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ABSTRACT 

This report documents work done under contract 9-L72-29321. An algorithm was developed for genome 
contig assembly which extended the range of data types that could be included in assembly and which ran 
on the order of a hundred times faster than the algorithm it replaced. 

OBJECTIVES 

The objective of Contract 9-L72-29321 was to “develop and test new optimization algorithms for searching 
the space of all possible integrated genome maps, to find those that fit available experimental data as well as 
possible. ‘I 

PERFORMANCE 

In my original technical proposal, I proposed to extend work done in 1991 on applying genetic algorithms 
to the problem of genome maps. I began by exploring ways of improving the efficiency of the existing 
genetic algorithm (GCAA) for contig assembly. One of the approaches I explored was to initialize the GA 
with a population of so-so maps created by a greedy algorithm, rather than with a population created at 
random, but after developing an appropriate greedy algorithm I found that, with a slight enhancement, it out- 
performed our GA (and using it to initialize the GA gave no better results than using it alone). After 
discussions with Jim Fickett, the University’s technical representative, I shifted my attention to this approach 
and extended the algorithm to allow for subcloning. I also began work on a more general version of this 
algorithm which would allow for a much wider range of relations between elements. 

In the latter part of 1992 the human genome project at LANL began a big push to assemble maps from 
their existing data, and I spent a good deal of time tuning the algorithm presented below to deal with their 
data sets, and in generating actual maps for them. Work on more general data types (genetic linkage data etc.) 
was suspended to concentrate on their requests. 

In January 1993, the folks in Life Sciences and the Genome Project were expressing increasing interest 
in localized approaches to map assembly rather than the sort of global probabilistic approach envisioned in 
this project, and at the same time personal distractions were making it more difficult for me to pursue the 
work, so I asked Jim Fickett to discontinue the contract and we agreed to discontinue it following a talk which 
I gave in late January, summarizing my results. 

RESULTS 

1) An algorithm for contig assembly, hereafter called “Iterative Contig Assembly” or ICA, is summarized 
below. An implementation of the algorithm was left with Jim Fickett. 

2) Maps of all existing cosmid clone and YAC data at the Human Genome Information Resource were 
assembled using ICA. The resulting maps are summarized below. 
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3) A talk was given in late January for members of the Human Genome Information Resource and Life 
Sciences. 

ICA ALGORITHM: 

The data consisted of estimated clone lengths, painvise probabilities of overlap between clones (which in 
some cases was constrained to ’containment’ of one clone by another clone), estimates of length of overlap 
for clone pairs with > .5 probability of overlap, and for certain YAC pairs a probability of the pair being 
“either identical or disjoint”. In this later case, assuming the probability of the clones lapping was p and the 
probability of them being either identical or disjoint was q, we divided the possible relations between the two 
clones into three cases: 

identical: q x p 

otherwise: 1-q 
disjoint: 9 x (1-P) 

The fitness of a given map was defined to be: 

taken over all (ij) pairs, where Pij is the probability that clones i and j were related to one another (identical, 
overlapped or disjoint) as in the map. This fitness assumes that the relation between each pair is independent 
of the relations between other pairs, which is not the case, but may be a reasonable first-order approximation. 
In the talk I gave in January I suggested one way of avoiding this assumption, and in the discussion that 
followed David Torney said that he believed he could include the interdependence between pairs directly in 
the calculation. If a global, probabilistiic approach is pursued, David’s ideas ought to be explored. 

In this context, a ’map’ is an unordered list of contigs such that every clone in the map is in one and only one 
contig; a ’contig’ is a spacing of the endpoints of a set of clones along the real line to span a closed interval 
(one end of which can be arbitrarily chosen to be 0). ICA builds maps by deterministically adding clones to 
smaller maps, but the order in which clones are added is chosen at random. In simple cases adding clones 
in any order yields the same (optimal) map; in more complicated cases adding clones in different orders yields 
different maps, but a small number of different orderings (a few hundred) typically turns up maps which are 
as good or better than GCAA maps. ICA also runs so much faster than GCAA that maps involving hundreds 
of clones can be assembled; such large data sets are impractical for GCAA. 

To build a map, begin with an empty map and add clones to it in a random order. To add a clone to a map, 
evaluate adding it to each separate contig of the map; consider three possibilities: 1) Overall fitness would 
be most increased by connecting two contigs with the new clone (forming a single larger contig) 2) Overall 
fitness would be most increased by adding the clone to an existing contig 3) Overall fitness would be 
decreased if the new clone overlaps any contig. In the first case, we made need to flip a contig over to 
connect two contigs. In the third case, we start a new contig. 

To evaluate adding a clone to a contig: consider the set of at most 2n+l contiguous intervals defined by the 
endpoints of then clones in the contig (the first and last intervals extend infinitely far and overlap no clone). 
Moving an endpoint of the new clone within a given interval will not alter n P,J, so we need only consider 
the effect on n PiJ of putting the new endpoints in any of 2n+l  places, The number of places to consider is 
further reduced by the minimum and maximum allowed lengths of the new clone. At the same time, note if 



, 

overhanging the contig improves 
any pair of contigs for which overhanging improves n Pip 

Pij; when each contig has been evaluated separately, consider connecting 

To place a new clone once an optimal set of intervals is found for its endpoints: pick the clone length nearest 
to the estimated length, that fits within the intervals, and then position the clone to minimize the sum of the 
squares of errors in estimated overlap lengths. 

ICA, as outlined above, works well with clones of similar length. In order to map clones of widely disparate 
lengths such as the cosmid and YAC clones which were included in the data set at LANL, one often needs 
to rearrange short clones that have already been mapped to within some longer clone. Define any set of 
clones that are contained within a longer clone to be a sub-map, and consider moving and connecting contigs 
within the sub-map. In this case the overall length of the sub-map is constrained to remain less than the 
length of the containing clone. 

SUMMARY OF ICA MAPS 

A total of 3955 cosmid clones and 485 YACs were used in mapping. The resulting maps were left with the 
Human Genome Information Resource. A number of specific questions about coverage, raised by people at 
Life Sciences, were addressed. 

There was some question about how useful YACs were in bridging gaps between cosmid clones, and at the 
request of Life Sciences maps were assembled both with and without YACs. Below is a histogram of the 
resulting contigs: 

with YAC without YAC 

clones per #of # of 
contig contigs bp contigs bp 

1 1047 72892131 827 30421656 
2- 9 689 52823324 569 23236526 

10-19 46 6704838 56 2531835 
20-29 3 544000 10 486439 
30-39 2 637313 2 97519 
40-49 1 255000 
50-59 3 1032544 1 50000 
60-69 1 280000 

135 169150 56823975 

218 YAC contigs involved no cosmids. 

61 YAC contigs involved cosmids from more than 1 YAC-less contig, and if we assume that whenever 
cosmids from IZ YAC-less contigs appear in one YAC contig, n-l gaps were closed, then a total of 110 gaps 
were closed by YACs. (This may be a little misleading because, given the effects of YACs on the mapping 
process and the non-deterministic algorithm used in mapping, the assignment of cosmids to contigs is not 
necessarily the same in both cases.) A list of the 61 YAC contigs bridging YAC-less contigs and the contigs 
they bridged was given to Life Sciences. 



152 YAC-less contigs involve clones from more than one of the YAC contigs. These are either cases of 
incorrect YAC-less contigs being legitimately broken up by constraints imposed on the YACs, or noise. 

Within the YAC runs all subclone relations were satisfied. 

Life Sciences provided a list of sets of clones that were already thought to belong in single contigs. A total 
of 31 clones were in the list, 20 of these were grouped by ICA as expected by Life Sciences. 

It was suspected that some of the YACs were in fact identical; these ICA runs were, as far as I know, the first 
systematic attempt to figure out the identities, and we found 22 sets of YACs which are strong candidates for 
being identical. The list of likely identities was given to Life Sciences. 

799 YAC pairs were initially assigned a 90% probability of being either disjoint or identical, based on the 
experimental techniques used to generate them. 48 of these pairs wound up overlapping without being 
identical; this is in keeping with the assigned probability. The overlaps may be due to the expected 
experimental error in the technique used to generate them, or to chimera and ’repeat’ problems, or to faulty 
mapping by ICA. The list of overlapping but not identical pairs was given to Life Sciences. 

82 clones had been previously assigned ’Sigma coordinates’ using localization techniques. This data was not 
used in generating ICA maps, but ICA maps were compared with Sigma coordinates and did well at grouping 
clones judged to be nearby by localization, within contigs. There were some clear failures: cases in which 
clones localized to points far apart on the chromosome were placed within a single, short ICA contig. A list 
of ICA groupings of localized clones was given to Life Sciences. 

CONCLUSION: 

ICA ’maps’ reveal (or confirm) serious problems in our data. Finding or highlighting problems is itself 
worthwhile. When I began working on map assembly the only map assembly being done at LANL was 
done by individuals, assembling contigs of 15 or 20 clones by hand. At that time the effort went to finding 
a ’best’ arrangement. With GCAA it was relatively easy to find best or nearly best arrangements of contigs 
involving 30 or 40 clones, and some of us began to wonder whether a single ’best’ arrangement was really 
what was needed. ICA, developed during this project, makes it easy to find excellent maps involving 
hundreds of clones - if by excellent one means only that they fit the available probabilities as well as any 
other map. 

Unfortunately for most sets of hundreds of clones, there are many excellent maps (’many’ here is 
deliberately vague) - maps whose likelihood ratio with the best map we can find is essentially 1. If used 
right, ICA and other probabilistic mapping strategies might help direct efforts to refine the probabilities, but 
it seems clear that the probabilities will have to be refined before meaningful maps can be made. I think 
LANL’s Human Genome effort now should focus on other techniques. 

I’d like to thank Jim Fickett of LANL and the Human Genome Information Resource for his help, insights 
and calm on this project. 


