat, compression, and
exp.qnsion, all posaibie stRtos may bo attained in the 31s.
If, howover, hoat is noithar added nor tnken away, and In
the 4,yll.s itself no heat arimoa through friction

1
hen, in

addition tn equation (l), the followinq ndinbat c equations
hold bPtwoon the state variables:

P/P, = (Q/p'o )kL - (2a)

PIP, = (T]Toj5i/k-L (2b)

p/p, = (T/To)k/k-l (2c)

where 901 PO* To is any reference state, and k is con-
stant for an ideal qas, beinq the ratio of the specific
heat nt constant preesuro (c,) to the specific heat at

constant volume (ov)', This &se of adiabatic chanqo of
st?to is the one thnt obtains in an idenl flow (no fric-
tion, no addition bf herst from the outside, heat conduc-
tion n,nd heat radiation in the flow itself noSli%iblo).
As reference state in a flow there is qonernlly chosen the
st.?ts nt a point of rest.

In order to be able to apply readily the energy equa-
tion to thermal processes. there is introduced a further
_-~_~~-‘___1.__ - - - - - - - -
*1) Three-dimensional flowrs: references 6. 8. 20. 26. 29.
2) Two-dimensional flows:,references  1 (or 2). (pp.-398-

322); 3, 7 (pp. 407-444). 14, 15, 17, 18, 27. .
3) Transition reqion of subsoni'c and supersonic flows:

references 9, 14 (pp. 57-67), 28, 30.

.m--. -. .- . . . . . .
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atrbfe  vnriable, n8mel , the heat oontent I, defined by

P I -_ .Cp !I .('in,kq m/kg *.3 L9.t the heat oont.ent  .8t a p.oint
of reat be

I

i,. The flow velocity at an arbitrary point
(L P, T, 1’1 of the flow ie then oomputed from the enerqy
equation to be

I
c* 3'2% (lo - +) = 2q op (To - T!) (3)

Transforgipq  with the aid of equabione (1) and (2)

I (38)

a This equation <ibee the relation betneed the pressure and
4! velocity for the compressible adia'llstic flow and replaces

the Bernoulli equation. TO LL first approximation, i..e.,
for small Mach numbers, it qoes over Into the Bernoulli
equation. Bor the velocity o-9 Round, ma have

a' = d:?/hp (reference 13, p.536)(4)

or, using equation (2a):

EL= =k$ = e;k B T (48)

From (W> and (4~) there is obtained:

Brom the adiabatic 'equation (28)

1
l-- i5-T

PO P
(po '!

k po
0

k
--=
PO p \pI

=:-
NP

*The heat content
----------_--_

1
s uouall:~ expressed in kccl/kq, Many

fi1( computations are s+mplLfied, however, if the heat is con-
sistently expres'sed in mkq instead-of kcrrl. The specific

I heats and cv must t5en be <Ipen in mkq/kg' inetesd of
In kcal/cggO.
kgm/kcnl

The carrying along of t4e faator A = l/427
is thereby avoided. B Is simply cp - cv, etc.

In what follows, t3la assumption will everywhere be used.

1
:s_A . . - -_-- _-_ -- --- _- -_
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and substituting in the above equation and eolvinq for po,
we have

.
k

= p ‘1+ “+h Ma1 I k-l
PO

Expanding the brackets into a series there is obtained

PO =

:

. . . 3 L

The common factor ya ,k
2 can be taken outside the brackets

y4 + 1(2-k)(3-2k) y6 +
4123

. . .
3

Consider

P- ca
2

= p C’sa
2 aB

Substituting a* from equation (4a):

P
- co
2

=Mak;

We thus have, finalig

p  - p =
0

g ca !l +; Ma + * M4 + . . . .

For MZO, the above becomes the Bernoulli equatioti

; ca = Po - Pa
PA better ap?roximatioh  is z ca = (po- p>/

(1 + 2 M"). The first two coefficients, 1 and l/4, in the

series are independent of k. For k= 1.4, the next two
coefficients are l/40 and l/1600.

.

We shall now brinq out an important property of the
supersonic flows. Let us consider first a parallel flow
with constant velocity c. The velocity of sound corre-

I-_- . . -.
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linear in the second derivatives. The coeffic1ente depend
on the derivatives of the first order and on these only.
It is to .be observed that g h ie not a constant but, ac-
cordinq to the energy equation is

0 = gh, - ca/2 = 3 ho-
Qx8 + Q *

2-E

The equation corresponding to (15) for the velocity
potential of a two-dimensional compressible flow Is (ref-
erence 1 (or 2). p. 308.

Qxx - 2Qxy 3 = 0 (16)

The two equations (15) and
gh/2%ho is replaced by aa 2gio. JaI

16) become Identical if
is the basic nave

velocity in shallow water, and corresponds to the velocity
a in the <as flow.

4. Summary of the Blow Analogy

We shall.yet inquire what magnitude in the water flow
is analogous to the gas pressure. Rritinq the equation of
state (1) for an arbitrary state and for the state at rest,
there is obtained by division:

P/P, = (P/P,) (T/To)

Substituting for p/p, the correspondin< value h/h,, and
for T/T, also. h/h,, there is obtalned the value corre-_
spondinq to P/PO:

P/PO = (h/ho?

This Is also obtained directly from
(2a) with p/p, = h/h, and k = 2.

(17)

the adiabatic equation

The pressure PG on the bottom surface is proportlon-
al.to the water depth h; with pw as specific mass of

the water PG = pg4 h. This pressure has no analogy in the
two-dimensional sas flow. In particular, it is not the
mawitude corresponding to the 'ad pressure since the cor-
responding ma4nltude to p is h and not h. The force
p of the water flow per unit of length of the vertical
wall Is, on account of tho linear Increase of the pressure .
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with dietance below the free surface, Given bY

Bar P, therefore, we have P/P, = (h/h,)*. Oomparieon

vi.th equation (1.7) ehows that P/PO = P/P,. .The: maqnitude

of the water flow' correeponding to the .:aa'presg:ure p 26
thus the force of ths water on a unit etrip of t-he Ride
wall'e. . The pr'eeaurei in the two-dimensional compressible
flew are analogoue to the forcea in the water on the ver-
tical wa&le.

-. - . * ..- . ._

Prom the differential equation for tBe velocity Poten-
tial,, we have derived the fact that the velocity of Bound
a cbrreopondo to the *wave vel'ocity a-h* Tie dlfferen-
tial equation arose 'through t5e conbination of the energy
and continuity equations. Thus the result a++@ ie
'not aomethlni essentially new but i~1 only a consequence of
the reeuIts p-c'_,h, T-Ah, and k = 2 of these two
equations. Fe have a' - gkIiT = g:k - lb, and for k =
2 and ime +h, - thie +:ives a”+ +.<h.

Since the velocity cbrreeilonding to a is fi.
there corresponds to the .subsonic flow c/a < 1 the flow
with c/fig < 1. The aater in this case ie aaid to
IIstream,1' rhile the prstsr flow corresponding to the euper-
conic flow 1s Raid to 'lshoot.n T!:le essential difference
In character between the supersonic and eubeonic flows ex-
lsta aleo in the caBe of water between etreaning and ehoot-
ing flows. . .

The analogy considered in thie section hold8 for flows
with Mach number8 emaller and sreater t5an 1. Eesentially,
Bowever, only the fldw of ehootln< water will be treated in
this work: Application ail1 therefore be made of the ex-
tensively developed theory of two-dimeneional euperaonic
flows to the flow of water.

’ . .C . .

. .

r.

,

. .

.

b. __ -
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TABLE OF FLOW AEALOQY

Wature  of the flow

Analogous &&izitude~

Two-dimensional gas
flow

Hypothetical gas with
k = cP/cs =2- - - - -

Velocity c/cmax, c/a’

Temperature ratro,T/TI
Density ratio, p/p0
Pressure ratio.p/po

Preeeure on the side
boundary walls
P/P,

Sound velocity a

Mach number c/a
SuDeonic flow
Supersonic flow
Compreesive shock
(right and slant)
------------~

Wave velocity fi .

Mach number c/G
Streaming water
Shooting water
Hydraulic jump

(no&e1 and slant)
- - - - - - - -- - - -

Liquid flow with free sur-
face In- --field <

Incompressible fluid
(e.p.. water)_

Side boundary vertical
Bottom horizontal----_------

Velocity c/h, c/a+

Water depth ratio, h/ho
Water depth ratio, h/ho
Square ofsrater depth ratio,

(h/h,)
Force on the vertical walls.

P/P, = (h/ho)s

MATHEtdATICAL BASIS

5. Introduction

For the treatment of fields of flow subjected to the .
boundary conditions, various mathematical methods, depend-
ing on the type of flow considered, are available. The -
mathematioal basis for two-dimensional incompressible flows
is the conformal transformation method familiar from the
funotion theory. For the computation of compressible sub- .
son16 flows, use is made of the theory of qeneral ellip-
tical differential equations. This theory has not yet been
sufficiently developed as a practical method. For the com-
putation of supersonio flows, however, and hence for "shoot-
inqll water, there hae been perfected the method of charac-
teristics of the theory of hyperbolio partial differential
equations by Prandtl, Steichen, and Busemann.  .

Since the characteristics method is as yet little
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known and, particularly, eince it haa not yet been applied
to the inveetiqation-of  flowe of~.~.+_oot+qgH water, thie
method in what followe, sill be ai6cufiiet3a  in 'some detail.

6. Introduction of New Variables
a

The velocity potential 0(x, y) may be ~~eomotrlonlly
repreeented by plotting vertically at each point of the
flow plane x, y the oorreepondinq value of .@. We thue
obtain a surface in space which we ehall denote as.a @-eur-
face. The slope of this surfnce along any direction Gives
the component of the flow velocity in' thie direction.

Let the velocity alon a line AS of a ehooting flow
of water be given in magnitude and direction (fis. 5).
This velocity at each point of A3 may be decom;>osed into
component8 ct and cn# tangential and normal, respec-
tively, to AB. Simultaneously, there ~111 also be riven
the slopes of the Q-surface correepondin4 to the florr in
the two directions and, finally, the value 0(x, y) itself,
except for a nonaeeential'constant,  will aleo be dotermined:

.

The five maqnitudea x, y, Q (Do%nt P) and Dx, Qy
(slope) are denoted AB an element of-the &surface. An el-
ement Is simply an infinitesimal piece of the &eurface
civine; the poeitlon and elope. The aasisnment of the ve-
loclty along AB ie equivalent to the assis'nment of an
elementary etrip of the O-nurface (fiq. 5). The mathemat-
ical problem may.thue be stated as followe: To find a aur- '
face khoee curvature and slope aatlsfy the differential
equation (15).

It ia possible to put equation (i5), by a traneforma-
tlon of variables, into a simpler form (reference 27, p.d-10).

We coneider firet a ueual coordinate transformation -
a so-called "point tranoformntion." Let x and y be the
independent variables; Q R function of x  Ana 7, Mx, Y).
Then net variables - X, Y, X nag be introduced by&lefinin5
them throuqh the followin%..equatione:

1L--- __ _-_-_-_ -- -- ____- - - _- -- - __ - - f’





.
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given by the triple xc, (0, (Pi (@mint and direotion).  To
transform this element the.trensofrmation  formulas would
%.” - __._” _.

.-1..-  ., .._ >

XX X(x,%@,>

From the above we have:

dX = & dx+ Q d(P + X&

and

dx = (50%

go that

and X= x(x,%@,)  * (208)'

’ (21)

hence, dx/ dX , as (21) shows, in general depends on x,
0, @,,_ and (Pxx, If, for example, 8 curve @a (fii. 6)
is prescribed, then at each point of the curve these four
values are known. From the three formulas (2Oa> and (21)
there are thus determined at each image point P* the val-
ues X, X, and Xx. Thcrc ie thue obtained the curve h
as the lmap;e of curve $A. Corrosyondingly, 0~ may also
be drawn If the entire curve Xg is Siven. On the other
hand, from the element XS L.9,. It is not posslble.to
determine anp element X, X, Xx from the formul88 (298)
and (21). different elements being obtained, dependinq on
how @xx is chosen. In one case, however, the transfer-
mation Is such that the imsge of Rn element Is again an el-
ement, and conversely. Thie is the Dase when
equation (21) bec0me.s Independent of oxx,

dx/dX in
which is true

only if

(22)

If the transformation formulas (208) satisfy the condition
(221, then the elements uniquely correspond to one another
in the transformation.

Ad example of the'above la the Lesendre transformation
of x, Q to X_, 'x; of wh3ch.rs shall make important use
bzilow ; for this transformation, the following transforme-
tion formulas hold:
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. -
x = #=

.
x = 4, I - #

.
We then have: . .

dX = 9,, dx

dX = aI: dr + 9,, dx x - & dx = x @,, dx

so that

dX/dX = x, i n d e p e n d e n t  o f  @,,

The transformation with correspondins  elements has in
a d d i t i o n , another  spec ia l  property* Let us assume that at
poizlt- P (fig. 6) two curves 0~ and $3 touch each
o t h e r . They thus have at point P a oommon element xa =
xB, @A = @B. and @fi = mxB; but axA # &, the cUrV%i

b e i n g  assumed in contact ’  but not osculating. According to
the  traneformat ion  formulas  (20a), we shall aleo have for
this  po int .  Xa = X B and Xa = XB. The two imaqe curves

X.A and XB then have the point P*, the  image  o f  P ,
S-180  in common. Since , ’ however, dX/dX i n  g e n e r a l ,  c o n -

.t a i n s  cPxx accordinq to (21). a n d  t h i s  s e c o n d  d e r i v a t i v e
la d i f ferent  for  the  curves A and 9, the two ima<e
curves  wi l l  intersect  in  po int  P* and not touch as the
or ig inal  curves  do . Only. if dX/dX i s  i n d e p e n d e n t  o f
@11 will  the two Image curves XA and XB also touch at
p o i n t  P * . T h i s  Is precieely the case for the transforma- ’
tion with uniquely reciprocal  element correspondence. .  For
this reason such transformations are known’as  contact
traneformatione. l ’
----__I_---  ” -- -------
*l> In correipondence  with the concept -po int  t ransforma-
t i o n , the term “element transformation” Is more logical
than contact transformation. .

2) The transformation (20a) becomes an element tranaforma-
tion a0 soon ae, instead of  only the two formulas of  (20a),
three are used:

x = X(X,@,@~)  X  =  X(x;@,@,) a n d  XX =  X~(X,@,.@~) (2Ob)

There then oorreeponds  to each I, 0, 9,, an L X, Xx,
and convereely. It  is  to be noted,  ..however,  that  there  i s
a  re lat ion  between the  three  var iables  s ince  Xx = dX/dX.
If  the left aide of -(2Ob) i s  i n d e p e n d e n t  o f  OIL=, the riqht
side muet be. But this ia Drecisely the contact trans-
formation.
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:The reeult found above we shall now apply to two inde-
.pendenfi x~$abLe.e., x,.y_,_and,  their *function 9. The trane-
formation formula8 are: .,..a  - -___ . __,

S i n c e X, Y, and x contain, in addition to x, y, and 9,
ala0 9, and @y. there nil1 in'e;eneral aleo occur in

XX = a%jax = f, (x.Y.o,~=,cA,.~,.~yl$y)
and

the second derivativea Q, Q,,, ?yy. Be shall interpret

N&Y) a0 a eurface (fis. 7). Two surf,sces '0, and 03,
rhioh touch at a Doint, hrrve x, Y. @. 9,, Q, in common
at this point. From the transformation equations they
will then also have the lmnqe point X, Y, X of the con-
tact point in common. Since, however, xx nnd XY con-
tain the second derivative= of 9, the tmo transformed
surfaces will no longer be in contact at the common point:
(XX), and (XX), not bein< equal - eimilarly, (XY),

and (XY)~. The trnneformatlon asain Gives a unique cor-

reepondence of the element8 only If the equations (23) do
not contain the ma<nitudee a,,, Ox, and Qyy. In thie

came two eurfacee In oontnct at a point, 40 over after
traneformatlon Into two aurfncee which at the image point
again have a common tanqent plane.

The Legendre contact transformation for two independent
variable8 ie _

X = mx
a Y = ay (24)
.-. -

X’ =o, ;y-0X+@ 1 .
The eurface Q = @(r,y) with the .abov.e traneformation  <oee

a

_ - -
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- o v e r  i n t o  a  surfaoe X =. X(X,Y)  ( f i g .  .7). ~eprovo f i r s t
5 that the above ie actual ly  a  contact  t ransformat ion . From

equation8 (24)

dX = &dx + I do, + %d?  4 Y d$ - do .

Noting t h a t  dQ = QIx + %dy, three  terms drop out. Sub-
stitutinr:  f o r  0, a n d  a=, X and Y, respect ive ly ,  f rom
formulas (24), we h a v e

dX = x dX + y dY

For the X-surface, the  re lat ions  must  be  sat is f ied :

dX = X,dX + XydY

Comparison  o f  the  two expressions qives the derivatives of
X  o f  t h e  f i r s t  o r d e r :

X X =x

>

. .
(24a)

xk, =g

Tnese are independent of  the derivatives of @ of the
second o r d e r . . Formulas (24) thus actually express a con-
tact .transformation, (24)  and (24a)  eivinq the aorrespond-
ing element X, Y, x, xx, xy when the oriqinal element
3. Y, #, &, a, is given. By simple reversal there is
obtained the element correspondence for the reciprocal
transformation:

I = xx

Y =xy ’
\

(25)

a = x xx + Y xy - x I
ax = x

% = Y 1 (25a)

IYe wish still to express the derivatives of second or-
der Qxx, Q,,, and a=7 'in the new variables x, Y, x. xx,

XY@ Xxx, Xxy.  and Xyy. There will then be obtained an %m-
portant  resul t  for  the  applioations.
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Zor thle purpose we consider I and y as the inde-
pendent.varlables. Prom the. firet,wand_s_econ_d of equations
(251, there is obtained:

I_

dk = %xp= + SydY

as= XXYd-x  + %YdY

Solving for dX and dY

dX = (xyydx - %xyd$ WJ

dy = (- FXydx + XXXd+) l/N

where N= (xxx %YY -x*xp1

For the differontlal of a, we have (a-eurfaco)

do = oxdr + $dy cm

Substituting In the above (25a), there is obtained:

d.0 = xa2+Ydy

For the second differential, ae have:

aa0 = a~ ax + aY dy

for dax and dag' are equal to zero since x and y are
independent variables. In this equation we.substitute the
previously found expressions for dX and dY, and obtain:

aa0 = (Xyy dxe - 2 %xy ax as + xxx dya) l/a

On the other hand, from equation (28):

de@ = @xx dx' + 2 if?xg dx aS + 4$T dra

Comparison of the coefficients of dx8, dya, and dx dy of
the last two equations shows finall:v that

(27)

-



22 X..A.C.A. Technical Memorandum lVo. 934

These are the required expressions for the derivatives of
0 of the second order.. . . .

The coefficients of the differential equation of the
flow (15) depend on the derivatives of the velocity poten-
tial Q of the first order. Introducing new variables
into that equation (according to the Legendre contact trans-
formation, the coefficients accordinq to (24) will depend
on the new independent variables and only on these. The
partial deri.vatives of second order will be replaced, ac-
cording to equations (27). by the partial derivatives of
second order of the new function with the common denomlna-
tor B. Since the differential equation (15) is linear
homogeneous l? may be multiplied out. Sy means of the
Leqendre contact equation, therefore, (15) becomes linear,
homogeneous, of second ardor, and with coefficients that
depend on the new independent variables only.

Let us introduce the new variables X, Y. Physically,
X and Y are the velocity components u and v. The
new variables according to (24) are:

(Y =I v = 9,

i .

(28)

x=(9,.x+@yy-@=ux+vy-~

The transformation formulas (25), (25s). and (27) are:

.x = xu, Y = xv, # =uravy-X

9, = u, 9, = v >
(29)

d) XX = xv, i/mr, 9,, = ” %lv l/K oyy = xuu l/B (30)

The differential equation (15) In the new variables then
becomes:

%vv (1 -'$J+ xuu (1 -g) + 2&;. = 0 (31)

y bein% the coordinates of the flow. With the .
LIesZke transformation of equation (15) into (31) I we
passed from the flow over into its l'veloclty image" - that
is, the hodograph (velocity plane) of the flow. At the
same time, In place of the'veloclty potential 9, which is
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,

a function of the position in the flow, TB have introduced
the "position determIning po_t_gnt:.al X,. which ie a func-
tion of the velocity in the hodosraph. ..'. ..- _

The assignment of the velocity alon< a curve AB is
equivalent to .the nssiqnment of an elementary strip of the
O-surfaoe. since the oontaot transformation iB an element
aorrespondence, the X-surface must contain the oorrespondq
ing X-elementary atrip.

Bor later use, ne ehall lntroduoe in equation (31) in
plaoe of the rectangular ooordlnafee u, b, X the cylin-
drioal coordinates c, +, X (point transformation), fie;-
ure 8.

The new variables are:
-_-

z
C = J-U8+V

cp= (tanWa) (v/u>

whence

x=x

u= c coap

T= c sin p

and

acav = sin qJ

We have:

x= xhd = xcc.q4 = x[c(u,v).  ph.d 3
eo that

(a)

(b)
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ax
d;;

= axa,
ah h

ax
G

= ax ac + ax s!z = ax sip p + ax zoe
a~ av av av ae: -

Furthermore:

(A)

acaxlad ain 9
co0 cp - - - -

arp C

8X_-- = a (ax/ad
auto au

aax a(ax/ad
27 = - av

a(ax/ad sin Q, +  ,a(ax/ad  COS_:~= - __-
aa aY a

Substituting in the above the values of ax/au and ax/a v
from equations (A) there is obtained:

= Xc, cosacpx ---q-? 2 s~n~cosp+q&#y Bina,.  xc se +
C C” 0

2 siq cog
+ * ---ii=---

and the other two formulas qive:

~v=Xcc sincp co&?+
%

co s”cp si*
--- 7 _ &_& %..~~ -

~v=Xcc oinap+&g, f-B’=.: cow + xw--3cdl? + x, coeeY
C

- xlp--  c?

2 sincpHcoscp

=

(d

(d)

(d
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The transformation formulae (a) t;*(e) oan now be intro-
duoe.d..into,  equat.ion (3l)m.' The latter then reads in polar
coordinates:

9. -_._ - _ __ ._ - . . +..5- - - -_. _. . .
.

(3la)

7. Characteristics of the Differential Equation
(references 10, p. 153, and 31, p. 282)

The differential equationa (31) and (ila) are a'sPe-
cial ease of the following general form:

A(X,Y) ZXx + 2B(X,y) ZXy + G(X,y) Zyy =

= D,(X,Y) Zx + E,(X,Y) Zy + F,(X,y) z (32) .

if for the moment we write Z in place of X, and X and
Y for u and T, or c' and 0, respectively. The coeffi-
cients A to B of differential equations (32) depend on
the free variables onl:r.
i.e.,

For each pair of variables -
for each point of the hodograph these three ma<ni-

tudes are given numbers. There is a simple iatusration
method for equation (32) that depends on finding a Taylor
series for the solution Z = Z(X,Y).

We seek a solution of (32) that contains a prescribed
elamentarg strip. Let the curve. over which the Z-element
strip la given be expressed in parametric form with t as
parameter

x &:x(t)

>

(curve AD?
Y = y(t) . *

The Z-surface strlp%(the boundary values of Z> over this
curve is then given by

Z = F(t) (33)

’ and aZ/an = Q(t) where n Is the normal of the curve AD.
Alone AB:

dz
dt

LI -_ .  _. .--._-_  -_--__ . ._. _ - . _ _ __ -
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On the other hand, on account of the preecribed  boundary
val.uee along the curve AB, ne have:

80 that

Fx X’(t) + Fy Y’(t) = v(t) (33a)

The normal of ‘the curve X(t); Y(t) has the direction
.cosinos

---_
coa(n,X) = -Y’(t)/fi?t)  + Y+(t)

cos(n,Y) = Xl (t )/Jm8 -

Hence

az = px cos(n,X) + Fy coe(n,Y) = -
an + Y' %

.
_gx y1 + az Xl

aY >

X

This expression must be equnted to G ( t ) . Thus alonrg AB
we also have:

- Fx Y’(t) +
--

Fy X ’ ( t )  = ,/T + YT G ( t ) (33b)

Equations (33a) and (33b) may be solved for aZ/aX and
az/ay , since the denominator determinant of the pair of
equations ia

I_ :; :I 1 = x1* + Y@ f 0

Let the solution be

az/ax = p(t)

az/ay = q(‘t)
(34)

Differenfiatinq each of theee equations with reepeot to t,
there is obtained:

L * _. ---_-. - - _- .
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2x2 X’(t) + zxy Y’(t) = p ' ( t ) . (358). -

Bar the second derivatives of Z, ne have as th'ird con-
dition the 'differential equation itself:

A 2xX + 2B z* + c zyy = Dl Zx +.X.x Zy + X, Z (350)

If the denominator determinant of the eyetem of equations
(351

.

gt yt '0 . .

. 0 X' Y' = c X'*." 2B X'Y' + A Y" . (36)

A 2B C

1s not equal to eero, the three equations (358-c) may be
solved for ZXX. ZXy, and Zyp. Let there bo obtained for
the-derivatives of Z of the second order nlonq AB the
values:

zxx = R(t); zxy = S(t); Zp-: =  T(t) (37)

Differentiating (35a) and (35%) with respect to t an'd
equation (35~) partially with respect to X and Y and
substituting In the last two equations the values for Z,
ZX... from equations (331, (34) ar.d (37). there is ob-
tained the spstem of equations:

ZXXX Xl3 + 2zxxy X'Y' + ZXYY y'
a = p"(t)

zny Xl2 + 2ZXYY X'Y' + zyyy YID = q"(t)

A zxXX + 2B ZXXy+ CZXYY = .a(t)

A ZXXY + 2B ZXYY + c ZYYY = e(t)

From these equations are obtained the four derivatives of
thdrd order.of Z along the projeotion curve of the given
olementary.strlp, since the determinant of the denominator
is equal to the square of the determinant (36) and thus
not equal to zero if that determinant de different from zeroa

Proaoeding.ln  thie manner there are obtained all of the
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higher derivatives of 2 startinq from the boundary values
B(t) and Q(t) {equations (33). (34),.(37), etc.). It is
thus possible to write.  the solution of 2 = Z(X,Y) also for
points which do not lie on the curve AB as a Taylor series:

Z(X,Y)=Z(XO,Y0)+~
I

+

lF
+21 1

ZXX(xO*YO)(X-XO)s + 22 &,Y0).(X-X0)(Y-YO)  +

+ zyy~xo,Yo)~Y-Yoq  +  .-*

This method of solution falls, however, if the determinant
(36) assumes the value, sero, i.e., if

- 23(&Y)  -g g + A(x,y) ($ = 0

o r

C  dXa - 2B.d~ dY + A dYa = 0 . (38)

Thie equation, decomposed into linear factors, becomes:

_- _--

1
:a dY-(B+@-A C) dX] [A dY-(B-@-A C) dX = 0

_IL . 3
‘1: The denominator determinant (36) thus vanishes if either
, ---_----_-

A(X,Y) dY-(B(X,Y)+/--,Y)-A(X,Y)  C(X,Y))dX=O (38a)

or - -
A dY - (B -@---'A C) dX = 0 (38b)  .

I't is important tn observe that the pair of equations
(38a) and (38b) are given  -qy the coefficients of the dif-
ferential equation (32) alone. They are two ordinary dif- .
ferential equations. The solution of each represents a
family of curves f(X,Y) = k. These two families of curves
are denoted as the characteristics of differential equation
(32). If these families of curvoo, defined by (38a) and
(38b) are real, then (32) in this resion Is denotod aa hy-
perbolic. If the two families coincide, then (32) is par-
abolic. In reP;ions within which the two sets of charao-
torietics are i'mnqinary, (32) Is denoted RB an alliptlo
differential equation.

If, therefore, the curve AB alon< which the Z-elemen-
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tarp etrlp ie preecribed  ae boundary value 60 (32)mie a
characzteriatlo,.__the,,pea_qribed  method'of eolution b$ devel-
opment of Z(X,Y) inio a -T&&r '~ei!~es,'f&lle"~~-  * *

de an appli&tion we ehall.now oompute the character-
ietice of the differential equation of the flow. The com-
putation le elmpleet  if’ae etart from the e.quation in PO-
lar coordlnatee (31a). Oomparieon of (31a) with (32) ahow8
that for thle aaee the maqnitudee A, B, and 0 nesume the
followlnQ; values:

A =l, B=O, G=+ ($1, :.

and the variables X and Y. are now o and rp. The ordinary
differential equations of the oharacterietice (38a) and
(38b) then become:

dqyi ; /Fez-l>  dc = 0 (39a.b)

Su’bstitutinq  in the above the enerqy equation (9):

4h = gh, - c8/2

there ie obtained the differential equationa of the two
families of characteristics:

a&q=;  m-pJ dc
C

5 qh, - $
(40a,b)

Before we inteqrate this equation, we wieh get to Introduce
another concept.

The critioal velocity a* (m/e> ie given by the con-
dition that the flow velocity is -equal to the wz~ve propa-
Sation velocity n =&E, 80 that the Each number M =I 1.
Thueif ca=gh, a*=c=Jx.
ter depth at the critioai positions.

Let us compute the wa-
From the enerqy

equation

aa .= 2qh, - 2gh

and this should be equal to .
.-

_ _ .- - .--
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.

aa = gh ..
that ie,

2% ho -2%h=sh BO that h* = 8 ho
.-

and hence, .

caa a
= a* = gh,$

(41)

(42)

The crttical poaitione in a water flow without energy dis-
sipation are located where the water depth is two-thirds of
the total head. These poeitions in an accelerated  flow
are the traneition pointe from lletreaming" to llshootinc"
water and conversely,  for decelerated flow.

Substitutlnq (42) into equations ('40). the latter af-
ter a small transformation, become:

*‘m 1
Z-P J_.kk?_?’ - ’ d(c/a*)

(c/a*) 1 - (c/a*18/3

We shall denote C/O RB the velocity ratio c,
a* is taken as the refcronco velocity. Hence,

tdq=+ -= _ y-Cr--- d=
l-

for nhich

(43a,b)

The variables in the above equation are already sepa-
rated, and the equation map be intesrated by a eimple
quadrature. We first introduce a new integration vcriable:

_a
z = C

so that we hnve:

----
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This Integral splits up into two parts, J, and J,, of

rhiabn%he -first may.be dl-reotIy.'.evaluated: ; _ ’ .

= fi (s.in") (g-2) .

In .the second inteqral

s I$-3 a%
Jag- - -

r
___-

& - 3 + 4& - za

we mrlke th'e enbstitdtion, v = l/z, so thnt:

& = l/m
.

dx = - 4 dw_
a

We’ now have:

: ’ Ja =+ - --s L-3 dn
J-

___m

: -3;;a+4n-1= (sinml > (3/S-2)

Denotlnq

w e hnve. finally with J1 and Ja

f(Z)

= r d(3w)--__--

= $ [Ai- (sin-l) (~'-2) + (sin-l) (B/c!-2) 1
J

The solutions of (43) are thus: . .

rp - % = f(Z)

-qJ + cpg = f(C)

(44a)

(44b)

- d . . . --  -  -
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where C+J~ and. "Pa - are the constants of integration -:
these being the:parameters of the two families of charac-
teristics. The latter are shown in figure 9; they are ep-
iCyCloiaf3, the loci of the points of the circumqerence of
a circle which rolle on another circle (fig. 10). This
statement can be confirmed in the following manner.

From the equations (39) (characteristics). and from
. the energy equation (9). It follows that for h = 0 the

magnitude of the velocity beco_mes a maximum. In the veloc-
ity diasrrrm the extremity of cmax then lies on a circle
Kmax (fig;. 91. For all possible velocities that occur,
C(U,V) < Cmax h > 0. For cs >gh, the radicand of (39)
then becomes positive and the root real. Hence, for that
region of the hodoqraph In which cmax > c > fi (region
II), there are two real families of characteristics. This
holds for the shooting water (supersonic flow). For a flow
in which c 66, the root in (39) becomes imaginary and
there exist in this recion (1)'no real oharacterlstics,
This is the case for streamins water.

Let the anqle \Ir be chosen as parameter (fie. 10). .
Then, on account of the llrolling condition,"

From the triangle PSO, there Is obtained for B

From these two equations, we have:

.rp = c - 9 = (r/E) \cr - (tan-l)

From the cosine law for the triangle PTO:

Different%atinq (a> and (a>, there is obtained:

dq, = @(R+r?*ra- 2(R+r)r- - - COB *J r/B-(R+r)r cos *+r* a\L (c)
. (R+r>= + r* -

- -
2(R+r)r co8 $

_I
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. Rllmln8tlng  in these two 9qU8tlOnS sln'JI and COB Jr
with the Sld 0f equetlon (a), ‘ana than aiddine (0) W W,
there 28 Obt8lned: .

W’ &. .y 3 &I..& 'd8(R+2r)/R .- R(R+2r)- b) -
do c / 7 - - - - - - -+ Zaz4Rr+4r8) - B*(R+2r)'

Dlvldlne: numerator and de&Omln8tOr of this fraatlon by

&a- Ra (R+2r)/R, we have, finally:

8s was t0 b0 proved. Bor R = 1 8nd (R+2r)/R = 8, this
ie the differential equation (43). The epicycloid drawn
in flqure 10 1B thue a ChareCteriBtlC of the family (458).

The CharaCteriBtiCs of shooting W8tBr flow are epiCy-
clolde between two circles WhOBe radii are in the ratio
6/3:1. They are drawn on chart 2 of the Bupplement. POF
8 Qas, the characterietics lie between circlea whose radii

are In the ratio fi-T1)/7k- 1) to 1. They are shown
on Chart 1 for air (k = 1.405).

8. Further Properties Pf. the Cheracterlstlos

We have seen that If an elementary Btrlp be slven a8
boundary value over the chbr8cteristics of a part181 dif-
ferential equation, the solution method by a serl'ea devel-
opment of the required function fnlle. Some further prop-
erties of the oharacteristlos  ~111 now be d i s c u s s e d . The
phyBlO81 character of the Bupersonlc flow (shooting water) -
which differs eeeentlally from Bubeonlc flow '(streaming
aster) - will th'ereby receive an interestins explanation
from the mathem8tlCaI point of view.

In equation (52):

AzxX + 2B Zxy + 0 ZIP =I D, ZX + El Y+ + FL Z

.’

-_..- _ _-- __ _-- -_--.- -- --
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let ner.varlablee  be introduced by making UEIB of a point
traneformation. Let the'new.varisblee  'be:

’ .
A = h(X,Y)

(46)
pti L4X.Y) .-

I :
where for the moment we-do not fix any definite transfor-
mation formulas. 'From,(46) we obtain the inverse formulas:

. .
X = Xih,p) . .

The! solution of the' differential'oquation  (32)
is thus a function of X and cr.

Z = Z hP1 = z [A(X,Y),dX,Y)~
. From tho above, vo havo:

ZX = Zh Ax + zp crx 1
zY = zp$ Ay + zp Py I

Z = Z(X,Y).

(4?a)

Diffsrentiatizq  E second tiae, thora are obtained the de- ’ .
rivativee of second order of Z in the new variables:

zxx = ZA#x)y + 2Zh~hXCrX + zpp(Px)a + ZA AXX + zp pxx . .
. .

zxY = Z)JiXhY + zhJ+y+hyPX) + z~pw@y + Zhhgp + ZpNXY

zYY = Zh#y)8 + 2Zh$yIAy + Z&py)a + Zhhyy + ZgJyy

Puttins these expression8 in differential equation (32). it
becomee:

Bhx” +2BAxhp+Ch 0, . Y]+2zhp[ . 'BhX~X+S(hX~+hy~X)+c~~ +
1

+Zpp AvX=+~B~X~+W~~
L 3

=D,ZA+E,ZB+FaZ

We shall now determine the transformation  formulaa
(46). The differential equation of the characteristics is

C_dX" - 2B dX dY + A dYa = 0 (36)
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If equation (32) IB hy#ezibolici, (38) hae tfo real familieB
of CUFVBB aB f%OlUt~OnB.-.Lef:$het!f?!  _>e'_ *-I..?-L_ - _ .

and

. .
. . fi (X,Y)..=  oonetant 1

, .’ (49)

. . fB (X,Y) A moonsfant
1. -. .

Along each of theBe curve8  - . - . . . ’

fX dX'+ fy dY.b b
. .

.
. .

Thle equation tokether rfth.(33').qives'for both f, and
fB 1 the relation: *.

A fx? + 2B fX fy + c fy" = 0 (50)

An essential simplification IB obtained if, for the
traneformatlon formulae (46). the following epecial ones
are chosen:

x = f,(X,Y)

1

(51)
P= f&rY)

[curvilinear coordinatea in tLe hodo<ra2he, fiq. lib). The
two coefficients of %A and by (50) then vanieh in
the transformed differential the latter receiving
the form

b z-- = -
dhc+

[a(h.p) FA + b(X,P) -9; + c(h,P) Z]
L

(52)

The form i~ cRlled the normal form of the linear hyper-  .
bolic differential equation. It iB well Buited to numeri-.  .
bal integration by neane of the difference method.

Be an ap~llcation, let the characteriatioe (45a and b)
be Introduced ae curvilinear coordinates of the poaition- :

determininq potentlnl x (rjla). We then obtain the nor-
’ ma1 form of the differential equation of flow.

By elimination of h and ho from the three equations:

(9) c* = 2sh, - 2B;h, (42) a*’ = 2gh,/3, Rnd a' = cF;h

there IB obtained:

CB =I 3amB - 2n"

_ -. _.
m -

- --
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from vhzch, after short computatibn and substitution of the
velocity rntio z = c/a*, there is o'btained:

ca = 2'E2 D z2 - 1

2
a

3 -z

and 's - 1 = 3 -2a 3 -c

Substitutinq this expression in (ala) and multiplying the
latter by the critical velocity a* (42). then (Bla) may
be written in nondimensional form:.

In the above ve now introduce the coordinates h and P
through the follorsinq expretsions:

% =X& +.$J.b<

XFd=X&& + 2+&& + X,,(P$2 + X&z + Y~LcL_~

After eubstitution  and rearrzrgement, there is obtained:

+ ax $3 _ -__ ___ -3(CZ -1) GA

.  ah L&E= ~“(~-c”)  aq,’ c(r~-;~)  3-d-r

The two sets of charactr-iictics  (45s) End (45%) in the im-
plicit form are nov

f(Y) + cp = constant

*f(Z) - tp = constant ’

__



y-

_.. .- . .

N.A.C.A. Technioal HemOrandum'.Kor 934 37

Substituting in (A) for h and P by (51). the two values
- .- r. - - ._. _ * . <.- “I”/

-% 9 ; h
= f(g)  -+ . - -- -- . . (5ka)

, and .

P= f(Z) -'cp (53b)

the ooefficlents'of  khh and x,, become sero and, eince .

. hrp = 1, . llqJ  =Y-. 1, A@ 3 0, w = 0

A-, ‘= df(Z)/dZ b .= df(;)/dF .

%E = d*f (Z)/dZ' .l+z = daf(F)/d5*

(A> becomes:

3(7&l) df_ _ -
I

= o
. <(3-za) dz

and the normal form finally reads;

_& x ax
--_ = - -+ --
ahap ah

where A and w are defined by (53a) and (53b). and K
ie obtained by substitutinq the expression for f(c) from
(44b): ’

‘K =  K(A,d = K(A+p) = K(c) =
ca(l-ca/2)- - - - - (53d)_--

J3 J(3-a8) J (5*-l)=

The numerical values $7511 K are collected in table II.

The lines. h = 'constant and P = constant are char-, acteristice since we had* so i’slosen the transPormation  for-
mulae (51). If, after the transformation, h and Is are

b
plotted as rectangular coordinates (flp;. llc), it aFpear's
that the normal form (53~) of the hyperbolic%..equation has
as characteristica, the sets of parallels to the A and
P axes. For equation (52). which is also of the form

.(32). A = 0, B = 4, C 4 0, and the variables X and Y
are now A and cr. These substituted in the qeneral equa-
tion (38) of the characterfstics, give:

I -. . . -- - .-- - -. -
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dA dp = 0

The two solutions of this differential equation are:

and
A= constant

P= constant (fiq. 12)

The solution Z of the differential equations (32)
and (52) may be determined if, alon< a general curve, an
element strip is prescribed as boundary value. This curve
may not, however, be a characteristic. But if it is made
uP of two characteristics .of different families, it is sur-
prising that a solution of the differential equation may
still be determined. For this pursoee, the function Z
alone Is sufficient as boundary value while no eler.entary
strip may be prescribed since this vould be impooin4 too
many conditions.

Let the values Z = p(h,po) = q(A) and Z = $(A,&)

WP) with V(A,) = @(P,) bo given alonq two segments

AOh and BOA, of tmo characteristics (fi%. 12). Alon%

AOk there is therewith also ;;iven bZ/&, but %/aCr

is assumed not to be prescribed; similarly. alon< A,A,.

=

It is to be.observed  that no elementary strip is prescribed
along A,AoAa of 2 but only the values of Z itself.

5y the method of so-called "successive n~proxlmation," it
is then Dossible to find A solution Z of the partial
differential equation (52) for the entire region AlAOA& B .
which assumes the qiven values of Z along &AoAa-

As a first approximation, zorn (reference 10)

for all values A and P cf the region A,AoAaA,. On
the boundaries BOA, and AoAe Za becomes equal to the
prescribed valaes.

*The proof vi11 not be iiver here. It is carried out by
J. Horn (referencel?),  1913, sec. 30, 9-n. 164-169. For us
it is of lm>ortance to know only that the orescribed func-
tion Z(h,p) satisfies tho boundary values and the hyper-
bolic differential equation (52).

- .

~-. -- -- -. __ __ . . -
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Ve now form with the right side of equation (52)':.  .
-. , I<. . _ 1 mh..y~  _. --J..m...~-,u.  . ,

zf$.(Xrl4. = - .u ( az, az, . x- +aK+bap. . cz a). thy.
. . olh . .

where the integration ie to be taken OYOF the*doubly hatched
rectangle. Proceodinq in this manner, we form . I

Z,h,P) = -
. SS( azfJ- 1 azCT-  1. a-ar+b- +  czo-1a. P >

dhdp

A,?0 .
Setting

Z(LI.1) =Z,+ZgeZy+ i....

t5en this sum ie the required eolution and it conver(588,
ae shown by Horn, in the rectangle %Aoa,a,.

There nil1 now bo shorn a last Droperty cf the charac-
teristics - the most inportrrnt for tho application to
shootlne; water. At tho same tlmo, in addition to the meth-
od of solution of (32) by soriss development and the method
of successive approximation, we. shall become acquainted
with the method of integration of Rlemann.

Ve denote by W(Z) the most qensral homo4eneoua lin-
ear differential expression:

,.
-.1 N(Z) s A Zxx + 2B Zxy + II Zyy + D Zx + E Zy + F z (55)

_I

. , where the coefficients A.-to .P depend only on.the free
variables 2 and 'Y. T!he general linear homogeneous
ential equation of the second order Is the equation

.

H(Z) = 0’

To the expreesion N(2) another one M(W) 1,s made t.0 cor-

differ-
(32):

(56)

P *baying +thel.same coefficienb. .A, .B,_ 0, etc.’ as in

.-

aa = (aff),y+2~BB)Xyc(CV)yy'(DB)X-(~IT)rc P ivI.
(57)

.
= M(U) =I A WXX+2B TPZy+C Tyy+2 W,(ApBy-=$D)  .i-

:

L'

f 2 Wy(By+Cy -4 E) + w (A~g2B~y*Cyy-Dx-Ey+F)  (57a)

. _ _ _~_____--___-.._- .-
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,

M(W) ie then denoted ae the adj%& of -27(Z) and the equa-
tion

M(W) = 0 (58)

the adjgt differential equation of N(Z) = 0.' Z and W
are functions of X and Y: Z i Z(X,Y), W = W(X,Y). M(W) =
0 has the same characteristics as N(Z) = 0, alnce in .
(57a) and in (55) the coefficiente of the partial deriva-
tivee of the second order are the same and since, accord-
ing to (38). the characteristics depend on these coeffi-
cionte only.

3y addition of the identities:
- r

AWZxx  - Z(AW),,  = & L"WZx - Z(AW)X
3

BWZXY -.Z(BW), = ;Y [BWZg] - A, [Z(BWhz]

r
BWZXY - z(3F)yy = d dizzy3, I

- fT 1 z(BW),,1

ii Tcvz, - z(o7;,l.CBZpy - Z(cV;yy-= ;-,
L J

- I-
DWZX + z(DW)x E.2OX 1 DZW 1

i _i

ETZy + Zmoy

FWZ - ZFW = r) ’

there ie obtained the identity:

W N(Z)-Z M(W) = $ [AiTZxy Z(fs:X+I!RZ,-ZbW),+DZG
3

+

+ Li [BRZX
. .

- Z(Pl7)~CVZy-Z( CW)y+EZW
I

(59)
aY L

. Denotinq for a moment the two erDresei0n.e in brackets by
E and Q. reepectively, the above equation reads:

W N(Z) - Z Y(W) = ap/sx + aQ/ay (59a).

This equation we Ghall integrate over the re%lon F of the
X,Y plane; Let the boundary 0,* the ree;;on of integration,

. .
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to be more- definitely fired 1ater;be 0 -(fig. 13):
-. I ,,_ L .._,I .I ,.. .5 .-.,,_., - -. . - .. _.. : . . . ,. _. . =' .

-?apaax i aQ/ay) ax dY

The riqht eide may.by integration bg pscrte be oonverted
into a line inteeral.' There i~l obtained: !

w N(Z) -. Z ?d(R)]d+  dY =jf (P dY - Q dX) . (60)

(cl

The Senerallzed  Green's theorem (60) will POW be applied
to the normal form (52) of the hyperbolic differential
equation. Por.thla purpose there is to be eet in (60)
'A = 0, B = *, C = 0, D = a, E = b, and F=c. In
place of X and Y, we have h and p. The expressions P
and Q then become: . .

p =I m yiL - Z Wp)  -I- a Z U I
Q = $(w % - Z WA> + b Z'W

Green's formula (60) now reads:

(6la>

‘RI N(Z) - 2 ?Ktm) 1’ dh dw = (P dp - Q dh) @lb)
J

(P) (&
With thie formula we may now prove the followInS:

If Z ie a function of X and p, Z = Z(A,p), which
satisfiee the hyperbolic differential equation (52) and
for which, along a' curve from Al to B, (fig. 14) -e which
thus ,*in general, is not a characteristic - an elementary
strip ie SlYen; then by these boundary values and the dif-
ferential equation, the function Z le dotermined in the
charact,eristic  rectang;le A,O,B,O1', which contain6 the

b curve ALBI with ite.end points. _.

In order to ehow thie we apply the formula (61b) to
the reqion 0 and its boundary AOBA .of fiqure 14, where

"Alone AIBz .therefore Z mand the slopes aZ/ah and aZ/ac~
are Cfven where naturally klong AxBl. the condition dZ = ’
q$ dh + zp dCr must be eatiafied,
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0 is an arbitrary interior Doint
characteristic rectahgle

Alb,Blol,fh =.p. cb = s) of the
In integrating along

OB, only P dp contributes anythinq: Q dh does not con-
. tribute anything, since dh = 0. Simflarly,

0 0s (p dB - Q dh) = -
s

Q dh

A A

since along A0 p = q = constant, so that dp 7 0. We
thua obtain from (61bl applied to the hatched region G

Jt
W N(Z)-Z Id(W)] dh dp

((3 ._

=[I .,-j( dA+J:P dwQ d&

. 0 A B

Non from'(61a;. if the first term is intee;rated by parts*

0 0 B

= ;g (w z JB - 9 (W Z),‘- s.Z (aW/aP - a W) dp (a)

0

Similarly, by intasration b,.v parts of the first term

-[; dh = +.lO_(- 8 Ws e 4 z'g -X'ti)dh

.A CJ

= - ;g(W Z)" + +(u Z), +
s

Z(2W/?X- II W) dh

A
w

Bith expressions (a) and (b), formula (62) becomes:
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r;;b  I... - ’4[~,~(-z-)-z M(w) I dh .dp= - (w z), +,+, . (6 z>,+_tw z )B +. .
(8 .

1 .
0 .i _-

f

. .

+ z (awlah - b W)dA  ”s Z(at/ap  - a W)dp +
A

B 0 .

+
s

<Q dh - P all3 . . (63)
. .

A . -
We now chooee for each point. '0 which ie given by the

coordinate6 h = p, pm= q, a definite function W of the
coordinate0 A and p: W =I W(h,p). In this funcltion,  p
and q occur ae parametera, the funa'tion W(A,p) being
different for each choice of the point O(p,q). We thus
have:

W = WOWA) = Wh,w Pd

where the funotion IS to have the following properties.:

1. At the point 0 itself (p.qL W is to assume
the value 1.

2. The function W in to satisfy over the entire re-
gion G (fig. 14) the adjunct differential equation M(W)=
0; i.e., be a solution of

M(W) = 0 (64)

c 3a> Along the.atrai@ht line OB (h = p constant,
p variable) the function W is to aaaume the
values: . . .; .

Ji(p.p)dp ' ' -. :

i

'W(p,p) = eq (65a)

. .
Condition 1 le thereb

t Pa F = q# W(p,q) = 8g
satisfied since for the point A =I
= 1. Differentiating (65a) with

m reepect to p, there la obtained for the function W along
OB the relation . .

aw/ap - a W = 0' (668)
. .

3b) Similarly alonq the straight line A0 (p=q COP-
etant;h variable) the function ie to aeeume
the values:

- _ ______  __- - --. . __ ._-_
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. . ;(h.q)dA
..W(X,q) = ep (66b)

Here, too, "Ire condition W(p,q) = 1 is satisfied. Differ-
entiating (65b) along A0 with respect to h thore.is ob-
.tained along this line the relation:

M/ah - b w = 0 (66b)

The function defined by the conditions 1, 2, and 3,
is known as Green's function WbKPd of the .differen-
tial equation N(Z) = 0. It is determined only by the co-
efficients of this equation. That it exists we know for
W, according to condition 2, Is a solution of the partial

, differential equation of. the second order (M(W) = 0, for
which the values of W 'alone; the two characteristics A0
and OB are prescribed accordinq to requirements 1 and 3,
as boundary values. It is thus powsible to determine W
by the method, for example, of successive approximation.

Substituting now in (63) B(Z) = 0, -.nd Green's func-
tion W, with its properties (64) and (66n,b), there is
obtained:

B

0 =.. ZO + + [("z)a + (WZ),' +" CQ dh - P dP>
L

so that
J-S

A
B

ZO 3 z(p,q)=$j (WZ)d+ (WZ), +
1 I S

(Q dh - P dcL) (67)

.A
Substituting further the expressions (6la) for P and Q,
we have:

ZO = Z(p,q) = * [( WZ)A + (WZ)B
3

+

B

+
s

(4 WZh -+'ZWA+~ZW)~A+(-  +WZ',+$ ZWg-irZW) dl.r =
. .

A a

El 8 [(WZ)A+(WZ)B]+  [i$j W(aZ/ah cos q - bZ/aP sin rp)

"a
i

- 4 Z (3W/bh  008 p - til7/dcL  s i n  cp>

+ z w (% COB cp - a sin VP> as1 . (67a)
J
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We here thus expressed the required solution Z at
-r -polnf- -O(p,q). by--the_.4iven_boundary,  values; I.e., by a

portion of the elementary 'strip AlBl. Ta'e "c'oKslderatlons
hold for every arbitrary polpt 0 which beldngs to the
ohareoterlstlo reotangle determined by the points 411 arid

%* It may be remarked further that Z Is already aster-
mined at point 0 by'its blementarj strip alonG AB and
therefore that the portions AA1 and BBI (fl+ 14) of

.the boundary value strip A,B, have no effect on the
value of Z at point 0. . . . .

I

By means of the e1ementary.stri.p  A,B, therefore,
.the solution Z(A,P) of the dIfferentis equation N(Z) =
0 is certainly determined In the largest characferlstlc
rectanqle which is fixed by A,B1. We wish to show, fur-
thermore, that it Is determined only within it, and not
outside of It. Let Q be a point without
i is.not determined In Q

A,O,B,O1  f.

(57~) ZQ
since, accordin< to formula

deFenda on the elementary strip AR (fie;. 14).
The portion B,B of this required elementary strip, how-
ever, 3.6 not given. Thus the above theorem is proven.

A special case Welch we still must examine in partic-
ular, Is that for which the aurve A,B, - alonq which an
elemsntnry strip of Z Is L;iven - ds<snsrates into the
line A1O1'B1 (fig. 151, consistinq of two characteristics.
From the method of successive approximation, we know that
Z is then determined in the ree;ion A,O,B,O,' by the as-

signment of the ~eluss of Z alone, along B,O<A  . This
fact will now also be derived from Riemann's method of ln-
teqration.

We start from the solution

Z(p,q) = * (‘(W Z)A +' (W'Z),
c I S

B .a

+ .<Q dh-P dP> (57)

b (AOl'B)  ’

S i n c e  alonG AO1I A = constant, dh = 0, and alone 0,'B
P = constant, dP = 0, the inte.zral on 'the right side
brdaks up into two-part lnteersls

- _ - __ _ _ _.. __ - __ -- -
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B

s

- .

(Q dh - P'dp)

A-O,'-B

Ol ’ B

s
-Pdp+

s
.Q dh

A 0,'

Substituting in the above the erpreseione
tions 61a),

P and Q (equa-
there is obtained, ae before:

01' A

-s
Pdp=+

s
(8 W aZ/ac~ - 9 Z aW/ap + a Z W)dp

l

A 01'

This time me inteqrate the second term by parts and obtain:

-s 01’ ’

P dp = +(W z)OI!  - +(T z)A + sA

W(az/a~ +  a  z>W

A 01' (a>

Similarly (aqain the second term integrated bjr parto):

s B B

Q dh = +(W Z). I - i<W Z>P +
1 s

W(aZ/a?+ + b Z)dh

01' 0; ' (Jd

Substituting (a) and (b), we have, finally:

,A
Z(p,q)=(W z)o: +J W(bZ/ap+a Z)dk +

01'
s B

W(aZjtix+b Z)dh

01' (63)

With the prescribed values of
aZ/aCL

Z as boundary values
is also given alonq OIfA; The integral from 0,'

to A nay thus be evaluated without the neceflsitg of
SivinC ale0 bZ/bA and hence an elementary etrip. Simi-
larly with the Z
01 ‘B,

vp.1~~)~ 3lone, the vnlues az/ah along
and alAo the second intoe;rnl in (68) mny be evalu-

ated by neeiqning Z alone. The formula (68) thus repre-
eente the solution Z(p,q> in the entire characteristic
rectnnsle &OIBIO1  I.

.

I
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Pram the differential equation of. the .veloaity pot'en-
tie1 (15) of a aompreseible f1ow.an.d from the flow space,
rie wers led by the Legendre contact treneformation'to  the
differential equation of the poeitlon-determining poten-
tial X (31) In the veloaitg plane. In aonneation with

. thie partial differential equation of seaond order, we be- -
came femllier with the ahereateristia uurves and some of
their properties. For 'shooting water 8nd for superspnia
flows, these aonsfst -of two real families of Curves; n&e-
ly, epiayalolds. The Riemann method of solution shawed-
that the solution of the hyperbolic partial differential
equation by the boundary values is nlweys determined with-
in a complete ahnraaterlstio reatenqle, namely, the smallest
rectangle whiah aontains all the boundary values.

THE METHOD OF CH.4E4CTEBISTICS

10. Introduction

Important contributions to the solution of the dlffer-
ential equation of two-dimenelonal supersonic flows have
been made by Prendtl, Meyer, Steiahen, Ackeret, and Buse-
mann. Whereae the first solution methods are purely com-
putational,. it was pointed out by J. Aokeret that, with'
the +i.d of the aharecteristias  a graphianl method may be

. . developed. This has been carried out for flows without
energy dissipation by Prandtl end Busemann. 2or the case
of flaws with Impulsive discontinuities. Busemenn has de-
veloped - on the besls of the method for nondissipative
flows - a qrephi'aal method where the aharaateristlcs are
replaced by the so-oalled Itshock polara" (references 1 (or
2). 7, (pp. 421-440). 14, 15, 17, 18 (99. 499-5091, end 27).

Let the velocity of a two-dimensional supbrsbnia flow
or a shooting-wgter  flow be elven along a portion of a
curve AB (fig. 16). Let the flow be from left to. riqht,
0' a point downstream through which.pess the .t.wo Mach
lines .BOl end.AO'.. The region of the flow bounded by*
the Yeah lines .OA, OB, BO', AO', we shall denote as the
Mach quadrilateral, We shell assume that no restriction
of the flow (v.brtlcal walls) is located In its interior::
that is, neither boundary nor any other o.bjecf. It may be
shown by a simple aons.ideration.thet  under these assump-.
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tions the flow, if prescribed along AB, determines the
condition In the entire Mach quadrilateral AO'BOA. Out-
side of this quadrilateral, influences from other points
are effective. At go%nt B, for example, another wave
CP may arrive and produoe a disturbance without producing
a chanqe on' AB, since. GB is a wave of the same family
as BO'.

Since every nondissipative flow ie also a possible
flow in the opposite direction, the same considerations
apply to the upstream reqion AOB. This statement is not
in contradiction of the General fact that in a flow with
the above critical velocity, the effects of disturbances
make themselves felt only downstream. We a0 not state
that the condition at 0, for example, is caused by effects
on 85, but rather, from the effects on AB, conclude as
to the upstream-lying causes.

It Is to be observed that the Mach quadrilateral
AO'BOA in qeneral has curved sidee which, as Mach lines,
are determined with the flow itself. In the precedinlg
section, from the inteqrals of the hyperbolic differential
equation, we became familiar with the remarkable fact that
boundary values act as deterninin4 factors only within re-

. strlcted regions. To the characteristic quadrilateral,
the region of solution of the differential equation, there
corresponds in the flow the Mach quadrilateral. The Mach .

. lines are no other than the "characteristice" of the dif-
ferential equation of the velocitr potential. The charac-
teristics in the flow plane are'not qiwn, however, in
advance as those in the hodograph, but become known simul-
taneously wlth.the solution @(x,y). This is due to the
fact that the coefficients of that partial differential
equation (15) contain not only the free variables but also
the.first.derlvatives  of the function a, that is, ox
and @Y. This is.also the reason why we passed from the

. flow space to the velocity plane (equations (31). (31a).
and (53~)).

11. Physical Basis of the Method of Characteristics

. By means of the characteristics in the velocity plane,
it is simple to draw the field of flow of two-dimensional
supersonic flows and also shooting water if the flow of
approach a'nd the side boundaries are qiven, With a veloc-
ity prescribed alone; a line, the flow may be determined in
general in the circumscribed Mach quadrilateral.' It is
thus a question of Graphical methdd of solution of the par-
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tlal.differential  equetlon (l5) ore. The flow is known
_.Y . - &f-the releclfy.  ._(u,v) -3s kzcpwn st.eaoh:point (GYL

.Henoe,
#(X,Y)

It is not necessary to know'the viloclty.potential
or-the.position-determining  potentia% X(u,p.] them-

selves. It Is suffloient.onlg  to determine Xu,Xv 'and

@,A$. (Compare formulas (29): Xu = x, Xv = Y and

. ' The graphical method Is based on-the simultaneous.con-  -
structlon of.the flow In the velocity field (u,v) and In
the field of flow (r,y). I .

Let us consider first a parallel-flow assumed to be
bounded on one side. At the position 8, the wall re-
ceives.  a amall deflection 8 (fig. 17). In the ease of
sqersonic flow and shooting water, this leads to a pres-
iure.i.narease.* . .

If the wall has a convex corner, a flow arises with
diverging cross section. In the case of shooting water,
this leads to a level drop and acceleration. 4

Since in the boundary of the frictionless flow of
figure 17, no finite length occurs as reference length,
all streamlines must by similar with respect to the oorner
8. Water depth and velocity in magnitude and direotion
therefore have constant values along-each stream through
the corner.

The flow of figure 179 for large'deflection  angles. is
described In Part II of this report (T.M. No. 935). under
Shock Polar Diagram, page 1. This flow is nonstationary.
The diecontinuities  of the different streamlines are equal
and all lie on a straight stream ST passing through the
corner. For extremely smnll deflections, the corner leads
to only a small dlsturbnnce in the flow. Since small dis-
turbances have the Mach 1Anos as the wave front, the dls-
turbnnce line ST Is a Mach line. It forms with the
- - -
*The followingcbneiderntiona

- - _ . _------
hold for 'anter and gas flows.

’ Since, however, for tho analogous concepts different terms
. are applied In hydrodynamica  and qns dynnmico, both would

always have to bs carr%qd.nlonq In this work. This di.ffi-
culty hns.been avoided RS far as possible by. using the
terms from hydrodvnamics. Vhers terms from gas dvnamics,
nevertheless, occur the corresponding terms are: Expan-
sion =
jump;

level drop; compression '= level ..rise;: Impulse =
oxpanslon .irave = depressiop wave, eta, . .

. ._

L -_ - -. . . -- .._
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parallel flow an anq;le 'a where gin a = a/c = G/c.
For somewhat larger deflections the dlgcontlnulty lies on
a stream ST, *hose direction lies betrieen the directions
of the two Maoh lines of flow I .before the.deflectlon,
and flow II after the deflection.

The flow correspondins to flqure 17b for lar%e de-
flections and hence, strong acceleration, Is treated more
In detail In section 21, Part II of this report (T,Y. No.
935). under Level Drop about a Corner. In contrast to
level rest, the drop Is continuous. It begIns again on
account of the slmllarlty for all streamlines on a stream
ST'. This Is a Mach line of flow I before the level drop.
The defleatlon for all streamlines ends on a stream ST",
a'bfach line of flow II. For small deflections, It may be
assumed as a first approximation also for the level drop
that It Is concentrated on a mean stream ST. An lmpor-
tant slmpllflcatlon Is thus obtained for the qraphlcal
method.

Both the small level drop (In the <as expansion) and
small level rise (compression) have the follomlnq in com-
mon: The velo&ty receives along a disturbance line a
change ln maqnltude and dlrectlon. The dlreotlon of the
disturbance line is qiven as the mean direction of the
two Mach lines of the conditions before and after the
change.* In traversln< this line, there Is also a change
In the pressure. The pressure drop or Gradient - that is,
the Increase In pressure per unit lenqth in the direction
of the most rapid chanse - is thus ncrmal to the mean Mach
line. According to Newton's law, the acceleration and
hence also the vector change In the velocity, has the di-
rection of the fzrce. We thus have the result: The va-
loclty vector cI before the deflection (rise and drop)
receives as a result of tho deflection, a vector Increment
z which is normal to the Mach line. Since the deflec-
tion angle Is also known, A< Is determined (flq. 18).

The graphical method consists In building up the en-
tire field of flow out of small individual Mach quadrllat-
erals, In each of which the velocity Is conetant and de-
flections occur from ono quadrilateral to the 'other.
- - - - _--_-_-_-------_-___-----
*Wherever necessary for clearness In what follows, a dls-
tinctlon will be made betneon disturbance line and Mach
line. The disturbance lines are those alonq which the dls-
contlnultles arise.. Disturbance lines of Infinitely small
intensity are-Mach Ilneg. Both gaas over into one another
In steady flow.
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Maah Number and Angle. ..p .
P . .

1. *..*
a  .

It
I*- _j%.?  - .

isFMlmportant that the k&oh-'number-*  M..-and:the' angle
a (eln a = 1kM) are given by the magnitude of the flow ve-

I .-loclty alone, einoe sin a = Jig-ii/o  and. aecordinq  to t h e
.energy squation, the water depth h depends uniquely on .
the flow velocity (equation (9)). We thus have:. . .

sina a = gh/c
8

= (iho
>

.Dlqiding numerator and denominator of the'right side by
.'f ai ' ( 4 2 )

a*’ = 2gh,/3 . .

we obtain in the notation of nondimensianal velocities
C = c / a * :

l/M8 = *ina  a = (‘T -
2 +-= -” .c )/c (69)

For the graphical method, there Is applied the graphical
representation of equation (59) (fig. 19). a being Dlot-
ted as arc, and gz,'.as radius vector. In rectangular co-
ordinates, T = < sin a,

-2
v =ca sin" a =s

and
2

-a
u =c-* (1 - sins a) = $ ca - $

Eliminating Z from those two equations, there l.s obtained
the curve in rectangular coordinates

(ii/&Y  -I- f” = 1 . .. . (70)

I. .

This Is an'ellipse with major nnd minor semiaxes fi and
1 (fig. 19). For an ideal 3%~~ it is ah' ell'ipse with the

- eeminxos fiyy)/(k -. 1T and 1.. .
_ . .

13. Ch.%rdcforist$cs  . 1

. l If any nondimensional velocity. CI .is gS,ren at point
P of the flow 'olane, the direction of the Ynoh line at
the point consl&ered Is obtained in the following manner:

% is drawn-in them velocity plane (f_ig. 20.). The.ellipse
I . . .. .
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Is now rotated about 0 until the extremity of 51 lies
on lt'(tn0 possible oases).. Then, according to figure 19,
the prinrzipal axis of the ellipse so rotated gives the di-
rection of the Yaoh 1Ynes in the flow and according to
fisure 18, the minor axis of tho ellipse gives the direc-
tion of the velocity increment AC. Pour typos of increaee
are possible, depending on whether the Mach line is a dis-
turbance line of the first or second family, and whothor
the disturbance is a drop or I?. rise. In the example shown
(fiq. 20) no disturbance line of the first family passes
through the point P, whereas that of the second family re-
sults in a deflection, namely, a level drop. The velocity
.increment, denoted by a heavy arrow, thus, ip the one that
comes under consideration for this example. If the dis-
turbance lines of both the first and second families pass
through the point P, the apparent difficulty Is removed
by considering a neighboring streamline. For the latter,
the velocity receives tao ohanges, one followinq shortly
after the other, each of which is uniquely determined.

At each point of the velocity plane there are thus
two direotions of the velocity Increment. These two di-
rections are given by the minor axis of the ellipse (fi4.
21.* There is thus obtained in the circular ring area,
between R =4/z and r=l, a direction field which de-
termines two families of curves. In fiqure 21, two repre-
sentatives of theso two fnmllioa are drann. By the fol-
lowing simple consideration, Rusemann sllovs that Be have
here the case of the previously found epicycloida.

The direction field is obtained by drawing the small
segments a, b, c, d, in the direction of the minor
axis of the ellipse (K'J;j, 11 then rotating the ellipse
some-hat, and a4ai.n drawing the'lines. me may now consld-
er a, b, c, . . . as lying, instead of on the ellipse, on
the fixed points of the circle chords Ala,, BlBs, Cl&, . . .
There lo then obtained the came direction field ns before
if these chords are rotated in the circle (0, &) and a,
b, c, . . . drawn each time. If all these chords with their
points a, b, c, . . . are now srbitrarily drawn in the cir-
cle (O,a> (fig. 221, the small sesments a, b, c, . . .
are still in the direction of the required direction field.
By suitable rotation of the chord diagram (fig. 21), we
pass a family of ohords through an arbitrarily chosen point
Al, the chord diagram bein< rotated so that B,, 0,. D1,...

*Figs. 21, 22, and 23 correspond to figs. 40.. 41, and 42
of Busemnnn, 1931, p. 422 (reference 7).

-I



lie successively on Ax. end the segments 8, b, 0,' L..
-I r bed.nxg.drawn. . Ths~latte~~i~i~~~still-~be  segment@_ in. the dd-

rectlon field (fls. 23); -The complete field will 6'8 'b6;;
tained by rotaflnq thie diagram about 0: 'for example,'
Al toward AlI, and then again drawing the small segments

.a, 'b, c, . . . ’
., -. .

. .

Bow the points a, b, a, . . . . divide the c&rds LlAp,
W, s C, B’, . . . (fig; 2l.) in the same ratio; the ell’ipse
RB effine figure of the circle having this property: The
points a, b, c, . . . in fiqure 23, thus lie on a circle.
The directions a, b, c, . . . are normal,
Ab, AC , . . .

respebtipely',  to

. .

If the circle with diameter U1 is rolled on the'
circle about 0 with the radius 1, each of its pointa de-
scribes en epicycloid. The rolling circle at the instant
represented, rotates about the Doint A. All of its points
thus also move on normals to the lines joining the corre-
epondlne; points with A, the direction field of the set
of eplcycloids beinq identical with that of the required
curves of the possible velocity Increment AC. These curares ’
are thus the epicycloida described above (fiqs. 21 and G>=

We have mentioned the same epicycloida before. They
are the characteristics of the Dartial differential equ-
tion of the floq. Be now see the physical interpretation
of the characteristics: Durinq the passing of 8 smell
disturbance wave the flow velocity changes along the oar-
respondlnq characteristic. ’

14. Graphical Construction of the B'low

The field of flow and the hodograph are drawn simul-
taneouely - .ln the hodoyraph, the velocities and their
chanqes; In the field of flow, the streamlines~ The flow
is elkkye'assumed from left to rlqht; We may then speak
of en upper or a lower boundary. All'disturbance  lines
that start from the upper boundary will .be.dendted as the
upper system of whvee; nnd"ali thoee from the lower bound-
eLry';the lower system. %

a)'Flow bounded on one side.- The simplest supersonic
flow is that bounded on only one side .ae given by the bound-
ary conditions of figure 24. Let the' aphroech be parallel
end have the Mach number Y = 1.5.' As a first etep the

.- - -.-
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.

. .

continuously curved mall is regla'aed by.small gtraiqhf se%-
’ mentf8 with angle increment8 of,. for 8xaInp18, 2 , In some
Cases it may be Of advantage t0 make the arIg18 inCr8ti8ntS
of various amounts.

To th8 flow of approach (parallel flow), there corre-
sponds, in the velocity plane, a single point PI given
by the direction of a1 _and the magnitude cl*. PI is
also obtained as the point in the hodoqraph (fiq. 24~) at
which the normal to the characteristic forma with the ve-
locity, the Mach anqle al. At E, the flow receives a
first discontinuity, a level drop whic'h leads to a dsflec-
tlon by the angle 6. This deflection is of equal magni-
tude for all streamlines and lies for tho ontire flow alonG
the disturbance line S,T,, whose direction wo shall learn
from the hodogrnph. In the latter the velocity Za aftor
the first discontinuity is given by the point PZ whose
radius vector forms the angle 6 with that of P,, and
which lies on the characteristic through P,, correspond-
IrIp;, for a,-&, to a drop; that is, an"lncrease in
velocity. We thus obtain Pa and Za. The disturbance
line SlTl in the flow is. aa we know. a mean Mach line
between the states Pl and Pa. This direction is now
Given. simply as the nornal to the characteristic between
81 and Pa in the velocity plane. In the entire region
2, the flow is a.gain a parallel flow with the Velocity Ca

up to the disturbance line SeTa. This line and the stat8
after this second disturbance.,is  determined similarly as
for SlTl. only now the initial velocity is qiven in the
hodograph  b y  Pa. The velocitp after the disturbance is
a4ain the velocity 0P3 deflected by 6. The direction
of the disturbance line SoTa is the direction of the nor-
mal to the chara.cte.ristic  between P3 and P3, etc.

Uith'the above construction, the'first disturbance
thus lies along; S1*T1, the last along Sn,,Tn-1. Actually
the beqinninq and end of the disturbances lie along the dot-
ted lines SOT0 and ST, which have the directions of the
normals to the characteristic in Pz and %. It is only
-----------_---__- - - - - -- - - - - - - m
*Prom equation (691, we have: z3 = 3 ME/(@ + 2)

For qases: Za = (k + 1) Ma/[(k - 1) M" + 23
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beosuae  we muat  d r a w  the flow diaoontinuoualg  in  f in i te-. ~%epg_a t&t- the aotual:..:eknrt :.of. the d,l.atu,rbance  and the .: ’ i .4
f irat. dlaturbanoe do not Rcaurat elg cdlncide’.‘-’ BP .de’er’eaa-
ins. the steps, ‘the aocurecy may be raised. * . .

Fiqure 25 shows a Plow drn& In this  manner  with  M = .
1 . 5 , a n d  f o r  r a t e r  (4 ti :2), t h e  defleotion  inorements
beinq 2O. From this simple example, an important property
o f  s h o o t i n g  wateq botigded on one a i d e  (superaonia f l o w )

.mpy b e  reoosnized,  nameiy, that as ’  long as_ no ‘lerqe disoon-
tinuoua  pressure  ri’res’ ( impulses )  occur ,  all the pirinta
%iving t h e  atate id t h e  hbdo’sraph  lie on a alnqle charaa-
t’erie?tic;  i . e . , f or  such  pi flow the magnitude’of  the ve-
loc i ty  depends  uniquely  on its direotios.  and .vice verge.

A limiting case of  the exr&ple  cons idered  i s  the  leve l
drop about a corner (fie. 26$-c) (references 14 and 17).
T h i s  f l o w  Is a paral le l  flov with o. Mach n u m b e r  equel to
or  greater  than one . The one-aided recti l inear boundary
e n d s  a t  S . On thd lower eido of the boundary the water
d e p t h  ( p r e s s u r e  In the p;a~#)  ie zero or at least smaller
than in  the  paral le l  f low of a:>prqe c 1. The same  r e s u l t s
hold as for ths flow nf figure 24 except that now the
l i n e s S,T~,S,Tz,  . . . a l l  p a s s  t h r o u g h  t h e  p o i n t  S. 0 The
veloc i ty  varies along a atreaxiline in ‘such a manner that
i ts  end po int  t rave ls  on  n chnractepistic  in  the  ve loc i ty

. p l a n e  (fig. 26~). The constant velocity along a stream
S P  h a s  i t s  e n d  p o i n t  PI Bt that :loaition.of t h e  c o r r e -
s p o n d i n g  c h a r a c t e r i s t i c  where  the norm41  to the character-
i s t i c  i s  p a r a l l e l  t o  S P .

- . i .
b) InteSlor  of a flbq bo&ded’on  t w o  aidear- L e t  t h e

v e l o c i t y b e  <ivan in the interior.of  a f low In a c e r -
t a i n  reqiazll (f.is. 2 7 ) . Let this reqion be ‘bounded on
the  rlqht aide by an u p p e r
l i n e  (a).

(b), and a lower,  disturbance
. The s t r e a m l i n e s  H, and fl, which-may ‘also be

considered :~a.  ~~11s~ are  correspondinqly  aaaumed  to  have
smal l  de f leot iona at A And B.
9 -are g i v e n .

: The  de f lec t ions ’  6~ a n d
The point P, .lri.  the ‘hodosraph  is the im-

We p o i n t  qf t h e  reqion 1  o f  the  flow (fie;. 2 7 b ) .  I n
crozainq t h e  d i s t u r b a n c e  wave a
2 (drop,

f r o m  re<isn 1 to region
BincD..def.lect$on  la toward outs ide)  the  ve loc i ty

Ci r e c e i v e s  a  chanqe auch’that  t h e  v?locZty c8 lies on
t h e  characterititlc  corpeapondinq  to  the  lower  di.aturbance
wave system and forma +ith’ .cl t h e  anqle 8 , . This gives
the point ‘Pa. in the hodograph  as in a f l ow bounded on

. One 8%&e and  hence  a lso  the  d irect ion  o f  a as normal. to

L . /% ,- . - - - - - . - - . - - -
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P1Ps. The same ia true in crossing the disturbance wave
b. To this corresponds in.the velocity diagram a travel-
ing along the characteristic of the upper system from PI
toward Ps (8e is given). At a position X the two
disturbance waves meet and their effects will llcross.n
From the point X a disturbance wave of the lower set aI
starts out and one from the upper set b'. Cros sin< ‘a I
in the flow means In the hodoqraph, as in a flow bounded
on ‘one side, a change in the velocity from Ps toward Q4
(fig. 27b) where Q4 for the present, Is unknown. Simi-
larly the velocity on crossing b' receives a change_ from
P3 to .s4 where S4 similarly is for the present, un-
..known. Bow a first condition for Q4 and S4 is that
the velocity in the region 4q of the flow on passing from
from l--r3-,44, should have the same direction as the ve-
locity in region 4s on passing l-244. This means
in the velocity diagram that the points Q4 and S4 must
lie on a straight stream through 0 : OS, II oe,. There

is, furthermore, to be satisfied, the condition that the
water depth (pressure In the gas ) in the region 4q must be
the same as in 4s. As long as the flow is free from lm-
pulse, the water depth is uniquely determined by the ve-
locity. The requirenont that the depth ahould be the same
In 4q and 4s. means the.refore that the velocity OS4 must

have the same magnitude as 0Q4 : OS, = 0%. Both condi-
tions are simultaneously satisfied if S4 and &e coin-

cide at the point of intersection P4. The entire region
4 of the flow is thus in the velocity diaqram given by the
point P4. We may now draw a1 and bf. They start from

. X An.the direction of ths normals to PsP4 and Ps P4 ,
respectively.

Figure 28 shows the intercrossing of two streamlines
where now one disturbance is a level rise, the other a
drop. The picture would be quite similar if the two die-
turbances were level rises.

We shall now follow a disturbance line in the interi-
or of a flow in the case where it, encounters several dis-
turbance lines of the other family (fiq. 29). .The direc-
tions of a, b, a', and b' and the points. PL, Ps. Pg.
and P4 are assumed to be determined by the method given.
Then for the regions 3, 4, 5, and 6, we again have P4
and Ps lying on the characteristics through- Ps. The po-
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sitlon of Pa ie determIned w the defleotion :$s aha
Pd '* is +ixed by-the charaa,teristlas.  & P4, +n_$__ PsP4.
There Is now obtaitiei also Pe and hence the veloci'i$-

OPe in region 6, Ps being'the point of intersection bf .
the two charecterlstl,os  P&P, ,_and P4Ps. Similarly, there
Is 'finally o,btained Ps- .The individual portions of the
aistarbanoe wave a&t aa alI* ske 3.n the direotlons 'of the
normals at the aenters of the 'portions of the chara'otefis-
tics 'PI s , Ps P4- , PB Pe , P7 Ps , respectively.. .

We thus’ find the result, namely, that the extremities
'of all possible velocity veators before crossi'ng the dfsa-
-turbance wave aala"'..., the points PI .Ps ,Ps I . . . . Rll
lsins on,a fired charaoterlstlc through Pa. Slmiiarly,
rll extremities of the velocities after crossi'ng thk die-
turbnnoe wave a - that is, the points Ps,P,,Pe, l m . lie

on the characteristic through Ps. Crossing the 'disturb-
ance wave aal .an all! at any position in the direction of
the flow, has the result with respect to the velocity,
that there is -a transition from the characteristio 1 to
the characteristic 2 (both of 'the same family) each time
al-4 a characteristic of the other family. These changes
are the heavily drawn portions of figure 29b, Since the two
families of characteristics lie symmetrically:

4 P7 OPs = 3: PsOPs = 3 P3 OP4 = $ P1 OPs = b,, .
i.e.,

8,gJ = 834 = 85, e &,, = . . . .
-----------

In fiqure 30, let the curves denoted by K be oiroles
about 0.. We then have:

a_) (r AOC = 4 EOF, because each characteristic of the
same family arises from the other by rotation
about 0.

b) 4 AOB = (t BOE = 172-a AOE, because AB is sym- '
metriortl to .EB with axis of symmet'ry BO.

C) 4 COD T 4 DOF = l/2 * CQF, simllgr to b),

a)' 4 CO1 w 4 COE. . ,

Equation a) subtracted from a> esives
_

- .

.
-__ _ . .
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4 AOC -c 4 COE = 9 EOB - 3: COE

. .

+ AOE = 4 COF, and hence it follows from b) and c>
= 3: DdF, as was to be proved.

We thus obtain the moat important result: On cross-
ing a disturbance wave the veloolty undergoes a change in
masnitude and direction. The chanqe in the velocity di-
rection is the same at all points of the entire dlsturb-
ante wave Independent of the direction of the velocity be-
fore the arrival of the disturbance wave and regardless of
whether or not the wave was crossed by disturbances of the
other family. This is true on the assumption of flow free
from impulse. In section 4 we consider flows with Impulse
for .which the velocity is not a unique function of the wa-
ter *depth. 'There it will be found that the deflection
8Wle caused by a disturbance wave may vary along the wave.

c> Fixed wall with 8 flow boundedqn two sidea.- In- - - - - - - - - - -
fiP;ure 31, let SAC be the upper boundary of a flow. Let
no disturbance wave from the opposite wall meet the corner
6 of the wall at first. From the latter, 8 wave 8
starts out which is identical with that of a disturbance
starting from a flow bounded on one side.

We shall now consider the effect of a disturbance wave
a which encounters the straight Fall SC at point A.
In region 1, let the velocity be Given by the hodograph
point P, (fiq. 31b). On crossing the disturbance wave
a from region 1 to region 2, the velocity receives a de-
flection 8, given by the lower +all. Ps lying on the
characteristic is thereby determined and also the disturb-
ance line a. Since at each point of's flow there are two
possible disturbance waves, there can Start out from A
only 8 wave of the uppor family <a). The line b and the
velocity in re.qion 3 are determined from the condition
that first the velocities c1 in region 1, and c3 in re-
<ion 3, must be parallel, since it was 8SSUmsd that the aall
had no discontinuity at A. In the hodoeraph this means
that Ps must lie on the Strsieht OP,. Secondly, b is
a disturbance line from the family other than that of a,
80 that Ps lies on the characteristic Pa Ps I which pass-
es through Pa. By both of these conditions P3 s the ve-
locity ca and also the disturbance line b are deter- .
mined.

.

The anqle of deflection which the velocity underGoes
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on orossinq  the reflected wave 1s equal and opposite to
6. -t-ke~a4le.of  de.f,le.at3.on  by,the inaident disturbance line.

If the incident disturbance i‘s' a le'vei fi'e'e, then the re-
fleeted disturbance is also a rice (fig. 31b). I f  the
d i s t u r b a n c e  l i n e  is a drag, then the refleoted line'ie aleo
a level-drop dlsturbanos (31:). .

In case the disturbance line' a strikes the wall at
the p'ositYon. 8 where. the pall has a discontinuity, ‘no
new difficulty arises. It is then only neoeesary to imeg-
ine that the reflected disturbance line b and the newly
Generated dleturbance line ;a follow shortly upon one an-
other. If b and 's are both level-drop wavem, eac'h

. must be. drawn separately;, if both are level-rice waves,
then they are drawn toqether as a sinqle disturbanoe start-
in4 from 6, on the erossing of which the velooity under-
400s a deflection equal to the sum of the deflection8 due
to 0 and b. If, however, one of the disturbanoe lines
Is a rise, and the other a drop, then .only a sinqle dis-
turbance line startin from .S is drann,alonq which the
defloation anqle for the velocity is equal to the differ-
ence between the deflection anqles for s
dependin on.the Intensities of s and' b,

and b and,
may be a rise

or a drop line.*

In the third case, whore the deflection anqles for s
andP b are opposlto, it mny'also happen that they have the
same maqnitude. In that cage no disturbance at all start8
out from that point. This la the case if the wall itself
has the same deflection angle as that of the approachln4
disturbance wave. This fact ia made 'use of where it is de-
sired to produce a parallel f16w. In the latter no dis-
turbance waves occur. This condition is obtained by 4ivin4
the walls in._au’C:cessio&  dlacontlnizlties such that one dis-
turbance .wave is l'sgallovedl' when the other strikes it.

d) Free .iet.- If a disturbance line strikes a free jet,
mothei: type of reflection occura since the water depth
must have a fixed value (fig. 32). Let the point P1 in
the velocity diagram oorrespond to re4ion 1 ahead of.the
disturbance wave. The point Po which qives the'velocity

----_--------A---
. -*For the thlrd.oase it Is clear that only a slnqle dlsturb-

ante line startin from S Is drawn because the aui of the
two disturbances is smaller than that of either Individual
case. For the first case two, and for the second base only
one, disturbance line is drawn in order to approach  the

.. true condition for which dro
of a fan (drop about an ed4e P

e are spread out in the form
while rises are concentrated

(impulse).

I ._ ._ -_
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OPs of re4ion 2, lice on-the characteristic through P,
belonging to the lo$er"fam$lp of disturbance lines and de-
termined by the defleotlon angle 8,. Slnoe at each point
two disturbance waves, at most, pass through, there oan
etart'out at point A of the flow where the line a
strikes the free jet, at most, another disturbance line b
of the other family (b).' The disturbance b must be ;;;i

. that the water depth is the same in regions 1 and 3.
means for flow without energy dissipation that the h.odo-
graph point P3 corresponding to region 3, must lie on a
circle through P, about 0: OP, = OP,. Sinae, moreover,

p3 -lies on the characteristic through P, belonging to
the upper disturbance line, family Ps is uniquely deter-
mined and hence, also b. On account of the symmetry of
the two families of charaoteristics  4 P,OPs =4 PoOPs.

A level-drop wavo is reflected on a freo jot as a level-
rise wave, and conversely. It is important to observe
that the velocity deflection on crossing tho reflected save
is as large as that on crossing the incident. Here again
we find that disturbance haves - whether they are crossed
by. others or reflected - produce at all points equally
large deflection nn<les of the locnl velocities.

15. A$plicatlon: Lava1 Nozzle

Let a Lava1 no'xsle be drawn for mater (k = 2) in
which the flow is parallel at the minimum cross section
(M = 1) and which is to produce at its exit a parallel
flow of Mach number M = 2.

Aside from flows with hydraulic jumps (shocks), all
the phenomena have been discussed fn detail in the previ-
ous sections. There are no difficulties in drawing up the
flow with the aid of tho basic elements described above.

’Instead of drawing Mach lines, however, as normals to the
characterlstlos, the accuracy is considerably Improved by
using the ellipse construction described in sections 12
and 13. The normal to the characteristic is then obtained
as the direction of the major axis of the ellipse without
requiring elthor the tangent or the.normal of the charac-
teristic itsolf (figs. 20 and 33)..

A convenient arrangement for the drawing is shown on
figure 34. A strip B is glued on the transparent paper
A with the ellipse E, the edge of the strip being paral-

.I
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- lel to the minor'axie'.of.the.ellipee  aB&'rotafeble about
a. .a negsue_ .I$! goi_q.t 0 in.the oriqin. of Lhe velooitg'plane.

The direction of ihi &jor.Ax~'e~'iBc'drawn  tiith the tri-angle
aP aa disturbance +ave in the flow. . ..l . .

I
The Lava1 no&ale inreetigated  has ae &tg boundary at ’

.the approach aide of the flow, a cubical parabola PQ .with
a ehort connecting etraight piece QR, in order that at
the minimum croaa section the flow, for the ahooting-water
region to be drawn, ehould be parallel.. Thereswill then

. be no disturbance wavea In ft. To the straight portion_
there is connected a circular arc ..BS. The eliape of thie

'portion can be'chosen at'will and the first dieturbance
'wave0 start out from It. The shnbe of ST is determined
by thAt assumed'for RS eince the former must be such
that, etnrtinq from the chAnne1 exit, there are no dieturb-
Ante waves in the flop.

If the ayproAch flow ie parnllel, the construotion'of
the flow begina with the first disturbance line from RS,
the line being that of a flow bounded on one aide. The
construction is then followed As discueeed In the preced-
ing paragrnphe.

Since we Are constantly pnseing from the velocity di-
Agram to the flow dingram And in order thAt corresponding
points may be recognigod Aa such, It is neceeaary to lntro-
duce A suitAble notstlon. For this Turpdse the curviliq-
ear coordinates
(538) and (53b)).

A And P Are convenient (equAtiona
The numbering Is shown in figure 34.

The number beside each characteristic  of the upper fnmily
gives the Angle in degrees At which It atarts on the unit
circle, and simllArlg, for the coordinntiee  of the charac-
terietlcs of the lower family. In order that the two fAmi-
lie8 of charactorietice mny not be donfueed, the coordi-
natea of the upper fAmily are preceded.by  w zero.* The co-
ordinate0 A And P of the velocity glane Are written in
the correepondlng field of flow. The number8 thue written
hAve the.property (equations (53a, And b)) that (A - CL)/

. . 2 = rp; that ia, their hAlf difference qivea the angle of
the flow with respect to the horisontal. Their hnlf 8u.m
(A f P)/2 ie A number on which the magnitude 'of'she non-

b dimenBiona1 velocity and hence also the water-depth ratio '
h/h, uniquely depende, since h + w' iS_ c&'at&it' on- dir-

*To the curvilinear coordinatee h = 0,. P = 00,"for exam-
ple, correepond the polar coordinates -7 = 1, qJ = 0.

-_- -- -
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clee about 0. With a definite kaI;Th (A + p)/2 ia aaao-
ciated'ths same water-depth ratio (gas temperature

. ratio T/To9 hence pressure ratio, p/p:). which corre-

aponds to the level drop about a corner starting from
M=l (fig. 26b) and deflected from the direction of the
approach flow by the angle w = (A + ~r)/2.

h/ho,
Corresponding'

value8 P/P,, y, z. and w = (A + p)/2 are col-
lected in tables I and II.

In general, the difference of the two coordinate num-
bera ia not required since the direction of the atream-
lines in'eaoh field may be taken directly from the.veloc-
ity diagram. The stroamlinea may alao be simply and rap-
idly drawn with the arranqement ahown in fissure 34, it be-
ine; only necessary to pass the major axis of the ellipse
through the hodoqraph point e;iven by the coordinate num-
bers, the trianelo then siving the velocity direction in
the correapondinq field.

The aum of the two coordinates, however, is required
If it is desired to draw the lines of constant water depth
In the flow. These lines may also be drawn without know-
lnq the coordinate sum if equal deflectlone are chosen
for all disturbance lines, namely, aa diagonals of the
Mach quadrilaterals.

In all problems in which a parallel flow is given 9s
initial flow, we begin, accordins to the characteristic
method, with the firat disturbance lines atartinq from the
boundary.

Under suitable assumptions, there may also be pre-
scribed as an initial element, the velocity distribution
along a line. The latter must not, however, at any point

_ touch a Yach'line. It must thus be a line which in.ltself
is not a Mach line and which does not intersect the same
Mach line twice. Streamlines and their orthogonal trajec-
torlea certainly are such lines. The flow may then be
computed by the characteristic8 method in the entire Mach
quadrilateral described about this line. Thia Xach quad-
rilateral ia only determined on drawing the flow. If the
velocity along a line is prescribed aa initial element, a
further condition is that the position of this line with
respect to a side boundary ia such that no flow restriction
falls within the Mach quadrilateral described about the
line except when the latter haa the form of a streamline.

L
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For the qraphioal determination of euah flows the
--.. A.* l$_ne muet first be broken up into suitable segments on

rhicd-the vEiloalt$-iin constant-i= dizwc%icn an.d masnitude.
These piecee are then separated by dieturbanoe nave8 and,
atarfinq from theee, the flow may be determined with the
Mach. quadrilateral. .

. I

Liet of Most Frequently OccurrinG Symbole
. . . :’ .

acceleratkon  of gravity.  .

qae conetant. \

kinematic vieoositg.

density. . .

pressure.

absolute temperature.

heat oontent.

qecific heat r?t constant pkeseure..  --

specific heat at constant volume.

adiabntlc exponent.

velocity potential.

pos~tisninq-determininq potential.
. .

reotanqular coordinates in the flow space.

polar coordinates In the flow plane (r,y>.

curvilinear coordinstBs in tie velocity plane,
charncteristlc coordinates.

general variables.

components of.the velocity in the I, y, and z
dirbatlons.  ’ ’

polar.oobrdlnates  in the velocity dlaqram (two-
dimeniionnl flow),

. . .

-.



-_ . . .-- --
/

64 EIArC.A. Technical Memorandum Bo. 934

Cmax* maximum velocity. .

C, velocity increment. .

a, in gas: velocity of sound.
in water: propaqation  wave velocity 45.

a*, critical velocity.

U,%,C,..., nondimensional velocities (reference velocity
a*; in hydraulic jump al* the critical
velocity before the jump).

X=c/a, Mach number.

a=(sin-'>(a/c), Mach angle.

h,

h0’

ho’,&,“,

PosToJo~ho.

T*,h",...,

ul , cl ,h, mu,.

U 2’ cs 3.a .& s

U2<1

A(X,Y)AC,

water depth.

total head (water depth for c = 0).

total heads after hydraulic jumps.

subscript 0: stagnation state.

asterisk *: critical state. .

subscript 1: before hydraulic jump.

subscript 2: xfter hydraulic jump.

velocity after right hydraulic jump.

coefficients of linear partial differential
equation of second order.

coefficients of the differential equation in
normal form.

coefficient of the differential equation of
the flow In normal form.

small deflection nnr;le.

deflection angle of the flow without dissipn-
tion (sec. 21, Part II, T.H. No. 935).

deflection angle for hydraulic jump (fiP;s.
$7 and 38, Part II, 'P.M. No. 935).

angle of the hydraulic jump wave front (fiSs.
37 and 38, Part II, T.M. No. 935).

__. ___- --._. _--.-- _-_- . .- .-- -__.-.__._  _. . -
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TABLE I+
a_. . . r. .- & , ” , . t. . . ,_ _ __._  _

Qae, k 2 1.45% ,."I  ”
---

mll?$kl

(deg. 1----

Y
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

- - -

--
P

PO
0.527 1.000 1.000 26
.476 1.073 1.090 2 7
.449 1.110 1.142 28
.424 1,141 1.186 29

6.402 1.172 1.228 30
.382 1.200 1.265 31
.363 1.227 1.305 32
.345 1.253 1.342 33
,329 1.278 1.376 34
.a13 1.300 1.413 35
.298 1.322 1.443 36
.284 1.343 1.474 37
.270 1.365 1,506 38
.257 1.387 1.542 39
.245 1.409 1.575 40
.233 1.426 1.608 - 41
.?21 1.447 1.643 42
.210 1.466 1.680 43
.200 1.486 1.718 44
.190 1.503 1.750 45
.180 1.520 1.780 46
.171 1.539 1.815 47
.162 1.556 1.850 48
.153 1.575 1.885 49
.145 1.590 1.923 50
.137 1.608 1.958 1290 19'
_-- - - - - - - - - - - - _-- -.--_

iFor valuee of K, gee refer-

M ==-
a

*See reference 7, py. 426-7.
ence 1 (or 21, p. 317.

--
. ‘p

pO
--
3.130
.123
,116
.109
.103
.097
.091
.r)86
.081
.076
.071
.067
.062
.058
.055
.051
.948
.044
.041
.r)39
.036
,033
.031
.029
,027

>

---

5 c=---
a’

Y ==I-

a

1.625 1.995
1.640 2.028 ,
1.656 2.065 .
1.671 2.101
1.686 2.138
1.700 2.178
1.718 2.215
1.732 2.258
1.748 2.298
1.763 2.338
1.776 2.378
1.791 2.421
1.805 2.460
1.819 2.506
1.832 2.548
1.845 2.592
1.858 2.636
1.872 2.680
1.884 2.730
1.898 2.778
1.910 2.825
1.923 2.875
1.936 2.920
1.948 2.978
1.960 X.cJ28
2.437 03

._._ . -
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-8 . . . .: c . . . 2.
Water,' k'-= 2 - -

h z c- =-
h0 a* y :

=-

0 a/3 l.OOO 1.000
1 I.624 1.062 1.098
2 .598 1.101 1.160
3 .576 1.129 1.214
4 .555 1.156 1.267
5 .535 1.182 1.319
6 .516 1.207 1.371
7 .498 1.229 1.422
8 .481 1.249 1.470
9 ,464 1.269 1.520
10 .448 1.288 1.570
11 .432 1.306 1.622
I.2 ,a37 1.323 1.674
I.3 .4o2 1.34o 1.727
14 ,387 1.356 1.781
15 .373 1.372 1.835
16 ,359 1.387 1.89
17 .345 1.402 1.95
18 .331 1.416 2.01
19 .318 1.430 2.07
20 .305 1.w 2.13
21 .292 1.457 2.20
22 .28o 1.470 2.27
23 .268 1.482 2.34
24 .256 l&94 2.41
25 .245 1.505 2.48

TABLE II

--

K

_-

2.L
2.07
1.40
1.014
.758
.590
.476
.394
.318
.2tjS
.215
.lrn
.I.33
.lo3
.072
.046
.020

-.oo4
-.O28
-.050
9.071
0.089
-.108
-.I26
-.M3

26
27
28
29
30
.31
32
33
34
35
36
37
38
39
40
4l
42
43
44
45
46
47
48
49
50

so 531
__-

--
h-

h0

1.234
.223
.2l2
.201
.190
.18o
.170
.160
,151
.14l
.I.32
.I23
.115
.107
.099
,092
.085
.078
.072
,066
.06o
.054
.048
.043
.O38

3

--

6= -j

--

1.516
1.527
1.538
1.549
1.559
1.569
1.579
1.588
1.597
1.605
1.6l3
l.s?l
1.629
1.637
1.644
1.651
1.6s7
1.663
1.669
1.675
1.681
1.686
1.681
1.696
1.700
F

--
CU=-
a

2.56
2.64
2.73
2.82
2.92
3.02
3.13
3.24
3.36
3.49
3.63
3.78
3.93
4.01
4.26
4.44
4.63
4.85
5.08
5.33
5.62
5.95
6.30
6.68
7.11
ca

_ __. _. .-_ -_.___ _- _ - -_ ._ --

--

K

.O.lal
-.177
9.196
-.216
-.234
1.252
-.271
-.2Sl
0.313
-.336
0.36
1.38
-.4O

43
::46
-A9
-m52
-.54
-.58
-* 62
-.66
-am
0.75
-0 81
-.86
--oD
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Figure 2.0 Mach liner, .
double family.

..-

Figure 3.~. 2otrtion for energy eq=tioa.

Figure 5.- 9-8urfaca
Itrip. i

Figure 6.- Contact
~raImfom&ion

for OL18 Independent -
1 variable.

fig8. 1.2.3.4.5.6

Y

0 x

figure 4.- gkatch for
derivation

of continuity equation.
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coordi-
Figure 7.- Element transformation for two natsr in the

independent variables. velocity diagram.

Figure 9.- Characteristics of the flow
differential equation.

\

Figure 12.~. Characteristics
of the normal

form. Method of successive
approximation.

Figure 13.- General
region

of integration.

Figure lo.- Construction of the
characteristics:

(a) Flow plane. (b) Velocity diagram. (c) Characteristic coordinates
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Figure 14.n Region of
lntogratlon for

the normal form of the
hyperbolic  eqgatton  and
charrcteri8tic  qurdrilrterrl.

I PI h

Pigure 15.e. Notation for
application of

formula (67) if the
boundary value8 2 are
given along two character;
i8tiC8. I,--,/// \ \

Mach 1in88 of

0

upper family
pi&W8 16.~ Mach quadrilateral.

5

( a )  Rire (compre88ion) 2

’ Pigure 19.w Relation betrreen the flOW QdOCity
EandtheMnchangle am

(b) Sink
-----Mach iine8.

+re 17.- Small deflection
of a parallel flow,

(1)

Figurs 18.a .me Chmlg@ In'
velocity on'

CrO88il.a& a Mach line.
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--- Mach liner.
(b) Velocity diagra+

Pigare ZQ; Z$DploJrwnt  of
the hodognph

for the detewtion  Of
the Mach line in the flow.

Bigllre 24.9 Flow bounded
on one ride.

Figure 22 and 23.- Proof thrt the direction field (fig. 21)
belongs to t+o famili~m of epicycSoid+

. . . .._.m.. _..- -.- II. I. ..__  ..-. .._.. .- ..- ---- -_ -_..---



I t ----~- --

N.A.C.A;,Teehnical Memorandum No. 934

Figure 25.0 nor bounded o

(a) Flow plane. (b) Velocity diagram.
Figure 27.9 Interior point of a flow bounded on

two sides .( the deflection anglea 6
which are of the order of magnitude of 1 degree
are in thir and the following figure% drawn
exaggerated for clearness).

(a) Flow plane.
(b) Velocity diagram.

Figure 28.- Interior
point of a

flow bounded on two
nides.

tiga. 25.26.27.28.29

Figure 26.0 Sinking Lt
an edge.

Figure 29. - Conditionr-aloq a disturburce line.
(a) Flow plane. (b) Velocity diagram.



(a) now plane.
(b) Velociiy
diagram for &.
a level rairing
(condeneation)
wave.
(c) Velocity
diagram for 8
level lowering
w8ve.

Figure 31.- Dieturbance wave rtriking  a wall.

Velocity aiagrm.

Pigure 33.0 Sketch ehowing method of
determination of the

direction. of the disturbance wave

Dra?ing of the
flow. Incromantr .

of 6 degrees. ’
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