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The work here presented was guggested to ne »y Dr.
J. Ackeret, and was carried out at the Ingtitut fur
Aerodvnamik der E.T.Hs Problems in the field of super-
sonic flowe occur with 1nereasing frequency in recent
times. It 18 of interest firet to investizate am to how
far the relation' extends betweenthe flow of a liquid.on
a horisontal bottom with the two-dimensional flow of a
compressible gas. Secondly, problens in the field of
wnater flows may be solved directly by the methods of the
theory of gas dynamics”* which, in receat years, have been
hi ghly devel oped.

The vresent wvork was undertaken with two objects in
view. In the first place. it is considered as a contri-
bution to the water analogy of gas flows, and secondly, a
large portion is devoted to the general theory of the two-
di nensi onal supersonic flows. An attenpt has been nade
to brinz the latter Into eueh shape and detail as to facil-
itate as nmuch as possible its application by the enzgineer,
who is lees famliar with the subject.

Here, | should |like to sxpreas ny thanks to Dr.

Ackeret for his encourcqenent nnd nid, and to Dr. de Hnller,

Assistant at the Institut fir Aerodynnnlk for his friendly
support.

Translatort!s note: The term "gas dynamics" is defined in
t he I ntroduction.
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APPLI CATI 0B OF THE NMETHODS oF @as DYNAM CS TO
WATER FLOANS W TH FREE SURFACE*
PART |. FLOWS WITH NO ENERGY DISSIPATION**

By Ernst Preiswerk
| BTRODUCTI OB

Let there be considered a gas at rest in space or a
portion of space, and let a piston oranovable portion of
t he boundary set the &as in notion. In the case of an in-
conpressible fluid, the latter will begin to flow simlta-
neously over the entire space at the Instant the disturbd-
ance i s applied. Wth a conpressible fluid the case is
ot herw se. The effect of a disturbance first shows up in
a restricted portion ofthe space only at a definite tinme

interval after the start of the disturbance. If the latter
is small, the speed of provmagation of its effect is equal
to the velocity of sound in the gas. In an ideal gas. it

is proportional to the square root of the absolute tenper-
ature T and depends only on the latter.

If the velocity of flow inafluid is small conpared
to the velocity of sound, the fluid may be treated as .in-
compressille. The relation between wveloelty ¢ (m/s
and pressure p (kg/m2) at various pofnts of the flow, 1s
in the case of absence of friction, given by the Bernoulli
equation. As soon, however, as the vel ocity differences
at various points ofthe fiow attain the order of magni-
tude of the velocity of sound, the conpressibility of the
Zas may no |longer be neglected. Density p (mass per
unit volune, kg s3/m4) and tenperature are variable, so
that the |aws of t her nodynam cs nust be taken Into account.
Thethoory of such flow cones under Gas Dynamics (refer-
ences 1 and 7).

“Anwendung gasdynnmischer Methoden auf Wasserstrdmungen
mit frelor Oberflache." Mitteilungen aupg dem Insti-
tut .fur Aerodynamik, ¥o. 7, 1938, Bidgenossische Toech-
nisehe Hochschule, Zlrich,

**For Part |1, see N A C A Technical Menorandum No. 935,
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Dependi ng on whether the flow velocity 1s smaller or
larger than the velocity of sound, we speak of a subsonic
and a supersonic flow, respectively, the two kinds being
essentially .different in character. They nmay occur side by
side in the same flow since the velocity ¢ and the sound
velocity a in general vary from point to point. The quo-
tient velocity of flow per velocity of sound for a definite
point of the flow is denoted as the local Mch nunber ¥ =
c/a (roforence 4). For K < 1 the flow is subsonic: X
> 1, supersonic. The subsonic flows in the nelghborhnod nf
M = 1 have as yet been little investigated. To are far
bettor acouainted with the properties of supersonic flowvs,
though chiefly the two-dinonsional flows:™*

Eestwaien the wvariadbles, pressure, tcmnerature, rnd den-
sity, there holds the equation of state for an ideal gas

7\
P::gRPT ,‘l

where R (kg m/kg° = m0) 1g a constent that is different
for each gns. By the addition of haeat, conpression, and
expansion, all posslbie stntes may be attained in the gas.
| f, however, heet iS nolther added nor token away, and 1n
the g~a itself no heat arises through friction then, in
addition teo equation (1), the following adiabatic equations
hold bstwoen the Sstate wvariabdles:

p/p, = (p/o, ¥ - (2a)
PIp, = (T/1g) /% (2b)
b/, = (7/1,)/k2 (20)

where »g, Pos» To S any reference state, and k is con-
stant for an ideal gas, belng the ratio of the specific
heat »~t constant wressure (e¢,) to the specific heat at

constant volume (ey). This case of adiabatic change of
gtato is the one thnt obtains in an ideal flow (no fric-
tion, no addition of heat from the outside, heat conduc-
tion ~nd heat radiation in the flow itself nezligible).

As reference stnte in o flow there i S generally chosen the
state nt ~ point of rest.

In order to be able to apply readily the energy equa-
tion to thernmal processes.. there is introduced a further

*1) Three-dimensional flows: references 6. 8. .20.. 26.. 29
2) Two-di nensional flows: references 1 (or 2), (pp. 308-
322); &, 7 (pp. 407-444), 14, 15, 17, 18, 27. .

3) Transition region Of subsonie and supersonic flows:
references 9, 14 (pp. 57-67), 28, 30,
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stote variable, namel , the heat content 1, defined by
i = cp T (in Xxg mkg 3*. Let the heat content ata point
of reat be 1,. The flow velocity at an arbitrary point

(1, P, T, p) of the flow is then computed from the enersgy
equation to be

s~}
~r

ca =-2g (10-;.)=2g cp (To-T) (

Transforming with the aid of equations (1) and (2)
-1

Sg
_ 2k . _ (R
o8 = — P—Z l:l <P°) ] (3a)

This equation &lves the relation between the pressure and
velocity for the conpressible adlatatic flow and repl aces

g

the Bernoulli equation. Toa first approxinmation, 1.e.,
for small Mach nunbers, it goes over INnto the Bernoulli
equati on. Bor the velocity of sound, ma have

a® = danfdp (reference 13, p.536)(4)

or, using equation (2a):

[
i

e
L]

S =gkR T (4a)

From (%a) and (4a) there is obtained:

k-1
2 ‘p\ K
M%< o%a® - 2 B Rf (2)
. . k-1 oP 0o
From the adiabatic 'equation (2a)
1~ L k-1
PoP _(Poy K _ po K
POp P/ = kp

*The heat content Ks usuallyr expressed in keal/xg, Many
conputations are simplified, however, if the heat is con-
sistently expressed in nkq instead-of keal., The specific
heat® cp &and ey nust then be zZiven in mkg/kg® instead of
in kcal/kg®. The carrying along of the factor A = 1/427
kgm/kenl 1is t her eby avoi ded. B is sinply ep = cy, etc.

In what follows, tais assunption will everywhere be used.
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and substituting in the above equation and solving for p,,
we have

X
r k-1
PO = P21 +3—5—lu"]

Expandi ng the brackets into a series there is obtained:

a
¥ k-l .23 k k ) 1 (k—l a)
= + — == —_— | —— - == (=== + ...
Po P Il k-1 2 Mo+ k-1 (k—l 1 1x 2 2 u .

% can be taken outside the brackets

-
e kB 1,2, 1(2=k) 1(2-k)(3-2k)
pop-p2M L1+4M + EL M + 4155 M8 ,,,3
Consi der
P a_f_gj a
7 ¢ _Za.aa
Substituting a8 from equation (4a)
_?P_ca=uak_§
W thus have, finally g
= P a2 1 1(2-k '
pO p 5 e Ll'l‘zu —?rp—hlu +] (5)
For M 2 0, the above becones the Bernoulli equatiom®
-g e® = po - pP. A better apnmroximatioh is % c? = (Po" p)/
(1 + i 4%). The first two coefficients, 1 and 1/4, in the
series are independent of Kk. For k= 1.4, the next two

coefficients are 1/40 and 1/1600.

We shall now bring out an inportant property of the
supersoni c fl ows. Let us consider first a parallel flow
with constant velocity c. The velocity of sound corre-
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sponding to the temperature of the Zas also has the same
value over the entire flow plane. ' If a small cylindrical
obstacle ‘is sgituated in such a supersonic flow, the dis-
turbance produced by the obstacle is propagated wlth re-
spect to the moving gas with the local sound veloclty.
The waves are circular cylindrical in shape (fig. 1). Let
the obstacle be located at point P. If the wave center
Ky 1@ at point X, a time interval ¢+ = x/c, has passed
since this wave arose. It then has the radius r = a ¢t =
a x/e. At the point P such waves arise continucusly.
All of them have as thelr common envelope two straight
rays, the Mach rays, which form with the directlon of flow
the Kach angle a; sin a = r/x = afc. If the obstacle at
P 1s small, the intensity of the circular waves 1s small
to a higher order. Only along the Mach rays are the circu-
lar waves dense enough for the effact 0f the disturbdanco
to be of the order of magnitude of the lattor. The effect
of a disturbance at P 1is propazZated only along the Mach
rays througsh P, Now instead of a parallel flow, we shall
consldor a general supersonic flow. The flow veloclty and
the sound velocity vary from point to point., TFor each
sufficiently small vartial rezion of flow tho .same consid-
erations as above are valld, thoe direction and Mach angle
varying oanly from voint to voint. The disturdance arising
from a small obstacle at P 1s now propagated along curved
linos (fig. 2), those being known as Mach lines. For each
flow there are two famillos of Mach linos. All effocts
arlsing from the boundary of tho flow are evidenced along
those lines of the flow.

It 1a possible with liquid flulds (water) to produce
flowe that show a far-reaching analogy to the dimensional
flows of & compressible gas (references 5, 11, 13 (p. 537),
21, 22, 23, and 24).

A flow of this kind 18 obtained if water is allowed
to flow over & horisontal bottom under the effect of grav-
ity. The surface of the water is assumed to be free. At
the sides 1t must be bounded by vertical walls or 1t must
flow into water of & definlte depth at rest. The fixed
vertical walls correspond to the boundaries of the gas
flow. A channel with horizontal bottom and rectangular
cross sectlon with variable. width, the axls of which need
not be rectilinear, is an example of this tvpe of boundary.
The water flowing into water at rest corresponds to a fres
g8as Jet. 4n open sluice, from which the water flows out,
1s an example of the second boundary condition. The bottoms
of the upstream and downstream water must lie in the same -
horizontal planse.
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The velocities that oceur in such flows are very
emall in comparison with the sound velocity in water
(about 1,430 m/s). The latter plays no part at all in
the considerations that follow. It is-another veloclty
which 1s analogous to the veloclty of scund in a Zas.

In the present work only stationary flows will be in-
vestlgated., The free upper surface of the water is then
a flxed surface in space. Ths water depth h <varies from
polnt to .polnt of the flow. ZFor each depth there exlsis
for long plane waves a wave propagatlon velocity ./ 2h,
whlich devends on the depth alone. On the basis of thls
wave veloclty the water flows described may be divided 1into
two groups which, as in the_case of the gases, differ es-
sentlally 1n their propertles. If the water veloclty 1s

less than ,/gh, the vater will be said to "stream"; 1if
greater than ./gh, the water will beo said to "shoot."

PART I. FLOWS VITH NO ENERGY DISSIPATION
Differential Equatlon of the Water Flow
l. Energy Equation

It will be assumed that the flow of the water 1s fric-
tionless so thnat converslon of erergy into heat is exclud-
ed. The oner3y equatlion then simply atates that the sum of
the potentlsl and kinetic enersy of a water particle 1s
constant during its rotion. ’

Let us consider a flow filament (fig. 3) which vpasses
through the point y5, zZo of the 1inltlal cross sectlon

x = 0, Along this filament, between the pressure p and
the velocity ¢, there obtains the Bernoulll ogquation

P =2 .. P a
2

p + c® + pgzr=p +5c,° +tpgaz, - (8)

On tho surface of the water p 1s constant and equal to
the atmospheric pressure Ppe In what follows we may,

without error, set this equal to zero since only pressure
differencus are of physical significance in the case of
incompreasible flows. Tho magnitudes denqted with the
subscript 1 refer to an ardlitrary bdut fixed point of the
flow filament (reference point). The magnitudes without
subscript -refer to a variable polnt. If the water flows
out from an lanfinitely wide basin, then the veloclty in
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the basin 1s ¢, = 0. Also, the curvature of the free sur-
face is gero. The plane .x = 0O 18 assumed to lie in this
region, We choose the volnt x4, ¥o, %p- &8 reference
point. The corresponding water depth i1s denoted by h,

and 1s at the same time the maximum depth ogcurring.

For the above reference point, the Bernoulll equation
reads: . - :

* &
D+ 2 c® + pgz=pytp &g g

from whilch
c? = 2g(zy - 8) + 2(py ~ D)/P (7)

We now make a simplifying assumption, namely, that
the vertical acceleration of the water 1s nezligidble com-—
pared with the acceleration of ZIravity. Under this assump-—
tlion the statlc pressure at a poilnt of the fleld of flow
devends llinearly on the vertical distance under the free
surface at that positibdi:

p, = p &(hy = z,) (8a)

and

p=p &l ~z) (8b)

The above sudstituted in (7) sives, finally,
c? = 2g(h, -~ h) = 2g Ah (9)

The energy equation (9) holds for the flow filament pass-
ing through y, and 2z, at x = 0. Since, however, at

x = 0, all the stream filaments that lie one above the
other, have the same h, and for £ll of them, ¢4 = 0;

and since equation (9) does not contain the coordinate =,
the veloclity ¢ at x, y., 1s constant over the entire
depth and is given only by the difference in height Ah
between the total head and the free lewel, Ah being, at
most, equal to h,. The maximum attainable veloclty there-

fore 18 Chnax = Q/Eg h,. The energy equation may thus be
written
a .
. (¢/epax) = c?/2g hy = Oh/hg (9a)
In a gas the maximum velocity is cpoy = 28 1,5,
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and equation (3), corresponding to (9a), becomes:
a .
‘(e/emax) = c®2g 1, = 81/1, = AT/T, (10)

From these two equations 1t may be seen that the ratio of
the veloclty to the maximum veloclty for the water and &Zas
flows becomes equally large 1f

(hg - h)/hy = (Ty - T)/To

Thls is the case for
h/h, = T/T,

With respect to the velocity there exlsts therefore an anal-
08y between the two flows if the depth ratios h/h, are
compared with the gas-temperature ratios T/T,. The water

depth corresponds to the gZas temperature, and conversely.*

2. Equation of Continulty (referemce 1%, p. 320)

We shall set up thoe equation of continulty in differ-~
ential form. For this purpose we consider at x, y a
small fluid prism of edZes dx and dy and height h (fig.
4). Let u and v ©be the horizontal components, and w
the vértical component of the velocity ¢ 1in the directlon
of the coordinate axes x, y, and z.

Neglectlng the vertical accelergtion of the water in
comparison with the acceleration of gravity, equation (8p)
ls valid. PFrom 1t, we have:

3P - oh 9p _ oh
and v P8 3y

The right sides of the above relations are independent of
2, 80 that the horizontal accelerations for all polints
along a vertical also are independent of 2. The horizon-
tal veloclty components wu and v are thus constant over

" the entpre depth because they were so in the 1nltial state
(of rest).

»

It 18 not a question of setting absolute values of the
velocitles equal to each other but only, of course, non-
dimensional masgnitudes, as °/°max'
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The continuity equation for the stationary flow sim-
Ply -expreésses the fact.that the. quantlty.of fluld flowing

"into the prism (fig. 4) per unit time is equal to the out-

flowing mass, Since the denslity of the water 1s constant,
the same holds true for the inflowing fluld volume dag

(n3/8) and for the outflowing volume dqg: dgg = dgg. In

the x-d*rection the volume wu h dy enters per unit time;
dgqy becomes = u h dy + v h dx. The total outflowling vol-

ume, excopt for infinitely small magnitudes of higher order,
becomes:

dgy= <u+ dx.)(h+ d.x) d.y+(v+ ox dy)(h 92 dy) ax

This continuity conditlion written out and divided dy dx 4y
Zlves the equation of continulty

d(n u) o(h v)

=0 " (11
ox oy. 0 (11)

The continulty equation for a two-dlmonsional compressldle
gasg flow 1g

olp w) , 3lpv) _ 5 . (12)
ox oy

Comparison of the two equations (11) ana (12) shows
that, Just as the energy equations, the equations of con-
tinuity for the two flows have the same form., From these
we may derive o further condition for the analogy, that
the speclfic mass p of the gns flow corresponds to the
water depth h. It may be clearly seen now why the incom-
presslible flow of the water may bear a relationship to the
flow of & compressible gas. As &, consequence of the com~-
Pressibllity in a two-dimenslonal gas flow, the gas mass
per unlt of bottom area 1s not a .constant but varies from
voint to point of the flow plane. Since the water depth
in the flow with free surface varies, the mass per unlt
bottom ‘area for this flow is also a variadle.

From the equation of continulty, we derived the result
that the water depth h corresponds to the specific mass
P. By comparison of the energy equations of the two flows,
1t followed, however, that the water depth h was simul-
taneously also the analogous magnitude for the temperature
I. This is possible without contradiction only if a very
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. definite assumption 1s also made as regards the nature of

the comparlson gas. For the gas flow p depends upon T,
the rslation between the two belng the adlabatic equation,

(2b)
p/pPo = (z/14) 2/ E2

Now p/po = h/hy and simultaneously T/To = h/ho,
substituting in (2b), we have the equation:

1/k-1
h/by = (b/hy) /
which obviously 1s satisfled only for
E = 2

and

(13)

Thus we have the result that the flow of the water is com-
parable with the flow of a Zas having a ratio k = cp/cv =

2. Such gases are not found in nature. There are,

how-

ever, many phenomena which do not depend strongly on the
value of k, 80 that the analogy has signlflicance also

for actual gases.
3. Irrotatlonal Motilon

Before introducing the condition of absence of

voTr-—-

tlcity, we make a slight transformation of the continulty
equation (11) taking account of the energy equation (9).

The latter solved for ~h, reads:

h = hy - c?/2g
Hence
dh _ 1 3(c?)

ax 2g Ox

and using the fact that c2 = v + v2,* this gives

BoiCRe D)

(a)

*Since u and v are constant on a vertical, and since

from (9), e also is constant, w = J/c2 - (u2 + ¥2) 1ig

also constant, and since w +vanishes at the bottom,

may be neglected in comparison with the components
Ve J

it

u aad
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Similarly,

L %,_%(\1%"’7%’) | (v)

The continulty equation (11) may also be written in the
form

"3du, o 3h v 3k 6.
= h + SSou+ = h + = v

Substituting in the above the expressions (a) and’ (v),
there 1s obtained:

au au av> av av> _
ou y, L1 + . — } =0
3x 2 "3z "3z Faz (ay oy

The above equation divided by h and rearranged, g£lves:
2 )
-+ T-H (B HE-0 a
We now introduce the condition for absence of vortic-
1ty. This will be true if oY - 3% 2 0, In this case,
ox oy
there exlsts a function @(x,y), the velocity potential,

of the coordinates x, ¥ such that

v ox v oy

Subsgtitutinge P(x, Y) into equatlon (14), the latter may
be written:*

Oxx (1 - ——\ + Oy (1 - ) 20 ry ng:” =0 (15)

This 1s the differential equation for the veloclty poten-
tial of the ideal free surface water flow over a horizontal
bottom. The equation is partial of the second order and

L]

Instead of %%, we write in what follows in the usual
a a
notation @& 2.2 = 0 . I = 0,v, otc.
x a£’ xx oxdy xy
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linear in the second derivatives. The .coefficlents depend
on the derivatives of the first order and on these only.
It is to be observed that & h is not a constant but, ac-
cording to the energy equation is
.2 + o2
- 2 _ x
gh = ghy, - c¢®/2 = g ho"—g"‘L

The equation corresponding to (15) for the velocity
potential of a two-dinensional conpressible flow is (ref-
erence 1 (or 2), p. 308.

Qxx (1 - iz-:>+ Opy (1 - Q—Z:) ~ 20, g:;Z = (16)

The two equations (15) and (16) becone_ldentical if

eh/2ghy is replaced by a2/ 2g1,. .,/ b is the basic wave
velocity in shallow water, and corresponds to the velocity
a in the gas flow.

4. Summary of the Bl ow Anal ogy

We shall yet inquire what magnitude in the water flow
is analogous to the gas pressure. TWriting the equation of
state (1) for an arbitrary state and for the state at rest,
there is obtained by division:

p/p, = (p/py) (T/T,)

Substituting for p/p, the corresponding value h/h,, and
for T/, also. n/hy, there is obtained the value corre-

sponding to Bp/py:

2/3e = (2/hg) (17)

This 18 also obtained directly from the adiabatic equation
(2a) with p/po = b/n, and k = 2.

The pressure pg on the bottom surface is proportion-~
al' to the water depth h; with py as specific nass of

the water pg = pwye h. This pressure has no analogy in the
t wo- di mensi onal gas flow. |In particular, it is not the
magnitude corresponding to the gag pressure since the cor-
responding magnitude to p is h and not h. The force
P of the water flow per unit of length of the vertical

wall Is, on account of tho linear Increase of the pressure
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with distence belowy the free surface, given by

- i~ . e

, ., ] ':-fl ” Wﬁgn— '\aﬂl - - - - r - -
P=—5—nh

y -}
For P, therefore, we have PB/P, = (h/hy) . Oomparison
with equation (17) shows that p/p, = P/P,. .The magnitude
of the water flow corresponding to the zZas pressgure p is
thus, the force of the water on a unit strip of the side
walls.- The pressures in the two-dinensional conpressible

flow are analogous to the forcesin the water on the ver-
tical wadlls,

Prom the differential equation for the veloelty Poten-
tial,, we have derived the fact that the velocity of sound
a corresvonds to the wave veloclty fé’i Tie d1fferen-
tlal equation arose 'through the combinatlon of the enersgy
and continuity equations. Thus the result a<->,/g8h 1is
'not something essentially new but 1s only a consequence of
the results pP- >»h, Te->h, and k = 2 of these two
equations. We have a2 = gkRT = g{k - 1)1, and for k =
2 and 1« ->h, this 4ives ae— —»gh.

Since the velocity corresponding to a 1is ./Ei.
there corresponds to the .subsoniec flow c/a < 1 the flow
with e//8h < 1. The water in thls case 1s sald to
"stream," while the water flow corresponding to the super-
sonlec flow 18 Raid to "shoot."™ The essential difference
in character betwser the supersonic and subsonic flows ex-

ists also in the case of water between streaming and shoot—
ing fl ows. coe

The anal ogy comnsidsred in thias section holds for flows
wi th Mach numbers smaller and #£reater than 1. Essentially,
however, only the flow of shooting water will be treated in
this work: Application will therefore be made of the ex-
tensively devel oped theory of two-dimenslonal supersonic
flows to the flow of water.

.o
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TABLE OF FLOW ANALOGY
Two- di mensi onal gas Liquid fl ow with free sur-

flow _ face in gravity field

Natureoft he fl ow Hypot hetical gas with | Incompressible fluid

- k = Ephﬁ- =2 _ (8sge, Water)

1de boundaries geg; | Si de boundary vertical
etrically similar :|" ~ Bot t om hori zont al

¥-—~--.__ i . - . L]
Anal ogous mégnituder [Vel ocity cfcpgypic/a” |Velocity efepess cfa
Tenperature ratso,T/T,|\Vater depth ratio, h/ho
Density ratio, p/pe |Water depth ratio, h/ho
Pressure ratio, p/po Square of rater depth ratio,

(h/By)"
Pressure on the side |Force on the vertical walls.
boundary wal | s P[Py = (h/h,)?®
/7,
Sound velocity a Wave velocity A g,
Mach number c/a Mach nunber ¢/ g
Subsonic flow Stream ng wat er
Supersonic flow Shoot i ng wat er
Compressive shock Hydraul i ¢ Juzp
(right and slant) (normel and sl ant)

MATHEMATICAL BASI S

5. Iatroduction

For the treatnment of fields of flow subjected to the
boundary conditions, various mathematical nethods, depend-
ing on the type of flow considered, are avail able. The -
mathematlcal basis for two-dinmensional inconpressible flows
is the conformal transformation nmethod famliar from the
function t heory. For the conputation of conpressible sub-
sonlé flows, use is made of the theory of &general ellip-
tical differential equations. This theory has not yet been
sufficiently devel oped as a practical nethod. For the com-
put ati on of supersonio flows, however, and hence for "shoot-
ing" water, there has been perfected the method of charac-
teristics of the theory of hyperbolie partial differential
equations by Prandtl, Steichen, and Busemann.

Since the characteristics nmethod is as yet little
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known and, particularly, since it has not yet been applied
to the investigation of flows of "shooting" water, this
nethod in what follows, will be discussed in some detail.

6. Introduction of New Vari abl es

The velocity potential ®(x, y) nay %}Qe geometriecally
ropresented by plotting vertically at each point of the
flow plane x, y the corresponding value of . We thus
obtain a surface in space which we ehall denote as. & ®-sur-
face. The slope of this surface along any direction &ives
t he conponent of the flow velocity in' this direction.

Let the velocity along a line AS of a shooting flow
of water be given in magnitude and direction (fig. 5).
This velocity at eaeh point of A3 may be decomposed into
conponent8 c¢t and e, tangential and normal, respec-
tively, to AB. Si nul t aneously, there will also be given
the slopes ofthe Qsurface corresponding to the flow in
the two directions and, finally, the value &(x, y) 1itself,

except for a nonessential ‘constant, W ll|l also be doterm ned:
S * -
o)
@ = f %’; ds + ¢A
6 [

The five magnitudes x, y, ® (voint P) and oy, Py

(slope) are denoted aes an el ement of the &surface. An el -
enent 1s sinply an infinitesimal piece of the @¢-surface
giving the popltion and elope. The assigoment of the ve-
locity alon€ AB is equivalent to the assizament oOf an
elementary strip of the ®-purface (fig. 5). The nathenat-
ical problem may.thus be stated as followe: To find a sur-
face vhose curvature and slope satiefy the differential
equation (15).

It 18 possible to put equation (15), by atransforma-
tion of variables, into a sinpler form (reference 27, p.5~10).

W conslder first a ueual coordinate transformation =
a so-called "vpoint transformation." Let x and y be the
i ndependent variables; & a function of x andy, ®(x, ¥).
Then net variables - X, Y, X nag be introduced byofiefining
them through the following.equations:

e
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e
3

X = X(x,y.0(x,¥)) -|
Y = Y(x.y'°) (1‘8)
X =X(x,y,0)

The function X (nay be represented by a X —~surface
in an X, Y, X spsze, taking X and Y as ths lnde-
pendent variables. To each point x, y, ¢, there corre-
sponds according to equation (18), an image point X, Y X.
Conversely, to each image point corresponds 1ts original-
point since, in general, equations (18) may be solved for
x, y. and O: :

x = x(X,Y, %
y = y(X,7,% _419)
¢ =0(x,Y,.%

Let us, for simplicity, conslder first a single 1inde-
pendent variabdle =x and a function @ = @O(x). The point
transformation in this casge is glven by the two equatlons:

-

—
X = X(I.Q(X)) and X = X(I'Q) (183')
Solving (18a) for x and ©®, there is obtained:
x = x(X,X) and & = ®(X,X) (193)._

To each palr of values x and ¢ (point P), +there corre-
sponds according to (18a), a pair of values X and X
(point P*) (fig. 6). An entire curve has another curve as
l1ts image and the transformation 1s unlquely reversible.

We shall now conslider a more general transformatlon.
Let an entire element -~ that is, =x, y, &, O, Qy be trang-

formed. 1In place of formulas (18), we now have the more
compllcated transformation formulas:

X = X(x,5, 0 0z.%;)
T = ¥(x,7.0,0x,0y) (20)
X = X(x,¥7,0,8.,05)

In the case of a2 gingle indepencent variable, an element 1s
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given by the triple x, ®, & (goint and direction). To
transform this elenment the-transofrmation formulas would

be - S e e -
X = X(x,0,0¢) and X = X(x,0,85) (208) °

From t he above we have:

X = Xy dx + Xp 40 + Xp_ 40, = (Xy + Xp Oy + Xp_ Oxx) dx

and ‘
dx=(X:+X.¢°I+X¢xﬁxx)dx

go that ' '

xg = & o Xzt %o 3 * My 0x ©(21)

hence, ax/dX, as(21) shows, in general depends on x,
®, Oy, and gy, If, for exanple, 8 curve ¥y (fig. 6)

is prescribed, then ateach point of the curve these four
val ues are known. From the three formulas (20a) and (21)
there are thus determned at each inage woint P* the val-
ues X, X, and Xx. Thcrc ie thus obtained the curve Xa
as the image of curve ¢p. Corresmondingly, &, may also
be drawn If the entire curve Xy is siven. On the other
hand, fromthe element x, ®, &5, It is not possible to
determine anp element X, X, Xx from the formulas (20a)
and (21), different elenents being obtained, depending on
how ®xx 1is chosen. I n one case, however, the transfor-
mation 1s such that the image of an elenent 1s again an el-
ement, and conversely. This is the case when dX/dX _in
eqluati_(f)n (21) becomes |Independent of &xx, Which is true
only i

Xx ¥ Xp &x° X¢x

= (22)
Xy + x@ ¢Z x¢x

If the transformation formulas (20a) satisfy the condition
(22), then the elenents uniquely correspond to ene another
in the transformation.

An exanple of the above is the Legendre transformation
of x, ® to X, X, of which we shall nmke inportant use
below ; forthis transformation, the followi ng transforma-
tion fornulas hold:
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 JE
X =0, x~0
We then have:
aXx = @pp dX
dX = Op dx + Oyp dX X = Py dx = x Qpy dx
so that
dX/dX = x, independent of ®yy

The transformation with corresponding elements has in
addition, another special property. Let us assume that at
point P (fig. 6) two ocurves &, and &y touch each

other. They thus have at point P a oommon element x =
xp, @4 = 5. and Py, = (DI:B; dut qu == szB the curves

being assumed in contact’ but not osculating. According to
the traneformation formulas (20a), we shall also have for
this point. X3 = XB and Xg = Xg. The two image curves

X4 and XB then have the point P*, the image of P,

&lso in common. Since,” however, daX/dax in general, con-
tains ®y, according to (21), and this second derivative

is different for the curves A and 3, the two image
curves will intersect in point P* and not touch as the
original curves do. Only. if ax/dX is independent of
®;1 will the two Image curves X4, and XB also touch at

point P*. This isprecisely the case for the transforma-
tion with uniquely reciprocal element correspondence.. For
this reason such transformations are known'as contact
traneformatione. e

*I> In correspondence with the concept-point transforma-
tion, the term “element transformation” i1s more logical
than contact transformation.

2) The transformation (20a) becomes an element transforma-
tion a0 soon as, instead of only the two formulas of (20a),
three are used:

x = X(x,0,®8.) X = X(x,0,8) and Xg = ¥g(x,2,8.) (201)

There then cecorresponds to each x, &, .. an X, X, Xg,
and conversely. It is to be noted, .,however, that there is
a relation between the three variables since Xx=dX/dX.

If the left aide of "(20b) is independent of ®,x, the right

side must be. But this i1s precisely tho contact trans-
formati on.
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‘The result found above we shall now apply to two inde-

pendent varlables  x, y, and thelr funection O. The trans-

formation fornul a8 are:

X =X(x, vy, @, &5, Oy)
Y = ¥x, ¥, ¢, O, ¢y) (20)
X = X(-x- ¥y, 0, Qx- ¢y)
Since X, Y, and ¥ contain, in addition to x, ¥y, and ¢,
also &, and ¢y. there will in general also occur in
Xy = AX/3X = £ (2.7, 8 Oy By s By Bryr Byy)
and ' : (23)
X =3X/3Y = fa(x,7,0, 00,850 Orys Byg s Byy)
the second derivatives O _, ¢xy. éyy' We shall interpret

®(x,y) a0 a eurface (fig. 7). Two surfaces ® and Ogp.
which touch at a point,have x, y. ¢, &, Dy in common

atthis point. From the transformation equations they
will then also have the image point X Y, X of the con-
tact point in comon. Since, however, Xx and Xy con-

tain the second derivatives of @, the tno transforned
surfaces will no |longer be in contact at the comon point:
(XX), and (XX), not beinz equal - siwmilarly, (XY)A

and (Xy)g. The transformation again zives a uni que cor-

respondence Of the elements only |f the equations (23) do
not contain the magnitudes ®,4, Ory and dyy. In this

case two surfaces in oontnct at a point, go over after
traneformatlon Into two surfaces Which at the image point
agaln have a comon tangent pl ane.

The Legendre contact transformation for two independent
variables s

X = @y
\_(.: o | (24)
X =0, x + ¢y y - &

The eurface @ = ®(x,y) with the above transformation Zoes
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- over into a surface X = X(X,Y) (fig. .7). We-prove first
- that the above i1s actually a contact transformation. From
equation8 (24)

dX = Qgdx + x A0y + Oydy + ¥y dQy ~dd

Noting that 49 = &zdx + Oydy, three terms drop out. Sub-
stituting for ¢; and d?y. X and Y, respectively, from
formulas (24), we have

dX =x dX + y 4y
For the X-surface, the relations must be satisfied:
dX = XgdX + XydY

Comparison of the two expressions gives the derivatives of
X of the first order:

XX = X
(24a)

XY=}"

These are independent of the derivatives of & of the
second order.. Formulas (24) thus actually express a con-
tact traneformation, (24) and (24a) giving the correspond-
ing element X, Y, X, Xx» Xy when the original element

x, ¥, 0, 05, Qy is &lven. By simple reversal there is

obtained the element correspondence for the reciprocal
transformation:

x =Xx

¥y =xy ' (25)
¢ =X Xx+T xy - X

o, = X

x (25a)

We wish still to express the derivatives of second or-
der Qxx. q‘bxy, and ny in the new vari ables X, Y, X, Xx»

Xy» Xxx+ Xxy. end Xyy. There will then be obtained an tm-
portant result for the applications.
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For this purpose we consider x and y as the inde-
pendent. variables. IFrom the. firet and second of equations
(25), there is obtained:

dx = AyxxdX + XxydY
dy = XxydX , Xyydl
Solving for 4X and 4Y
dX = (Xyydx - Xgydy) 1/¥
aY = (- Xgydx + Xxydy) 1/¥

wher e N = (Xgx Xyy - X°xy)

For the differential of ®, we have (d-surface)

a0 = @ dx + Qudy (28)

Substituting 1in the above (25a), there is obtained:
dd = X dx + Y dy
For the second differential, we have:
4@ = dx dx + 4Y ay
for a®x and day' are equal to zero since x and y are
i ndependent vari abl es. In this equation we substitute the
previously found expressions for &X and d4Y, and obtain:
a%0 = (Xyy ax” - 2 Xgy dx dy + Xzg 4¥°) 1/N
On the other hand, from equation (28):
%0 - By ax® + 2 By dx dy + Byy dy°

Conparison of the coefficients of d&x®, dy®, and dx 4y of
the last two equations shows finally that

c’x:: = Xyy 1/¥
ny = xXx I/N (27)

Qxy ="x.x'!' l/N
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These are the required expressions for the derivatives of
¢ of the second order.

The coefficients of the differential equation of the
flow (15) depend on the derivatives of the velocity poten-
tial @ of the first order. I ntroduci ng new vari abl es
into that equation (according to the Legendre contact trans-
formation, the coefficients according to (24) wll depend
on the new independent variables and only on these. The
partial derivatives of second order will be replaced, ac-
cording to equations (27), by the partial derivatives of
second order of the new function with the common denomina-
tor ¥. Since the differential equation (15) is |inear
honogeneous ¥ may be nultiplied out. By nmeans of the
Legendre contact equation, therefore, (15) becones |inear,
honogeneous, of second ardor, and with coefficients that
depend on the new independent variables only.

Let us introduce the new variables X Y. Physi cal |y,
X and Y are the velocity conponents u and w. The
new variabl es according to (24) are:

(X =) u = &
(Y =) v = ¢.v (28)

'x,=¢xx-+¢yy-l¢=ux+vy-®
The transformation formulas (25), (25a), and (27) are

.z =xu,y:xv,¢=ux+.vy—x
(29)
¢x=u,®y=v

Oxx = Xyv 1/¥, Oxy = = Xuy 1/%, Ovy = Xuu 1/¥ (30)

The differential equation (15) in the new variables then
becones:

%oy (1= 25)+ %um (1= T5) * 2%y 25 = 0 (31)

x and ¥y being the coordinates of the flow With the
Legendre transformation of equation (15) into (31) , we
passed from the flow over into its "veloclity image" - that
is, the hodograph (velocity plane) of the flow At the
sane time, in place of the weloeity potential @, which is
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a function of the position in the flow, we have introduced
the "position determining" potential X, whichis a func-
tlon of the velocity in the hodograph. "'~ '~ ™

The assignnment of the velocity along a curve AB is
equi valent to the assilgnment of an elenentary strip of the
¢-surface. Since the oontaot transformation 1s an el enent
correspondence, the X-surface nust contaln the correspond-
ing X-elenentary strip.

Bor later use, we ehall introduce in equation (3Ll) in
place of the rectangular ocoordinates u, v, X the cylin-
driecal coordinates e, ®, X (point transformation), fig-
ure 8.

The new vari abl es are:
c =Juk + v2

¢ = (tan™ %) (v/u>

X =X
whence
u=oc¢ cos @ (a)
v = cs8in © (v)
and
dc 1 1l
g9¢ _ = .~ . 2u =
du " 2 JoF g B u = cos@
oc
o8 - g1
v sln @
op _ _ 8in®
ou c
0P _cos o
ov c
W have:

X = Xu,v) = x[e,9] = xE(u,v), ¢(u,v) ]

go that
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X _ M, WX M, Heing
du Jdedu O ou 9 X © .
- \ (4)
a._)_(- = ax §-E QE aX Bin Q) + ax c_ios
oy 9dc av afP av ae: oy c
7
Furt her nor e: .
3%x _ a(dx/ou) _ 3(3X/du) cos @ - d3(dX/du) sin @
du? du dc o C
FX _ a(dx/av) _ 3(3%/3Y) 444 - 2(BX/37) sin o
duov du o op c .
% _ 3(ax/av) _ 3BX/3v) 4, o *+ 2(3%/3v) cosy
ave av do Fe 1) e

Substituting in the above the values of ax/au and ax/a v
from equations (A)there is obtained:

= 1 1
xuu-|xcc cos@-xccpﬂ-%—g+xcpﬂ%nm_| cos ®

- LXQp cosp ~X, sing -Xoo sing x-q: cosg cg] siz;g -

= Xy, conlp-X,, 2B C0IP. Xy simn Ly sife

+ %o 2 sintp cos® (c)

and the other two fornulas &lve:

= i
Xuv=Xce 81n® cosf{o+chp c?E_Q 51__‘2 X 8 ntp coa o _

- Xo 21R0 080 _ x, cos?Posin®y (a)

cr

2 sinp cos coa®
Xoy=Xoo 81P3Q+Xgg, 2275 CO8% + Xeop ——-5589 + X, 282

- XCPZ._sin‘cfEcoag (o)
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The transformation fornulae (a) tq.(e) can now be intro-
duced into equation (31).: The Iatter then reads in polar
coor di nat es: R

7. Characteristics of the Differential Equation
(references 10, p. 153, and 31, p. 282)

The differential equationa (31) and (31a) are a2 spe-
eial case Of the followi ng general form

A(X,Y) Zxyx + 2B(X,Y) Zxy + O(X,Y) Zyy =

= D,(X,Y) Zy + E,(X,Y) Zy + F,(X,Y) 2 (32)

if for the nmoment we write Z in place of X, and X and
Y for u and v, or e and ¢, respectively. The coeffi-
cients A to ©F of differential equations (32) depend on
the free variables onlw., For each pair of variables -
i.e., for each point of the hodograph these three magni-
tudes are given nunbers. There is a sinple integration
met hod for equation (32) that depends on findiang a Tayl or
series for the solution Z = Z(X,Y).

W seek a solution of (32) that contains a prescribed
elementary strip. Let the curve. over which the Z-elenent

strip 1s glven be expressed in paranetric form with t as
par anet er

X =-X(t)
(curve AB)
Y = Y(t) .

The Z-surface strip ‘(the boundary values of Z) over this
curve is then given by

= F(t) (33)

and 38Z/dn = (Qt) where n 1is the normal of the curve AD
Along AB:

dZ

4z ay
dt

t

dx YA
?1'17. x‘(t)+§TY'(t)

wPJ

o9
o
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On the other hand, on account of the preseribed boundary
vaelues along the curve AB, we have:

az

3% =.F'(%)
so that -
-g—%x'(t)+ %Y'(t):F'(t) (33a)

The normal of ‘the curve X(t), Y(t) has the direction

.coslnesn
cos(n,X) = -Y'(t)/qfi'z(t) + Y3 (%)
cos(n,Y) = i'(t)/,/x' + Y!
Hence
oz _ 92 cZ = 3
2 = 5% cos(n,X) + <3 cos(n,Y) = ,/—x—lg T X
32 3z .
- a_x ! + _a_Y, xl)

This expression must be equated to G(t). Thus along AB
we also have:

- -gTZ[Y'(t)+ S—i X'(t) =/ X" + T2 G(t) (33b)

Equations (33a) and (33b) may be solved for 3Z/3Xx and
3Z/9Y, since the denominator determinant of the pair of
equations 1is

Xr iy
| =x2+11®2 Lo

- Y! xt
Let the solution be
9Z/3X = p(t)

' (34)
0Z/3Y = q(t)

Differentiating each of +these equations with respect to t,
there is obtained:
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Zgg X' (E)+ Zge TI(8)= p' (1) T (85a)
'3L"~zii x1(t) * Zyy TH(8) = g (8) . . (35D)

For the second derivatives of%, we have as third con-
dition the "differential equation itself:

A.Zxx"' 2B ZH+GZYY= Dl Zx +.E1 Zy +F:|.Z (350)

%f ;he denom nator determinant of the system of equations
35 ‘

X' Y! 0
0 xt ¥'| =0 x'%.- 2B X'y + A ¥'? . (38)
A 2B C

1s not equal to zero, the three equations (35a~c)_nay be
solved for Zxx, Zxy., and Zyy. Let there bo obtained for

the-derivatives of Z of the soccond order along ABt he
val ues:

Zyx = R(t); Zyy = S(t);  Zyy = T(%) (37)

Differentiating (35a) and (35b) with respect to t and
equation (35c¢) partially with respect to X and Y and
substituting In the last two equations the values for 2,
Zx... from equations (32), (%4)ard (%7), there is ob-

talned the system of equations:

p" (1)
2 a
Zxx-!- Xt + 2ZIYY Xy + ZYYY ! = q_"(t)

a a
Zygxx X'° + 2Zgyy X'Y! + Zygy T

AZggx * 2B Zggy + O Zppy a(t)
B(t)

From these equations are obtained the four derivatives of
third order.of Z along the projection curve of the given
elementary.strip, since the deternm nant of the denom nator

is equal to the square of the determnant (36) and thus

not equal to zero ifthat determnant 4e different from zero.

fioceeding'in thie manner there are obtained all of the
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hi gher derivatives of Z gtarting from the boundary val ues
B(t) and Qt) {equations (33?. (34), (37), etc.). Itis
thus possible to write thesolution of 2 = Z(X,Y) also for
points whieh do not lie on the curve AB as a Taylor series:

Z(X,Y)=2(Xy,Yg) + il'i [zx(xo.zo) (X-Xg)+2y(Xg,Yg) (Y-Yo)l +

+-£f szx(XQ.Yo)(X—xo)a + EZXkaO'YO)(x-xO)(Y‘YQ) .\
+ Zn(xo.Yo)(Y-Yo)aJ + oeee

This method of solution falls, however, if the determ nant
(36) assunes the value, =zero, i.e., if

a
a aY

ax® 4x 4Y . a(x,7) (— =
ox,) () -2 F m@ at) =0

or
C ax? - 2B 4x 4Y + A a¥® = 0 (38)

This equation, deconposed into linear factors, becones

{A dY-(B+ /55-.1 0 dx-l iFA dY—(B—ﬁE-—A &) dx]: 0
gL

The denominator determinant (36) thus vanishes if either

A(X,Y) a¥-(B(X,¥)+./B3(X,Y)~A(X,Y) G(X,Y))dx=0 (38a)
or - -
Ady - (B=/3" =40 dax =0 (380)

It is importent tn observe that the pair of equations
(38a) and (38b) are giveniyy the coefficients of the dif-
ferential equation (32) alone. They are two ordinary dif-
ferential equations. The solution of each represents a
famly of curves f£(X,Y) = k. These two famlies of curves
are denoted as the characteristics of differential equation

(32). If these famlies of curves, defined by (38a) and
(38b) are real, then (32) in this region is denotod as hy-
per bol i c. If the two famlies coincide, then (32) is par-
abolic. In regions wWithin whieh the two sets of charac—~

terigtics are imaginary, (%2) is denoted as an elliptic
differential equation

|f, therefore, the curve AB along which the Z-elemen-~
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L )

tarp stripis prescribed as boundary value to (32)-is a
characteristic, _the described method of solutlon d¥ devel
opment of Z(X,Y) into a Taylor serles,” failsi~ -

As an a.ppl:!.ca.tion we ghall now compute t he character-—
1stlces of the differential equation of the flow The com
putation 1e simplestif we etart from the equation in po
| ar coordinates (31la). Oomparison of (31la) with (32) shows
that for thils case the magnitudes A B, and O assume the
following val ues:

a
c
A=l 3=0, o=-%(%&-1)

and the variables X and Y are now e and ®. The ordinary
differenti al equatlons of the eharacteristics (38a) and

/7c h ) '

Substituting in the above the emeragy equation (9):

gh = gh, - c®/2

there 1s obtained the differential equationa of the two
famlies of characteristics:

8 2
c® ~« = gh
toap = & 8 ~ 2 de (40a,b)
3 o 3

Before we integrate this equation, we wish yet to Introduce
anot her concept.

The eritical velocity a* (nfe> ia given by the con-
dition that the flow velocity is -equal to the wave propa-—
gatlon velocity a =,/gh, 80 that the Each nunber ¥ = 1.
Thus if ¢ =g h, a* = ¢ =,/2 h, Let us conpute the wa-
ter depth at the eritical positions. From the enersgy
equat i on

c® = 2gh. - 2gh

and thls should be equal to
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a° = gh
that 18,
2¢h, ~28 h =g h sothat_zf::%ho (41)
and hence,
o*d = g? -§ &1, (42)

The eritical positions in a water flow without energy dis-
sipation are |located where the water depth is two-thirds of
the total head. These poeitions in an accelerated flow
are the transition points from "gtreaming" to "shooting"
wat er and eonversely, for decelerated flow

Substituting (42) into equations (40), the latter af=
ter a small transformati on, becone:

a
+ - 1 (c/a"‘) - d.( Il)
do (c/g*) / (c/a*) /3 c/a.

W shall denote c¢/a* as the velocity ratio e, for which
a* is taken as the refcronco wvoloecity. Hence

[¢] -
1-

— l

d (433lb)

s
N

Q
¥

The variables in the above equation are already sepa-
rated, and the equation map be integrated by a simple
quadr at ur e. We first introduce a new integration voriable:

—_3a
z = C

so that we have:

Xdp = /[‘5: —J—é::_l dz = % cd ; 1 frg dz = =
. 1 - 2/3 . . /(2 = 1)(3 -~ =)

3D ey
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This integral splits up into two parts, J, and Jg, of
which the firet may be directly evaluated:

M/B dz
Btdz-z" /—le (z-2)

In ‘the second integral

J/‘ J3 as
JB S5 - = u —B
g r - 3 + 4z -

we mnke the substitution, w = 1/z, so thnt:

= ﬁ_ (B_in-l) (2~2)

z = 1/w

1
dz = - dw
gz .

We now have:

qf— dw r d(3w) -1
J, = ——— = ¥, ___ = (sin~?!) (3w - 2)
y v Bw +a4w-] ‘j l—(3w—23§
= (sin™ ') (3/g-2)
Denoting
_ 3 -1
f(-c) Ef% 1°—_-€B-/—3- dc (44a)

_we have finally with J and J3

£(3) = 3 [ﬁ (s1n-%) (5°-2) + (s1n™?) (8/3 ~2) 1 (24p)

The solutions of (43) are thus:
® -, = £(¢c) (45a)
- + @y = f(O) (451)
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where @, and ", - are the constants of integration =’

t hese being the: parameters Of the two famlies of charac-
teristics. The latter are shown in figure 9; they are ep-
icycloids, the loci of the points of the eircumference Of
a circle which rolle on another circle (fig. 10). This
statement can be confirned in the foll ow ng nmanner.

From the equations (39) (characteristics). and from
" the energy equation (9), It follows that for h = othe
magni tude of the velocity beecomesamaximum In the vel oc-
ity dlagram the extremty of eg,. then lies on a circle

Knax (fig. 9). For all possible velocities that occur,
e(u,v)<epgy h > 0. For e2 > gh, the radlecand of (39)
t hen beconmes positive and the root real. Hence, for that
region of the hodograph in which ey, > ¢ > J/&k (region

II?, there are two real famlies of characteristics. This
holds for the shooting water (supersonic flow. For a flow

in which ¢ < .eh, the root in (39) becones inmaginary and

there exist in this region (I) no real characteristics,
This is the case for streaming water.

Let the angle ¥ be chosen as paraneter (fig. 10).
Then, on account of the "relling condition,"”

a = (z/R) ¥

From the triangle Pso, there is obtained for B

B = (tan—?) [ r agin ¥ ]

(R+r) = r cos ¥

From these two equations, we have:

] _ - — - - .81
@ =0o-p= (/B v-(taa™) [(R+r1)‘ 5 ]11' ‘clzlos ‘ll] (a)

Fromthe cosine law for the triangle PTO

e = J(R+r)a + r° - 2(B+r) T cos ¥ - (v) -
Differentiating (a) and (v), there is obtained:

. [(&+r) +r2(a+r)r cos w] r/R=(B+r)r CcOS y+r ay (e)

do
. (B+r)® + 2® - 2(R+r)r cos
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. P r(B+r) sin ¥ . ay ()
T e S(R¥F)T + 0 ~ 2(RHr)r coe Y -

. Bliminating in these two equations sin 'y and cos ¥
with the ald of equation(b), and than dividing(e)by(d),
there 18 obtailned:.

v _ 1 8%(R+2r)/R = R(B+2T) (o)
do ¢/ 7- -

+ 53(2r%+4Rr+4r®) - R°(B+2r)"

Dividing nunerator and dernominator of this fraction by
Je® - B® (r¥2r)/R, we have, finally:

9.l [ (e)
de © R® - [R/B+2r))® ¢

8s was to be proved. Bor R = 1 and (R+2r)/R = J/3, this

1s the differential equation (43). The epicycloid drawn
in figure 10 18 thue a characterlistic of the family (458).

The characteristices of shooting water flow are epicy=-
cloides between two circles whose radii are in the ratio

. J/3:1l. They are drawn on chart 2 of the supplement. For
8 8as, the characteristics lle between ecircles whose radii

are In the ratio &/ (k + 1)/(kx = 1) to 1. They are shown
on chart 1 for ailr (k = 1.405).

8. Further Properties of. the Characteristilcs

We have seen that If an elenmentary strip be given as
boundary value over the characteristics of a vartial dif-
ferential equation, the solution nethod by a serles devel-
opment of the required function falls. BSome further prop-
erties of the characteristics will now be discussed. The
physical character Of the Bupersonlc flow (shooting water) =
which differs essentially from subsonic flow '(stream ng
aster) = will thereby receive an interesting explanation
from the mathematical point of view.

In equation (32):

AZxx'i' 2BZH+OZYY=DIZx+Ele+le
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| et new.variables be introduced by naking use of a point
transformation. Let the new variables 'be:

A = AX,Y)

(46)

p(X,7) -

where for the nonment we.do not fix any definite transfor-
mati on fornulas. " From .(46) we obtain the inverse fornul as

X = th.u)
T =-.Y(x s.p')

B

The solution of the differential equation (32) Z = 2(X,Y).
is thus a function of A and pu.

Z =z [Ar] =2 [NMX,7),n(X,Y)]
From tho above, wo havo:

(47a)

2y

Differentlating = second time, there are obtained the de-
rivatives of second order of Z in the new vari abl es:

a a3
Zyx = Zaa(Ax)° + 2Zp Agex + Zpuleyg)® + 2\ Azg + I pgy
Zyy = DMy + Iy, (AgigtAybg) + Byunguy + ZaAgy + 2 kyy

Putting these expressions in differential equation (32),1%
becomes? .

2 L pmy 8
Zya [_nx +2BAy Ayt G2y ] +22y [“‘x“x"‘*"("xl-"r”‘r“x)*c"r“'rl +
a y
L m LApxa+23uqu+ch ; =Dy 2)\+E, Z | +F, 2

W shall now determine the transformation formulas
(46) . The differential equation of the characteristics 1s

c dx® - 2B gx aY + 4 d¥2 =0 (38)
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If equation (32) 1s hyperbolic, (38) has tfo real famllles
of curves as solutions.. -Let- these Dbe

- wnme .

- f, (X,Y) = constant -, '
: and i . (49)
- fy (X,Y) = consetant
) Along each of these curves- . .

This equation toZether with (33) -ives for both f; and
fa, the relation: .

A fxa + 2B fx fy + G fy" = o0 (50)
An essential sinplification is obtained if, for the

traneformatlon fornulae (46), the follow ng apecial ones
are chosen:

A=f,(X,7)

(51)

(4] fa(le)
[curvilinear coordinatea in tae hodographs, £ig. 11b). The
two coefficients of 2a) and 2 vy (50) then wvanish in

s the transfornmed differential equagion. the latter receiving
: the form

e —_— = - La(x o B) —25 +v(n,p) 2 ——ﬁ + c(n, 1) Z_] (52)

This form 1s ealled the normal form of the linear hyper-:
bolic differential equation. It is well sulted to numeri-
bal integration by means of the difference nethod.

As an apvlication, let the characteristiecs (45a and b)
be Introduced as curvilinear coordinates of the position-
determining potential x (3la). We then obtain the nor-

"mal form of the differential equation of flow.
By elimnation of h and &, fromthe three equations:

(9) e® = 2gh, - 2gh, (42) =a*2?= 2gh,/3, and a® = gh

there 1s obtai ned:

! c? = 3a."'a - 2a.a
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from which, after short computation and substitution of the

velocity ratio © = c/a*, there is obtalned:
a 2 A =2

9-5=2—a-5 and & - 1 =3 2—= %

a 3 - a 3 =T

Substituting this expression in (3la) and nultiplving the
latter by the critical velocity a* (42), then (31a) may
be witten in nondi nensional form.

.2 .2 2 - a
5 X _ oX 3(8 -1) _ 8X3(s =1)_9
“a T & =3 3

dc op ¢ (3

-8 ) dce(z -12")

In the above we now introduce the coordinates A and b
through the following exprersions:

a 2
a a
Xpp=Xan(Ap) + 2ippgbig + K (p) + ahgp * Xy

After substitution and rearrarzement, there is obtained:

2 : 8 _a PRRER : 1 2 . 2 )
2% (@) - 3E=p) (a7, oK f(ae . A1) (auy] .
6N L oc ¢ (5-¢ ) op’4 ou LYBC ¢ (2-2%) v d
+ 2 3° x [Qé ou _ _;igi:%l oA §E] +
dN3K Loc 8¢ ¢ (R-¢") 3p 3B |
L 3% 3% | 831 o | 8(3-1) an],
aALae  so(z-e) 3y® ©(3-3%) acd
% {8%u _ _8(cP-1) op _ 3(T2-1) aw] . .
+ %ok . o 5 et el B (&)
1 LIT T (2T~ ) 3" B(3-T°) acy

The two sets of charactrr¥istics (45s) =and (45b) in the im~
plicit form are now

conztant

£(3) + @

£(T) - o const ant
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Substltutlng in (A for A and B by (51). the two val ues

- -t . > -

A

T
@) i - - - (5%a)
and .

p=£(3) - (53b)

the coefficients of ¥p, and Xpp become s®ero and, since:
Ap= 1, Hp=~ 1, Agp =0 Hpp=0
Mz = df(8)/de wg = A£(E)/dE -
Ags = a°f (B)/aE” wgg = a°r(w)/as®

(A) becomes

l.( 's(c -1)] Cax ax" 3g  3(3%-1) df  _
axau Lax ap Lde? T Te(3-c?) de

and the normal form finally reads;

d®s(s) _ 3(e®-1) arf

Sx (o, 1 I TSEEDE L (3,2 (s
OAdW 2 car\® . _3(3°=1) D
IR Y | 3Gy

dc- g2 (3~c")

where A and u are defined by (53a) and (53b), _and K
%s E?talned by substituting the expression for £(e¢) from
44

K = E(A,u) = E(A+p) = K(C) = ——
v 3 J/(3-8%) / (5%-1)°

The nunerical values smr K are collected in table I1.

The lines- A = 'constant , and w = constant are char-
acteristice since we had. SO chosen the transformation for-
mul ae (51). If, after the transformation, A and & are
plotted as rectangular coordinates (fig. l1lc), it appears
that the normal form (53¢) of the hyperbolic.equation has
as characteristics, the sets of parallels to the A and
B axes. For equation (52), waich is also of the form
(32), A = 0, B=4%,C= 0, and the variables X and Y
are now A and . These substituted in the general equa-
tion (38) of the characteristics, give:
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d)\dll:O
The two solutions of this differential equation are:

A

const ant
and
constant (fig. 12)

n

The solution Z of the differential equations (32)
and (52) may be determined if, along a general curve, an
el ement strip is prescrived as boundary value. This curve
may not, however, be a characteristic. But if it is made
up of two characteristics .of different famlies, it is sur-
prising that a solution of the differential equation may
still be determ ned. For this purpvose, the function 2
alone 1ie sufficient as boundaryr wvalue While no elementary
strip may be prescribed since this would be imposing too
many conditi ons.

Let the values Z = ®(A,p,) = ®(A) and Z = V(A 1) =
¥(p) with @(A;) = V¥(wg) bo ziven along two segnents
oA, and AgA, of tno characteristics (fiz., 12). Along
Aoh, there is therewith also siven oZ/5m, but 23z2/3uw
is assumed not to be prescribed; oimilariy, along Ay 4.

It s to be-observed that NOo elenentary strip is prescribed
al ong A A Ay of Z but only the values of Z itself.

By the nethod of so-called "successive approximation,” it

is then possible to find Asolution Z of the partial
differential equation (52) for the entire reglon AjAghAz4;, .
whi ch assunmes the given values of Z along Aidolda-.

As a first approximtion, EZorn (reference 10)
Zg, = P(A) + W{l) = ®Ag,Ho)

for all values A and v of the region A;Apdzdz. On
the boundaries AgA, and Agdz 2o becones equal to the
prescribed valames.

*The »roof will not be 3iven here. It is carried out by
J. Horn (referencel”), 1913, sec. 30, »n. l64-189. For us
it is of imnortance tO know Only that the orescribed func-
tion Z(A,u) satisfies tho boundary values and the hyper-
bolic differential equation (52).
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We now form with the right side of equation (52)%

-

'X"-u: L T T T P . '
0%, oZ "o
Zg‘_O\_-P-). = -[f (a 3x b ﬁ +' cZu,}' d)\d)U
o Kn

where the integration 41a to be taken ovar the doudbly hatched
rectangl e. Proceeding in thia manner, we form

02 ,_
Zg(A,p) = ff ( b a.fu Loy czg_1> dadp

o“'o

SBetting
Z(A'ul) =ZG+ZB+ZY+ ;----

then this sum 1s the requirod solution and it converges,
as shown by Horn, in the rectangle A4,;Aq4;4;.

There will now be shorn a last property of the charac-
teristics - the nost imnortant for tho application to
shooting water. At tho same time, in addition to the neth-
od of solution of (32) by sories devel opnent and the nethod
of successive approximtion, we. shall becone acquainted
with the nethod of integration of Riemann.

We denote by WZ) the nost sgenerel homogeneous ||n-
ear differential expression:

NZ)= AZxgx + 2B Zgy + 0 Zyy + DZyx + EZ2y + F Z (55)
where the coefficients A-to-F depend only on.the free
variables X and 'Y. The general |inear honbgeneous differ-
ential equation of the second order is the equation (32):

' N(Z) = O (56)

To the expression N(Z) another one ¥(W) is madé to cor-
respond,-having -the.. same coefficlents. .A B, 0, etc’ as 1in
(55), where

M(T) = (AW)xY+2('BW)XY+(GW)YY—(DW)x-(Ey)rF F W (57)

= M(W) = A Wyg+2B Wyy+C Wyy+2 Wy(Ag+By- D) +

+ 2 Wy(By+Oy-% E) + W (Agg+2Byy+Cyy-Dx-Ey+F) (57a)
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MW 1is then denoted as the adjﬂ“&x of -¥{2) and the equa-
tion

MW = 0 (58)
t he adjgglt differential equation of N(Z) 0. Z and W
are functions of X and Y. Z = Z(X,¥), W= W(X,Y). x(W)
O has the same characteristics as N(Z) = 0. since in
(57a) and in (55) the coefficients of the partial derlva-
tives Of the second order are the same and since, accord-
ing to (38), the characteristics depend on these coeffi-

N.A.C.A. Technicel Menorandum No.

clonts only.

By addition of the i

AWZyy - Z(AW)gg

BWZ yy

. 2(BW)xy

BWZXY - Z (BW)xY

CWiyy

Z(CWiyy =

DWZy Z(DW)g

FWZ ZFW

dentitieS'

LAWZx - z(m)x3

e
ty
£3
=
—

> Qo
]

there 1s obtained the identity:

WN(Z)-Z MW

Denoting for

1

+ S

Tl

Qo

a nonment

934

5"

9 | o I

2 -2 BW

oY L ] 3% L Z2(BW)y
r r

2 | 3 - 22 | z(3m

5% | av

a -\ )

-o--_i-_ PI-GFZY - Z(GII ]Y}

& "

-é_i l Db W 1

-—a—

d
xl
%]

BWZy - Z(BW)yg+OWZy-Z( GW)Y+EZW|

P and Q. respectively, the above equation reads:

X, Y plane;

T N2)

Let

- Z Y(W

This equation we shall integrate over
the boundary of the region of

3P/aX + 3Q/3Y

the regilon

a r Lrrd [ dhY . -
3% LAuzx,- z(gu,x+rvzr—z(BW)Y+Dzw3 +

(59)

the two exnressions in brackets by

(59a)

F of

t he
nt egrati on,
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to be more definitely |fixed.' later, be O - (fig. 13):

= g e

ﬂ [_w N(Z) - 2 u(w)] ax ay =ﬂ'(amax + 3Q/8Y) ax ay
(F) L F
The rieght side may by integration by parts be converted

into a line integral. There 1s obtai ned: b

J[f’ [w N(Z) ~ Z u(w)] ax 4Y =52§ (P 4Y - Q aXx) ~ (60)

(F) (o)

The generalized Geen's theorem (60) will prowbe applied
to the normal form (52) of the hyperbolic differential
equati on. For this purpose there is to be set in (60)

A =0 B=#%,0=0 D=a E=%b, and F =c¢. In
place of X and Y, we have A and p. The expressions P
and Q then becone: "

P= i(wz_u-zwuh a zw

(61a)
Q = #(WZ - ZW)+ b 2V

Geen's formula (60) now reads:

‘17" [w N(Z) - 2 M(w)l’dx dp = (5 (P dp - Q an) (611b)
~ J

(F) (c)
Wth this fornula we may now prove the following:

If Z 18 a function of A and ®, Z = Z(A,s), which
satisfles the hyperbolic differential equation (52) and
for which, along a' curve from 4; to B; (fig. 14) = which
thus, in general, is not a characteristic - an elenentary
strip is g§iven; then by these boundary values and the dif-
ferential equation, the function Z ie determined in the
characteristic rectangle A,0,B3,0,', which contalns the

curve 4A;B; with 1ts. end points.

In order to ehow this we apply the fornula (61b) to
the region @ and its boundary ACBA .of figure 14, where

"Along A,B, - therefore Z -and the slopes 3Z/oA and 3Z/3dp
are gilven where naturally hlong 4,B;, the condition 42 =

Z\ 4\ + Z, dp nust be satisfied, /-\
)
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O is an arbitrary interiorr point (A =P, B = a) of the
characteristic rectangle A,;0,B,0,'. In integrating along
0B, only P dp contributes anything; Q dA does not con-
tribute anything, since dr = 0. Similarly,

0 0
./‘(Pdu--de)=_de>\
A A

since along AOwpw=q = constant, so that dp = 0. W
thua obtain from (61b) applied to the hatched region G

B 0 A
mWN(Z)-Z Id(V\)] aA du-=fP d.p-—/Q, d>\+f(P dp-Q dA)
-0 A B (62)

()
Non from (6la), if the first termis integrated by parts*

B B :
fPau=f(§w-g-zl—L—§ng+azw) dp =
0 0 B
:%(WZ)B"%(W 2}, _fz(aW/aP—aW)du (a)
0

Simlarly, by integration by parts of the first term

0 0 . _
_fq“:q,.‘/ (-gw-g%\+§z§‘—;-'bzw>d>\
A A 0
= - %W 2" + 3W32), +f Z(W/5M = b W dA o)
b
A

With expressions (a) and (v), fornula (62) becones:
L ] .

B B B

f } v a = 3(2) | —f 2z 3

0 0 .0
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- -[wfn(.z.)-z n(w)] d\ dp=~ (W 2)o + % _[(i Z)y+(W 2 )31+

(¢ : 0 . B
+le (3W/oA - b W)aA -fz(aw'/au.- a WMdp +
A B 0 .
+f(Q,d>\- P aw) . (63)
A .

W now choose for each point. 'O which is given by the
coordinates A = p, p=q, a definite function W of the
coordinates A and m: W = W(A,p). In this function,p
and q occur as paranetera, the funetion W(A,n) Deing
ﬁlifferent for each choice of the point 0(p,q). W thus
ave:

W= w(,u) = W(A,u; p,q)
where the funoction is to have the follow ng properties:

1. At the point 0 1tself (p,q), W is to assune
t he val ue 1.

_ 2. The function W ie to satisfy over the entire re-
gion G (fig. 14) the adjunct differential equation M(W)=
0, i.e., be a solution of

¥(W) =0 (64)

%a) Along the-straight line OB (x = p constant,
B variable) the function Wis to assume the

val ues:
11

fa(p,p)dn —
W(p.pn) = o2 (65a)

Condition 1 1a there'bg' satisfled s.i-nce for the ‘point A =
Ps b = a, W(p,q) = e%° =1 Differentiating (385a) with

respect to u, there is obtained for the function W along
OB the relation .
awW/dp - a W= 0 (662)

3b) Sinilarly along the straight line A0 (p=gq con-
stant ;A variable) the function is to assume
t he val ues:
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A

A,gqldA
LW({N,q) =°'r[b( @) (651)

Her e, toé, vae condition W(p,q) = 1 is satisfied. Dffer-
entiating (65b) along A0 wth respect to A there.ls ob-
“tained along this line the relation:

OW/3A - b W = 0 (661b)

The function defined by the conditions 1, 2, and 3,
is knomn as Green's function W(A,w;p,q) Of the -differen=~
tial equation N(Z) = O. It is determned only by the co-
efficients of this equation. That it exists we know for
W, according to condition 2, 1s a solution of the partial
differential equation of. thesecond order (MW = 0, for
which the values of W -along the two characteristics 40
and OB are prescribed according to requirenents 1 and 3,
as boundary val ues. It is thus possidle to determne W
by the nethod, for exanple, of successive approxination.

' Substituting now in (63) ¥(Z) =0, ~nd Geen's func-
tion W with its properties (64) and (66n,b), there is
obt ai ned:

B

0 = - Z0 + i{(WZ)A'i'(WZ)B:i'l":/‘, (Q dA -~ P du)
L
A

so that
B

70 3 2(p,q)=} Lﬁwz)A+ (W2)g +  (Q dr =~ P dp)  (67)
S
Substituting further the expressions (61a) for P and Q
we have:
70 = Z(p.,a) = % [(wz)_,_ + (W)B, +
B
+f(% WZA -3 ZW +DZW)ar+ (- i—,—wzu+-§!,- Z¥,~uZVW) db =
| B

B
= % [(wz)A+(wz)B] + /.j& W(OZ/ON cos p ~ OZ/Ou sin o)
¥, L
A

B -~ % Z (3W/ohcos® - 9W/3pm sin @)

@2
L
+ z w (bcos cp - a sin @) as (67a)

A/ J
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W here thus expressed the required solution Z at
-point -0(p,q) by-the.given .boundary. val ues; 1.e., by a
portion of the elenmentary 'strip Ai1By. The cohsiderations

hold for every arbitrary poiat O which belongs to the
characterlistic rectangle deternmined by the points Ay arid
B,. It may be remarked further that Zls already deter-

m ned at point O by its élementary sStrip along AB and
therefore that the portions AA; and BB, (fig:. 14) of

-the boundary value strip A;B; have no effect on the
value of Z at point O. '

By neans of the elementary-strip A;B; therefore,

.the solution Z(A,s) of the differential equation N(Z) =
O is certainly determned In the |argest characteristic
rectangle which is fixed by A;B,. Wewsh to show, fur-

thernore, that it 1s determined only within it, and not
outside of It. Let Q be a point without A;0,B,0,°'.

Z 1s not determined in Q since, according to fornula
(67a) ZQ depends on the elenentary strip AR (fig. 14).

The portion B;R of this required elementary strip, how
ever, is not given. Thus the avove theorem is proven.

A special case walech we still nust examne in partic-
ular, ie that for which the ocurve 4,B;, -~ along which an

elementary strip of Z |s given - degenerates into the
line A,0,'B, (fig. 15), consisting of two characteristics.
From the nethod of successive approxi mation, we know that
Z is then determined in the region 4,0,B,0,) by the as-

signment of the values of Z alone, along 3,0,/ 4 . This

fact will now al so be derived from Riemann's nethod of in-
tegration.

W start from the sol ution

Z(p,q) = % |-<W Z), + (w'z)BI + < -(Qar-P awp) (67)
|
(40,'B)

Since along A0, 'A= constant, d4x = 0, and along O,'B

B = constant, dap = 0, the integralon'the right side
bréaks up into two-part 1integrals
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B o, B

. 1
f(Q,d.A-P'd.u)=f—Pd.p.+f-Qd}\

4-0,1-3 A 0,

Substituting in the above the expressiomns P and Q (equa-
tions 6la), there is obtained, as before:

0,! A

-f Pdu=+f (8 WaZ/aw - % Z aW/aw + a Z W)ap

A 01’
This tine nme integrate the second term by parts and obtain:

0,' A
—f P dp = &(W Z)ol.~%(WZ)A+f W(az/ak + a Z)dp
A 0,' (a)

Similarly (again the second term intezrated by parts):

B B
f Qan = H(W Z)y 1 - 5(W 2)y +f W(IZ/oA + b Z)AA

0,! o; 1 (v)

Substituting (a) and (b), we have, finally:

LA B '
Z(p,q)=(W Z)oli +/ W(oZ/3p+a Z)du +f W(3Z/oA+bd Z)aA

01' 01' (68)

Wth the prescribed values of Z as boundary val ues
3Z2/su is also given along 0,'A; The integral from O,

to A nay thus be evaluated without the necessity of
giving also oZ/éA and hence an elementary etrip. Sim-
larly with the Z valuss alone, the walues 3Z/3A along
0, 'B; and also the second integral in (68) may be eval u-
ated by aselgning Z alone. The fornmula (68) thus repre-
sents the solution Z(p,q) in the entire characteristic
rectnngle 4,0,B,0,°'.
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9, Summary - Lt . : "

- T

From the differential equation of. the wvelocity poten—
tial (15) of a compressidle flow-and from the flow space,
we wereg | ed by the Legendre contact transformatlon to the
differential equation of the poeitlon-determ ning poten-
tial X (31) 1a the veloeity plane. In aonneation wth
.this partial differential equation of seaond order, we be-
came famillier with the characteristic curves and some oOf
their properties. For 'shooting water and for superspnic
flows, these aonsfst of two real fanilies of curves, name-
ly, epiayalolds. The Riemann nethod of solution showed
that the solution of the hyperbolic partial differentia
equation by the boundary walues iS alweys deternined wth-
in a conplete characteristioc reatengle, nanely, the smallest
rectangl e which contains all the boundary val ues.

THE METHOD OF CHARAGCTERISTICS

10. I ntroduction

| nportant contributions to the solution of the differ-

ential equation of two-dimensional supersonic flows have
been nmade by Prendtl, Meyer, Steichen, Ackeret, and Buse-
mann. Whereas the firet solution nethods are purely com
putational,. it was pointed out by J. Ackeret that, wth'
the aid of the characteristics a graphical nethod may be

.. devel oped. This has been carried out for flows wthout
energy dissipation by Prandtl end Busemann. Xor the case
of flaws with Inpulsive discontinuities, Busenenn has de-
vel oped - on the basis of the nethod for nondissipative
flows - a graphical nethod where the characterlstlcs are
repl aced by the so~called "shock polara" (references 1 (or
2), 7, (pp. 421-440), 14, 15, 17, 18 (»p. 499-509), end 27).

Let the velocity of a two-dinensional supersonic flow
or a shooting-water flow be given along a portion of a
curve AB (fig. 16). Let the flow be fromleft %to- right,
0" a point downstream through which pass the two Mach
lines BO' and .AO'.. The region ofthe f£low bounded by
the Yeah lines .0A, OB, BOo!', A0', we shall denote as the
Mach quadrilateral, We shell assunme that no restriction
of the flow (vertical walls) is located in its interior:
that is, neither boundary nor any other odject. It may be
shown by a sinple consideration that under these assump-:
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tions the flow, if prescribed alon? AB, determ nes the
condition in the entire Mach quadrilateral AOC BOA.  Qut-
side of this quadrilateral, influences fromother points
are effective. At wpoint ¥, for exanple, another wave

GF nmay arrive and produce a di sturbance w thout producing
a change on- AB, since. GF is a wave of the same famly
as BO.

Si nce every nondi ssi pative flow 1e al so a possible
flowin the opposite direction, the sane considerations
apply to the upstream region AOB. This statenent is not
in contradiction of the general fact that in a flow with
the above critical velocity, the effects of disturbances
make thenselves felt only downstream W aOnot state
that the condition at O, for exanple, is caused by effects
on A3, but rather, fromthe effects on AB, conclude as
to the upstreamlying causes.

It 1s to be observed that the Mach quadrilatera
AO'BOA I n general has curved sides Which, as Mach |ines,
are determned with the flow itself. In the preceding
section, fromthe integrals of the hyperbolic differential
equation, we becane familiar with the remarkabl e fact that
boundary val ues act as determining factors only within re=-
. stricted regions. To the characteristic quadrilateral,

the region of solution of the differential equation, there
corresponds in the flow the Mach ocundrilateral. The Mach
. lines are no other than the %characteristics" of the dif-
ferential equation of the veloeity potential. The charac-
teristics in the flow plane are' not given, however, in
advance as those in the hodograpx, but becone known sinmul -
taneously with the solution ¢(x,y). This is due to the
fact that the coefficients of that partial differential
equation (15) contain not only the free variables but also
the. first -derivatives Of the function @, that is, &4

and ®y. This 1s-also the reason why we passed fromthe

fl ow space to the velocity plane (equations (31), (31la),
and (53¢)).

11+, Physical Basis of the Method of Characteristics

. By means of the characteristics in the velocity plane,
it is sinple to draw the field of flow of two-di nensiona
supersonic flows and al so shooting water if the flow of
approach and the side boundaries are given, Wth a vel oc-
ity prescribed alone; a line, the flow may be determned in
general in the circunscri bed Mach quadrilateral.' It is
thus a question of Gaphical method of solution of the par-
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tial differential equation (15) or-(3L). The flow is known
4f- the velocity. (u,v) .is known at -each.polnt (x,y).

Hence, It iS not necessdary tO0 know the véloclity potential

®(x,y) or-the -position-determining potentiar X(u,v) them
sel ves. It |Is sufflioclent.only to determne Xy:Xy 'and

®xi®y. (Conpare formulas (29): Xu = x, Xv =Y and
& = u, ¢y = v.) '

" The graphical nethod |Is based on-the simultaneous. con- -
structlon of the flow in the velocity field (u,v) and In
the field of flow (x,y). .

Letus consider first a parallel-flow assuned tobe
bounded on one side. At the position 8, the wall re-
ceives. a small deflection 8 (fig. 17). In the ease of
supersonic fl ow and shooting water, this leads to a pres-
sure increase.”

If the wall has a convex corner, a flow arises with
di verging cross section. In the case of shooting water,
this leads to alevel drop and acceleration. .

Since in the boundary of the frictionless fl ow of
figure 17, no finite length occurs as reference |ength,
all streamines nust %be similar with respect to the corner
8. Water depth and velocity in nagnitude and direction
t herefore have constant val ues al ong-each stream through
t he corner.

The flow of figure 17a foOr large deflection angles. is
described in Part |l of this report (T.M. No. 935), under
Shock Pol ar D agram page 1. This flow is nonstationary.
The discontinuitiesg Oof the different streanlines are equa
and all 1lie on a straight stream ST passing through the
corner. For extrenmely smml| deflections, the corner |eads
to only a small dlsturbnnce in the flow Since small dis-
t urbances have the Mach 1linos as the wave front, the dls-
turbance line ST is a Mach line. It forms with the

*The foilowing coneiderations hold for ‘water and gas fl ows.

" 8ince, however, for tho anal ogous concepts different terns

are applied 1in hydrodynamics and gas dynamics, both would
al ways have to be carried along In this work. This diffi-
culty has, been avoided as far as possible bw» using the
terms from hydrodynamics. Where terns from gas dynamics,
neverthel ess, occur the corresponding terns are: Expan-
sion = |evel drop; conpression ‘= level.rise; Inpulse =
Jump; oxpansion wave = depression wave, ete, ..
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parallel flow an angle 'a where sin a = a/c = Jeh/e.
For sonewhat |arger deflections the dlscontinulty lies on
a stream ST, whose direction lles between the directions
of the two Maeh |ines of flow | *before the.deflection,
and flow Il after the deflection.

The fl ow correapondiﬁg to figure 17b for large de-
flections and hence, strong acceleration, |s treated nore

In detail In section 21, Part Il of this report (T.M. No.
935), under Level Drop about a Corner. In contrast to
level rest, the drop is continuous. It begins agaln on
account of the slmlarlty for all streanmlines on a stream
ST . This Is a Mach 1ine of flow | before the level drop
The defleetion for all streamines ends on a stream STV,
a Mach 1ine of flow II. For small deflections, It may be

assuned as a first approximation also for the level drop
that It Is concentrated on a nean stream ST. An impor-
tant slnpllflcatlon Is thus obtained for the qraphlca
nmet hod.

Both the small level drop (In the gas expansion) and
small level rise (conpression) have the folloming in com
non: The veloeity receives along a disturbance line a
change in magnitude and direction. The direction of the
di sturbance 1line isS givan as the nean direction of the
two Mach lines of the conditions before and after the
change.* |In traversinz this line, there |Is also a change
In the pressure. The pressure drop or gradlent - that is,
the Increase In pressure per unit length in the direction
of the nost rapid change = is thus nermal to the nean Mach
line. According to Newton's law, the acceleration and
hence al so the vector change In the velocity, has the di-
rection of the force. W thus have the result: The ve-
locity vector E; before the deflection (rise and drop)

receives as a result of tho deflection, avector |Increnent
— .

Ac which is normal to the Mach |ine. Since the defl ec-
tion engle |s also known, A—; |s determined (fig. 18).

The graphical nmethod consists In building up the en-
tire field of flow out of small individual Mach quadrilat-
erals, in each of which the velocity is constant and de-
flections occur fromono quadrilateral to the 'other.

*\Wherever necessary for clearness In what follows, a dis-
tinctlon will be nade betweon disturbance 1liae and Mach
line. The disturbance lines are those along which the dis-
contlnultles arise. Disturbance lines of Infinitely small
intensity are-Mach Iines. Both pass over into one another
In steady flow
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12. Mach Nunber and Angle.

" " |t 18"imPoFtant that the Mech~humber - M - and:tke angle
e (sin o = 1/M) are given by the magnitude of the flow ve-
loeity alone, since sin a = + &h/e and. according tot he
"energy equation, the water depth h depemds uniquely on
the flow velocity (equation (9)). We thus have:-

sin®a= gb/c” = (an, - 3 o)/ c®

‘Dividing nunerator and denom nator of the right side by

Ta*r? (42)
a®?

= 2gh,/3
we obtaln in the notation of nondimensiaonal velocities
C = cl/a*:

1/M® = ain®a= (é":2 —%Ea)/"‘é? ' (69)

For the graphical nethod, there is applied the graphica
representation of equation (39) (fig. 19), a being »plot-
ted as arc, and -¢,as radi us vector. I n rectangul ar co-
ordinates, ¥ = ¢ sin a

=% s a =213
2 2
and
-a - 3 -2 3
u =a(1—sinam)='§c-§
Elimpnating e from those two equations, there is obtained

the curve in rectangul ar coordinates
— R - -2
(v//3) + ¥ =1 _ - (70)

"This 1s an ellipse With major nnd ninor semiaxes /3 and
1 (fig. 19). For an ideal zns, it is an ellipse with the

- seminxes ,/ (k + 1)/ (x =. 1) and 1.

13. Gh.-’_ra-c-.teristics o

| f any nondi nensional veloecity ¢y .is giwen at point

P of the flow »lane, the direction of the Mach |ine at
the point considered is Obtained in the follow ng nmanner:

€y is drawn in the velocity plane (£ig. 20). The .ellipse
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is now rotated about O until the extremty of oy lies
on 1t (two possible oases).. Then, according to figure 19,
the prinecipal axis of the ellipse so rotated gives the di-
rection of the Mach lines in the flow and according to
figure 18, the mnor axis of tho ellipse gives the direc-
tion of the velocity increnent Ac. Pour typos of incroease
are possible, depending on whether the Mach line is a dis-
turbance line of the first or second famly, and whother
the disturbance is a drop or n rise. In the exanple shown
(f1g. 20) no disturbance 1line of the first fanily passes

t hrough the point P, whereas that of the second famly re-

sults in a deflection, nanely, a |level drop. The velocity
‘increment, denoted by a heavy arrow, thus, is the one that
cones under consideration for this exanple. If the dis-

turbance lines of both the first and second famlies pass
through the point P, the apparent difficulty 1s renoved
by considering a neighboring streaniine. For the latter,

the velocity receives tao ochanges, one following shortly

after the other, each of which is uniquely determ ned.

At each point of the velocity plane there are thus
two dlrections of the velocity Increnent. These two di -
rections are given by the mnor axis of the ellipse (fig.
21.* There is thus obtained in the circular ring area,
between R =48, and r =1, a direction field which de-
termnes two famlies of curves. In figure 21, two repre-
sentatives of theso two famillos are drawn. By the fol-
| owing sinple consideration, 3ugemann shows that we have
here the case of the previously found epicycloids.

The direction field is obtained by drawi ng the snal
segnents a, b, ¢, d, ... _in the direction of the minor
axis of the elllpse (o, /3, 1), then rotating the ellipse
sone-hat, and again dr awi ng the lines. We may now consid-
er a, b, C, . . as lying, instead ofon the ellipse, on
the fixed p0|nts of the circle chords A Az, BiBa, C1Ca, ees

There is then obtained the same direction field ag_ before
if these chords are rotated in the circle (0, A/3) and a,

b, c, ... drawn each tine. If all these chords with their
points a, b, e, . . . are now arbitraerily drawn in the cir-
cle (0,+38) (fig. 22), the small sezments a, b, C, .

are still in the direction of the required direction field.

By suitable rotation ofthe chord diagram (fig. 21), we
pass a famly of ohords through an arbitrarily chosen point
Ai, the chord diagram being rotated so that B, C;, Dy ...

*Filzs. 21, 22, and 23 correspond to figs. 40, 41, and 42
of Busemann, 1931, p. 422 (reference 7).
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lie successively On Ar end the segnents 8, b, @, «..
beirg drawn. - The latter will. -etill.be segments in the dl-
rection field (fig. 23); -The conplete field will e ‘ob=
tained by rotating thie diagram about 0; 'for exanple,

A; toward Ai', and then again drawing the snul| segments
a, b, ¢, . ; T

Now the points a, % a .. .. divide the chords&;As,

ByBy , 0 G, ...(fig; 2L) in the sane ratio; the ellipse
as effine figure of the circle having this property: The
points o, b, ¢, . . . in figure 23, thus lie on a circle.
The directions a, b, e,. .. are nornal, respestively, to
Ab, Ac, ...

If the circle with diameter AAy 1s rolled on the'

circle about O with the radius 1, each of 1ts polnts de-
scribes en epicycloid. The rolling circle at the instant
represented, rotates about the point A Al of 1its points
thus also nove on normals to the lines joining the corre-
sponding points with A, the direction field ofthe set

of epleyeclolds being identical with that of the required

curves of the possible velocity Increnent Ac. These curves’

are thus the epicycloida described above (figs. 21 and 9).

W have nentioned the sane epicycloida before. They
are the characteristics of the v»artial differential equa-
tlon of the flow. We now see the physical interpretation
of the characteristics: During the passing of 8 snel
di sturbance wave the flow velocity changes along the cor-
responding characteristic.

14. G aphical Construction of the Flow

The field of flow and the hodograph are drawn simul-
taneously - .in the hodoyraph, the velocities and their
changes; in the field of flow, the streamlines. The flow
is always assumed from left to right. We may then speak
of en upper or a lower boundary. 41l disturbance |ines
that start from the upper boundary wll be.denoted as the
upper system of waves, and 'all thoee from the |ower bound-
ary, "the | ower system '

a) Flow bounded on one side.- The sinplest supersonic
flow is that bounded on only one side .as given by the bound-
ary conditions of figure 24. Let the' approach be parallel
end have the Mach nunber M = 1.5." As a first step the
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continuously curved nmall is replaced by -small §tra1ght se%
‘ments with angle inerements of,. for example,2, 6 In sone

Cases it may be O advantage to nmake theang8leincrements

of various anounts.

To the flow of approach (parallel flow), there corre-
sponds, in the velocity plane, a single point P, given

by the direction of e, and the nagnitude e *. Py is

al so obtained as the point in the hodograph (fig. 24c¢) at
which the normal to the characteristic forma with the ve-
locity, the Mach angle ay. At E the flow receives a

first discontinuity, a level drop which leads to a deflec-—
tion by the angle 6. This deflection is of equal magni-
tude for all estreamlines and lies for tho entire fl ow along
the disturbance 1lineS;T,, whose direction we shall Ilearn
from t he hodogr nph. I n t]he latter the velocity ¢eg aftor
the first discontinuity is given by the point Pz whose
radius vector forms the angle & with that of P,, and
which lies on the characteristic through P,, correspond-
ing, for ¢,—>¢c,, to a drop; that is, an increase in
velocity. W thus obtain P, and ©¢,. The disturbance
line 8§;T; in the flow 18, as ve know. a mean Mach |ine
between the states Py and Py. This direction is now
g€lven sinply as the normal to the characteristic between

B, and Pz in the velocity plane. In the entire region
2, the flow is again a parallel flow with the Velocity ez
uptothe disturbance line 8;T;. This line and the stat8

after this second disturbance, is determned simlarly as
for 8;T,, only now the initial velocity is &iven in the
hodograph by P, . The veloclty after the disturbance is
again the velocity OF, deflected by &. The direction
of the disturbance line 8§3;%; is the direction of the nor-
mal to the characteristic between Py and Py, etc.

Witk the above construction, the first disturbance
thus lies along §,T,, the last along Sp.; Tp-1. Actually
the beginnineg and end of the disturbances |ie along the dot-
ted lines 84T, and ST, which have the directions of the

normals to the characteristic in P, and B . It is only
------- - - - m

*Prom equation (69), we have: ©¢% = 3 M2/ (¥® + 2)
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because we must draw the flow disecontinuously in finite
‘eteps- that- the aotual. start:of the disturbdbance and the .."x.%
f 1rst. disturbance do Not accurat ely colncide.”” BP decreas-
ing. the steps, ‘the accuraecy may be raised.

Pigure 25 shows a flowdrawnin this manner with ¥ =
1.5, and for rater (k=:2), the deflection increments
belng 2°. From this simple example, an impprtant property
of shooting water bounded on one aide (supersoniec flow)
.may be recognized, namely, that as’ long as no large discon-
tinuous pressure rises (impulses) occur, all the points
giving the state in the hodograph 11é on a single charac-
teriegtic; i.e., for such & flow the magnitude of the ve-
locity depends uniquely on itesdirection and vice versa.

A limiting case of the exmmple considered is the level
drop about a corner (fig. 26a-c) (references 14 and 17).
This flow isa parallel flow with o Mach number equel to
or greater than one. The one-aided rectilinear boundary
ends at S. On thd lowerside of the boundary the water
depth (pressure in the gad)is zero or at least smaller
than in the parallel flow of awnprneci. The same results
hold as for the flow nf figure 24 except that now the
lines S,T,,83T5,... all pass through the point S.:The

velocity variesalong astreamline in ‘such a manner that
its end point travels on ncharacteristic in the velocity
“ plane (fig.26¢). The constant velocity along a stream
SP has its end point P' at that position.of the corre-
sponding characteristic where the normal to the character-
istic is parallel to SP.

- .

4

b) Interlor of a flow bounded on two sideg.~ Let the
velocirey o, be 2iven in the interior.ofa flow in acer-
tain region 1(fig. 27). Let this region be ‘bounded on
the right aide by an upper (b), and a lower, disturbance
line (a). -The streamlines o and g, which-may 'alsc be
considered ‘as.walls, are correspondingly assumed to have
small defleotiona at A and B. : The deflections’ 8g and
8g are given. The point P, -ia the ‘hodograph is the im-
age point of the region 1 012' the flow (fig. 27b). In
crossing the disturbance wave a from regiem 1 to region
2 (drop, einge deflectionie toward outside) the velocity
€i receives a change such that the velocityeg 1lles on
the characteristic corresponding to the lower disturbance
wave system and forma with .e;, the angle 8,. This gives
the point ‘Pa. in the hodograph as in a flow bounded on

oneside and hence also the direction of a as normal. to
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PyPa. The sane is true in crossing the disturbance wave
b. To this corresponds in- the velocity diagram a travel -
ing along the characteristic of the upper system from P,

toward Py (SB is given). At a position X the two
di sturbance waves neet and their effects will "cross."
From the point X a disturbance wave of the lower set a'
starts out and one from the upper set b!. Orossing ‘a'
In the flow neans in the hodoqraph, as in a flow bounded
on ‘oneside, a change in the veloeity from P; toward Qs
(fig. 27b) where Qg4 for the present, 1s unknown. Sinmi-
larly the velocity on crossing b' receives a change_ from
P, to B5¢ where 84 simlarly is for the present, un-
.known. Bow a first condition for Q4 and Sq s that
the velocity in the region 4q of the flow on passing from
from 1—>3 —>4, should have the sane direction as the ve-
locity in region 4s on passing l1—2-—s4. This neans
in the veloeity diagram that the points Q, and 54 nust
lie on a straight stream through 0 : 0S4 H 0Q.. There
is, furthernore, to be satisfied, the condition that the
wat er depth (pressure in the gas) in the region 4q nust be
the same as in 4s. As long as the flowis free from im-
pul se, the water depth is uniquely determ ned by the ve-
locity. The requirement that the depth ahould bethe sane
in 49 and 4s, neans therefore that the velocity 0Sgq nust
have the sane mgnitude as 0Q,:08,=0Q,. Both condi-
tions are sinultaneously satisfied if S¢ and Q4 coin-
cide at the point of intersection P,. The entire region
4 of the flow is thus in the velocity diagram given by the
poi nt P4, We may now draw a' and b'., They start from
.X in -the direction of ths normals to B E and Ps F,,
respectively.

Figure 28 shows the intercrossing of two streaniines
where now one disturbance is a level rise, the other a
drop. The picture would be quite sinmilar if the two dis-
turbances were |evel rises.

Weé shall now follow a disturbance line inthe interi-
or of a flowin the case where it, encounters several dis-
turbance lines of the other famly (fig., 29). [The direc-
tions of a, b, at!, and »' and the points. P,, Ps. Py,

and P, are assuned to be determined by the nmethod given.
Then for the regions &, 4, 5 and 6, we again have P,
and Ps |ying on the characteristics through- Py;. The po-
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sition of P; 18 detarmined by the deflection -85 and

P, » is fixed Dby-the characteristics RP, and P, F,.

There is now obtained also Ps and hence the velooity

0P, in region 6, Ps Ybeing" the point of intersection of
the two characteristics PyFPs and P Fse. Simlarly, there
is 'finally obtained Py. The individual portions of the
dlsturbance wave aa' a' a!' are in the directions 'of the

nornals at the ecenters of the 'portions of the chareacteris-
tics P, B, By B K F,, B, Ps , respectively.

We thus' find the result, nanely, that the extremties
"of all possible velocity vec‘bors before crosslng the dis-
tu:rbance wave aa.'a.“ ..-.. the p0| nts P]_ 'Ps |P_s| . ey all
lying on a fired charaoterlstlc through P, . Similarly,

all extrenities of the velocities after crossing thedls-
' turbance wave a - that is, the points PgsPe.Pg,.m. lie
on the characteristic through Ps. Crossing the 'disturb-
ance wave aa' am' a"! at any position in the direction of
the flow, has the result with respect to the velocity,
that there is .a transition from t he characteristic 1 to
the characteristic 2 (both of '"the same famly) each tine
along a characteristic of the other family. These changes

are the heavily drawn portions of figure 29b, Since the two
famlies of characteristics lie symetrically:

4P 0P, = ¥ BOF, =9 P 0P, = < P OF, = o
i.e..

1a

813 = 834 = 856 = 895 = .. ..

In figure &0, let the curves denoted by K be eircles
about 0. W then have:

a) 4 AOC = & ECF, because each characteristic of the

same famly arises fromthe other by rotation
about 0.

b) ¢ A0B = 4 BCE = 1/2'¢¥ ACE, because ABis sym-
metrical to -EB wWith axis of symmetry BO

c) ¢ OOD = & DOF = 1/2 & COF, similar to b).
d) ¢ COE = ¢ CCE

Equation 4) subtracted from a) gives
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daoc-¢ COE = & EOF - & COE

1.e., <4 AOE = & COF, and hence it follows from b) and e)
4 BOE =< DOF, as was to be proved.

We thus obtain the noat inportant result: On cross-
ing a disturbance wave the wveloeity undergoes a change in
magnitude and direction. The change in the velocity di-
rection is the same at all points of the entire disturb-
ance wave |ndependent of the direction of the velocity be-
fore the arrival of the disturbance wave and regardless of
whet her or not the wave was crossed by disturbances of the
other famly. This is true on the assunption of flow free
from i npul se. In section 4 we consider flows with Inpulse
for which the velocity is not a unique function of the wa-
ter .depth. 'There it will be found that the deflection
" angle caused by a disturbance wave may vary along the wave.

e) Fixed wall with 8 flow bounded on-two- sideg.~ In
figure 31, let SAC be the upper boundary of a flow. Let
no disturbance wave from the opposite wall neet the corner
5§ of the wall at first. From the latter, 8 wave s
starts out which is identical with that of a disturbance
starting from a flow bounded on one side.

We shall now consider the effect of a disturbance wave
a which encounters the straight wall SC at point A
In region 1, let the velocity be ziven by the hodograph
point Py (fig. 31b). On crossing the disturbance wave
a fromregion 1 to region 2, the velocity receives a de-
flection 8, given by the lower wall. By |lying on the
characteristic is thereby determ ned and also the disturb-
ance line a. Since at each point of 'a flow there are two
possi bl e di sturbance waves, there can start out from A
only 8 wave of the uppor famly (®). The line v and the
velocity in region 3 are determned from the condition
that first the velocities e, in region 1, and ez in re-
8lon 3, nust be parallel, since it was assumed that the wall
had no discontinuity at A In the hodograph this neans
that P; nust lie on the straight OF,. Secondly, b is
a disturbance line from the famly other than that of a,
so that Py lies on the characteristic Py Py, Wwhich pass-

es through P;. By both of these conditions Py, the ve-

locity ez and also the disturbance line b are deter-
mined.

The angle of deflection which the velocity undergoes
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on crossing thereflected wave 1s equal and opposite to
-4he-angle. of deflection by, the incldent disturbance Iine.

|f the incident disturbance i‘s' a level flsé, then the re-
fleeted disturbance is also a rise (fig. 31bd). |If the
disturbance line 18 a drop, then the reflected line 1s also
alevel-drop disturbance (3lc)..

In case the di sturbance line' a strikes the wall at
the position- 8 where.the pall has a discontinuity, no
new difficulty arises. It 1e then only necessary to imag-
ine that the reflected disturbance Iline b and the newy
generated dleturbance line s follow shortly upon one an-
ot her. If ® and "& are both level-drop waves, each

.must be. drawn separately;, if both are level-rise waves,

then they are drawn together as a single di sturbanoe start-
ing from 8, on the erossing of which the wveloclty under-
goes a deflectlion equal to the sum of the deflection8 due

to s and b. | f, however, one of the disturbanoe 1|ines
1s a rise, and the other a drop, then only a single dis-
turbance line starting from .S is drawn, along which the

deflection angle for the velocity is equal to the differ-
ence between the deflection angles for s and b and,
dependling on.the Intensities of s and b, nmay be a rise
or a drop line.*

In the third case, whore the deflection angles for s
and b are opposlto, it my'also happen that they have the
sane magnitude., In that case no disturbance at all start8
out from that point. This 4s the caseif the wall itself
has the sanme deflection angle as that ofthe approaching
di st urbance wave. This fact 1s nmade 'use of where it is de-
sired to produce a parallel flew., In the latter no dis-
turbance waves ocecur. This condition is obtained by &iving
the walls 1in suécessiondiscontinuities such that one dis-
turbance .wave 14 "syallowed" when the other strikes it.

d) Free jet.~ Ifa disturbance line strikes a free jet,
another type of reflection eceurs since the water depth

nust have a fixed value (fig. ®2). Let the point P, in

the velocity diagram corresvond t0 region 1 ahead of -the
di sturbance wave. The point P, which gives the veloclty

-*For the third.case it 1g clear that only a single disturb-
ance |ine starting from S is drawn because the sum of the
two disturbances is smaller than that of either |ndividua
case. For the first case two, and for the second base only
one, disturbance line is drawn in order to approach the

-+ true condition for which drops are spread out in the form
of a fan (drop about an edge) while rises areconcentrated
(i mpul se).
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0P, of region 2, 1lies on the characteristic through P,
belonging to the lower family of disturbance |ines and de-
termned by the deflection angle 8,. Since at each point
two di sturbance waves, at nost, pass through, there ocan
etart'out at point A of the flow where the line a
strikes the free jet, at nost, another disturbance line b
of the other family (b).' The disturbance b nust be such
that the water depth is the sanme in regions 1 and 3. This
nmeans for flow w thout energy dissipation that the hodo-
graph point Py corresponding to region 3, nust 1lie on a
circle through P, about 0: OP, = OP,. Since, noreover,
P, " lies on the characteristic through P; belonging to
the upper disturbanee line, famly P is uniquely deter-
m ned and hence, also b. On account of the synmmretry of
the two famlies of charasteristics ¢ P, 0P, =g PyOFP;.

4 |evel-drop wavo is reflected on a freo jot as a level=-

rise wave, and conversely. It is inmportant to observe
that the velocity deflection on crossing tho reflected save
is as large as that on crossing the incident. Here again

we find that disturbance waves - whether they are crossed
by. others or reflected - produce at all points equally
| arge deflection angles of the loeal velocities.

15. Avpplication: Laval Nozzle

Let a Laval nogzle be drawn for mater (k = 2) in
which the flow is parallel at the mninmum cross section
(M = 1) and which is to produce at its exit a paralle
flow of Mach nunber ¥ = 2.

Aside from flows with hydraulic junmps (shocks), all
t he phenonmena have been discussed in detail in the previ-
ous sections. There are no difficulties in drawing up the
flow with the aid of tho basic elenents described above
Instead of drawi ng Mach |ines, however, as normals to the
characteristics, the accuracy is considerably |nproved by
using the ellipse construction described in sections 12
and 13. The normal to the characteristic is then obtained
as the direction of the major axis of the ellipse wthout
requiring either the tangent or the.normal of the charac-
teristic itsolf (figs. 20 nnd 33)..

A convenient arrangement for the drawing is shown on
figure 34. A strip B is glued on the transparent paper
4 with the ellipse B, the edge of the strip being paral-



N.A,C.A, ‘Technlical Memorandum No. 934 61

- lel to the minor axis.of the.ellipse and rotatadle about

.a npedle at point O 1in. the origin. of the veloclty plans.
The direction of the major  axis I§ drawn with the triangle
¥ as disturbance trave 1IN the flow L
The Laval nozzle investigated has ae its boundary at
.the approach sideofthe flow, a cubical parabola PQ L with
a ehort connecting etraight piece QR, in order that at
the m nimum eross section the flow, for the ahooting-water
region to be drawn, ehould be parallel. There :will t hen
be no disturbance waves in ft. To the straight portion_
there is connected a circular arc -BRS. The shape of this
‘portion can be’ chosen at will and the first disturbance
-waves start out fromlt. The shnve of ST is determ ned
by that assuned for RS singce the forner nust be such
that, starting from the channel exit, there are no disturb-
ance waves in the flop

|f the approach flow is parallel, the construction of
the flow begins wWith the f£irst di sturbance line from RS,
the line being that of aflow bounded on one aide. The
construction is then followed As discussed in the preced-
ing paragraphs.

Since we Are constantly passing from the velocity di-
agram to the flow dingram And in order that corresponding
poilnts nmay be recognized as such, It isnecessary to intro-
duce A suitable notstlon. For thIS murpose the curvilin-
ear coordinates A And p are convenient (equationsa
(5%a) and (53b)). The nunbering ie shown in figure 34.

The nunber %bPeside each characteristicofthe upper family
g€lves the Angle in degrees At which It atarts on the unit
circle, and similarly, for the coordinates of the charac—
terlstics of the lower famly. In order that the two fami-
lles of characteristics may not be confused, the coordi-
nates of the upper family are preceded 'by a zero.* The co-
ordinates A And p of the velocity plane Are witten in
the corresponding field of flow. The numbers thue witten
have the .property (equations (53%a, And b)) that (A = w)/

2 = @; that 1s, their helf difference gives the angle of
the flow with respect to the horizontal. Their hnlf eum

(N + p)/2 s A nunber on which the magnitude of the non-
dimensional velocity and hence also the water- dqpth ratio
h/ho uni quely depends, since A + u 18 constant on dir-

*To the curvilinear coordinates M = 0, B = 00, for exam

ple, correspond the polar coordinates % =1, @ = 0.
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clee about 0. Wth a definite value %A +w)/2 is meso~
clated the sane water-depth ratio CL,th gas tenperature

ratio T/T,, hence pressure ratio, p/po). whi ch corre-

sponds to the level drop about a corner starting from

M =1 (fig. 26b) and deflected fromthe direction of the
approach flow by the angle w = (A + B)/2. Corresponding
values h/h,, p/p,, ¥, G, and w = (A + p)/2 are col-

lected in tables | and 11

In general, the difference of the two coordinate aum-
bers 1s not required since the direction of the stream-
l[ines in ‘each field may be taken directly from the.veloc-
1ty diagram The streamlines nay also be sinply and rap-
idly drawn with the arrangement shown in fizgure 34, it be-
ing only necessary to pass the major axis of the ellipse
through the hodograph point given by the coordinate num
bers, the triangle then giving the velocity direction in
the corresponding field.

The aum of the two coordinates, however, is required
If it is desired to draw the lines of constant water depth
in the flow These lines may also be drawn w thout know-
ing the coordinate sum if equal deflectlone are chosen
for all disturbance lines, nanely, as diagonals of the
Mach quadril aterals.

In all problens in which a parallel flow is given as
initial flow, we begin, according to the characteristic
nmethod, with the first disturbance lines starting from the
boundary.

Under suitable assunptions, there may also be pre-
scribed as an initial elenent, the velocity distribution
along a line. The latter nust not, however, at any point

touch a Yach'line. It nust thus be a line which in-itself
is not a Mach line and which does not intersect the sanme
Mach line tw ce. Streamines and their orthogonal trajec-
tories certainly are such lines. The flow may then be
conputed by the characteristic8 nmethod in the entire Mach
qguadri |l ateral described about this |ine. Thi a ¥ach quad-
rilateral 1is only determined on drawing the flow If the
velocity along a line is prescribed as initial elenent, a
further condition is that the position of this line with
respect to a side boundary is such that no flow restriction
falls wwthin the Mach quadrilateral described about the
l'ine except when the latter has the form of a streaniine.

———————— - -
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For the graphical determ nati on of euah flows the
line must first be broken up into suitable segnents on
which the veloclity is constant in directien and magnitude.
These pleces are then separated by disturbance waves and,
starting from thege, the flow may be detennlned with the
Mach. quadrilateral.

List of Mdst Frequently Occurring Symbols

€, acceleration of gravity.:
3, &as congtant.
v, kinematic viscosity.
P, density.
P, pressure.
T, absolute tenperature.
1, heat content.
¢ps sepeclifie heat a~t constant pressure.--
Cyy Specific heat at conetant vol une.
k=cp/cy, adiadatie exponent.
®, veloelty potential
X, positioning-determining potential
x.y.;. rectangular coordinates in the fl ow space.
r,d, polar coordinates In the flow plane (x,¥).

AsB, curvilinear coordinates in the velocity plane,
charncteristlc coordinates.

X,Y,Z2, general variables.

u,v,w, conponents of the velocity in the x, y, and =
. directions.

c,®, Dpolar. coordinates in the velocity diagram (two-
dimensional fl ow),
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Cmax»

C,

a,

a™,

M, V,Cy.0a,

M=c/a.

a=(sin~*)(a/c),

h,
ho-
ho'-ho"-

po,T i .h

o' o' o

T*’h*'oii
u; ,c;.,h, M,

Ug +Ca s 0y M5
gy

A(x,Y),B,0,

a,b,c,

Menor andum Ho. 934

maxi mum vel oci ty.

vel ocity increnent.

in gas: velocity of sound. —
in water: propagsation wave velocity + gh.

critical velocity.

nondi mensi onal velocities (reference velocity
a*; in hydraulic junmp a,* the critical
vel ocity before the junp).

Mach nunber.

Mach angl e.
wat er dept h.
total head (water depth for c = 0).
total heads after hydraulic junps.
subscript 0: stagnation state.

asterisk *: critical state.

subscript 1: before hydraulic junp.

subscript 2: after hydraulic junp.

velocity after right hydraulic junp.

coefficients of linear partial differentia
equation of second order.

coefficients of the differentia

normal form

equation in

coefficient of the differentia
the flow In normal form

equation of

smal |l deflection ansgle.

the flow without dissipa-
T.M. No. 935).

defl ection angle oOf
tion (sec. 21, Part 11,

defl ection angle for hydraulic junp (figs.

A7 and 38, Part |1, T.M. No. 935).
angle of the hydraulic junp wave front (fizs.
37 and 38, Part 11, T.H, No. 935).
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TABLE I*
Gas, Xk = 1,405
w=0+)| P oz ey ol Pt 2 [z (u=2se
2 po ' a¥ a8 2 PO a' a
(deg.) (deg.)

0 0.52711.000 |1.000 26 3.130]1.625 |1.995
1 .476(1.073 |1.090 27 .123|1.640 |2.028
2 .44911.110 |1.142 28 ,116 |1. 656 |2.065
3 «424 (1,141 |1.186 29 .109|1. 671 2.101
4 6.40211.172 |1.228 30 .103|1.686 |2.138
5 .28211.200 |1.265 31 .097]1. 700 2.178
6 «363|1.227 |1.305 32 .09111.718 |2.215
7 «34511.253 |1.342 33 .N86|1.732 |2.258
8 ,32911.278 |1.376 34 .081|1.748 |2.298
9 .3%1311.300 |1.413 5 .076]1.763 |2.338
10 .29811.322 |1.443 36 .0?1]1.776 |2.378
11 .28411. 343 1.474 37 «0N67]1. 791 2.421
12 .270| 1. 365 1, 506 %8 .062]1.805 |2.460
13 .256711.387 |1.542 39 .058]1.819 |[2.506
14 «245]1. 409 1.575 40 .065|1.8%2 | 2.548
15 .233|1.426 1.608 41 .051]1. 845 2.592
16 2”21 (1.447 |1.643 42 .N48|1.858 |2.636
17 .210]|1. 466 1.680 43 .044]1.872 2.680
18 .200]1. 486 1.718 44 .04111.884 |2.730
19 «190|1.503 |1.750 45 .039]1. 898 2.778
20 .180]1.520 |1.780 46 .036]1.910 |2.825
21 «171]1.539 1.815 47 ,033]1.923 2.875
22 .162|1. 556 1.850 48 .031|1.936 |2.920
23 «153]|1.575 1. 885 49 .029|1. 948 2.978
24 .145(1.590 |1.923 50 ,02711.960 [3.028

25 «137|1. 608 1.958 || 129° 19 ) 2. 437 «

*See reference 7, pn, 426-7.
2),p. 317.

ence 1 (or

For values oOf K,see refer-
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TABLE 11
Wat er, ' XK'= 2 ~ -
= Al b = =S =A_ﬂ L = f. = E
w 2 h—o o= ;.- u—; K T ) ho g ak Y a K
(deg.) (degs)
0 2/3 (1,000 |1.000 o 26 1.234 1 1.516 | 2.56 |-0.160
1 )e624 |1.062 [1,098 | 2,68 § 27 0223 | 1.527 | 2464 | -4177
2 «598 (1. 101 |[1.160 | 2.07 28 o212 | 1.538 | 2,73 | =.196
3 o576|1,129 |1.214] 1440 29 201 | 1.549 | 2.82 | -+216
4 ¢555(1.156 |1.267| 1.0148 30 e190 | 1.559 | 2.92 | =.234
5 o535]1.182 |1.319| .758] .31 «180 | 1.569 | 3.02 | =e252
6 S516(1.207 [1.371| .590} 32 0170 | 1.579 | 3,13 | -+271
7 «488(1.229 |1.422 | <476] 33 0160 | 1.588 | 3.24 | —.281
8 e48111.249 |1.470| .394f 34 1511 1.597 | 3.36 | =313
9 464[1.269 |1.520 | 318§ 35 o141 | 1.605 [ 3.49 | =.,336
10 «44811.288 |1.570 | <263] 36 0132 | 1,613 | 3463 | =436
11 «43211.306 |1.622| <215} 37 «123 | 14621 | 3. 78 | =438
12 A17(1.323 |1.674| 170§ 38 0115 1.629 | 3.93 | =.40
13 0402114340 |1.727| .133] 39 o107 | 1.637 | 4.01 | =e43
14 ,387]1.356 |1.781| 103§ 40 0099 | 1,644 | 4.26 | -o46
15 373 11.372 |1.835| L072§ 41 092 | 1.651 | 4.44 | -e49
16 , 359 1.387 |1.89 046 42 «085 | 14657 | 4.63 | =52
17 0345(1,402 | 1.95 .020] 43 «078 | 1.663 | 4.85 | =454
18 o331 1. 416 |2.01 | -s004] 44 072 | 1.669 | 5.08 | -e58
19 «318|1.430 |2.07 | -.028] 45 o066 | 1.675 | 5.33 | =e62
20 «305|1,444 |2.13 | -,050] 46 «060 | 1.681 | 5.62 | =e66
21 0292 1. 457 |2.20 | -s071] 47 0054 | 1.686 [5.95 | =em
22 o280| 14470 [2.27 | -s089) 48 2048 1.681 | 6.30 | =75
23 268 |1.482 |2.34 | -o108) 49 0043 | 1.696 | 6.68 | —e81
24 e256| 14494 |2,41 | -,128] 50 2038 [ 1.700 | 7. 11 | =86
25 o245 |1. 505 [2.48 | -el43}65° 531]) JE | = —co
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Figure 1.- Mach i'ays.
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Figure 4.~ Skatch for
derivation

of continuity equation.
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Figure 5.« %-surfaca
strip. 4

Figure 6,- Contact
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Figure 13,- Ceneral
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of integration.

Figure 10.~ Construction ofthe
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Figure 11.- The
vari-
ous coordinates,
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(a) Flow plane. (b) Velocity diagram (c) Characteristic coordinates
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Figure 18.-~ The change in
_ velocity on'
crossing & Mach |ine.

'Figure 19.~ Rel ation batween the flow velocity

€ snd the Mach angle am

Figs. 14,15,16,17,18,19



¥.A.C.A. Technica)l MNenorandum Ne. 934 Pigs. 20,21,22,383,24
. ob° (a) Tlow:

Streamlines;
~— — Mach lines.
(v) Velocity diagram.
Pigure 20, Employment of
t he hodograph

for thedetermination Of

the Mach line in the flow.
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Figure 24.- Fl ow bounded
on one ride.

Figure 21.~ Field of directions of
the velocity change on
crossing a disturbance line,

Figure 22 and 23.- Proof that the direction field (fig. 21)
bel ongs to two families Of epicycloids.
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@ My >1

Figure 35.- Flow bounded On one
side (2° steps).

Fi gure 26.- Sinkingat

an edge.
(a) Starting from My>1.
(b) " " M=l

(¢) Velocity diagram.

(a) Flow plane. (b) Velocity diagram

Figure 27.- Interior point of a flow bounded on

two sides ( the deflection angles §
which are of the order of nmagnitude of 1 degree
are in thir and the follow ng figures drawn
exaggerated for clearness).

(a) Flow plane.
(b) Velocity diagram

Figure 28.,~ Interior
point of a «

f1 ow bounded on two

sides,

Figure 29. ~ Conditions along a disturbance line.
(a) Flow plane. (b) Velocity disgram.
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(b) Veloeity
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a | evel raising
(condensation)
wave.
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",;' diagramfor & «o
o | evel |owering &
z

g

wave,

Figure 3l.« Disturbance wave striking awal | .

° R Figure 32.- Disturbance lines striking a
free Jet boundary.
(a) Flow plene. (b) Velocity diagram.
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Pigure 33.~ Sketch showing nethod of’

determ nation of the
direction. of the disturbance wave
by means of the ellipse,
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Figure 34.~ Drawing of the
flow. Incremsnts
of 6 degrees. '
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