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By J. P. Benthenm

NOTATIONS
a length of rectangular plste
b width of rectangular plate
h thickness of rectanguler plate
X coordinate along plate length
) Yy coordinste along plate width
- Oys 0y normal stress components o, and Oy generally counted posi-
tive when compressive stresses
T shear stress component
€xsCy normgl straln components €y and €y generally counted pqsi-
tive for compressive strains
7 shearing strain component
o critical state of stress
3 critical state of deformation
Ee critical stressed state computed by elastlcity theory
€ critical state of deformastion computed by elasticity theory
Ex critical stress oy of & rectangular plate under uniform load
in the length direction
N €x corresponding strain e,

*1over het knikvraagstuk in het plastische gebied bij staven en platen.
(Deel IT)." Nationaal Luchtvaartlsboratorium, Amsterdam, Repport S. 423,
Jan. 195k,
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the same, camputed by elasgilcity theory

critical shear stress T of rectangular platé loaded in shear
corresponding shearing strain 7

the same, computed by elasticity theory

so-called buckling factor — & nondimensional factor appearing
in one formule in the form (see section 2.2)

5 = __EEEEEE___
12(1 - v3)n

buckling factor computed by elasticity theory

N = 0/8 = k/kg

E

vl

Young's modulus - . —

tangent modulus, that is, do,/de, of the stress-strain
diagrem of the tension and compression test

secant modulus, that is, Ux/ex of the stress-strein diagrém
from the tenslon and compression test

reduced modulus according to (3.5)
/e,
-shear modulus

Poisson's ratio, that is, -ex/ey of the bar stressed in
tension or compression along x into the elastic range

the quotient of -ey/ex of the bar stressed in tension or
compresslon along x into the plastic range

2. INTRODUCTION

Part I of this report (ref. 1) dealt with the buckling of plates
in the elastic range on the basis of two different kinds of plasticity

Fan
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theories, the so-called deformetion theory and the so-called incremental
theory.

It is now genersally accepted that, from the physical point of view,
incremental theories give a rather good picture of the plastic deforma-~
tion (compare refs. 2, 3, and &) and that deformation theories certainly
cannot be correct (refs. 2 and 3). However, it still seems that the
results for the critical buckling loads of plates, loaded in the plastic
range, are substantially higher when computed by incremental theory than
indicated by the test.

The experimental values are correct in the nelghborhood of the
results by deformation theory, although quite often the "excellent
agreement” spoken of does not exist.

The failure of incremental theories for defining the critical buckling
load in the plastic range is frequently regarded as proof of the inaccuracy
of incremental theories themselves, but that is entirely unjust. As Prager
so rightly remarked (in ref. 5): "To this writer (Prager) the idea of
testing a stress-strain law by buckling experiments seems utterly fen-
tastic; nobody would dream of determining, say, Young's modulus by a
buckling test in the elastic range rather than a simple tension test.
Direct experiments speak in favor of incremental theories, and there are
strong theoretical dbjections against deformation theories."

Batdorf and Budiansky (ref. 6, see also refs. 3 and 1) developed a
theory which, for certain load increeses, gives results according to a
deformation theory. Theilr theory has less physical faults than deforma-
tion theory itself, but some direct checks on this theory come out badly.

Besseling (ref. 1) sums up some of the possible causes of the fail-
ure of incremental theories and also cites the report by Onat and Drucker
(ref. 7). The last-named report shows, on a special load case, how small
initial eccentricities exert a very strong reducing effect on a critical
buckling load computed by incremental theories, as shall be explained in
section 3.5. That section deasls also with a special investigation that
indicates how the stress-strain relations by both theories vary when,
at a constant compressive load above the elastic limit, a shear stress,
increasing from zero, 1s applied.

In practice, it is hardly possible, of course, to include initisal
eccentricities in the calculations; they should also be exactly known.
The fact that then all points of a plate have different stress-strain
relations (which in the special load case used by Onat and Drucker was
not thé case) raises well-nigh prohibitive mathematical difficulties.

The question of whether the calculation by deformation theory is the
right way forms the subject of the present report. Yet, before applying
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deformetion theories to buckling problems of plates — and this is accom-
plished before passing to lncremental theories — some simple calculeting
methods are given which, compared with the experiment did not glve such
bad results. '

2. STATEMENT OF RESULTS

2.1 INTRODUCTION

, On a rectangular plate, loaded in its plane by a uniform stressed
state, the components of which are defined by a constant factor, the
eritical state of stress indicated by © is defined by length a,
width b, plate thickness h, by the clamping at the edges and by the
material properties. Variation of the linear plate dimensions in the
same ratio leaves the stress or strain components in the critical state
unchanged.

By "load case" is meant a case in which a rectangular plate of
specific meterial and with specified sttachments at the edges, changes
to a uniform state of stress before reaching the critical state, and
whereby the stress components have & certaln fixed relationship. To
1llustrate: a rectangular plate of a certain meterial, clamped at the
edges in uniform state of shear stress, is & load caese. Another one 1s
the rectangular plate of a certaln material with hinge-supported edges
in uniform stete of normal stress (with respect to a palr of sides).

2.2 Varistion of Iedgth-Width Ratio
The critical stressed state & for a specific load cese is, as far

88 the plate dimensions are concerned, simply dependent on two independent
variables, such as the length-width ratio a/b or the width-thickness

ratio b/h.
G = f(%,% (2.1)

Figure 2.1 represents & diagram for constant width-thickness ratio, the
critical load plotted agailnst the length-wldth retio.

lOnly such load cases are treated. Plates other than rectangular
are excluded, so also plates whose stressed state before reaching the
critical stressed state i1s not uniform, although defined by & constant _
factor, such as the web of a beam under moment load or shear, for example.
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The different branches of the curve correspond to different num-
bers (m) of half-waves. The number of half-waeves computed by different
plasticity theories or elasticity theory need not be identical for a
given load case a/b.

By (3.1) it follows that the critical stress & for & given load
case In the elastic range can be written

5 = 2 a(a,0) = § 55 3(a,D) | (2.2)

where g and J are functions of the rectangular sides & and b.
Examinatlon of the dlmensions of G, D, and h indicates that func-
tion J is dimensionless. Thence by (3.2)

2 2m. 2
a_ =kD - krx“Eh (2-3)

hb 12(1 - v2)p2

with k a function of the length-width ratio a/b. The formule (2.3)
is, naturally, in agreement with the form of (2.1).

Formulsa,

t 2
g = ’%-22 with k' = (%) k (2.4)

is, of course, valid too.

The square of the side b loaded in compression is chosen in the
denominator of formula (2.3) for the plate compressed in one direction,
solely because otherwise the limit transition to a-—« becomes
difficult.

The coefficient k in (2.3) is called the buckling factor.

The critlical stress state in the plastic range is indicated by a
different function of the ratio b/h than given in (2.3), though the
form of (2.3) is also used in this renge, but then the buckling factor k

*is no longer a function of a/b but of b/h too.
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2.3. VARIATION OF THE WIDTH-THICKNESS RATIO

2.5.1. Kollbrunnér Method

When setting up the length-width ratio, the width-thickness ratio
remains merely as variable. The length-width ratio of an infinitely long
plate can equally be considered as fixed when the critical load at
approaching o plate length does not approach zero. -

Figure 2.2, taken from Kollbrunner's report (ref. 11), represents
the critical load of an infinitely long plate supported by hinges on the
long edges and under lengthwise compression plotted against what
Kollbrunner calls the slenderness -

A= pui2(1 - vF)

2.3.2. U. S. Methods

2.3.2.1.~ When the length-width ratio of a plate i1s fixed (for the
plate of infinite length this means, if the condition cited in section 2.3
is complied with), the NACA does not select the width-thickness ratio b/h
as Ilndependent variasble, but the critical state of stress or critical state
of strain, as computed by elasticity theory. The thus computed states are,
for a certain load case, with fixed length-wldth ratio, naturally simple
functions of the b/h ratio, and therefore can supersede the last named
ratio as variable. -

In figure 2.3 the (actual) critical state of stress (vertical) is
shown plotted against the critical state of strain computed by elasticity
theory (horizontal). When, as in figure 2.3, the critical strain condi- .
tion computed by elasticity theory is plotted horizontal, the NACA ususlly
employs the term "strain" or "shear." This simple indication is often too
indefinite, since on the verticel the term "stress" or "shear stress" is
used also (i.e., the actual critical stress or shear stress). Some writers,
like Schuette and MacDonald (ref. 10), even call the curve in a diagrem
with such indications the "plate compressive curve," by which the impres-
sion is geined as 1f the disgram gave the relationship between stress and
strain (or crushing of plate divided by height = mean strain) of a plate

during & loading process. ) _

By chance the curve In a diagram of the discussed calculating method
by Gerard (section 3.2) was exactly identical with the stress-straln curve
of the meterial. The true significance of the diagram is, however, an
entirely different one; it gives the critical state of stress in terms of
the width-thickness ratio. -Some writers who use other computing methods
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than Gerard's frequently plot, besldes their computed curve, or besides
test points, the actual stress-strain curve of the material. This has
the advantage of making the velue of the critlcal strain availeble while
reading off a critical stress value.

2.5.2.2.- From a diagram as discussed 1n section 2.3.2.1 where a
critical stress ¢ is plotted against O computed by elasticity theory,

another one can be constructed in which

against ©

3
i
dan'

This form of diagram is also much used by the NACA. o (horizontal)
against G§/8e (vertical).

In this manner figure 2.4 was derived from figure 2.3. Point A in
figure 2.3 has the coordinates: 0.008 and 60,000 1b/inch2. Young's

modulus is E = 10.7 X 106 Ib/incha. The corresponding point A in fig-

ure 2.4 has then 60,000 1b/inch® as ebscissa and

1 = 60,000/0.008 x 10.7 X 106 = 0.7 &s ordinate. The factor 7 can be
expressed by

with k +the buckling factor and k.e the buckling factor by elasticity
theory.

The factor 7 1is always the factor with which the eritical load
computed by elasticity theory must be multiplied in order to obtain the
actual critical load. Formulas applicable in the elastic range cannoct
only be generalized by giving the buckling factor k anocther value than
by elasticity theory, but also by retaining the value of k by elastic-
ity theory when adding the factor 1 +to the particular formula. The
factor nE appearing then in such a formula is called the buckling
modulus, as by Kollbrunner in reference 8.2

2.3.2.3.~- Besseling (in ref. 1) uses a diagrem in still ancther
form; not 1 = §/Ge plotted against G, but buckling factor k = Tke
plotted against critical strain €, which, however, is associated with
the critical stress ¢ in very simple manner. For the plate compressed
in one direction it naturally gives € = E/Esec. Figure 3.4 represents
such & diagram.

®The same writer calls the tangent modulus "verisble elasticity
modulus" in reference 8.
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3. THEORIES OF PLASTICITY USED TO DEFINE THE CRITICAL

BUCKLING ILOAD OF PIATES

3.1. INTRODUCTION — SHANLEY EFFECT

If a plate, loaded in its plane only, &nd hence being initislly in
the state of stress of & membrane, is subjected to & deflection perpendi-
cular to its plane, bending and torsion stresses arise, and therefore
the stress or the criterion for further plastic deformation (generally
the distortion energy) over a section of the plate thickness decreases.
If the plate in its uniform state of stress was already loaded as far as
in the plastic range, the appearance of a deflection perpendicular to the
plane of the plate makes the corresponding deformetion partly plastic and
partly elastlic, which complicates the calculations.

Shanley (ref. 12), however, pointed out that the first appearance of
a deflection in consequence of reaching the critical buckling load is
still accompanied by further simultaneous deformation in the plane of

the plate, so that progressive plastic deformation takes place everywhere.

In fact, there is no buckling process at 811l in the ordinary sense of the
word (i.e., a process that takes place while the outside loads remain
constant).

Shanley spplied this principle to the straight bar under column load,
and established that the start of the buckling process can be identified
by replacing Young's modulus E in the formulas for the buckling load in
the elastic range by the tangent modulus E;. As a rule, any further
deflection ie accompanied by a slight load increase only, so that the
load at which deflection can start mey be defined as "buckling load."
This had been done in the past, obviously unconsciously, but later on
E. (a reduced modulus) lying between E ‘and E, was used, as the
buckling process was considered a constant loed process in which, in
fact, unloading takes place in a part of the bhar. . o

.This calculation with "Shanley effect" is found also in the treat-
ment of plates. Nowadays it is assumed that the calculation can be car-
ried out as 1f the Shanley effect over the whole plate dld occur. In
other words, ‘a4 ¢ritical buckllng load in the plastic range is calculeted
solely by stress-strain relations applicable to progressive plastic defor-
mation. But the result will not be such, even by spproximation, that E
can be replaced by Et 1in the elastic formulas, in order to get the

desired result as 1s the case in the buckling of bars.
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3.0, FIRST ATTEMPTS

The differential equation of a buckled isotropic plete loaded in
its plane has, 1n the elastic range, the form

by L by 2
DBX+2 2W+BZ>+U,315.2‘2'+2111 aw+o’yh£;-=0 (3.1)
ox ox Byz oy ox ox dy oy '
where
En '
D — (3.2)
12(1 - v2)
E Young's modulus
h plate thickness
v Poigson's constant
W displacement perpendicular to plate surface
Ux,dy normal stresses along rectangular sides (positive, when com-
pressive stresses)
T shear stress along rectangular sides (Just like 0y &and Oy

the positive direction for T is opposite to that of nor-
mal convention)

Bleich (ref. 13) gives for the plate compressed in one direction
(o0y = 0, 7 =0), loaded in the plastic range, after a kind of intultive

reasoning

b Iy Iy
W o'w d'w %
D<CL g{-’: + EV.G._ axeayz + 8?1) + O'xh a—xa— =0 (5.3)

in which

o = E./E (3.4)

the reduced modulus
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L .
E, = ————gﬁi———— (3.5)

(Wﬁ-+ VE;)E o — .

Just as it epplies also to the buckling of rectangular bars (when ) o
assuming, as done in the past, that buckling is not coupled with pro-
gressive plastic deformstion over the entire cross section) and D

according to formule (3.2) hence with the elastic values for E and v.?

Chwalla (ref. 15) assumes that E can be replaced by E, = aB

and v by its plastic value v' in (3.1) and (3.2); in other words,
that the plate remains isotroplic. He reports that the elastic value
can also be used, for v < v' < 1/2, and the variation in 1 - v2  does
not amount to much.

When v = v' it naturally follows that . -

o, = ad (3.6)

"

where Ex is the critical value of o, for the appearance of buckling;
and ax,e the value as computed by elasticity theory. jin conseguence,
Young's modulus E can be replaced by the reduced modulus E,. according
to (3.5) in the formulas for the elastlc range.

Timoshenko discussed the points of view of Bleich and Chwalla in
reference 1k4.

The concepts of Bleich and Chwalla were not based upon specific'lawB
of plastic deformation, but were obviously intended as a rough intultive
and safe spproximation. Still, the reprinting of references 13, 14,
and 15 following the publication of N&dei's book (ref. 16), with its o
simplest form of deformetion theory for a hardened material, which,
with all its defects, nevertheless proceeds from explicit assumptions,
in conjunction with other findings (section 3.3) resulted in a more
rigorously developed theory for the calculation of the critical buckling
load of plates. = -

5Many writers take Polsson's transverse contraction coefficient v,
so that it varies in the plastic range, and at progressive plastic defor-
mation approaches 1/2 (since plastic volume chenge cannot occur). How-
ever, it is desirable to restrict v to the elastic part of the defor- -
mation, so that both v and E remsin constant. The first-mentioned
transverse contraction coefficlent which thus refers to total deformstion
is expressed here by v'.

Iy
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In Shanley's latest polnt of view, Bleich, Chwalla, and Timoshenko
should not have employed the reduced modulus E, but the tangent
modulus Et. Thus, according to Chwalla, Et should replace E for the
critical load Gx in the formulas by elasticity theory. This suggestion
was already made by Lenghsar (ref. 17). The results obtained would, in
consequence, be too low (except when the elastic limit itself is not yet
exceeded), hence would give a much too unfavorable presentation of the
subject.

Kollbrunner's method (ref. 8) lies sbout midway between that of
Bleich and Chwalla, as seen from his differential equation

oty ahw Bhw 3w
D{a — + a.+ﬁ + + oh —5 =0 (3.7)
dx* )8x28y2 ayE' x ox?

Lastly, in order to check the asgreement of his tests (section 4.3)
with the thus developed theory, he introduced a rather erbitrary correc-
tlon factor In the final critical load formulas.

Iundquist (ref. 18) also used a formulse of Chwalla (3.6) but with
o replaced by a correction factor, while

B=m+5‘5
i

This is intended as a kind of average of the aforementioned theories.

Gerard (ref. 19) substituted the secant modulus Eg for E in the
formulas by elasticity theory, without, however, giving a more or less
theoretical basls like the aforementioned writers. According to Gerard's
method, it can be shown that the critical state of deformation of the
plate in a certain load case is independent of the stress-strain rela-
tions. In figure 2.3 the curve by Gerard's method 1s shown as the stress-
strain curve of the material.

3.3. DEFORMATION THEORY

Ilyushin (ref. 20) treated the stability of plates by deformation
theory in its simplest form (briefly indicated by deformation theory,
because more general deformation theories are not involved here) i.e.,
with Nédai's formulas (ref. 16) where v = 1/2, and with Shanley effect
disregarded.
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Kollbrunner, after his attempts discussed earlier (ref. 8), became
immediately very enthusiastic and in reference 11 reexamines his own
tests of reference 8 in the light of Ilyushin's report. He writes "The
work of Ilyushin is theoretically correct and generally valid," but it
was a premature conclusion. A disproval of incrementasl theories is not
given; they are not even mentioned.

Stowell (ref. 21) deals with the work of Ilyushin, still uses
v = 1/2 but includes the Shanley effect.

Bijlaard (ref. 22) gives the treatment of the stability of plates
with the correct (elastic) value for v and allows for the Shanley
effect. Although his theory hes not been generally known before this
publication, it already had been published in different form in 1938
(in ref. 23), hence before the Shanley report (ref. 12).

Subsequently Stowell (together with Pride) supplemented his work
(ref. 21) with other values of v (ref. 24). With this he then got
the same results as Bijlsard in the earlier report (ref: 22). Stowell
compared the results of this report (ref. 24) with those of his report
(ref. 21); the differences seem to be very small. Bijlaard, however,
indicates (in ref. 25) that the correction by reference 24 or reference 21
for one of the two loed cases investigated by Stowell has the opposite

sign.
3.4, INCREMENTAL THEORIES

Handelmsn and Prager (ref. 9) spplied Prager's incrementeal. theory
in its simplest form (in ref. 26, this theory is called incremental
theory, for short; more general incrementsl theories are dlsregarded)
to the buckling of plates without due regerds to the Shanley effect.
The exact value for v 1is used.

Hopkins (ref. 27), Pearson (ref. 28, for = 1/2) and Besseling
(ref. 1) do this, while taking the Shanley effect into.consideration.
These last three reports should be regerded as belng founded on the best
theoretical basis. .
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3.5. DIFFERENCE BETWEEN DEFORMATION AND INCREMENTAL THECRY
EFFECT OF INITTAL ECCENTRICITY

3.5.1l. Stress-Strain Relations

After, say, a hollow tube 1ls stressed in tension or compression in
the plastic range with a stress o, an addition of torsion produces a

distinct difference between deformation theory and incremental theory.

If, for instance, after simple tension or compression, while the
stress ¢ remalns constant, an Increasing shear stress T 1s added,
the differential quotient d7/dT by deformation theory (for proof see
supplement (A.3) is

2
[0}
dy _2v -1 _3 . 3% 1 - 37 L L (3.8)

dr B By V'O'o2 + 372 602 + 375 Feec(®0) B

Esec(ao)the secant modulus for stress Oy-

By incremental theory (for proof see ref. 7 or supplement (A.2)

dy _2(1 +v) 972 1 1
ar E * 002 + 37°\8 E (3.9)

Originally, i.e. at T = O, the aforementioned differential quotients
have the values

a -

Deformation theory: &7 _zv-1, 3 (3.10)
dr E Esec(co)

Incremental theory: &y 21+ v) (3.11)

ar E

By (3.10) the behavior is inelastic, by (3.11l) elastic, hence a con-
siderable difference between the two theories. The elastic behavior
according to (3.11), that is to say, according to (3.9) at + = 0, does
not continue very long, es a rule, .at increasing T, for the fraction I/Eg

is generally greet, and even infinitely great for the non-hardened or no
longer hardened materlal.
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But the differential quotient dyfdr for cdmpressed plates 1s
usually related in a large measure to the critical load condition.

Critical loads computed by lncremental theory are always consider-
ably higher than the experiment indicates. Calculations by deformation
theory are usually in good agreement with the experiment. The failure
of incremental theory is chiefly attributed to initial eccentricity.
Therefore, shear stresses occur on a compressed plate before a critical
loed condition 1s reached.

An explanation for the fact thet experimental values for critilcal
loeds are in good agreement with deformation theory (initial eccentricity
discounted) might be found by attempting to point out that the differential
quotient dy/dr in (3.9), by incremental theory, alresdy assumes, at com-
paratively smaell values of T, a value equal to the value obtained by
deformetion theory at Tt = 0 according to (3.10).

If, viewed from the physical polnt of view, deformation theory is to
give the correct stress-strain relations, then ,dy/dT should show con-
siderable independence of T a&according to (3.8). Deformation theory
gives good results even without allowing for initial eccentricity.

Tebles 3.1 to 3.8 show values for the differentialjépotients

(), s 5(2)
T/F T/D

by incrementel and deformation theory, i.e. (3.9) and (3.8). The eight
tables apply to elght different values of Et, while v = 0.3. Each table
shows seven values for the shearing stress +: In the choice of the values
for Esec(GO)’ of which E(dy/aT)D alone 1s dependent

Esec(oo) > Et

must, of course, be valid.

Definite conclusions are d@ifficult to draw. At increasing T,
E(dy/aT)F remeins, in most cases, consldersbly below the corresponding

value E(dy/dT)D, gt T =0 (compare the numbers of the first column in
each table with the number on top of the other columns). For the small
values of Ey, paired with high Esec(ao) only, and not too low T, the
opposite is the case (cf. table 3.7 for E; = 0.02E and compare E(d7/dT)F
at T =0.030, with BE(dy/dr);, at Eg,, = O0.9E and 7 = 0).
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For the rest it is known thst

1) . (%)
dr/y dt/p
at Esec(oo) = E (hence at Oy = Og, the proportional limit) and T = O,

which 1s seen from the tables, and up to what result the other numerical
values of the tables must comnverge.

The quotient E(dy/ﬁT)D does not alweys lncrease much slower with
increasing T than E(dy/dt)p; for high values of Esec( 0) the process

is even faster, as seen, when comparing the first column in table 3.7
with the other columns.

3.5.2. The Buckling Case of Onet and Drucker

From the foregoing (3.5.1) it is readily apparent that the discus-
sion of stress-strain relations alone affords but a partial answer for
predicting the experimental critical load by incremental theory.

Now, Onat and Drucker (ref. T7) made some calculstions on an idealized
case of torsional buckling of a cylindrical structure consisting of flat
pletes, so that the perpendicular section represents the form of a hollow
cruciform. (See fig. 3.1 for section, figs. 3.2 and 3.3 for bar in
stralght and twisted state.) The elastic limit for compressive stress
is o%, Above 1t the tangent modulus is constant end has the value
which follows from

20 = E;'f 1-= (3.12)
Bt = 0.057T25E when v = 0.3 (3.13)

The bar is so dimensioned that the critical compressive stress for
torsional buckling, in the sbsence of initial eccentricity (i.e. of
initial twist), is by elasticity theory

= 2g% (3.14)
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This is, at the same time, the value obtalned by incremental theory.
Deformation theory gives, however

o = 1.050'* (3'15)

This result is calculated in supplement B. (In ref. T this value
appears only in & plot.) Supplement B shows at the same time that

E eo(G) with & given by (3.15) is equal to _ —

Egee = 0.560E vwhen v = 0.3 ' (3.16)

With the inclusion of an initial eccentricity in the calculation,
the definition of what is considered as buckling load is naturally some-~
what arbitrary. In the case 1n polint the msximum load which the bar is
able to sustain (even without eccentricity the ecritical load is at the
same time the maximum load) can be taken for this purpose.

As Initial angle of twlist per length 2b of the section 0.000111,
0.00111, and 0.0111 rad. is successively used. The divers results are
found in table 3.9 (computed with the data of figure 9 from ref. T).

With this it 1s proved that, when proceeding from incremental theory,
even a slight initial eccentricity is sufficlient to produce a conslderable .
displacement of the computed critical load and that the value of it is
comparatively little dependent on the initial eccéntricity (naturally
only for an eccentricity already different from zero). The thus com- _
puted critical loads are close to those obtalned by deformation theory
with and without initial twist, for there 1s very little difference
between them.

The unusual feature of the Onat and Drucker load case is that in
spite of the presence of initial twist, the state of stress remains
uniform during the spplication of the load. In other problems on plates
which have an initial eccentricity, this 1s not the case as a rule, and
problems such as these are very little amenable to calculation. However,
it is to be expected that then specific changes in the critical buckling
load (which then indicates the load at which, more or less suddenly, the
deflection assumes a significant form) will occur.

Whether these changes will then show the same degree of independence
from the actual amount of inltial eccentricity, and whether the date then
are again in close agreement with deformation theory (without counting
initial eccentricity) has, of course, not been established as yet. It
is not known even in the particular load cese of Onat and Drucker for
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values of the tangent modulus different fram those which they used,
and which 1s rather at the lower limit (Bt ~ 0.05E) or for other dimen-

sions of the structure.

Tn this buckling case the stress-strain relations themselves exhibit
the marked effect of initiasl eccentricity. (Cf. table 3.6 at E, = 0.05E.)

(In (3.13) E_ = 0.05725E.)

At T = O.1lgj,

E(dy/aT)g = 4.260

hence substantially higher then that at T =0 (2.600).

At a ‘T value only, slightly sbove T = 0.1g, the value obtained
for E(dy/dt)p 1is equal to E(dy/dt)p at T =0 and Eg,(og) = 0.5E
(in (3.16), Egec(oy) = 0-560E).

However, it already has been proved that for other values of Ey

and Esec(“d) the quotient E(dy/d-r)F increases slower at increasing

T and reaches the value of E(dy/aT)D at T =0 not until later.

Nevertheless, the buckling case of Onet and Drucker gives a good quali-
tative picture of the influence of initial eccentricities.

Bijlaard and Wisemsn likewise point out (in ref. 46) that the approxi-
mate coincidence of the results by incremental theory, when initial eccen-
tricity is allowed for, with those by deformstion theory (initial eccen-
tricity disregarded) in the Onat and Drucker buckling case is not applicable
to other relations.

That, all the same, deformation theory is always in agreement with
experiment, as Bijlaard and Wiseman claim (cf. section %.1), must have
been known to them from the fact that incremental theory 1s not correct,
but thet deformation theory is valid, at least at load changes such as
occur in buckling cases and where the data of the theory of Batdorf and
Budiansky are equal to that of a deformstion theory (not that by Nédai,
compare section 3.3). (See section 10.1 of ref. 3, for example.) :

Bijleard and Wisemaen conclude their discussion of reference T with:
"Nevertheless, it is a welcome contribution for indicating that small
divergences in the direction of incremental theory are cancelled by
initial eccentricities.”
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3.6. COMPARISON OF DATA FOR.CRITICAL LOADS BY DEFORMATION

AND INCREMENTAL THEQRY

Such a comparison is shown in figure 3.4, taken from reference 1.
The reproduction of four load cases is the same as discussed in sec-
tion 2.3.2.3.

The dashed curves represent deformstion theory, the solid curves
incrementel theory, both allowing for the Shanley effect. The plot
also shows to which load cases the respective curves refer.

Figures 3.5 and 5.6, taken from reference 9, give the same data as
figure 2.1. The variation of the buckling factor k is plotted verti-
cally, the ratio a/b' of the sides of the rectangular plate hinged
along all edges, horizontally. The plate is loaded on the slide of
length b 1in compression in one direction.

- Figure 3.5 represents the curves by incremental theory and, according
to Bleich, both computed without the Shanley effect. The curve by elas-
ticity theory is also shown. All curves were computed with consideration
to the exact elastic value for the transverse cont;action coefficient _

v = 0.32.

Because Hahdelman and Prager wanted to compare their results with
that of Ilyushin, they computed the data with v = 1/2:_ The particular
comparison 1s shown in figure 3.6. :

Figures 3.7, taken from reference 30, and 3.8, taken in part from .
reference 30 and in part from reference 31, represent the data of several
theories for an infinitely long plate hinged along the edges compressed
in length direction. The shape of figure 3.7 is that according to fig-
ure 2.4, that of figure 3.8 according to figure 2.3. _ Z

The results of the several methods based on deformation theory are
not far from each other and near the curve according to Gerard's method.
The inclusion or exclusion of the Shanley effect does not matter much.
(Compare Ilyushin's curves in figs. 3.7 and 3. 8 with that by Stowell in
the same plots.)

Incremental theory gives consistently much higher date than defor-
metion theory or Gerard's method. Whether the Shanley effect 1s included
or not, does not matter much. Compare the Handelman and Prager curves in
figure 3.8 with those of Bijlasard (in ref. 31) by incremental theory,
computed with Shanley effect accounted for.
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i, EXPERIMENTAL DATA

k.1, NACA TESTS

Of the NACA tests for l9h5—l9h6; while the present report was
written, references 32, 33, 3&,_35, and 36 were available. These experi-
ments deserve special attention since Bijlaard in reference 235 sees in
the results of these experiments a confirmation of deformetion theory.

They .are compression testés on H, 27, and channel sections. The
section forms used, as described in reference 32, are found in figure 4.1,
those of references 33 to 36 in figure 4.2. The dimensions of the col-
umne were so chosen that column buckling did not occur, but only local
instability. In references 33 to 36 it is stated that: "The lengths of
the columns were selected so as to obtain whenever possible a desirable
three-half wave buckling pattern.” In the description of the tests
nothing is ever mentioned about the buckling pattern in flanges or webs,
only the critical load is indiceted. The cross-sectional distortion of
the sections according to figure 4.1 is given once. (See fig. 4.3.)

The selfseme photograph of an H-section under compression published
in references 31 to 36 shows buckled flanges. The buckling pattern is
80 laid out that 1t conslists of three-half waeves. The photograph shows
no sign of web buckling. About the condition of the critical load the
following statement is given: "In the local instability test, measure-
ments were taken of the cross-sectional distortion, and the eritical
stress was determined as the stress et the point near the top of the
knee of the stress-distortion curve where a marked increase in distor-
tion first occurred with small increase of stress." It is well known
that such methods of determining the buckling load contain a large meas-
ure of arbitrariness. (See ref. 48, for example.) '

In the tests of references 32 to 36 stress-strain curves are deter-
mined on test pleces teken on different areas of the cross section. In
each of the cited publications, elther an average diagram is given which
indicates the amount of scatterling over all test pileces, or 5 to 10 dia-~
grams, which agein were the aversged result of a number of test specimens
from the same section bar. What seems to be about the extreme limit of
the thus published stress-strain curves is represented in figure L.k to
figure 4.7. It is seen then that Gerard's method (section 3.2) always
gives somewhet higher results. The writers themselves apply no theory.
Figures 4.4 to 4.7 simply contain curves which indicate the average loca-
tion of the test points.

Reference 38 again discusses the results of the NACA tests of refer-
ence 33, as far as the H-sections are concerned. Figure 4.8 represents
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experimental points in a dlagram of the form of figure 2.35. The calcu-
lation of the critical loed by elasticlty theory is carried out according
to reference 40. Theoretical curves are also shown. The theoretical
critical loads in the plastic range are likewise computed according to
the principles of reference 40 and with the aid of Stowell's report

(ref. 21).

A summery of references 32 to 36 1s given in reference 39. From
this reference 39 it 1s apparent that references 4l and 45 belong in
the test series of references 32 to 36. The last-named reports were not
available, however, to the writer at the time this report was written.

Bijleard (in ref. 22) gives the diagram on figure 4.9, in which the
curves for two load cases computed by deformation theory are shown.
Then, he quotes "NACA tests 1945-1946." OFf what tests precisely, is not
mentioned. It is certain that the material wes "avional," but which of
the materials used by Pride and Heimerl was meant by it? The quotes are
not immediately traceablé to the work of Pride and Helmerl. Neither is
the stress-strain curve for "avional," which was copied by Bijlaard with-
out the scatter of Heimerl and Pride. (A line is drawn through the eight
points of figure 4.9 in reference 22, but that 1s no theoretical curve;
it merely indicates an averaged position of the intended polnts.) Appar-
ently Bijlaard did not compute the critical load by elasticity theory
agaln, but simply followed the report of Pride and Heimerl.

If, in the NACA tests, the flanges really have started to buckle, the
values of the critical load should lie between load cases I and II, at
least on the premise that the buckling flanges in the tests are still
considered as infinitely long (three half-wave waves occur, according
to fig. 4.9). But even Gerard's simple rule itself ylelds results which
are fairly accurate, for the experimental points are located near to the
stress-strain curve of figure 4.9.

Pride and Heimerl (ref. 30) also made somé compression tests on a
long, square, hollow, seamless box. The indlvidual plates could then

be considered as simply supported at the edges.

Figure 4.10 represents test polnts for seven groups of test pileces,
each group referring to test pleces from one sectional bar. Besides the -
test points, the curves of Gerard, l.e. stress-strain curves, are plotted.
There still is some scattering between the stress-strain curves of the
different groups. And even within a group of test pleces from one bar
the scatter is fairly wide. (Cf. the limits indicated on curve C.)

4mne support conditions of the ends infinitely far from each other is
of no significance. TFor case II, in which o waves occur, this is instantly
clear. In case I a half-wave occurs foér hinged ends; for clemped ends,
a whole wave. But in this case the critical compressive load is indepen-
dent of the wave length, 1f the wave length 1s great.
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The same measurements are repeated in figure 4.11, but after cor-
rection (according to ref. 47), hence refer to material with a constant
stress-strain curve. The theoretlical curves sre those of figure 3.5.
The agreement wlth Stowell's theory is good. Gerard's secant-modulus
method should also glve acceptable results.

k.2, GERARD'S EXPERIMENTS

Gerard (ref. 19) likewise made some tests on Z and channel sec-
tions and established a satisfactory proof of his secant modulus method.
The chart in which the real critical load is plotted agalnst the calcu-~
lation by elasticity theory obtalned by secant modulus method, passes
nicely along the test points. (See fig. 4.12 and fig. 4.13.) The cal-
culaetion of the critical loed by elasticity theory wes made according
to reference 41. One notilceable feature of figure 4.13 is that the
agreement between theory and experiment in the elastic range is not
good ,y which raises some doubt as to whether all experiments are not at
the upper limit. The true critical load is determined from the differ-
ence in strain at the opposite sides of a flenge. At first the differ-
ence seems to be practically zero, but at incipient buckling this dif-
ference grows quickly st slightly increasing mean compresslve stress
(fig. 4.14), Figures 4.12 and 4.13 also show the curves according to
Lundquist (ref. 18) and Langhsar (ref. 17) (tangent modulus method).

Other tests by Gerard are reported in reference 42 and discussed
also by Stowell (in ref. 43). The tests refer to a shearing test on an
infinitely long rectangular plate., The long edges of the plate are
rigidly clamped. Reference 43 gives a diagram in which the critical
shearing stress is plotted against the critical shearing strain computed
by elasticity method, according to Stowell's theory and Gerard's secant
modulus method (fig. 4,15). Gerard's curve forms the shearing stress-
shearing strain curve of the material. Stowell's curve can also be
applied)to the case of hinged long sides. (Naturally, thaet of Gerard
is too.

This case was also treated by Stowell, but there was only a very
emall difference from the case of clamped edges, which cannot be taken
into account in the calculaetion.

The agreement between the experimental evidence gnd the curve by
Gerard's method is not as good in figure 4.15 as in figures 4.12
and %.13.°

5Tra.nslator's note: Figufe k15, taken from reference 43, appears
to be in error and is misleading, Gerard's method actually gives lower
stresses then Stowell's method. (See NACA TN 318k.)
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4.3, Kollbrunner's Experiments

In reference 8 Kollbrunner investigated rectangular plates of dif-
ferent length/width ratios for several load cases (fig. %.16). The
edges of length b were assumed to be hinge supported, those of
length a \free, hinge supported or clemped, as illustrated in fig-
ure 4.16. |The tests were made on perfectly simple plates; thus, for
example, the plate for case II (fig. 4.1lk) was not the flange of an
equilateral angle section. loaded in compression nor the plate of case IV
a slde of a square box beam, such as the other investigators used.

Figure k.17 shows a portion of Kollbrunner's setup. The lateral .
edges of the plates are enclosed in small steel tabs, which safeguarded
the hinged support of the edges as illustrated in figure 4.18(a). The
set screws in the steel tabs insured clemping (fig. 4.18(b)).

Kollbrunner checked his experimental results agalnst his theoretiéal
solutions obtained by the differential equation (3. 7) which is & kind of
mean of Blelch's and Chwella's relations.

The theoretical result for the critical compressive stress o is

5op 2E (£)2M+lq.:_“_2?___(bg)2_lz+
12(1 _ v2) b 2 K 12(1 . v2) 2)

s | ()
with
& plate length -
b plate width -
h plate thickness
« by (3.4) and (3.5)

m number of half-waves of buckling pattern
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The constants p and q in the different load cases (fig. 4.16)
have the followlng values:

Case I p=20 q = 0]
IT p = 0.425 q=0
ITT p = 0.570 q = 0.125
Iv p=2 a=1
v P =25 qa=>
VI p = 2.270 ‘q = 2.450

Coefficient K in (4.1) is a correction factor defined by experi-
ment. The neccessity for the use of this coefficient is attributable
to the fact that the assumption of hinged plate support on the short
side where they are compressed is not perfect, since small bending
moments can still be taken up here.

The correction factor K for case I 1s not given. For case IT &
factor K = 1.5 should be epplicable in the elasstic &s well as 1in the
plastic range. For cases III to VI a factor K = 1.2 is applicable,
but in the plastic range only.

By (4.1) it can be deduced that the critical compressive stress ¢
for the infinitely long plate is

. %E o 2l 1+ Va -
A Ol S i (-2)

as glven by Kollbrunner himself.

Coefficient K does not appear any longer in (M.Z), and actusally,
the manner of support of ends loaded 1nfinitely far from each other are
of no interest in load cases II to VI. Compere case II with case I
mentioned in the footnote of section 4.1.

Kollbrunner does not report why the factor K = 1.5 for case I
holds 1n the elastic and the plastic range, whereas for cases III to VI
the factor X, which, moreover, has another value, is valid in the plastic
range only. All the same the use of the correction factor K seems a
rather srbitrary lnterference in the experimental check of a theory which
itself has as yet no solid basis. (Cf. section 3.2.) On top of that, it
should be remembered that the significance of K dJecreases conslderably
when long plates are involved. The figures 4.19, 4.20, and 4.21, of the
same psttern as figure 2.1, represent some test data with the "theoretical"
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curves, l.e. curves cbtained with correction factor K, together with
the curves of Blelch and Chwalla and Kollbrunner, respectively, of refer-
ences 13 and 15. These graphs stlll show points which are up to 10 per-
cent lower than Kollbrunner's "theoretical" curves, which Kollbrunner,
indeed, confirms in reference 11.

To define the instant of buckling, a straight bar is reflected in
the plate surface. According to Kollbrumner, "the instant of buckling
was momentarily plainly visible by a typlcal Jump of the reflected bar
from its straight shape into the wave pattern."

After the appearsnce of reference 20, Kollbrunner becomes & sup-
porter of Ilyushin's theory, to which he subscribes, as stated before,
with great enthusiasm in reference 1ll. Ilyushin's theory glves up to
10 percent higher values than Kollbrummer's theory, and the lstter
belleves that if the correct (elastic value) 1s used instead of v = 1/2
in Ilyushin's theory, both theories would be in good agreement.

Figures 4.22 and %.23, of the same form as figure 2.2, represent

some experimental results, based on the theoretical curves of Kollbrunner
and Ilyushin.

5. DISCUSSION

The deformation theory of plastic strain applied to the calculation
of the critical buckling load of plates gives results which are 1n better
agreement with experiment than incrementel theory.

Onet and Drucker give an explanation for the fallure of incremental .
theory in computlng critical buckling loads for a speclal case by assuming
an initial eccentricity.

Some writers consider deformation theory as "perfectly correct" and
are willing to see more in it than a practical calculating rule. It
never has been proved even for general cases that incremental theory
applied to a plate with 1lnitisl eccentricltles glves exactly the same
results as deformation theory spplied to the plate, without counting
with the 1nitial eccentricity.

The statement of some writers that thelr or someone else's experi-
ments are in "excellent agreement" with their own theory needs to be
critically examined.

At such & pronouncement the question often arises:

1. How much scatter was there in the stress-strain curves? (Cf. the
scattering in figs. 4.4 to 4.7, for example.)
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2. Exactly how is the buckling limit defined? Compare, for example,
references 32 to 36, where "the critical load is considered as reached,
when the distortion of the cross section begins to show & rapld increase
with slightly increasing stress."

3, Little scatter in the measured critical state of stress is no
indication of whether there are disturbing secondary effects in the
experiment or initial eccentricity. Groups of identicel plates, loaded
fairly far in the plastic range, almost all exhibit the same critical
buckling load, but fairly far in the plastic range the tangent modu-
lus Ey is usually small, and the stresses which can occur even before
buckling can then still not vary very much. However, should not the
scatter in distortions on reaching the critical state be much greater?

The information sbout these problems is generally very vague. Con-
sidering reference 30 as example (already discussed in section 4.1),
the following may be stated:

To 1. The scattering in the stress-strain curves for one of the
square boxes used as the test pieces seems to be considersble (£ig. 4.10,
curve C.) Between the mean curves for the different boxes there are
differences of the same kind.

To 2. As examples of the determination of the buckling load two
sulteble disgrams are given in reference 30 (fig. 5.1). But they refer
to cases in which the buckling load was, at the same time, approximately
the meximum load. Diagrems for cases in which the maximum load was con-
siderably sbove the buckling load were not given. In this connection
the question arises as to how it was possible that on many tubes the
buckling stress and the mean stress st maximum load were almost identi-
cal, but far below the 0.2 strain limit, as seen from table T of refer-
ence 30 (42.8 kei, 43.2 ksi, and 61.4 ksi). i

Iacking further informstion, this is & very remarkeble result. The

inescapable conclusion was that for a better insight into the problem
we had to carry out experiments of our own.

6. CONCLUSIONS

1. It may be assumed that the plastic distortion increases even
during buckling. Unloading according to elasticity theory is not
required (Shanley effect).

2. The incremental theory of plastic deformstion 1s really the one
which should be applied to the calculation of critical buckling loads
of plates.
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3. Initilal eccentricities are bound to have & marked displacement
effect on the result., As a rule, however, it is practically impossible
to allow for such eccentricities in the derivation.

4, Deformastion theory applied without regard to initial eccentrici-
ties gives practical results. . } .

5. Of all the writers starting from deformation theory, Bijlaard
gives the best treatment. He accounts for the Shanley effect and intro-
duces the correct value of the transverse contraction coefficient.

6. Uncertainties in the stress-strain curve at incipient buckling,
likewlse the scattering in the experiment, often show sgreement between
theory end experiment that seems better than it actuslly is.

T. The difference in theoretical results for the critical losd on
the basis of deformation theory with or without Shanley effect and with
or without the correct value of v 1is not or, not much, greater than the
scattering that 1s to be observed as the result of many causes during
the experiment. _ —

8. Less explored is the critical distortion at which buckling occurs.

9. Gerard's method, which introduces the secent modulus, i.e.
Young's modulus in the formulas for the buckling stress in the elastic
range, always gives, it is true, a higher critical buckling stress than
deformetion theory, although it gives, nevertheless, a practical cal-~
culating rule. . . -

10. A better insight into the problem involved .may perhaps be cobtain-
able by personal experimental investigation. .

Translated by J. Vanler: : - - oo
National Advisory Committee
for Aeronautics
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SUPPLEMENT A

THE DIFFERENTIAL QUOTIENT dy/dr OF INITIALLY SIMPLY
COMPRESSED MATERTAL AS FUNCTION OF THE IATER

ON ADDED SHEARING STRESS T

A.l. INTRODUCTION

?

The materlal 1s such that above the elastic limit and at increasing
load in & compression test the differential quotient dc/de = By exhibits
a constant value. The material is first considered as subjected to =&
compressive stress ¢ = 99, after which at constant o, a shearing

stress T 1s added. The secant modulus on reaching compressive
stress o5 1s Esec(co), hence, also & constant in the subsequent
calculations.

A.2. BY FLOW THEORY

The formules (11.16) and (1l.17) of reference 3 give the stress-
strain relations for the case that only normsl stresses ¢ (positive
if o 1is a compressive stress) and shearing stresses T are spplied

_do 2
de = = + 5 o aJ, (A.1)
ay = % ar + 2p7 4, (a.2)

€ the normal strain (positive when € 1is a compression) .

1 2
3, =302+'r (A.3)
and p 1s a functlion of J,. First to be investigated is the function

of J, on the basis of constent tangent modulus Ey 1in thé COmpPYeSe
sion test, where, because T =0
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and by (A.1) and (4.3)
de=%°—+-§pd-§dc=%f (A.5)
or
=2 (X .1
P 1;0;2(’% E)
and with (A.k) -
=_L_1__£) A6
P, T E ( ?_

Formula (A.6), where o = g, and (A.6) are substituted in (A.2), glves

dy _ 21 + v) or® (1 _ 1L
.22ty , P o E) (A.7)

which 1s identical with (3.9) and at T = O changes to (3.11).

A.3. BY DEFORMATION THEORY

Formulaes (11.1%) and (11.15) of reference 3 give relations between
gstresgses ¢ &and T and stralns € and ¥

=94+ 2 .
e=2+ 3 Po (A.8)
7 = gﬁi{%—Zl T + P1 (A.9)

with P & function of J, with J, according to (A.3).

Now assume that the equation of the stress-strain relation for the
compressive test 'in the plastic range is
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e=EfG_...a- o | (A.10)

p=2L-1)_§_

and since (A.4) is vallid agailn for this test, P becomes

P = g@_t - %) L (A.11)
2y3o
Formuls (A.3) in which o =0, and (A.11) are substituted in (A.9) '
glves
2(1 + v) (1 1) Zar
y = LORE SR B ) L oL (A.12)
E E, E W

The constant & can be eliminated by ascertaining that after
spplying the compressive stress %9 according to (A.10)

or

1 00T 1 1 )

1
7=——T+3&-—)T+——————-— (A.13)
E ' £ Voo~ + 372. sec(90)

The differential quotient becomes
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hence 1s identical with (3.8) and at T = 0 becomes (3.10) snd when
Egec(90) = E, changes to (3.11).
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SUPPLEMENT B

DETERMINATION BY DEFORMATION THECORY OF THE CRITICAIL BUCKLING
IOAD OF THE ONAT AND DRUCKER IOAD CASE IN THE ABSENCE
CF INITTAL ECCENTRICITY AND PREDICTION OF THE
SECANT MODULUS FOR THIS LOAD

In the Onat and Drucker buckling case the yleld point is o¥. The
critical compressive load by elasticity theory is Ee = 20%. Above the

yield point the tangentlal modulus E; 1s assumed constant, and has the
value that follows from

2o=29+1-%G- (B.1)

B

hence Ey = 0.05E for v =1/2 and By = 0.057E for v = 0.3.

Above the yield point the relation between compressive stress and
compression is

* * ’
e =2 2T _ 97 (B.2)
Et B
and the secant modulus is
_ a
Brec = 507 o% (B.3)
B, Bt E

At small increase of shearing stress T +the differential quotient
by deformation theory is identical with (3.10)

1 =E’i=é’_-_£+2_0._°_*_+ﬁ> (B.14)

For the special load case in question the critical value of o by
incremental theory has the value according to elasticity theory, hence
g = Ee = 20%, as long as no initial deflections exist.
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The critlical value for ¢ by deformation theory becomes

G - G :
0 = —85¢ Gy = 288 g (B.5)

In view of (A.18) and (A.19), the value of G is the solution for
¢ from the equation . .

2.2 _
?t £ 1 +1 | (B.6)

end with (B.l)

g = 1.050%

When the compressive stress reaches this value, the secant modulus
is, by (B.3) and (B.1)

cee = 0.525E for v =1/2

b
i

0.560E for v

=
]

0.3

sec

Cie
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TABLE 3.1.

COMPARISON OF THE DIFFERENTIAL QUOTIENT d7/d1 BY INCREMENTAL
THEORY (F) AND DEFORMATION THEORY (D) OF MATERIAI UNDER

INTTTAL COMPRESSIVE STRESS o, IN THE PLASTIC RANGE

Ey = 0.8E
. 5(@)
T E(a—Z)F D
Egec(0p) = E Egec(90) = 0.9E

0 2.600 2.600 2.933
.00l 2.600 2.600 2.933
.0030 2.600 2.600 2.933
.Olag, 2.600 2.600 2.933
-030, 2.602 2.605 - 2.935
.1lgg 2.622 2.632 2.951
300 2.759 2.826 3.059
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TABLE %.2.

COMPARISON OF THE DIFFERENTIAL QUOTIENT dy/dr BY INCREMENTAL
THEORY (F) AND DEFORMATION THEORY (D) OF MATERTIAL UNDER

INTTIAL CCMPRESSIVE STRESS oo IN THE PLASTIC RANGE

Ey = 0.6E
)
T E(ﬂ)}' dr/p
dr -
Eieo(%) =E Egec(0g) = 0.9E
0 2.600 2.600 . 2.933
.001og 2.600 2.600 2.933
0030 2.600 2.600 2.933
.Olag 2,601 2.601 2.93k '
030 2.605 2.608 2.940
.1lgg 2.658" 2.687 3.005
-39, 3.025 3.203 3.435
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COMPARISON OF THE DIFFERENTIAT, QUOTIENT dy/dT BY INCREMENTAL

TABLE 3.5.

THEORY (F) AND DEFORMATION THEORY (D) OF MATERIAL UNDER

INTTTAL CQMPRESSIVE STRESS og

IN THE PILASTIC RANGE

Ey = 0.4E

)
at D

Egec(90) = E

Egec(v0) = 0.9E

Esec(UO) = 0.5E

.OOlUO
«0030¢
.0160
0304
.lco
.360

2,600
2.600
2.600

2.601
2.612
2.731
3.557

2.600
2,600
2.600

2.602
2.618
2.79
3.956

2.955
2.935
2.933

2.935
2.950
3.114
L.189

5.600
5.600
5.600

5.601
5.606
5.665
6.052
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TABIE 3.4.
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COMPARISON OF THE DIFFERENTIAL QUOTIENT d7/dT BY INCREMENTAL

THEORY (F) AND DEFORMATION THEORY (D) OF MATERTAL UNDER

INITTAL COMPRESSIVE STRESS o, IN THE PLASTIC RANGE

E, = 0.2E _
E 91)
dr
), &,
Eioo(90) = E | By (90) = 0.9 | Egeo(90) = 0.5E
0 2.600 2.600 2.933 5.600
.00lag | 2.600 2.600 2.933 5.600
.0030, | 2.600 2.600 2.933 5.600
.Oloy | 2.60k 2.605 2.938 5.60k
.030, 2.632 2.648 2.980 5.636
1og 2.949 3.120 3.439 5.990
.30, 5.151 6.216 6.448 8.312
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TABIE 3.5.

COMPARISON OF THE DIFFERENTIAL QUOTIENT d7/d'r BY INCREMENTAL THECRY (F) AND
DEFORMATION THEORY (D) OF MATERIAL UNDER INITIAL CCMPRESSIVE
STRESS op IN THE PIASTIC RANGE

E; = 0.1E
ar
=
F

Egec(90) = E | Bgee(90) = 0.9E | Egec(0p) = 0.5B |Egec(90) = 0.15E
0 2,600 2.600 2.933 5.600 19.600
.00lag | 2.600 2.600 2.933 . 5.600 19.600
. 0030 2.602 2.600 2.933 5.600 ' 19.600
.0log 2.608 2.611 2.9 5.610 19.604
-030 2.6T3 2.708 3.040 5.696 : . 19.640
1o, 3.386 3.TT0 k.089 6.640 20.033
-39, 8.340 10.735 10.968 12.831 22.613
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TABIE 3.6.
COMPARISON OF THE DIFFERENTIAL QUOTIENT dy/dt BY INCREMENTAL THEGRY (F) AND
DEFORMATION THECRY (D) (F MATERTAL UNDER INITTIAL COMPRESSIVE
STRESS op IN THE PLASTIC RANGE
Ey = 0.05E -
ay
E(r)
da T
T E(E})F D
Egec(90) = E | Egee(90) = 0.9E| Egeo(00) = 0.5E | Bgee(T0) = 0.15E
0 2.600 2.600 2.93%3 5.600 19.601
.0010y | 2.600 2.600 2.933 5.600 19.601
.0030g | 2.601 2.600 2,933 5.600 19.60L
.Ology | 2.617 2.623 2.954 5.622 19.617
030y | 2.753 2.828 3.160 5.816 19.761
log | .260 5.070 5.389 T.940 21.334
300  |1k.718 19.7Th 20.007 21..870 31.653
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TABLE 3.7.

k3

COMPARISON OF THE DIFFERENTIAL QUOTIENT dy/dr BY INCREMENTAL THECRY (F) AND

DEFORMATION THEORY (D) OF MATERIAL UNDER INITIAL COMPRESSIVE

STRESS oq

IN THE PLASTIC RANGE

B, = 0.02E

2
dT. D

Egec(90) = E

Bgec(90) = 0.9E

Esec(do) = 0.3E

Egec(%0) = 0.15E

.001gq
.003a,
.Olco
.030q
.lao
«300

2.600
2.600

2.604
2,644
2.996
6.882
33.891

2.600
2.600

2.600
2.659
3.188
8.970
L6.891

2.933
2.933

2.933
2.992
3.520
9.289
.12k

5.600
5.600

5.600
5.658
6.176
11.840
48.987

19.601
19.601

19.601
19.653
20.121
25.254
58.770
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TABLE 3.8.

COMPARISON CF THE DIFFERENTIAL QUOTIENT d'y/d'r BY INCREMENTAL THECRY (F) AND
DEFORMATION THECRY (D) (F MATERIAL UNDER INITIAL COMFRESSIVE

STRESS oy IN THE PLASTIC RANGE
E, = 0.01E
5(22).
a aT
T &) 2
Eiec(90) = B [Eyp (90) = 0.9E |Egeo(%0) = 0.5E | Eggo(9p) = 0.15E
0 2.600 2.600 2.9%3 5.600 19.601
.00lo, | 2.601 2.600 2.933 5.600 19.601
.00305 | 2.608 2.600 2.953 5.600 19.601
.Oloy | 2.689 2.719 3.052 5.718 19.713
0305 | 3.%00 3.768 L.120 6.776 20.721
log |1l.251 15.470 15.789 18.340 31. 734
30g |65.Th2 92.086 92.319 9%.182 103.96
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TABLE 3.9.

RESULTS (OF ONAT AND DRUCKER BUCKLING CASE

45

Initlal torsion per length Z2b of

section in redisms o] 0.000111 0.00111 0.0111

= § = dpay,0* is elastic limit 2g% 1.260% 1.170%* 1.080%
L2
=]
gg Torsion per length Z2b at
gp maximum load in radians 0 0.060 0.087 0.077

T/c et maximm load o 0.100 0.112 0.128
“ § = Opgy,0*% 1s elastic limit 1.050% 1.020%
g
£ | Torsion per length 2b at
g § maximum load in radiens o} 0.050
4 P
& T/0 et maximm load o] 0.083
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g
b

Figure 2.1,- Critical compressive stress oy of rectangular plate
loaded under compression in one direction, all edges hinge
supported; length of sides a and b; width-depth ratio (b/h) is
constant, The sides of length b are the loaded sides,

m = half-waves,
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By elasticity theory

theory

Elastic

Figure 2.2- Method of plotting used by Kollbrunner. Critical com-
pressive load oy of an infinitely long plate with hinged edges

under compression in the direction of the length.

b7
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Figure 2.3.- NACA method No. 1. Vertical: critical stress oy
of an infinitely long plate of 14S-T6 aluminum with hinged edges
under compression in length direction. Horizontal: critical
strain ¥y o by elasticity theory.
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n=T% &y 20-v2)b2
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0.6 . \
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0
40 50 60 70 80

Oy, Ksi

Figure 2.4.- NACA method No. 2. Load case as in figure 2.2. Verti-
cal: factor n by which oy ¢ should be multiplied according to

elasticity theory to yield actual critical stress Gx. Horizontal:
actual stress Ty.



50

Figure 3.1.~

Onat and Drucker cruciform,

NACA ™ 1392
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Figure 3.2.- Cruciform in straight state.
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Figure 3.3~

(-

Cruciform in twisted state.

NACA ™M 13392
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——— Deformation theory
55 r—
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I Infinitely long plate, hinged,
loaded in shear.

2.2
ofg.fIz"“szb
T<Eh

N\
IT Infinitely long plate, hi ted,
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[ AN
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= TIT Square plate under pressure in one
durecﬂon loaded sides hinged ; one
.5 nloaded side free ,the other hinge
orted,
=AvA Rectangulor plate {(a/b=5) under
pressure inlength direction. Loaded
(PO o sides hinge supported; oneunloaded
side free,the other hinge supporied.
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Figure 3.4~ Buckling factor k plotted against €y (or shear 7)) for

four dJStEerent cases of 245S-T aluminum, according to Besseling
(ref. 1
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Figure 3.5.- Buckling factor k for simply supported rectangular
plate v =0,32 hinge supported on all edges under compression.
The sides of length b are loaded, width/thickness ratio according
to b2/h? = 1000. m = half-waves at buckling (taken from ref. 9).
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Figure 3.6.- Buckling factor k for simply supported rectangular

55

plate v =0,50, all edges hinge supported, loaded in compression.
The sides of length b are loaded; width/thickness ratio according

to b2/hZ =1000. m = half-waves at buckling (taken from ref. 9).
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.0
~~—Handelman-Prager(incremental-theory,
without Shanley effect)
0.8 \
' ‘\—Gerord (Secont-Modulus Metlhod)
\(Ilyushin(Def. Theory v=1/2, without Shanley
\, effect)
\ Bijloard(Def. theory, with Shanley effect)
Nof oy
—_~ =
o | W 0.6 \_
L N|= Stoweli (Def. theory, v=1/2,with Shanley
o < : effect)
g
n
<
b | 04
lpl
0.2
\/Tcmgent Modulus Method
0

40 50 . 60 70 80
Critical stress &, ksi

Figure 3.7.- Factor 71 plotted against critical stress Gy for an
infinitely long plate of 148-T6 aluminum plate, with hinge-supported
edges under compression in length direction (taken from ref. 30).
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( Handelman - Prager, with
Shanley - effect calculated
/_ by Bijlaard.
Stress ~ strain curve and
method of Gerard.
Tlyushin
60 Bijlaard
Stowell
\ Handelman -Prager with
Shanley - effect and
= v=1/2 calculated by
x> Pearson.
o
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Figure 3.8.- Load case in figure 3.4. Critical stress oy plotted
against critical strain €x,e computed by elasticity theory (taken

from refs. 30 and 31).
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Figure 4.1.- Sections used in tests described in reference 32.

S

bw
"
(%,

Figure 4.2.- Sections used in tests described in references 33 to 36.

/ \I I,'

\
}
Figure 4.3.- Cross-sectional distortion during buckling in tests
described in reference 32,
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Figure 4.4,- Experimental results of compression tests on sections
- described in reference 33; material, 765-T aluminum,
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Scatter of stress-strain

curves
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Figure 4.5.- Experimentsl results of compression tests on sections

described in reference 34; material, 24S-T aluminum.
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Figure 4.6.- Experimental results of compression tests on sections
described in reference 35; material, R 303-T extruded aluminum,
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Figure 4.7.- Experimental results of compression tests on sections of
148-T extruded aluminum (from ref. 36).
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Figure 4.8.- Experimental results of compression tests of reference
31, as concerns H-sections; compared with theoretical results of
Stowell (taken from ref. 38; for bg, by, tm, and ty, see fig. 4.2).
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Figure 4.9.- Two buckling cases calculated by Bijlaard, compared with
NACA test on sections (taken from ref. 22).
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Figure 4,10,- Critical stress dx of infinitely long 14S~T aluminum
alloy plate, hinge-supported edges, compressad in length direction.
The seven curves refer to seven groups of test pieces, each group
being manufactured from the same boz~beam section, The curves
are those of Gerard, hence stress-strain curves (from ref. 30).
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fo elasticity theory
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Figure 4,11,- Measurements. of figure 4,10, corrected for material with

constant stress-strain curve,
figure 3.8 (taken from ref. 30).

The theoretical curves are those of
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Figure 4.12,- Results of compression tests on 24S-T aluminum sections

by Gerard (taken from ref. 19).
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Figure 4.13.- Results of compression tests on sections of 768-T
aluminum alloy by Gerard (taken from ref. 19).
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Figure 4.14.- Determination of critical load in Gerard’s tests.
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Figure 4.15.- Critical shearing stress +_:of an infinitely long plate
loaded in shear; theoretical curves for hinged and clamped edge
support. Tests with long sides clamped.
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Figure 4.18,~ §Steel sldes used by Kollbrumner.
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Figure 4,18.- Critical stress 7, for load case IV of figure 4,16,
b/h = 31 (from ref. 8).
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Figure 4,20,~ Critical stress &y for load case V of figure 4.18,
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Flgure 4.21.- Critical stregs @, for load case VI of figure 4.186,
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Figure 4.22.- Critical stress 7y for load case IV of figure 4.16

of infinitely long plate according to Kollbrunner and Ilyushin
(taken from ref. 11).
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Figure 4.23.- Critical buckling stress for load case V of figure 4.16
on infinitely long plate according to Kollbrunner and Ilyushin,
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Figure 5.1.- Determination of critical load and maximum load in the
compression tests of reference 30. (Results of these tests given in
figs. 4.10 and 4.11.) '
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