Analysis of compression behavior of a [011] Ta single crystal with orientation imaging microscopy and crystal plasticity

PDF Version Also Available for Download.

Description

High-purity tantalum single crystal cylinders oriented with [011] parallel to the cylinder axis were deformed 10, 20, and 30 percent in compression. The engineering stress-strain curve exhibited an up-turn at strains greater than {approximately}20% while the samples took on an ellipsoidal shape during testing, elongated along the [100] direction with almost no dimensional change along [0{bar 1}1]. Two orthogonal planes were selected for characterization using Orientation Imaging Microscopy (OIM): one plane containing [100] and [011] (longitudinal) and the other in the plane containing [0{bar 1}1] and [011] (transverse). OIM revealed patterns of alternating crystal rotations that develop as a function ... continued below

Physical Description

663 Kilobytes pages

Creation Information

Adams, B. L.; Campbell, G. H.; King, W. E.; Lassila, D. H.; Stolken, J. S.; Sun, S. et al. February 3, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

High-purity tantalum single crystal cylinders oriented with [011] parallel to the cylinder axis were deformed 10, 20, and 30 percent in compression. The engineering stress-strain curve exhibited an up-turn at strains greater than {approximately}20% while the samples took on an ellipsoidal shape during testing, elongated along the [100] direction with almost no dimensional change along [0{bar 1}1]. Two orthogonal planes were selected for characterization using Orientation Imaging Microscopy (OIM): one plane containing [100] and [011] (longitudinal) and the other in the plane containing [0{bar 1}1] and [011] (transverse). OIM revealed patterns of alternating crystal rotations that develop as a function of strain and exhibit evolving length scales. The spacing and magnitude of these alternating misorientations increases in number density and decreases in spacing with increasing strain. Classical crystal plasticity calculations were performed to simulate the effects of compression deformation with and without the presence of friction. The calculated stress-strain response, local lattice reorientations, and specimen shape are compared with experiment.

Physical Description

663 Kilobytes pages

Source

  • Materials Research Society 1998 Fall Meeting, Boston, MA (US), 11/30/1998--12/04/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-133402
  • Report No.: YN0100000
  • Report No.: 97-51-010
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/8292 | External Link
  • Office of Scientific & Technical Information Report Number: 14553
  • Archival Resource Key: ark:/67531/metadc628565

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 3, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • May 5, 2016, 9:02 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Adams, B. L.; Campbell, G. H.; King, W. E.; Lassila, D. H.; Stolken, J. S.; Sun, S. et al. Analysis of compression behavior of a [011] Ta single crystal with orientation imaging microscopy and crystal plasticity, article, February 3, 1999; California. (digital.library.unt.edu/ark:/67531/metadc628565/: accessed December 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.