Corrosion performance of structural alloys in oxygen/sulfur/chlorine-containing environments.

PDF Version Also Available for Download.

Description

Component reliability and long-term trouble-free performance of structural materials are essential in power-generating processes that utilize coal as a feedstock. The combustion environments encompass a wide range of oxygen partial pressures, from excess-air conditions in conventional systems to air-deficient conditions in low-NO{sub x} systems. Apart from the environmental aspects of the effluent from coal combustion, one concern from the systems standpoint is the aggressiveness of the combustion environment toward boiler structural components such as waterwall tubes and steam superheaters. The corrosion tests in this program address the individual and combined effects of oxygen, sulfur, and chlorine on the corrosion response ... continued below

Physical Description

12 p.

Creation Information

Natesan, K. June 22, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 34 times , with 8 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Component reliability and long-term trouble-free performance of structural materials are essential in power-generating processes that utilize coal as a feedstock. The combustion environments encompass a wide range of oxygen partial pressures, from excess-air conditions in conventional systems to air-deficient conditions in low-NO{sub x} systems. Apart from the environmental aspects of the effluent from coal combustion, one concern from the systems standpoint is the aggressiveness of the combustion environment toward boiler structural components such as waterwall tubes and steam superheaters. The corrosion tests in this program address the individual and combined effects of oxygen, sulfur, and chlorine on the corrosion response of several ASME-coded and noncoded boiler materials exposed to air-deficient and excess-air combustion conditions. Data in this paper address the corrosion behavior of structural materials such as Type 347 stainless steel, Alloys 800, 825, 625, 214, and Hastelloy X when exposed at 650 C to excess-air combustion conditions with and without HCl. Thermodynamic calculations were made to evaluate the gas chemistries formed from coal combustion. The results of such calculations, coupled with oxygen/sulfur/chlorine thermochemical diagrams, were used to select the gas environments for the laboratory test program. Results are presented for weight change, thickness loss, microstructural characteristics of corrosion products, mechanical integrity and cracking of scales, and the mechanistic understanding gained on the role of sulfur and chlorine in the corrosion process.

Physical Description

12 p.

Notes

OSTI as DE00010747

Medium: P; Size: 12 pages

Source

  • 12th Annual Conference on Fossil Energy Materials, Knoxville, TN (US), 05/12/1998--05/14/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/ET/CP-96200
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 10747
  • Archival Resource Key: ark:/67531/metadc628560

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 22, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 6, 2017, 7:57 p.m.

Usage Statistics

When was this article last used?

Yesterday: 1
Past 30 days: 8
Total Uses: 34

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Natesan, K. Corrosion performance of structural alloys in oxygen/sulfur/chlorine-containing environments., article, June 22, 1998; Illinois. (digital.library.unt.edu/ark:/67531/metadc628560/: accessed December 11, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.