CONCENTRATION OF URANIUM AND PLUTONIUM IN UNSATURATED SPENT FUEL TESTS

Patricia A. Finn, Robert J. Finch, Stephen F. Wolf, and John K. Bates
Argonne National Laboratory
9700 S. Cass Ave.
Argonne, IL 60439
finn@cmt.anl.gov
(630)252-4511

Presented at
Third Topical Meeting on DOE Spent Nuclear Fuel and Fissile Materials Management
Charleston, SC
September 8-11, 1998

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

*This work was performed under the guidance of the Yucca Mountain Site Characterization Project (YMP) and is part of activity D-20-43 in the YMP/Lawrence Livermore National Laboratory Spent Fuel Scientific Investigation Plan. This work was supported by the U.S. Department of Energy, under contract W-31-109-ENG-38.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
1. Introduction

Commercial spent fuel is being tested under oxidizing conditions at 90°C in drip tests with simulated groundwater to evaluate its long-term performance in a potential repository at Yucca Mountain [1-4]. The tests allow us to monitor the dissolution behavior of the spent fuel matrix and the release rates of individual radionuclides. This paper reports the U and Pu concentrations in the leachates of drip tests during 3.7 years of reaction. Changes in these concentrations are correlated with changes in the measured pH and the appearance of alteration products on the fuel surface. Although there is little thermodynamic information at 90°C for either uranyl or plutonium compounds, some data are available at 25°C [5-8]. The literature data for the U and Pu solubilities of U and Pu compounds were compared to the U and Pu concentrations in the leachates. We also compare Wilson's [9] U and Pu concentrations in semi-static tests at 85°C on spent fuel with our results.

2. Experimental Description

The experimental setup for these unsaturated tests, which are done with the uranium oxide fuels, ATM-103 and ATM-106, has been reported elsewhere [1]. The burnups are 30 MWd/kg U for ATM-103 and 45 MWd/kg U for ATM-106. The leachant, EJ-13, is a dilute sodium carbonate solution saturated with silica. In the tests, ~0.75 mL of the EJ-13 is dripped on the spent fuel samples held at 90°C. The leachate is analyzed every six months.

3. Results and Discussion

The measured U and Pu concentrations in the leachate during the drip tests are shown in Figs. 1 and 2 for ATM-103 and ATM-106, respectively. In both tests, the U and Pu concentrations decreased as reaction time increased. After 3.7 years of reaction, the U
and Pu concentrations in the ATM-106 test are an order of magnitude lower than those in
the ATM-103 test. The leachate pH dropped from the original 8.5 of the leachant to 4-6 at
0.3 years. Thereafter, the pH increased and was 7.3 after 3.7 years of reaction.

\(^{238}\text{U}\) - The highest U concentrations (~10^5 \text{ M}) in both tests were measured within
the first 0.3 years of reaction. At 1.6 years in the ATM-103 test, we noted yellow
nucleation sites on the spent fuel surfaces, which might indicate that a specific uranium
phase was forming. At 3.7 years, the alteration products on the two fuels were examined.
The phases Na-boltwoodite, Na(UO_2)(SiO_3OH)\cdot H_2O, and \(\beta\)-uranophane,
Ca(UO_2)_2(SiO_3OH)_2\cdot 5H_2O, were identified as the major alteration phases in the ratio of
80:20, respectively [4]. At 3.7 years, the U concentration was 4 \times 10^7 and 3 \times 10^8 \text{ M}
for ATM-103 and ATM-106, respectively.

Figure 3 shows the U concentration at 90°C as a function of pH after 0.3, 1.6, and
3.7 years of reaction for both fuels. Wilson [9] reported a U concentration of 6 \times 10^7 \text{ M}
at pH ~8 in the leachant J-13, an unmodified form of EJ-13; this concentration is also plotted
in Fig. 3. Wilson noted that uranophane was indicated as an alteration product from x-ray
diffraction results.

The experimental data in Fig. 3 are plotted on a diagram that was calculated for the
dominant uranium phases and/or aqueous species at equilibrium at 25°C as a function of
pH. The equilibrium data at 25°C were used since data at 90°C do not exist for most
uranium phases. The U concentrations were calculated for a fixed EJ-13 leachant,
atmospheric CO_2 (P_{CO_2} = 10^{-3.5}), and atmospheric O_2. (The calculated values were derived
from the program Geochemist's Workbench, which incorporates the data of Grenthe et al.
[5] and Nguyen et al. [6].) In these diagrams, multiple uranium phases can be present at
a given pH at 25°C even at equilibrium conditions, but only the dominant phase is usually
shown.

We represent three cases in Fig. 3. In case (a), uranophane is the dominant
phase between pH 5 and 12, and soddyite is the dominant phase below pH 5. In cases
(b) and (c) the data for uranophane were suppressed so that other phases that were
present could be plotted. In case (b), Na-boltwoodite is the dominant phase between pH
7 and 10, and soddyite is the dominant phase below pH 7. In case (c), the data for Na-boltwoodite and soddyite were suppressed. The dominant phase is then becquerelite above pH 7.5, and meta-schoepite below pH 7.5. (No error bars are shown on the calculated portion of the diagram but, if shown, the boundaries of each of the phases would change by -0.5 pH unit.) We would expect similar equilibrium diagrams if the data at 90°C were available, but the position of each phase would be shifted to higher U concentrations and different pHs.

These diagrams can be used to examine the correlation between the experimental U concentrations and the dominant solid phases identified at a given reaction time. The two data points at pH 7 correspond to the U concentrations after 3.7 years of reaction for ATM-103 and ATM-106 when Na-boltwoodite and β-uranophane were the major phases present. Thus, the experimental results are consistent with the concentrations expected from the equilibrium diagram.

\(^{239}\text{Pu}\) For \(^{239}\text{Pu}\), the highest concentrations \((10^{-7} \text{ to } 10^{-8} \text{ M})\) also occurred within the first 0.3 years of reaction. [The \(^{239}\text{Pu}\) concentration is about 50% of the total Pu \((^{239}\text{Pu},^{240}\text{Pu}, \text{ etc.})\)] As reaction time increased, the Pu concentration decreased and was of the order of \(10^{-10} \text{ M}\) after 3.7 years of reaction for the two drip tests. The Pu concentrations after 0.3, 1.6, and 3.7 years of reaction are plotted as a function of pH in Fig. 4, as is Wilson's \(^{239}\text{Pu}\) data point for his 85°C test [9].

The experimental data in Fig. 4 are plotted on a diagram that was calculated for the dominant plutonium phases and/or aqueous species at equilibrium at 25°C as a function of pH. The equilibrium data at 25°C were used since data at 90°C do not exist for plutonium phases. The Pu concentrations were calculated for a fixed EJ-13 leachant, atmospheric CO\(_2\) \((p_{\text{CO}_2} = 10^{-3.5})\), and atmospheric O\(_2\). (The calculated values were derived from the program Geochemist's Workbench, which incorporates the data of Rai et al. [7] and Rai and Swanson [8].) Two cases are shown in Fig. 4. In case (a), PuO\(_2\) is the dominant phase. In case (b), the data for PuO\(_2\) were suppressed. The dominant phase is then PuO\(_2\)(OH)\(_2\). Similar diagrams would be expected if the data at 90°C were available.
The experimental data points suggest that the Pu that is released from spent fuel may be in equilibrium with PuO$_2$. However, since some of the reacted Pu may be retained on the spent fuel in a uranium-plutonium-molybdenum-zirconium oxide, which is like the phases identified in uranium-plutonium oxide fuels, e.g., (Ba,Sr,Cs)(U,Pu,Zr,Mo)O$_4$ [10], the use of an equilibrium diagram may have limited use in predicting the progress of Pu release.

4. Conclusions

We found that the U and Pu concentrations were consistent with those expected from equilibrium diagrams for phases expected in spent fuel tests. This may have been fortuitous, but, it may also be an indication that the steady-state conditions in drip test are not far from equilibrium conditions. Unsaturated drip testing of these fuels will continue.

5. References

Fig. 1. Uranium and Plutonium Concentration in the Drip Test with ATM-103.

Fig. 2. Uranium and Plutonium Concentration in the Drip Test with ATM-106.
Fig. 3. The Log of the Uranium Concentration (M) at 90°C in Drip Tests for ATM-103 (squares) and ATM-106 (circles) as a Function of pH. Also plotted are the U concentrations at 25°C for known uranium solids. The triangle is Wilson data point.
Fig. 4. The Log of the Plutonium Concentration (M) at 90°C in Drip Tests for ATM-103 (squares) and ATM-106 (circles) as a Function of pH. Also shown are the Pu concentrations at 25°C for known plutonium solids. The triangle is Wilson’s data point. (The assumed conditions for the Pu calculations are shown in the lower left hand corner of the figure.)