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TECHNICAL MEMORANDUM 1392

ON TEE BUCKLING OF BARS AND PIATES IN THE PLASTIC RANGE*

By

Part II

J. P. Benthem

NOTATIONS

length of rectangular plate

width of rectangular plate

thiclmess of rectangular plate

coordinate along plate length

coordinate along plate width

normal stress components ax and Uy generally counted posi-

tive when compressive stresses

shear stress component

normal strain components ex and ‘Y generally counted posi-
ti+e for compressive strains

shearing

critical

critical

critical

critical

critical

in the

strain component

state of stress

state of deformation

stressed state computed by elasticity theory -.

state of deformation computed by elasticity theory

stress ax of a rectangular plate under uniform load

length direction
—.

corresponding strain 6X

*,,
Over het knikvraagstuk in het plastische gebied bi~ staven en platen.

(Deel 11).“ Nationaal Luchtvaartlaboratoriun, Amsterdam, Rapport S. 423,
Jan. 1954.
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‘x,e~zx,e the same, computed.by elasticity theory
c:

7 critical shear stress T of rectangular plate loaded in shear .

7 corresponding shearing strain y

‘e) 7e the ssme, computed by elasticity theory

k so-called buckling factor - a nondimensional factor appearing
in one formula in the form (see section 2.2)

ke buckling factor

7 = U/:e = k/kc

E

%

Esec

Er

a

G

v

v’

Young’s modulus

~2m2
z=

12(1 - v2)h

computed by elasticity theory

—
“.

. ●

tangent modulus, that is, dax/dex of the stress-strain
diagram of the tension and compression test

.

secant modulus, that is, %+x of the stress-strain diagrsm

frcm the tension and compression test

reduced modulus according to (3.5)

‘i% ,

-shear modulus

Poisson’s ratio, that is, -Ex/Ey of the bar stressed in

tension or compression along x into the elastic range

the quotient of -Ey/Ex of the bar stressed in tension or

compression along x into the plastic range .

2. INTRODUCTION

Part I of this report (ref. 1) dealt with the buckling of plates
in the elastic range on the basis of two different kinds of plasticity

f?.

u“—
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theories, the so-called deformation theory and the so-called incremental
theory.

It is now generally accepted that, from the physical point of view,
incremental theories give a rather good picture of the plastic deforma-
tion (compare refs. 2, 3, and 4) and that deformation theories certainly
cannot be correct (refs. 2 and 3). However, it still seems that the
results for the critical buckling loads of plates, loaded in the plastic
range, are substantia~y higher when computed by incremental theory than
indicated by the test.

The experimental values are correct in the neighborhood of the
results by deformation theory, although quite often the “excellent
agreement” spoken of does not exist.

The failure of incremental theories for defining the critical buckling
load in the plastic range is frequently regarded as proof of the inaccuracy
of incremental theories themselves, but that is entirely unjust. As Prager
so rightly remarked (in ref. 5): “To this writer (Prager) the idea of
testing a stress-strain law by buckling e~rlments seems utterly fan-
tastic; nobody would dresm o? determining, say, Young’s modulus by a
buckling test in the elastic range rather than a simple tension test.
Direct experiments speak in favor of incremental theories, and there are
strong theoretical object-ionsagainst deformation theories.”

Batdorf and Budians@ (ref. 6, see also refs. 3 and 1) developed a
theory which, for certain load increases, gives results according to a
deformation theory. Their theory has less physical faults than deforma-
tion theory itself, but some direct checks on this theory come out badly.

Besseling (ref. 1) sums up some of the possible causes of the fail-
ure of incremental theories and also cites the report by Onat and Drucker
(ref. 7). The I.ast-nsmedreport shows, on a special load case, how small
initial eccentricities exert a very strong reducing effect on a critical
buckling load ccmputed by incremental theories, as shall be explained In
section 3.5. That section deals also with a special investigation that
indicates how the stress-strain relations by both theories vary when,
at a constant compressive load above the elastic limit, a shear stress,
increasing from zero, is applied.

In practice, it is hardly possible, of course, to include initial
eccentricities in the calculations; they should also be exactly known.
The fact that then all points of a plate have different stress-strain
relations (which in the special load case used by Onat and Drucker was
not the case) raises well-nigh prohibitive mathematical difficulties.

..

. The question of whether the calculation by deformation theory is the
right way forms the sub~ect of the present report. Yet, before applying

“
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deformation theories to buckling problems of plates - and this is acccsn-
plished before passing to incremental theories – some simple calculating
methods are given which, compared with the experiment, did not give such
bad results.

2. STATEMENT OF ~SULTS

2.1 INTRCIDUCTION

On a rectangular plate, loaded in its plane by a uniform stressed
state, the components of which are defined by a consttitfactor, the
critical state of “stressindicated by 6 is defined by length a,
width b, plate thickness h, by the clamping at the edges and by the
material properties. Variation of the linear plate dimensions in the
same ratio leaves the stress or”d-rain components in the critical state
unchanged.

By “load case” is meant a case in which,a rectanguJ.arplate of
specific material and with specified attachments at the edges, changes
to a uniform state of stress before reaching the critical state, and
whereby the stress components have a certain fixed relat~onship.l To
illustrate: a rectangular plate of a certain material, clamped at the
edges in uniform state of shear stress, is a load case. Another one is
the rectangular plate of a certain material with hinge-supported edges
in uniform state of normal stress (with respect to a pair of sides).

2.2 V@riation of Leagth-Width R&tio

The critical stressed state 6 for a specific load case is, as far
as the plate dimensions are concerned, s~ly de~ndent on two independent
variables, such as the length-width ratio a/b or the width-thickness
ratio b/h.

(2.1)

Figure 2.1 represents a diagram for constant width-thickness ratio, the
critical load plotted against the length-width ratio.

●

☛

%nly such load cases ‘aretreated. Plates other than rectangular
are excluded, so also plates whose stressed state before reaching the
critical stressed state is not uniform,
factor, such as the web of a besm under

although defined by a constant .
moment load or shear, for example;”

,.-

.

*..—.
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.
The different branches of the curve correspond to different num-

bers (m) of halJ?-waves. The number of half-waves computed by different
. plasticity theories or elasticity theory need not be identical for a

given load case a/b.

By (3.1) it follows that the critical stress 6 for a given load
case in the elastic range can be written

(2.2)

where g and j are functions of the rectangular sides a and b.
Examination of the dimensions of 5, D, and ‘h
tion J is dhnensionless. Thence by (3.2)

3+% ~2m2
5=—=

hb2 12(1 - v2)b2

indicates that func-

(2.3)

. with k a function of the lengkh-width ratio a/b. The formula (2.3)
is, naturally, in agreement with the form of (2.1).

. Formula

●

is, of course, valid too.

The square of the side b loaded in compression is
denominator of formula (2.3) for the plate compressed in
solely because otherwise the limit transition to a+m
difficult.

The coefficient k in (2.3) is called the bucklhg

(2.4)

chosen in the
one direction,
becomes

factor.

The critical stress state in the plastic range is indicated by a
different function of the ratio bfi than gtven in (2.3), though the
form of (2.3) is also used in this range, but then the buckling factor k

~is no longer a function of
—

a/b but of b/h too.
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2.3. VARIATION OF THE WIDTH-THICKNESS RATIO

2.3.1. Kollbrunner Method

When setting up the length-width ratio, the width-thickness ratio
remains merely as variable. The length-width ratio of an infinitely long
plate can equally be considered as fixed when the critical load at
approaching ~ plate length does not approach zero. _

Figure 2.2, taken from Kollbrunner’s report (ref. n), represents
the critical load of an infinitely long plate supported by hinges on the
long edges and under lengthwise compression plotted against what
Kollbrunner calls the slenderness

2.3.2. U. s. Methods

2.2A2” - When the length-width ratio of a plate is fixed (for the
.

plate of infinite length this means, if the condition cited in section 2.3
is complied with), the NACA does not select the width-thickness ratio b/h ~
as independent variable, but the critical state of stress or critical state
of strain, as computed by elasticity theory. The thus camputed states are,
for a certain load case, tith fixed length-width ratio, naturally simple .
functions of the b/h ratio, and therefore can supersede the last named
ratio as variable. —.

In figure 2.3 the (actual) critical state of stress (vertical) is
shown plotted against the critical state of strain computed by elasticity
theory (horizontal). When, as in figure 2.3, the critical strain condi-.
tion computed by elasticity theory is plotted horizontal, the NACA usually
employs the term “strain” or ~’shear.!’This simple indication is often too
indefinite, since on the verticel the term “stress” or “shear stress” is
used also (i.e., the actual critical stress or shear stress). Some writers,
like Schuette and MacDonald (ref. 10), even ca13 the curve in a diagram
with such indications the “plate compressive curve,” by which the impres-
sion is gained as if the diagrsm gave the relationship between stress and
strain (or crushing of plate divided by height = mean strain) ofa plate
during a loading process.

By chance the curve in a diagram of the discussed
by Gerard (section 3.2) was exactly identical with the
of the material. The true significance of the diagram
entirely different one; it gives the critical state of
the width-thickness ratio. Some writers who use other

—.

calculating method
stress-strain curve
is, however, an
stress in terms of
computing methods
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.
than Gerard’s frequently plot, besides their computed curve, or besides
test points, the actual stress-strain curve of the material. This has
the advantage of making the value of the critical strain available while—
reading off a critical stress value.

2.3.2.2.- From a diagram as discussed
critical stress 6 is plotted against :e
another one can be constructed in which

~ = ~ against
‘e

in section 2.3.2.1 where a
computed by elasticity theory,

5

This form of diagram is also much used by the NACA. ~ (horizontal)
against ~/~e (vertical).

In this manner figure 2.4 was derived from figure 2.3. Point A in
figure 2.3 has the coordinates: O.O@ and 60,000 lb/inch2. Young!s

modulus is E = 10.7x 106 lb/inch2. The corresponding point A in fig-

ure 2.4 has then 60,000 lb/inch2 as abscissa and.
~ 60,000/O.008 X 10.7 X 106 = 0.7 as ordinate-. The factor q CSJI be

e~=ressed by
.

n
k

=P

with k the buckling factor and
theory.

The factor n is always the

. J%

ke the buckling factor by elasticity

factor with which the critical load
computed by elasticity theory must be multiplied in order to obtain the
actual critical load. Formulas applicable in the elastic range cannot
only be generalized by giving the buckling factor k another value than
by elasticity theory, but also by retaining the value of k by elastic-
ity theory when adding the factor q to the particular formula. The
factor qE appearing then in such a formula is called the buckling
modulus, as by Kollbrunner in reference 8.2

2.3.2.3.- Besseling (in ref. 1) uses a diagram in still another
form; not q . d/5e plotted against 6, but buckling factor k = ‘qI+
plotted against critical strain ~, which, however, is associated ~th

the critical stress 5 in very simple manner. For the plate compressed
in one direction it naturally gives E = 3/Esec. Figure 3.4 represents
such a diagrmn.

.
?l?hesame writer cal& the tangent modulus “variable elasticity

modulus” in reference 8.
.
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3 , THEORIES OF PLASTICITY USED TO DEFINE TKE CRITICAL
.

BUCKLING LOAD OF PLATES

3.10 INTRODUCTION - SHANLEY EFFECT

If a plate, loaded in its plane only, and hence
the state of stress of a membrane, is subjected to a

being initially in
deflection perpendi- .

cular to its plane, bending and torsion stresses arise, and ther~fo~e
the stress or the criterion for further plastic deformation (generally
the distortion energy) over a section of the plate thickness decreases.
If the plate in its uniform state of stress was already loaded as far as
in the plastic range, the appearance of a deflection perpendicular to the
plane of the plate makes the corresponding deformation partly plastic and
partly elastic, which complicates the calculations.

&mnl.ey (ref. 12), however, pointed out that the first appearance of
a deflection in conseqmnce of reaching the critical buckling load is
still accompanied by further stiultaneous deformation in the plane of
the plate, so that progressive plastic deformation takes place everywhere. “-
In fact, there is no buckling process at all in the ordinary sense of the
word (i.e., a process that takes place while the outside loads remain
constant).

Shanley applied this principle to the straight bAr under column load,
and established that the start of the buckling proces6.can be identified
by replacing Young’s modulus E in the formulas for the buckling load in
the elastic range by the tangent modulus Et. As a rule, any further
deflection is accompanied by a slight had increase only, so that the
load at which deflection can start may be defined as “buckling load.”
This had been done in the past, obviously uiiconsciously, but later on
Er (a reduced modul.us)lying between E “and ~ was used, as the

bucklihg process was considered a constant load process in which, in
fact, unloading takes place in a part of the bar;

—

.Thi.scalculation with “Shanl.eyeffect” is found also in the treat-”
ment of plates. Nowadays it is assumed that the calculation can be-car-
ried out as if the Shanley effect over the whole plate did occur. In
other words,”a critical buckllng load in the plastic range is calculated
solely by stress-strain relations applicable to progressive plastic defor-
mation. But the result will not be such, even by approximation, that E
can be replaced by ~ “inthe elastic formulas, in order to get the
desired result as is the case in the buckling of bars.

.

.
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●

✎

its
The differential
plane has, in the

3.2. FIRST A!rImFTs

equation of a buckled isotropic plate loaded in
elastic range, the form

(a4w + a a4w bkw) #w aaw+ma%r ~
D— — —+a&- + 2-rh— (3.1)

axh ax2a3 + ay4 ax2 ax ay 2’

where

~3 L
D= (3.2)

12(1 - V2)

E Young’s modulus

h plate thichess

v Poisson’s constant

w displacement perpendicular to plate surface

‘x Jay normal stresses along rectangular sides (positive, when com-
pressive stresses)

T shear stress along rectangular sides (just like ax and ay
the positive direction for T is opposite to that of nor-
mal convention)

Bleich (ref. 13) gives for the plate compressed in one direction
(t7y =(), T = O), loaded in the plastic range, after a kind of intuitive

reasoning

(3.3)

in which

the reduced modulus

a= %P (3.4)

.

“-
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4q
*

(3.5) “.Er=(ti+&)2... -
.

just as it applies also to the buckling of rectangular bars (when
assuming, as done in the past, that buckling is not coupled with pro-
gressive plastic deformation over the entire cross section) and D
according to fommla (3.2) hence with the elastic values for E and v.3

Chwalla (ref. 15) assumes that E can be replaced by E= = ciE “- ‘

and v by its plastic value v’ in (3.1) and (3.2); in other words,
that the plate remains isotropic. He reports that the ~lastic v@ue
can
not

also be used, for v < Vt < 1/2, and the-variation in 1 - VZ does
mount to much.

When v = v’ it naturally follows that

(3.6)

where ax is the critical value of ax for the appearance of buckling;

and d~,e the value as cpmputed by elasticity theory. ‘In consequence,

Young’s modulus E can be replaced by the reduced modu~us Er according

to (3.5) in the formulas for the elastic range.

Timoshenko discussed the points of view of Bleich and Chwalla in
reference 14.

The concepts of Bleich and Chwalla were riotbased u~on specific laws
of plastic deformation, but were obviously inte~ded as a rough intuitive
and safe approximation. Still, the reprinting of references 13, 14-,
and 15 following the publication of ~adai’s book (ref. 16), with Its __
simplest form of deformation theory for a hardened material, which,
with all its defects, nevertheless proceeds from explici-tassumptions,
ir,conjxmtion with other findings (section 3.3) resulted in a more
rigorously developed theory for the calculation of the critical buckling
load of plates.

—.- — .-

%any writers take Poisson’s transverse contraction-coefficient v,
so that it varies in the plastic range, and at progressive plastic defor-
mation approaches 1/2 (since plastic volume change canngt.occur). How-
ever, it is desirable to restrict v to the elastic ps@ of the defor-
mation, so that both v and E remain constant. The first-mentioned
transverse contraction coefficient which thus refers to total deformation
is expressed here by” v’.

“

—

.

—

F1
—.

.
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In Shanley’s latest point of view, Bleichj Chwalla, and Ttioshenko
should not have employed the reduced modulus Er but the tangent
modulus Et. “Thus, according to Chwalla, ~ should replace E for the
critical load 6X in the formulas by elasticity theory. This suggestion
was already made by Langhaar (ref. 17). The results obtained would, in
consequence, be too low (except when the elastic limit itself is not yet
exceeded), hence would give a much too unfavorable presentation of the
subject.

Kollbrunner’s method (ref. 8) lies about midway between that of
Bleich and Chwalla, as seen from his differential equation

{

Da

}

$+(.+6)-+$ +%!$=O (3=7)

Lastly,.in order to check the egreement of
with the thus developed theory, he introduced a

his tests (section 4.3)
rather arbitrary correc-

tion factor in the final crit~~al load formulas.

Iundquist (ref. 18) also used a formula of Chwalla (3.6) but with
a replaced by a correction factor, while

B
m+3&=—

4

This is intended as a kind of average of the aforementioned

Gerard (ref. 19) substituted the secant modulus Es for E

theories.

in the
formulas by elasticity theory, without, however, giving a more or less
theoretical basis like the aforementioned writers. According to Gersrd’s
method, it can be shown that the critical state of deformation of the
plate in a certain load case is independent of the stress-strain rela-
tions. In figure 2.3 the curve by Gerard’s method is shown as the stress-
strain curve of the material.

3s3. DEFORMATION THEORY

Ilyushin (ref. 20) treated the stability of plates by deformation
theory in its simplest form (briefly indicated by deformation theory,
because more general deformation theories are not involved here) i.e.,
with N&dai’s formulas (ref. 16) where v . 1/2, and with Shanley effect
disregarded.
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Kollbrunner, after his attempts discussed earlier”-(ref.8), became
d

immediately very enthusiastic and in reference 11 reex&nines his own
tests of reference 8 in the light of Ilyushin’s repoti. He writes !The
w’orkof Ilyushin is theoretically correct and generally valid,” but it

.

was a premature conclusion. A disproval of ticremental theories is not
given; they are not even mentioned.

Stowell (ref. 21) deals with the work of ?llyushin,still uses
v = 1/2, but includes the Shanley effect.

Bi~laard (ref. 22) gives the treatment of the stability of plates
with the correct (elastic) v“aluefor v and allows for the Shanley
effect. Although his theory has not been generally known before this
publication, it already had been published in different form in 1938
(in ref. 23), hence before the Shanley report (ref. 12).

Subsequently Stowell (together with Pride) supplemented his work
(ref. .21)with other values of v (ref. 24). With this he then got
the same results as Bijlaard in the earlier report (ref% 22). Stowell
compared the results of this report (ref. 24) with those of his report
(ref. 21); the differences seem to be very small.. Bi~laard, however,
indicates (in ref. 25) that the correction by reference 24 or reference 21 ‘
for one of the two load cases investigated by Stowell has the opposite
sign. .

3.4. INC!Rl!MENTALTHEORIES

Handelman and Prager (ref. 9) applied Prager’s incrementaLtheory
in its simplest form (in ref. 26, this theory is called incremental
theory, for short; more general incremental theories are disregarded)
to the buckling of plates without due regards to the Shanley effect.
The exact value for v is used.

Hopkins (ref. 27), Pearson (ref. 28, for v = 1/2) and Besseling
(ref. 1) do this, while taking the Shanley effect into.consideration.
These last three reports should be regarded as being founded on the best
theoretical basis.



NACA TM 1392 13

3.5. DIFFERENCE BETWEEN DEFORMATION AMl INCREMENTAL THECIRY

EFFECT OF INITIAL ECCENTRICITY

3.5.1. Stress-Strain Relations

After, say, a hollow tube is stressed in tension or compression in
the plastic range with a stress ao, an addition of torsion produces a

distinct difference between deformation theory and incremental theory.

If, for instance, sfter simple tension or compression, while *he
stress a remains constant, an increasing shear stress T iS added,
the differential quotient tiy/dT by
supplemnt (A.3) is

deformation theory (for proof see

.
E

()
sec do the secant modulus for stress

. By incremental theory (for proof

dv 2(1+ v)

./
u.

o

see ref. 7 or supplement (A.2)

()9T2 1 1z=
E

“+ —--
dT aoa + 3T2 % E

(3.9)

Originally, i.e. at T = O, the aforementioned differential quotients
have the values

dy 2V-1
Deformation theory: — = —

d7
E ‘+

Incremental theoryt
dy 2(1+ v)—=
dT E

(3.10)

(3.11)

By (3.10) the behavior is inelastic, by (3.11) elastic, hence a con-
siderable difference between the two theories. The elastic behavior
according to ~3.XL), that is to say, according to (3.9) at ~ = O, does
not continue very long, as a rule, .at increasing T, for the fraction I/~

is generally great, and even infinitely great for the non-hardened or no
longer hardened material.
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But the differential quotient
[

dy dT for compressed plates is
e

usually related in a large measure to he critical load condition.

Critical loads computed by incremental theory are-always consider-
. .

ably higher than the experiment indicates.
.-

Calculations by deformation
theory are usually in good agreement with the experiment. The failure
of incremental theory “ischie~ly attributed to initial eccentricity.
Therefore, shear stresses occur on a compressed plate before a critical
load condition is reached”.

An explanation for the fact that experimental values for critical
loads are ingocd agreement with deformation theory (initial eccentricity
discounted) might be found by attempting to point out that the differential
quotient dy/d7 in (3.9), by incremental theory, already assumes, at com-
paratively small values of T, a value equal to the value obtained by
deformation theory at T = O accordi~to (3.10).

If, viewed from the physical point of view, deformation theory is to
give the correct stress-strain relations, then .dy/dT should show con-
siderable independence of T according to (3.8). Deformation theory
gives good results even without allowing for initial eccentricity. .

Tables 3.1 to 3.8 show val.uesfor

(d)*dy— and
TF

by incremental and deformation theory,
tables apply to eight different values

the differential quotients
-

(d)
~ dy—

Tl)
.—

i.e. (3.9) and (3.8). The eight
of ~, while v = 0.3. Each table

shows seven values for the shearing stress T; In the choice of the values
for E

()
Sec cro, of which E(dy/d7)D alone is dependent

Esec()a. > ‘t -s.

must, of course, be valid.

Definite conclusions are difficult to draw. At iIIc$eaSing T,
E(d7/dT)F remains, in most cases, considerablybelow the corresponding

value E(dy/dT)D, at T = O (coqare the numbers of the first column,in . ~

each table with the number on top of the other. -columns) .”” For the small
values of Et, paired with high E~ec(uo) only, and not too low T, the

opposite is the case (cf. table 3.7 for Et = 0.02E and-canpare E(dy/dT)F

atT= 0,03u0 with E(dy/dT)D at Esec =O.~ and T = O).
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For the rest it is known that

15

(9, =(%),
()at E~ec a. = E (hence at cro= de, the proportional limit) and T = 0,

which is seen from the tables, and up to what result the other numerical
values of the tables must converge.

The quotient E(d7/d~)D does not always increase much slower with

increasing T ()than E(dy/dT)F; for high values of E~ec co the process

is even faster, as seen, when comparing the first column-in’
with the other-columns.-

—

3.5.2. The Buckling Case of Onat

From the foregoing (3.5.1) it is readily
sion of stress-strain relations alone affords

and Drucker

apparent that
but a partial

table 3.7

the discus-
answer for

. predicting the experimental critical load by incremental theory.

Now, Onat and Drucker (ref. 7) made some calculations on an idealized.
case of torsional buckling of a cylindrical structure consisting of flat
plates, so that the perpendicular section represents the form of a hollow
cruciform. (See fig; 3.1 for
straight and twisted state.)
is u*. Above it the tangent
which follows from

20

section, figs. 3.2 and 3.3 for bar in
The elastic limit for compressive stress
modulus is constant and has the value

3G w
=~+1-y

%’ .cl

Et = 0.@725E when v = 0.3 (3.13)

The bar is so dimensioned that the critical compressive stress for
torsional buckling, in the absence of initial eccentricity (i.e. of
initial twist), is by elasticity theory

3= 2~*

.’

(3.14)
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This is, at the same
Deformation theory gives,

time, the value
however

5= 1.Q5U*

NACATM 13$)2

This result is calculated in supplement B.
appears only in a plot.) Supplement B shows at
Esec(6) with 5 given by (3.15) is equal to

.

obtained by incremental theory.

—

(In ref. 7 this value
the same time that

‘iec

—
= 0.560E when v = 0.3 (3.16)

With the inclusion of an initial eccentricity in~he calculation, -
. —-

the definition of what is considered as buckling load is naturally some-
what arbitrary. In the case in point the maxtium load which the bar is
able to sustain (even without eccentricity the critical load is at the
same time the maximum load) can be taken for this purpose.

.

As initial angle of twist per length 2b of the section 0.000111,
0.00111, and O.OllL rad. is successively used. The divers results are
found in table 3.9 (computed with the data of figure S from ref. 7).

.

With this it is proved that, when proceedi~” from incremental theory,
even a slight initial eccentricity is sufficient to produce a considerable
displacement of the computed critical load and that t@ valtieof it is--
comparatively little dependent on the initial eccentricity (naturally
only for an eccentricity already different from zero). The thus cm- .=
puted critical loads are ‘closeto those obtained by deformation theory
with and without initial twist, for there is very little difference
between them.

The unusual feature of the Onat and Drucker load case is that in
spite of the presence of initial twist, the state of stress remains
uniform during the application of the load. In other problems on plates
‘whichhave an initial eccentricity, this is not the case as a rule, and
problems such as these are very llttle amenable to
it is to be expected that then specific changes in
load (which then indicates the load at which, more
deflection assumes a significant form) will occur.

Whether these changes will then show the same

calcufition. H&wever,
the critical buckling
or less suddenly, the—.

degree of independence
from the actual amount of initial eccentricity, and w%ther the d=ta then
are again in close agreement with deformation theory (without counting
initial eccentricity) has, of course, not been establis-hedas yet. It

*

is not ?mown even in the particular load ca&e of Onat and Drucker for
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L
values of the tangent modulus different from those which they used,
and which is rather at the lower Mm.it (~ - 0.05E) or for other dimen-

. sions of the structure.

In this buckling case the stress-strain relations themselves exhibit
the marked effect of initial eccentricity. (Cf. table 3.6at E$ =0.05E. )

(In (3.13) ~=0.05725E. )

At T= o. lUO

E(dy/d7)F =4.260

hence substantia~y higher than that at

At a “T value Onlyislightly above

fOr E(dy/dT)F is equalto E(dy/dT)D

(in (3.16), E~ec(aO)=0.560E).
.

T =0 (2.600).

T = O.lao the value obtained

at”T=o

However, it alread~ has been proved that for

()and Esec u. the quotiknt E(d?’/dT)F increases

T and reaches the value of E(d7/dT)D at T = O

and Esec(UO) =0.5E

other values of ~

slower at @creasing

not until later.

Nevertheless, the buckling case of
tative picture of the influence of

Bijlaard and Wiseman likewise
mate coincidence of the results by
tricit~ is allowed for, with those

Onat snd Drucker gives a good qti-
initial eccentricities.

point out (in ref. 46) that the approxi-
incremental theory, when initial eccen-
by deformation theory (initial eccen-

tricit~ disregarded) in the Onat and-Dmcker buckling case is not applicable
to other relations.

That, all the same, deformation theory is always in agreement with
experiment, as Bijlaard and WiSeman clati (cf. section 4.1)1 must have
been lmown to them from the fact that incremental theory is not correct,
but that deformation theory is valid, at least at load changes such as
occur in buckling cases and where the data of the theory of Batdorf and
Budiansky are eqwl to that of a deformation theory (not that by N6dai,
compare section 3.3). (See section 10.1 of ref. 3, for exsmple.)

Bijlaard and Wiseman conclude their discussion of reference 7 tith:
“Nevertheless, it iS a welcome contribution for indicating t~t small
divergences in the direction of incremental theory are cancelled by

. initial eccentricities.”



NACA TM 1392

3.6. cmPARIsor3 m DATA FOR.CR~ICALti BY

AND iNCREMENTAL THmRY

Such a comparison is ehown in figure 3.4, taken

DEFORMATION
—

d“
_—.

from reference 1.
The reproductio~ of four load cases is the s_=e as disc~ssed in sec-
tion 2.3.2.3.

.—

The dashed curves represent deformation theory, the solid curves -
—

Incremental theory, both allowing for the Shanley effect. The plot
also shows to which load cases the respective curves refer.

Figures 3.5 and 3.6, taken from refe~ence 9,”give the same data as
..

figure 2.1. The variation of the buckling factor k is plotted verti-
cally, the ratio a/b of the sides of the rectangular plate hinged
along all edges, horizontally. The plate is loaded on the side of
length b in compression in one direction.

~Figure “3.5represents the curves by incremental t~eory and, according
to Bleich, both computed without the Shanl.eyeffect. The curve by elas- ~
ticity theory is also shown. All curves were computed~with Consideration .-
to the exact elastic value for the transverse contraction coefficient _
v s 0.32.

.,

Because Hahdelman and Prager wanted tcrcompare their results with
that of IQushin, they computed the data with v = 1/2, The particular _._.
comparison is shown in figure 3.6.

Figures 3.7, taken from reference 30, and 3.8, tak&n in part from
reference 30 and in part frmn reference 31, represent the data of several
theories for an infinitely long”plate hinged~long the edges compressed.
in length direction. The shape of figure 3.7 is that according to fig-
ure 2.4, that of figure 3.8 according to figure 2.3. _

The results of the several methods based on defonn&ion theory are
not far from each other and near the curve according to “Gerard’smethod.
The inclusion or exclusion of the Shanleyeffect does not matter much.

.

(Compare Ilyushin’s curves in figs. 3.7 and 3.8 with that by E%owel.1in
the ssme plots.)

Incremental theory gives consistentlymuch higher &ta than defor-
mation theory or Gerard’s method. Whether the Shanley effect is included
or not, does not matter much. Compare the Handelman.anLPrager curves in
figure 3.8 with those of Bijlaard (In ref. 31) by incremental theory,
computed with Shanley effect accounted for.

.
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k. EXPERIMENTAL DATA

4.1. NACA TES!X3

Of the NACA tests for 1945-1946, while the present report was
written, references 32, 33, 34,.35, and 36 were available. These experi-
ments deserve special attention since Bijlaard in reference 23 sees in
the results of these experiments a confirmation of deformation theory.

They.are compression tests on H, Z, and channel sections. The
section forms used, as described in reference 32, are found in figure 4.1,
those of references 33 to 36 in figure 4.2. The dimensions of the col-
umns were so chosen that column buckling did not occur, but only local
instability. In references 33 to 36 it is stated that: “The lengths of
the columns were selected so as to obtain whenever possible a desirable
three-half wave buckling pattern.’! In the description of the tests
nothing is ever mentioned about the buckling pattern in flanges or webs,
only the critical load is indicated. The cross-sectional distortion of
the sections according to figure 4.1 is given once. (See fig. 4.3.)

The selfssme photograph of an H-section under compression published
in references 31 to 36 shows buckled flanges. The buckling pattern is
so laid out that it consists of three-ha~ waves. The photograph shows
no sign of web buckling. About the condition of the critical load the
following statement is given: “In the local instability test, measure-
ments were taken of the cross-sectional distortion, and the critical
stress was determined as the stress ~ the point near the top of the
knee of the stress-distortion curve where a marked increase in distor-
tion first occurred with small increase of stress.” It is well bow-n
that such methods of determining the buckling load contain a large meas-
ure of arbitrariness. (See ref. 48, for example.)

In the tests of references 32 to 36 stress-strain curves are deter-
mined on test pieces taken on different areas of the cross section. In
each of the cited publications, either an average diagram is given which
indicates the amount of scattering over all test pieces, or 5 to 10 dia-
grsms, which again ~re the averaged result of a number of test specimens
from the same section bar. What seems to be about the extreme limit of
the thus published stress-strain curves is represented in figure 4.4 to
figure 4.7. It is seen then that Gerard’s method (section 3.2) always
gives sanewhat higher results. The writers themselves apply no theory.
Figures 4.4 to 4.7 simply contain curves which indicate the average loca-
tion Of the test points.

. Reference 38 again discusses the results of th”eNACA tests of refer-
ence 33, as far as the H-sections are concerned. Figure 4.8 represents
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experimental points in
lation of the critical

a diagram of the form of figure 2.3. The calcu-
.

load by elasticity theory is carried out according
to reference 40. Theoretical-curves are-also shown. The theoretical – .
critical loads in the plastic range are likewise computed according to
the principles of reference 40 and with the aid of Stowell’s report
(ref. 21).

As ummary of references 32 to 36 is given in refez%nce 39. From
this reference,39 it is apparent that references 44 and 45 belong in
the test series of references 32 to 36. The last-named reports were not
available, however, to the writer at the time this report was written.

Bijlaard (b ref. 22) gives the diagram on figure 4.9, in whit the
curves for two load cases camputed by deformation theory are shown.t

Then, he quotes “NAC!Atests 1945-1946.” Of what tests precisely, is not
mentioned. It is certain that the material was “avional,” but which of
the materials used by Pride and Heimerl was meant by it? The quotes are
not immediately traceable to the work of Pride and Eeiqeyl. Neither is
the stress-strain curve for ‘~avional,”which was copied by Bijlaard with-
out the scatter of Heimerl and Pride. (A line is drawn through the eight
points of figure 4.9 in reference 22, but that is no theoretical Curvej

it merely indicates an averaged position of the intended points.) Appar-
ently Bijlaard did not compute the critical load by elasticity theory
again, but simply followed the report of.Pride and Heimerl.

If, in the NACA tests, the flanges really have sta@ed to buckle, the
values of the critical had should lie between load cases I and 11, at
least on the premise that the buckling flanges in the tests are still
considered as infinitely long (three half-wave waves occur, according
to fig. 4.9). But even Gerard’s simple rule itse~ yields results which
are fairly accurate, for the experimental points are located near to the
stress-strain curve of figure 4.9.

Pride and Heimerl (ref. 30) also made some compression tests on a
long, square, hollow, seamless box. The individual plates could then
be considered as simply supported at the edges.

.

Figure 4.10 represents test points for seven groups of test pieces,
each group referring to test pieces from one sectional bar. Besides the
test points, the curves of Gerard, i.e. stress-strain curves, are plotted.
There still is some scattering between the stress-strain curves of the
different groups. And even within a group of test pieces from one bar
the scatter is fairly wide. (Cf. the limits indicated on curve C.)

—.

be support conditions of the ends infinitely far from each other is
of no significance. For case 11, in which m waves occur, this is instantly
clear. In case I a lxilf-waveoccurs fbr hinged ends; for clamped ends, .
a whole wave. But in this case the critical compressive load is indepen-
dent of the wave length, if the wave length is great.

.
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The same measurements are repeated in figure lt.11,but after cor-
rection (according to ref. 47), hence refer to ~terial with a constant

. stress-strain curve. The theoretical curves exe those of figure 3.5.
The agreement with Stowell’s theory is good. Gerard’s secant-modulus
method should also give acceptable results.

4.2. (ERARD’SEXPERIMENTS

Gerard (ref. 19) likewise made scme tests on Z and channel sec-
tions and established a s@isfactory proof of his secant modulus method.
The chart in which the real critical load is plotted against the calcu-
lation by elasticity theory obtained by secant modulus method, passes
nicely along the test points. (See fig. 4.12 and fig. 4.13.) The csJ.-
culation of the critical load by elasticity theory was made according
to reference 41. One noticeable feature of figure 4.13 is that the
agreement between theory and experiment in the elastic range is not
good,lwhich raises some doubt as to whether all e~eriments are not at
the upper limit. The true critical load is determined from the differ-
ence in strain at the opposite sides of a flange. At first the differ-
ence seems to be practically zero, but at incipient buckling this dif-
ference grows qyickly at slightly increasing mean compressive stress

. (fig. 4.14). Figures 4.12 and 4.13 also show the curves according to
Lundquist (ref. 18) and Lah@aar (ref. 17) (tangent modulus method).

Other tests by Gerard sre reported in reference 42 and discussed
alsoby Stowell (inref. 43). The tests refer to a shearing test on an
infinitely long rechngular plate. The long edges of the plate are
rigidly clsmped. Reference 43 gives a diagram in which the critical
shearing stress is plotted against the critical sheering strain computed
by elasticity method, according to StOWell.tStheory and Gerardts secant
modulus method (fig. 4.15). Gerexd’s curve forms the shearing stress-
shearing strain curve of the material. Stowell’s curve csm also be
applied to the case of hinged long sides. (Naturally, that of Gerard
is too.)

This case was also treated by Stowell, but there was only a very
small difference frcm the case of clamped edges, which cannot be taken
into account in the calculation.

The a~eement between the experimental evidence and the curve by
Gerard’s method is not as good in figure 4.15 as in figures 4.12
and 4.13.5

5Translators note: Figure 4.15, taken from reference 43, appears “““’
to be in error and is misleading, Gerardts method actually gives lower
stresses than Stowel.1’smethod. (See NAQ$ TN 3184. )
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4.3. Kollbrunne
.

r‘s Experiments

In reference’8 Kollbrunner investigated rectangular plates of dif-
ferent length/width ratios for severs.lload cases (fig. 4.16). The

.

edges of length b were assumed to be hinge supported, those of
length a !free, hinge supported or clamped, as illustrated in fig-
ure 4.16. )’lhetests were made on perfectly simple plates; thus, for
example, the plate for case 11 (fig. 4.14) was not the flange of an
eqtil.ateralangle section loaded in compression nor the plate of case IV
a side of a square box beam, such as the other investigators used.

Figure k.17 shows a portion of Kollbrunner’s setup. The lateral
edges of the plates are enclosed in small steel tabs, which safeguarded
the.hinged support of the edges as illustrated in figure 4.18(a). The
set screws in the steel tabs insured clamping (fig. 4.18(b)).

Koll.brunnerchecked his exper-ntal results against his theoretical ‘-
solutions obtained by the differential equation (3.7) which is a kind of
mean of Bleich’s and Chwal.la’srelations.

The theoretical result for the

z=p

K

with

.% ~z()
l+ +’)b

+%(~~
a plate length

b plate width ~

h plate thickness

a by (3.4) and (3.5)

a+ki

2

2ma

critical compressive stress z is

-/% ha’
+*q

(b)
~ *+ .

12(1 - V2)

(4.1)

--- -—-

m number of half-waves of buckling pattern

.

.
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The constants
the fol.lowing

I

23

p and q in the different load cases (fig. 4.16)
values:

P=o ~=o

II

III

IV

v

VI

P = 0.423 q=o

P = 0.5T0 q = 0.125

P2= ~ =1

P s 2.5 q=5

P = 2.270 “q = 2.450

Coefficient K in (4.1) is a correction factor defined by experi-
ment. The neccessit~ for the use of this coefficient is attributa~le
to the fact that the-assmption of hinged plate support on the short
side where they are compressed is not perfect, since small bending
moments can still be taken up here.

The correction factor K for case I is not given. For case II a
factor K = 1.5 should be applicable in the elastic as well as in the

. plastic range. For cases 111 to VI a factor K = 1.2 is applicable,
but in the plastic range only.

By (4.1) it csm be deduced that the critical compressive stress 6
for the infinitely long plate is

(4.2)

as given by Kollbrunner himself.

Coefficient K does not appear any longer in (4.2), and actually,
the manner of support of ends loaded infinitely far from each other are
of no interest in load cases 11 to VI. Compare case II with case I
mentioned in the footnote of section 4.1. .

.

.

Kol.lbrunner does not report why the factor K = 1.5 for case I
holds in the elastic and the plastic range, whereas for cases 111 t.oVI
the factor K, which, moreover, has another value, is valid in the plastic
range only. All the ssme the use of the correction factor K seems a
rather arbitrary interference in the experimental check of a theory which
itseM has as yet no solid basis. (Cf. section 3.2.) On top of that, it
should be remembered that the significance of K decreases considerably
when long plates are involved. The figures 4.19, 4.20, and 4.21, of the
same pattern as figure 2.1, represent some test data with the “theoretical”
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curves, i.e. curves obtained with correction factor K, together with
the curves of Bleich and Chwal.laand Kbllbrunner, respectively, of refer-
ences 13 and 15. These graphs still show points which are up to 10 per- .
cent lower than Kollbrunner’s “theoretical” curves, which Kol_lbrunner}
indeed, confirms in reference I-1.

To define the instant of buckling, a straight bar is reflected in
the plate surface. According to Kollbrunner, “the instant of buckling
was momentarily plainly visible by a typical Jmp of the reflected bar
from its straight shape into the wave pattern.”

After the appearance of reference 20, Kollbrunner beccmes a sup-
porter of Ilyushin’s theory, to which he subscribes, as stated before,
with great enthusiasm in reference Il.. Ilyushinrs theory gives up to
10 percent higher values than KoUbrunne r’s theory, and the latter
believes that if the correct (elastic value) is used instead of v = 1/2
in Ilyushin’s theory, both theories would be in good agreement.

Figures 4.22 and 4.23, of the same form as figure 2.2, represent
some experimental results, based on the theoretical curves of Kollbrunner
and Ilyushin. .

5. DISCUSSION

The deformation theory of plastic strain
of the critical buckling load of plates gives

—

applied to the calculation
results which are in better

.

agreement with experiment than increment~l theory.

Onat and Drucker,give an explanation for the failure of increment&1.
theory in computing critical buckling loads for a special case by assuming
an initial eccentricity.

Sae writers consider deformation theory as “perfectly correct” and
are willing to see more in it than a practical calculating rule. It
never has been proved even for general c’asesthat incremental theory
applied to a plate with initial eccentricities gives exactly the same
results as deformation theory applied to the plate, without counting
with the initial eccentricity.

The statement of some writers that their or someone else’s experi-
ments are in “excellent agreement’”with their own theory needs to be
critically examined. .

At such a pronouncement the question often arises:

1. How much scatter was there in the stress-strain curves? (Cf.the -
scattering in figs. 4.4 to 4.7, for exsmple.)

.



iK

NACA TM 1392 25

.
2. Exactly how is the buckling limit defined? Compare, for example,

references 32 to x, where “the critical load is considered as reached,
. when the distortion of the cross section begins to show a rapid increase

with slightly increasing stress.”

3. Little scatter in the measured critical state of stress is no
indication of whether there are disturbing secondary effects in the
experiment or initial eccentricity. Groups of identical plates, loaded
fairly far in the plastic range, almost all exhibit the sane critical
buckling load, but fairly far in the plastic range the tangent modu-
lus ~ is usually small, and the stresses which can occur even before
buckling can then still not vary very much. Howeverj should not the
scatter in distortions on reaching the critical state be much ~eater?

The information about these problems is generally very vague. Con-
sidering referedce 30 as exsmple (aMeady discussed in section 4.1),
the folJowing maybe stated:

To 1. The scattering in the stress-strain curves for one of the
square boxes used as the test pieces seems to be considerable (fig. 4.10,
curve C.) Between the mean curves for the different boxes there are
differences of the sane kind.

To 2. As examples of the determination of the buckling load two
suitable diagrams are given in reference 30 (fig. 5.1). But they refer
to cases in which the buckling load was, at the same time, approximately
the maxtium load. Diagrams for cases in which the maximum load was con-
siderably above the buckling load were not given. In this connection
the question arises as to how it was possible that on many tubes the
buckling stress and the mean stress at maximum load were almost identi-
cal, but far below the 0.2 strain limit, as seen from table I of refer-
ence 30 (42.8 ksi, 43.2 ksi, and 61.4 ksi).

hcking further information, tms iS a Very r~r~ble res~t~ me
inescapable conclusion was that for a better insight into the problem
we had to carry out experiments of our own.

6. CONCLUSIONS

1. It may be assumed that the plastic distortion increases even
during buckling. Unloading according to elasticity theory is not
required (Shanley effect).

2. The incremental theory of plastic deformation is really the one
. which should be applied to the calculation of critical buckling loads

of plates.
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“

3. Initial eccentricities are bound to have a marked displacement
effect on the result. As a rule, however, it is practically impossible
to allow for such eccentricities in the derivation.

4. Deformation theory applied without regard to initial eccentrici-
ties gives practical results. .

5. Of all the writers starting from deformation theory, Bijlaard
gives the best treatment. He accounts for the Shanley effect and intro-
duces the correct value of the transverse contraction coefficient.

6. Uncertainties in the stress-strain curve at incipient buckling,
likewise the scattering in the experiment, often show agreement between
theory and experiment that seems better than it actually is.

7. The difference in theoretical results for the critical load on
the basis of deformation theory with or without Shanley effect and with
or without the”correct value of v is not or, not much, greater than the
scattering that is to be observed as the result of many causes during
the experiment.

8. Less explored is the critical distortion at which buckling occurs.

, 9. Gerard’s method, which introduces the secant modulus, i.e.
Youngls modulus in the formulas for the buckling stress in the elastic
range, always gives, it is true, a higher critical buckling stress than
deformation theory, although it gives, nevertheless, a practical cal-
culating rule.

10. A better insight into the problem involved.may perhaps be obtain-
able by personal experimental investigation.

I%anslated by J. Vanier
National Advisory Committee
for Aeronautics

.

—

-.

.

.
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suPPLmENT A

THE DIFF~IAL QU~IENT d7/dT CIFINITIALLY SIMPLY

COMPRESSED MATERIAL AS FUNCTION OF

ON ADDED SHEARING STRESS

A.1. INTRODUCTION

?

THE LATER

T

The material is such that above the elastic limit and at increasing
load in a compression test the differential quotient da/dE = Et exhibits
a constant value. The material is first considered as subjected to a
compressive stress a = Uoj after which at constant u, a shearing

stress T is added. The secant
stress a. is E~ec(ao), hence,

calculatiens.

modulus on reaching compressive ‘
also a constant in the subsequent

. A.2. BY FLOW THEORY

The formulas (IL.16) and (11.17) of reference 3 Rive the stress--.
strain relations for the-case that only normal stresses a (positive
if a shearing stresses T are applied

$pa dJ2 (Al)

is a compressive stress) and

dc=~+

dy =
2(1+ v)

E

normal strain (positive when

dT + 2pT ~2 (A.2)

c is a compression).

-1

.&a2+T 2
‘2 3 (A.3)

and p

of J2

is

on

sion test,

a function of J2. First to be investigated is the function

the basis of constant tangent modulus Et in the comp~es.

where, because T = O

.
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=~a2
‘2 3

and by (Al] and (A.3)

or

and with (A.k)

Formula (A.6), where a

which is identical with

(A.4) -

.

.(A.5]

—

k)911
P= —— --4U2 E

—

L)
~_31*

4J2 .t
(A.6)

= ‘O and (A.6) are substituted in (A.2), gives

2(1+V)+ $# ~-l
E ao2 ()+“3T2% ~

(3.9) and at T =0 changes to (3.11).

(A.7) -

A.3. BY DEFORMATION THEORY

Formulas (11.14) and (11..l5)of reference 3 give rel-at~ons between _.
stresses a and’T and strains 6 and y

=2(1+V)T+PT
7

E

(A.8)

(A.9)

with P a function of J2 with J2 according to (A.3).

Now assume that the equation of the stress-strain relation for the
compressive test-in the plastic range is
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.

‘=e-. a’ “

.
This, substituted in (A.8), gives

‘=%-+)-z

and since (A.4) is valid again for this test, P becomes

29

(A.1O)

Formula (A.3) in which ts= Co and (All) are substituted in (A.9)
gives

(A.12)

The constant a can be eMminated by ascertaining that after
applying the compressive stress UO according to (A.1O)

or

Co (JO

‘sec(”O) ‘Va

is vaIid, which in (A.12) gives

~=2(l+v)T+

E,

The differential quotient becomes

dy _ 2(1+ V)+2-2+ 3q3

dr E
‘E-. (1-

a.<2,T2)(ES:(UO)-*’

(A.14)
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hence is identical with (3.8) and at T = O becomes (3.10) and when

‘sec(UO)

.

= E, changes to (3.11.).
-.

. .:
..

.
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DEI!ERMINATICNBY DEFORMATION THEORY OF THE CRITICAL BUCKLING

LOAD OF TEE ONAT AND DRUCKER IDAD CASE IN THE ABSENCE

OF INITIAL ECCENTRICITY AND PREDICTION OF THE

SECANT MODULUS FOR THIS LOAD

In the Onat and Drucker buckling case the @eld point is u*. The
critical compressive load by elasticity theory is ~e = 2c*. Above the

yield point the tangential modulus ~ is assumed constant, and has the
value that fol.lowsfrom

20 =2+1.;
Et

(B.1)

.

hence % = 0.Q5E for v = 1/2 and ~ = 0.@7E for v = 0.3.

.
Above the yield point the relation between compressive stress and

compression is

‘= 2-:-$
and the secant modulus is

(B.2)

At small increase of shearing stress T the differential quotient
by deformation theory is identical with (3.10)

1 ~+$k-:++dy 2v-1—=— =
Gsec dr

(B.4)

—

For the special load case in question the critical value of tY by
incremental theory has the value according to elasticity theory, hence.
Z= Se= 2a*, as long as no initial deflections exist.
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The critical value for
.

u by deformation theory becomes

G_ sec - 23
ae G ‘e

- -c =+4

G

In view of (A.18) and (A.19), the value of
a from the equation

and with (B.1)

(B.5) ‘ “-

d is the solution for

a*

(

G2v-1+3 3 =* 3 a*—=. — —-— —— —
a 2E E-tEta ‘Ea )

I

,, *.—
—

3= 1.05a*
..

When the compressive stress reaches this value, the secant modulus
iS, by (B.3) and (B.1)

—

Esec = 0.525E for v = 1/2 _

..

Esec = 0.560E for v = 0.3

. . .

.
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TABm 3.1.

CWARISON OF THE DIFFERENTIAL QUOI’IENT d7/dT BY INCREMENTAL

THEORY (F) AND DEFORMATION THEORY (D) OF WERILiL UNDER

INIZl!IALCOMPRESSIVE 91!RESS U. IN THE PIASTIC RANGE

T

o’
. Ooluo
.oo3cro

.Oluo

.03U0

. lCO

.3U0

2.600
2.600
2.600

2.600

2.602

2.622

2.759

q = O*8E ,

‘*e~(”o) = E I E~ec(uo) = O*9E

2.600
2.600
2.600

2.6cQ

2.603

2.632

2.826

2.933
2.933
2.933

2.9933
2.935

2.51
3.Q39
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TABIE 3.2. —

COMPARISON Cl?THE DIFFERENTIAL QUOTIENT dy/dT BY INCREMENTAL

THEORY (F) AND DEFORMATION THEORY (D) OF MATERIAL UNDER

INITIAL CWRI?SSI’KE E%cRESS cro IN THE PIASI!ICRANGE

q = 0.6E

()

* dy

(i

E dy
T ~D

G

E.ec(~o) = E E&( CO) = 0.9E

0 2.600 2.600 2.933
.001aO 2.600 2.6c0 2 ● 933

.003a0 2.600 2.600 2.933

.OlaO 2.601 2.601 2.934 ‘

.03a. 2.605 2.608 2.940

.la. 2.658 2.687 3.005

.3a. 3.025 3.203 3 ●435

.

.

.,
w .-

.,

—

.

.

.-

>.-

-

.
.-
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TABLE 3.3.
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COMPARISON OF THE DIFFERENTIAL QUOI= dy/dT BY IN~AL

THEORY (F) AND DEFORMATION TKEORY (D) CE’WERIAL UNDER

INITIAL CWRESSIVE STREss U. IN THE PIASTIC RANGE —

~ = 0.4E I

T

o
.OO1aO
.003a0

.Olfso

.03a.

. 1(TO

.3a.

2.600
2.600
2.600
2.601
2.6x

2.731

3..557

2.600
2.600
2.600
2.602

2.618

2.7B
3.956

E~ec(uO) = 0.9E

2.933
2.933
2.933

2.935

2.950

3.114
4.189

I

E,e=(ao) = 005E I
5.600
5.600
5.600
5.601
5.606

5.663
6.052
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TABm 3.4.

COMPARISON

THEORY

INITIAL COMPRESSIVE SIRESS UO IN THE PIASTIC RANGE

OF THE DITFERWT IAL QUOl~lZC d7/dT BY INCFOMINTAL

(F) AND DEFCIRMATIONTHEORY (D) Cl?MATERIAL UNDER

q = 0.2E —.

() ()E~
T Eti dT D

d7 F

~~ec(uO) = E E~ec(aO) = 0.9E E~ec(aO) = 0.5E

o 2.600 2.600 2.933 5.600
.Oolcro 2.600 2.600 2.933 5.600

.003C0 2.600 2.600 2.933 5.600

● Olao 2.604 2.605 2 ● 938 5.6&

.03a. 2.632 2.6k8 2*% 5.636

.la. 2S~9 3.120 3.439 5.990

.3ao 5.151 6.216 6.448 8.312

—

.

.-

—
.

.
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COMPARISON@ THE D~IAL

DEKRMATIONTHEORY(D)

TABIE 3.5.

QUOI?= dy/dT BY INCREMENTALTBECRY(F)AND

OFMATERIALTINomINITIALccMPRXssm

SCRESS a. INTHE PIASTICRANGE

~ = O.lx
I I

I
T

o
.OOlao
.003a.
.Olao
.03a.
.la.

.3a.

(r)~ d7

‘F

2.600
2.600
2.602
2.609
2.673

3.386
8.340

,C(ao)= E

2.600
2.600
2.600
2.6u
2.7c8
3.770
10.735

2.933
2.933
2●933
2.944
3.040

4.0!39

10. s68

‘sec(”O) = o=%

5.630
5.600
5.600

5.610

5.656

6.640

u?. 831

19.600
19. 6(M
19.600

19.604

19.640

200033

z. 613
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TABIX 3.6. -—

COMPARISONW THED~ERElW121LQUOTIENTdY\dT By ~AL T~~Y (F)AND

DEFCWMATIONTKE~Y (D)@ MATERIALUNDERINITIALC!CMPRESSIVE

91!RESSCTo INTHEPIASTICRANGE

T

o
. Oolao
. 003U0
. Oluo

. 03(70

.Lso

.Sao

2.600
2.600
2.6m
2.617

2.753

k.260
L4.718

F+ = 0.05E — .

E~ec(uo)= E

2.600
2.603
2.600

2.623

2.828

5.070
19.774

6)~d7
7D

2.933
2.933

2.933
2.5

3.160

3.389
20.007

5.600
5.600
5.600
5.622

5.816

7.940
21.870

19.6m
19.601
19.601
19.617
19.761
21.334
31.653

.

.

.
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C~ARISON OF THE D~LIL

DEFORMATION T13X0RY(D)

TABLE 3.7.

QUCIHINI’ d7/dT BY INOREMENTALTEEORY(F)AND

OF MATERIALUNDERINITIALCOMPRESSIVE

STREss Cro IN THE PLASTIC RANGE

T

o
.Colcro

.003(?0

● Oluo

. Oxlo

● lcro

. 3U0

()E*
dT F

2.600
2.600
2.604
2.644
2.996
6.882
33.891

E+. =, 0.02E

E,ec(~o) = E IEsec(ao) = o.9E I %c(ao) = o..5E

2.600 2.933 5.600
2.600 2.933 5.600

2.600 2.933 5.600

2.659 2.992 5.658
3.l&3 3.s20 6.176
8.970 9.289 lJ..84o
4.6.891 47.124 48.987

E~e=(Uo)= 0.15E

19.601
19.601
19.601
19.653
20.121
25.234

.58*770

.

.
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TABLE 3.8.

COMPARISONCl!?THE DIFFEREm IAL QWTH dy/dT BY rNcmMmmAL THECRY

DEFORMATIONTHW2RY(D)Cl?MATERIALUNDERINITIALCOMPRESSIVE

SImss Iso INTHEPUIC RANGE

(F) AND

.T

o
. (Xnao

.00%0

.Oluo

.0360

.100

.3ao
a

q = O.OIE

2.6(M
2.601

2.608

2.689

3.41XI

IJ.al

65.742

2.600
2.600

2.603

2.Iz9

3978f3
15.470

92.086

2*933
2.933

2.933

3.052

4.120

15.789

92.319

5.600
5.6cm

y .600

5.~8

6.776

1.8.340

9k.182

E~ec(uo) = O.l~E

19.601.
19.601

19 .6cn

19.713

20.721

31.734

103.96

-,

.

-“
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TABLE 3.9.

FIESUEJ?SOF ONATAND DRTJCKERBUCKL13W3CM

Initial torsionperlength2b of
I osectioninradians I 0.0001.11 I O.ooul I O.o111

d z = ~,u* Is elastic limit 2a* 1.26a* 1.17U* 1.0%*

~E#& Tcmslonperlength2b at
k+
3

maxhmlmloadInradians o 0.060 0.067 0.077

T/o atmaximumload o 0.100 0.112 0.128

z = ts=, u* is elastic Wt. 1.03U* 1.02U*

Torsion per length 2b at
maxhnun load in radians o 0.050

I T/U at maximum bad I o I I I 0.083

.
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m= I
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.

Figure 2.1.- Criticslcompressive stress :x ofrectangularplate
loadedunder compression inone direction,alledges hinge
supported;lengthofsides a and b;width-depthratio(b/h)is
constant.The sidesoflength b are theloadedsides.
m = hslfwaves.

.

-
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By “elasticity theory

Figure 2.2- Method ofplottingused by Kollbrunner. Criticalcom-
pressiveload ~x ofsn infinitelylongplatewithhingededges
under compression W thedirectionofthelength.

●
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i
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.
*

o 0004 QO08 0012

.4~2h2
zx,e 12(1-v2)b2

Figure 2.3.- NACA method INo.1. Vertical: criticalstress ;~

ofan M3nMely longplateof14S-T6 sluminum withhingededges
under compression inlengthdirection.Horizontal criticsl
strain?~,e by elasticitytheory.
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0.8

0.6

0.4

0.2

0
’40 50 60 70 80

&x, ksi
.

Figure 2.4. - NACA method No. 2. Load case as infigure2.2. Verti-
CaL .factor q by Which ~ X,e shouldbe multipliedaccordingto
elasticitytheorytoyieldactualcriticalstress 5X. Horizonta&
actualstress Fx.

-.
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Figure 3.1.- Onat and Drucker cruciform.
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Figure 3.2. - Cruciform in straightstate.
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Figure 3.3- Cruciform intwistedstate.

.-

NACA TM 1392

#

.

—



NACA.TM 1592 53

.

6,0

!55

5.0

4(5

4,0

3.5

3.0

2.5

20

1,5

I ,0

0,5

0

Incremental theory
——— Deformation theory

—.—. — .—
1, Exact

.
\

\
I Infinitely longplate,

loaded in shear,

\

\

hinged,

Infinitely Iong.plate, hinflesupported,
underrlengthwlsepress re,

\
\

-~ Square plate underpressure in one
tion; loaded sides hinged jone

nloaded side free ,the otherhinge

~ Rectangular plate (a/b= 5) under
pressure inlength directiort, Loaded
sides hinge sup orted; oneunloaded

rside free, the o her hinge supported,

————_ _,
I I I I I 1

0 2500 5000 7500 10000 12500 15000

I O%x of 106 ~

Figure 3.4- Bucklingfactor k plottedagainst =x (orshear 7 )for
fourdifterentcases of24S-T aluminum, accordingto Besseljng
(ref.1).
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~= ~x 12(1-v2)b2

+Eh2

b2
V= IOOO

#

4.6

4.4

4.2

4.0

3.8

3.6

3.4

[

Hondelman and Proger

\

––—––– Bleich
—-— Elosticit y theory

I II
1’

II

\
!

I 2 3 4 5
a

.-

.

.

.-

.

.-

—

. . . . -- .

Figure 3.5. - Bucklingfactor k for simply supportedrectangular
plate v = 0.32 bingesupportedon alledges under Compressio~
The sidesoflength b are loaded,width/thicknessratioaccording
tob2/h2 = 1000. m = half-wavesatbuckling(takenfrom ref.9).

.
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*

~== 12(1-v2)b2
x =2Eh2

g=looo
hz

4.6

4.4

4.2

4.0

3.8

I I I I

—

3.61 I I J
o I 2 3 4 5

:“

Figure 3.6. - Buckling factor k for simply supportedrectangular
plate V = 0.50,alledges hingesupported,loadedincompression.
The sidesoflength b are loaded;width/thicknessratioaccordjng

to b2/h2 = 1000. rn= half-wavesatb~~ (t~en from r~a 9).
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lb%
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Ibx [bx

$

1.0

0.8

0.6

0.4

0.2

without Shanley effect)

Gerard(Secret-Modulus fvle~hod)

llyushin(Def.Theoryv=l/2, withcut Shanley
effect)

~Bljfacwd(Def. theory, with f

Tangent Modulus Method

hanley effeot)

with shanley
ef feet)

o
-40 50 . 60 70 80

Critical stress &x, ksi
.

Figure 3.7. - Factor q plottedagainstCriticslstress 5X foran

infinitelylongplateof14S-T6 aluminum plate,withhinge-supported
edges under compression inlengthdirection(takenfrom ref.30).
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80

60

.-
Z

b“ 40

2C

0

Handelman

Handelman- P~ager, with

/

Shanley- effect calculated
by Bijlciard.

Stress-strain curve and
~method of Gerard.

L Ilyushin

+

Bijlaard

Stowell

\
Handelman-Prager with
Shanley - effect and
v~:=:oncalculated by

.-,

0.004 0.008 0.012

ZXe=
4=2 h2

t
[2(1-v2) b2

Figure 3.8. - Load case infigure3.4. Criticalstress FX plotted
againstcriticalstrain ~x,e computed by elasticitytheory (taken
from refs.30 and 31).
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Figure 4.1. - Sectionsused intestsdescribedinreference32.
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Critical stress calculated according to,
elasticity theory, ksi

Figure 4.4.- Experimentalresultsofcompression testson sections
describedinreference33;material,75S-T aluminum.
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