Quantum Monte Carlo calculations of light nuclei.

PDF Version Also Available for Download.

Description

Quantum Monte Carlo calculations using realistic two- and three-nucleon interactions are presented for nuclei with up to eight nucleons. We have computed the ground and a few excited states of all such nuclei with Greens function Monte Carlo (GFMC) and all of the experimentally known excited states using variational Monte Carlo (VMC). The GFMC calculations show that for a given Hamiltonian, the VMC calculations of excitation spectra are reliable, but the VMC ground-state energies are significantly above the exact values. We find that the Hamiltonian we are using (which was developed based on {sup 3}H, {sup 4}He, and nuclear matter ... continued below

Physical Description

10 p.

Creation Information

Pieper, S. C. August 25, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Quantum Monte Carlo calculations using realistic two- and three-nucleon interactions are presented for nuclei with up to eight nucleons. We have computed the ground and a few excited states of all such nuclei with Greens function Monte Carlo (GFMC) and all of the experimentally known excited states using variational Monte Carlo (VMC). The GFMC calculations show that for a given Hamiltonian, the VMC calculations of excitation spectra are reliable, but the VMC ground-state energies are significantly above the exact values. We find that the Hamiltonian we are using (which was developed based on {sup 3}H, {sup 4}He, and nuclear matter calculations) underpredicts the binding energy of p-shell nuclei. However our results for excitation spectra are very good and one can see both shell-model and collective spectra resulting from fundamental many-nucleon calculations. Possible improvements in the three-nucleon potential are also be discussed.

Physical Description

10 p.

Notes

INIS; OSTI as DE00011035

Medium: P; Size: 10 pages

Source

  • 2nd International Conference on Exotic Nuclei and Atomic Masses, Bellaire, MI (US), 06/23/1998--06/27/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/PHY/CP-97110
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 11035
  • Archival Resource Key: ark:/67531/metadc628584

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 25, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 6, 2017, 6:53 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Pieper, S. C. Quantum Monte Carlo calculations of light nuclei., article, August 25, 1998; Illinois. (digital.library.unt.edu/ark:/67531/metadc628584/: accessed November 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.